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ABSTRACT | Systems-biology approaches, which are driven by genome sequencing and high-throughput functional 
genomics data, are revolutionizing single-cell-organism biology. With the advent of various high-throughput techniques that 
aim to characterize complete microbial ecosystems (metagenomics, meta-transcriptomics and meta-metabolomics), we 
propose that the time is ripe to consider molecular systems biology at the ecosystem level (eco-systems biology). Here, we 
discuss the necessary data types that are required to unite molecular microbiology and ecology to develop an 
understanding of community function and discuss the potential shortcomings of these approaches. 

Over the past decade, the advent of robotics has enabled 
a paradigm shift in molecular biology: a change of 
emphasis from reductionistic approaches and 'single-
protein' studies to global investigations of increasingly 
more complex systems of molecules and their 
interrelationships. These 'systems approaches' are used 
to investigate processes as a whole and enable models to 
be built to predict the behaviour of a system in response 
to various external cues, disturbances or modifications of 
its composition [1]. After ground-breaking work on the 
properties of small networks that consisted of a few 
genes, the wiring of complete cells and microbial 
organisms is now being investigated and modelled [2,3]. 
However, as free-living organisms constantly interact with 
each other and the environment, systems biologists are 
already looking towards the next big challenge — 
unravelling the complexity of complete ecosystems. 

A microbial ecosystem can be defined as a system that 
consists of all the microorganisms that live in a certain 
area or niche and that function together in the context of 
the other biotic (plants and animals) and abiotic 
(temperature, chemical composition and structure of the 
surroundings) factors of that niche. Communities range 
from being simple (for example, one- or two-species-
dominated bioreactors and biofilms that are growing on 
ore-mine effluents or medical implants) to complex (for 
example, symbiotic human gut flora, plant rhizospheres, 
soil communities and ocean dwelling or even airborne 
microorganisms, such as those present in clouds). The 
complexity of the interactions in ecosystems depends on 
the number of species and the population structure, 
variation in food and energy supply and the geography of 
the habitat [4]. Eco-systems biology seeks to understand, 
as a whole, the immensely complex set of molecular 
processes and interactions that contribute to ecosystem 
functioning — the total sum of ecosystem-level 
processes, such as matter, nutrient and energy cycling 
[5]. This understanding should ultimately lead to 
predictive modelling of ecosystems, allowing the in silico 
investigation of ecosystem properties. Important issues 
that could be addressed by an ecosystems approach 
include estimating the relative importance of ecosystem 
members in ecosystem functioning and productivity, the 
effect of nutrient availability on species composition or the 
resilience of the ecosystem to disturbances. 

To be successful, however, any systems-biology study 
requires data on three important aspects of the system: 
the 'parts list'; the connectivity between the parts; and the 
placement of connectivity in the context of time and space 
[6,7]. Fig.1 shows the current status of these three data 

levels at various system scales. In single-organism 
systems biology, the parts list is generally established; 
almost 700 complete bacterial and archaeal genomes are 
available and some functional knowledge is available for 
approximately 70–80% of the encoded genes [8,9]. For 
several model organisms, large-scale efforts have 
determined the connectivity among the parts (the physical 
and genetic interactions between genes) [2]. This, 
together with an ever increasing amount of temporal, 
spatial and structural data, means that model 
microorganism systems biology is ready to enter the third 
phase and progress towards its final goal — the modelling 
and manipulation of complete organisms. The recent 
advent of several new large-scale technologies in 
microbial ecology, which have allowed high-throughput 
monitoring of genes (metagenomics), transcript and 
protein levels (meta-transcriptomics and meta-proteomics) 
and metabolites (meta-metabolomics) (Fig.1), are paving 
the way to an expansion of systems biology to the 
ecosystem level and are promising insights into these 
systems parts lists, connectivity and their temporal and 
spatial context at previously unforeseen scales. Here, we 
review these developments and assess how close we are 
to modelling complete microbial ecosystems. 

 

Metagenomes provide the parts list 

For several decades, ribosomal RNA studies have 
charted the species-level parts lists of environments [10]. 
However, unless the microorganisms that are identified 
can be cultured, their functional roles remain largely 
unknown. Functional assays of samples (for example, 
using BIOLOG plates to measure ecosystem substrate-
usage phenotypes) can provide insights into some of the 
processes that occur in communities, but do not provide 
information on which community members are involved. 
Techniques such as RNA-based stable-isotope probing 
[11,12], fluorescence in situ hybridization (FISH)–
microautoradiography [13], isotope arrays [14] and FISH–
secondary-ion mass spectrometry [15] and its variants 
[16] allow substrate usage and specific processes to be 
linked to species, but are limited to particular substrates, 
are subject to cross-feeding, are not applicable in all 
environments and do not generally provide molecular 
details on the genes that are involved [17]. Environmental 
DNA cloning and screening enable specific ecosystem 
functions to be linked to genes [18], but such linking to 
bacterial or archaeal species is rare, and when 
successful, necessitates the co-cloning of a phylogenetic 
marker [19]. Novel techniques that are based on single-
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cell isolation and simultaneous PCR of a phylogenetic 
marker with a functional gene of interest show promise 
[20,21], but have not yet been scaled up to high-
throughput simultaneous analysis of a large number of 
genes or functions and still have sensitivity issues [22]. 

Environmental shotgun sequencing [23-27] has recently 
provided ecosystems biology with a possible global 'one-
does-all' method. The random sampling of sequence data 
from the combined community members (the 
metagenome) provided a first unbiased and large-scale 
glimpse into the total molecular parts list of communities, 
and allowed the researchers (in theory) to simultaneously 
investigate genes, their functions and the individuals that 
exert them [23]. This promise has led researchers from all 
over the world to initiate metagenomic sequencing 
projects — more than 100 projects have been completed 
or are currently underway [28]. In addition, novel 
sequencing technologies with increasingly longer read 
lengths and the rapidly falling cost of sequencing will only 
expedite this process. 

Metagenomic sequencing has so far added more than 10 
billion bp to sequence databases [9,28]. The larger 
projects usually sequence approximately 50–100 Mb per 
environment, which should provide a firm foundation to 
start investigating the functioning of the underlying 
communities. However, this process is far from easy. 
Deriving ecosystem functioning from metagenomes 
requires careful sampling and DNA-extraction designs, 
followed by a considerable amount of far-from-trivial 
sequence-data processing (assembly and gene prediction 
on short reads), including the prior determination of a set 
of metagenome descriptors that describe the basic 
functional and phylogenetic composition of a sample [29] 
(Box 1; Fig.2). Unfortunately, these descriptors are also 
interlinked and are influenced by various biological and 
technical factors, and therefore yield a rich spectrum of 
pitfalls (for example, observed phylogenetic composition 
is dependent on sampling strategy and observed 
functional composition is dependent on sequence 
coverage and read length [29] (Fig.2)). In addition, the 
phylogenetic assignment of sequence reads, which is of 
paramount importance to the linking of molecular 
functions to species, remains a serious challenge in 
complex samples [23,29]. However, for most 
metagenomic samples, up to 75% of genes can be 
functionally characterized using targeted computational 
methodologies that combine homology and gene 
neighbourhood [8,9], and in simple communities, genes 
can be assigned to species (because complete genomes 
can be assembled), which means a parts list — the 
proteins, their function and their host organism — can be 
established. Given that more and more bioinformatics 
tools are being developed to analyse metagenomes and 
the standardization of data and analysis is being 
discussed (indispensable for comparison of independent 
studies [29]), it is likely that in the near future, 
metagenomic sequencing will provide a workable parts 
list for a large number of different ecosystems. 

 

Part lists to ecosystem properties 

If a parts list has been generated using sufficient 
sequence coverage and in a reasonably unbiased way 
(Box 1), several basic ecosystem properties can be 
derived that should help to characterize the microbial 
community in the sample. Here, we delineate some 

standard properties that are used in (microbial) ecology 
and propose possible metrics that are easily obtainable 
from the raw sequences. 

 

Community structure: species richness, evenness and 
diversity 

Calculations can be made using rarefaction approaches 
that are based on 16S sampling in conjunction with 
metagenomic sequencing. Alternatively, if an average 
genome size is known or predicted [30], these metrics can 
be predicted from assembly statistics [31]. 

 

Functional potential or breadth of the community: COG 
richness 

Calculations can be made by rarefaction of COG (clusters 
of orthologous group) counts on randomly sampled reads 
from the environment. 

 

Global functional complementarity between community 
members: COG richness per genome equivalent 

Can be calculated using COG richness and effective 
genome size [30], and should be a measure that 
correlates with the amount of within-community functional 
overlap. 

 

Adding connectivity to parts lists 

The measurements discussed above, which are based on 
the parts lists, allow a first glimpse into ecosystem 
functioning and structure. However, for a full systems 
approach, the more detailed wiring between the parts list 
needs to be deduced. Assuming we have a reasonable 
molecular parts list for an ecosystem, can we investigate 
the connectivity between its members? In cellular 
systems, connectivity refers to protein–protein interactions 
and modifications (such as phosphorylation), substrate 
and end-product transfer and regulatory interactions. In 
ecosystems, this concept encompasses an even wider 
range of interactions at various levels. These include 
ecological interactions between the carriers of function 
(organisms), such as competition, predation and structural 
interactions (such as mat formation). Many of these 
processes also have a molecular basis; for example, 
through direct cell–cell attachment [32] or though 
communication using various signalling molecules that 
bind specific receptors and therefore activate signalling 
pathways and instigate various forms of behaviour [33, 
34]. Also included is metabolic cooperation, in which the 
interaction is based on a sometimes mutual exchange of 
metabolites, such as the biogeochemical cycling of 
elements, nutrients and electrons or coordinated 
breakdown of complex polymers by multiple organisms. At 
the molecular level, this refers to the presence of 
complementary pathways in different organisms and the 
active or passive transport of metabolites in and out of the 
cell. As many of these processes are also linked to the 
abundance of organisms (for example, quorum sensing 
[33]) the nature and presence of these molecular 
interactions are highly dependent on population structure, 
which might vary over time (discussed in the next section). 
In addition, in many environments, the physical and 
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geographical heterogeneity of the local habitat can 
determine the interactions that are possible [35]. 

Given this complexity of cellular interactions, which are 
analogous to those of multicellular organisms [36], the 
reconstruction of ecosystem-wide molecular networks will 
be far from trivial. However, as more relevant data have 
become available, some aspects of cooperative molecular 
networks can already be derived. 

 

Data sources to probe connectivity 

Metabolic cooperation 

Metabolic cooperation has historically been studied using 
co-culture experiments, in which synergistic relationships 
between different strains are observed. This synergy has 
been found to occur by the transfer of intermediate 
metabolites (for example, the degradation of glucose 
through acetate to methane by Acetobacterium woodii 
and Methanosarcina barkeri), the transfer of electron 
carriers (for example, hydrogen and formate) or the 
removal of limiting by-products (for example, methanol 
and oxygen; reviewed in Ref. 37). However, to 
understand and model cooperation in complex, natural 
communities, the co-culture approach needs to be 
replaced by a more high-throughput and systematic 
approach that will allow chemical and microscopic 
monitoring of the various players in an ecosystem under a 
range of perturbations. 

Alternatively, genome-content analysis of ecosystem 
members could be used to infer metabolic cooperation. 
When the complexity of the ecosystem is low, 
metagenomic sequencing can yield enough coverage to 
complete the genomes of the most dominant members of 
the community. Having complete genomes enables the 
examination of patterns of metabolic complementarity 
between organisms and the proposal of hypotheses of 
cooperation between community members. For example, 
the reconstruction of several members of an acid-mine 
drainage sample allowed the authors to propose that one 
member, Leptospirillum sp. group III, could be a 
cornerstone species that carries out the fixation of 
nitrogen for the other community members that lack these 
pathways [26]. In an analysis of four gut symbionts in a 
gutless worm, evidence was found for syntrophic cycling 
of sulphate and sulphide (or other intermediate sulphur 
compounds) between gammaproteobacterial and 
deltaproteobacterial symbionts and for the existence of 
additional hydrogen syntrophy [38]. Finally, metabolic 
network reconstruction from the genome analysis of two 
endosymbionts (Candidatus Baumannia cicadellinicola 
and Candidatus Sulcia muelleri) in a sharpshooter 
revealed not only their role in providing nutrients, vitamins 
and cofactors to the host, but also their extensive 
metabolic cooperation — for example, in amino acid 
biosynthesis and complementing genome reduction 
between the two bacteria [39,40]. Using computational 
techniques, such as flux-balance analysis, simple in silico 
models of metabolic cooperation can be built that are 
based on genomic data. These models can be predictive 
of growth and metabolic fluxes and allow insights into 
synergistic reactions [41]. 

When ecosystem complexity is high, however, current 
coverage of metagenomic sequencing is inadequate. For 
example, to obtain eight times the coverage of only the 
most dominant member in the Minnesota soil 

metagenome, approximately 2–5 Gbp would need to be 
sequenced (in the pilot study, only 120 Mb were 
generated [25]). Such a sequencing effort is not 
impossible (for example, 6.3 Gbp were sequenced in the 
Global Ocean Sampling survey [42]), but has not been 
achieved as of yet for a single sample. With the rapidly 
dropping sequencing costs, metagenomic sequencing 
could remain a hypothesis-generating tool for ecosystem-
wide network reconstruction. However, current 
developments in cultivation methodologies [43] and DNA 
amplification from single cells [44], combined with high-
throughput cell sorting, will probably push single-genome 
sequencing to environmental scales and will allow us to 
avoid some of the weaknesses of metagenomics data 
[45]. Single-genome sequencing is therefore likely to be 
the input data source of choice for this type of analysis in 
the near future [46-49]. 

Many examples of the collaboration and cooperation of 
microorganisms, including the formation of complex 
consortia or biofilms and cell–cell communication, seem to 
occur at micrometre-range distances in open systems 
[50]. Therefore, analogous to protein complexes in cellular 
systems biology, the observation of physical cell–cell 
interactions between organisms provides strong 
indications of functional interactions in the ecosystem 
network. This is especially true when evidence for 
interactions, for example, from FISH microscopy, is 
combined with chemical measurements of metabolized 
compounds [51]. Although microscopy data is scattered 
and no high-throughput approaches to detect cell–cell 
interactions (an 'ecosystems yeast two-hybrid' at the 
cellular level) have yet been described, ongoing advances 
in high-throughput and three-dimensional microscopy, 
combined with automated image-analysis techniques 
should allow data to be gathered on a larger scale [52]. 
Until then, indirect measures might provide a solution. For 
example, investigating taxon occurrence patterns could 
provide signs of metabolic cooperation. Indeed, studies of 
both macroorganisms and microorganisms have indicated 
clear non-random distribution patterns [53,54]. However, 
as other factors, such as competition, niche (species-
composition cycles and biogeography can be predicted 
from habitat parameters [55] or organismal physiological 
traits [56]) and sampling, might also contribute to the 
patterns observed, further studies will need to show what 
information can be extracted from such data. 

 

Cell–cell signalling — communication and quorum 
sensing 

Evidence is accumulating that microorganisms do not live 
as isolated individuals, but as populations of cells that are 
continuously producing, sensing and responding to 
chemical signals, which allows them to communicate and 
cooperate. The best studied of these processes is quorum 
sensing, a process in which bacteria can 'measure' the 
cell density of their population to initiate processes such 
as bioluminescence, biofilm formation, sporulation and 
virulence [33,34]. Inter-species communication is less 
understood, although the discovery of more examples of 
this phenomenon has strengthened the general notion 
that these processes are more ubiquitous than previously 
thought [33,57]. These observations herald the exciting 
prospect of reconstructing the various inter-species small-
molecule-based signalling cascades that drive social 
behaviour in environments. Although the data are 
currently too fragmented to be used in a global systems 
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approach, the modelling of specific processes could 
constitute a proof-of-principle case study. To include this 
aspect of microbial interactions in global ecosystems 
biology, an integrated effort is needed to detect both the 
production of, and the response to, the plethora of small 
molecules that are produced by these organisms. 
Environmental metabolomics approaches, combined with 
metagenomic, meta-transcriptomic [58] and meta-
proteomic [59,60] data, should eventually allow the 
reconstruction of ecosystem-wide combined protein 
small-molecule networks, similar to those that have been 
achieved for single organisms (see Further information for 
a link to the STITCH chemical–protein interactions 
resource [61]). This approach could ultimately result in the 
molecular modelling of community multicellular behaviour 
types other than quorum sensing, such as dispersal, 
nutrient acquisition and biofilm formation [62]. 

 

Spatial and temporal variation 

Previous studies have detected variation in species 
composition in various habitats, both spatially (reviewed, 
for example, in Refs [35,63-65]) and temporally (for 
example, Refs [66,67]). Spatio–temporal variation has 
been linked to variation in environmental conditions 
[35,68], even to the point at which environmental 
parameters can be predictive of species composition [55]. 
Similar spatio–temporal variation has been observed from 
a functional point of view [69]. Comparative 
metagenomics approaches [24,25,29] recently charted 
the molecular basis of spatial functional variation of 
environments from the kilometre [25,42,70] to centimetre 
[38] and even millimetre scale [71] (Fig.3), and with time-
series metagenomics studies underway [28], studying 
temporal (and spatio–temporal [72]) aspects should 
become possible at the molecular level. The recent 
development of phylochips, metagenome-based 
microarrays and high-throughput sequencing-based 
monitoring will further expedite the amount of dynamic 
data that is available (for example, Refs [73-77]; reviewed 
in Refs [78,79]). By providing a quick and cheap read-out 
of variation in species content and molecular function in 
environments, these techniques will allow the 
simultaneous discovery of new genes and species that 
are involved in specific processes (for example, from 
ecosystem perturbation experiments) or linked to 
environmental conditions (for example, from seasonal 
time series). Therefore, these advances lay the 
foundations to investigate the dynamic nature of 
molecular ecosystem networks in time and space. 

 

Conclusions 

Many datasets that will facilitate ecosystems biology are 
now being gathered. Metagenomics studies are collating 
the parts lists from which some general ecosystem 
properties, as well as first insights into metabolic 
cooperation, can be extracted. Other technologies that 
will gather additional, complementary data types, such as 
the environmental counterpart of high-throughput 
functional genomics (a cornerstone of cellular systems 
biology), are still in their infancy. However, technologies 
such as large-scale automated monitoring of chemicals 
and meta-metabolomics are developing rapidly. The 
interpretation and integration of these data will be 
challenging and will necessitate the development of novel 
computational approaches [29], but these challenges will 

be overcome. Thus, the reconstruction of larger ecological 
networks at the molecular level will become feasible. 
Integration of these molecular networks into the vast body 
of macro-ecological theory should lead to a more 
thorough understanding of the wiring of the main 
biological systems on the Earth. 

 

Databases 

Candidatus Baumannia cicadellinicola: 
http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&c
md=search&term=Baumannia%20cicadellinicola 

Candidatus Sulcia muelleri: 
http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&c
md=Retrieve&dopt=Overview&list_uids=19805 

Methanosarcina barkeri: 
http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&c
md=search&term=Methanosarcina%20barkeri 

 

Further information 

Jeroen Raes's homepage: 
http://www.embl.de/~raes/ 

Peer Bork's homepage: 
http://www.bork.embl.de/j/ 

STITCH chemical–protein interactions: 
http://stitch.embl.de/ 
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Figure 1.  Systems biology: from proteins to environments. a | Different spatial scales at which systems biology can be performed 
(based on the 'dimension' definitions in Ref. [6]). The columns show data availability for each scale and the rows indicate the aspect of 
the system that is targeted by the data (+++, ample data available and good knowledge of the system aspect; ++, a number of high-
throughput data sets available and fair knowledge of the system aspect, but more data are still needed to build comprehensive models; 
+, a few scattered non-high-throughput data sets available and model building is restricted to case studies; x, almost no data available). 
b | At the ecosystem scale, read-outs are available at different levels: molecules (ranging from trace elements to small signalling 
compounds to metabolism intermediates), genes or proteins, and cells or individuals. Here, we show some of the more promising high-
throughput approaches to the generation of data that would facilitate eco-systems biology. No high-throughput tools are currently 
available that can map interactions, and this information will need to be inferred from other data sources (see the main text). 
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Figure 2.  From metagenomes to ecosystem functioning: influencing factors and hidden dependencies. An overview of the 
factors that are required to analyse metagenomes and understand the molecular basis of ecosystem functioning (the total sum of 
ecosystem-level processes, such as matter, nutrient and energy cycling). Lines between factors indicate interdependencies (for 
example, perceived ecosystem functional composition depends on the functional annotation of genes and sampling protocol influences 
the observed phylogenetic composition; reviewed in Ref. 29). All these factors must be assessed when analysing a particular 
metagenome and it should be noted that all the factors are interrelated, which is important to our understanding of ecosystem 
functioning. 
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Figure 3.  Visualizing complex environmental patterns. Novel visualization techniques will be needed to describe complex data and 
patterns. The example shown here is a summary of the metabolic variation along a longitudinal transect of ocean surface water samples 
(data from Ref. [42]; the samples used (red) were selected for similarity in habitat type). Colour intensity shows the contribution to the 
overall variance for different KEGG [84] maps that are involved in central metabolism (for example, red indicates maps with low 
contribution and therefore low variability over sites, whereas yellow indicates maps with high contribution) and grey indicates no 
significant KEGG mapping for these samples. The inset shows the large contribution of photosynthesis to the overall functional variation 
among samples. 
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Box 1. Generating representative metagenomics data. 

To maximize the information content of environmental sequencing projects and allow effective post-analysis comparisons, the 
guidelines provided here could prove helpful. It should be noted, however, that these ideal-case-scenario guidelines might be subject 
to project (for example, financial and logistical) constraints. 

Detailed sampling-methodology description and meta-data recording 
To correctly interpret and compare metagenomics projects, an exact description of how the sample was taken is paramount (for 
example, filtering, enrichment procedures and DNA extraction). As much additional data about the sample as possible should also be 
recorded. This could range from the exact geographical location (for example, longitude, latitude, depth, height, time or date) to 
biochemical habitat measurements (for example, pH, levels of oxygen, phosphate or nitrate, and salinity) to patient information (for 
example, gender, age and disease or nutritional state) [29,80]. The 'Minimum Information about a Metagenome Sequence' 
specification should allow this information to be captured [81]. 

Sufficient coverage 
A pilot study of the environment using rarefaction approaches should allow an estimation of its phylogenetic and functional complexity 
[29]. This could then be used to estimate the amount of sequencing that is required for the dataset to be representative. 

Variability assessment 
Ideally, multiple samples should be taken at the same site, at different time points or under different conditions to allow the biological 
variation at the site to be determined. Experimental variability should also be investigated [80]. 

Transparent and complete description of data treatment 
Full details of computational data treatment should be provided for reproducibility, to assess the presence of data-treatment artefacts 
in functional conclusions and enable comparative metagenomics (for example, on assembly, gene calling and functional annotation) 
[29]. 

Reporting of a minimal set of metagenomic analyses and descriptors 
To allow proper interpretation, post-analysis and comparison of independent samples and projects, a standardized set of minimal 
metagenome analyses and descriptors was proposed (MINIMESS [29]). Providing these data together with the raw data should allow 
those researchers who do not have access to bioinformatics resources to make optimal use of results. 

Public availability 
As for any sequencing project, data should be released to the general public. In addition to depositing assembled contigs in 
GenBank, the European Molecular Biology Laboratory (EMBL) and the DNA Data Bank of Japan (DDBJ), the raw reads should also 
be made available through the National Center for Biotechnology Information (NCBI) and European Bioinformatics Institute (EBI) 
trace archive. Other resources, such as CAMERA and IMG/M [82,83], allow further meta-data and analyses to be linked to deposited 
sequences. 

 

 


