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Abstract

Background: Understanding the interaction among different species within a community and their responses to

environmental changes is a central goal in ecology. However, defining the network structure in a microbial

community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent

advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide

revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in

a microbial community based on high-throughput metagenomics data.

Results: Here, we describe a novel mathematical and bioinformatics framework to construct ecological association

networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods.

Compared to other network construction methods, this approach is remarkable in that the network is automatically

defined and robust to noise, thus providing excellent solutions to several common issues associated with high-

throughput metagenomics data. We applied it to determine the network structure of microbial communities

subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that

the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free,

small world and modularity, which were consistent with previously described molecular ecological networks.

Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency

with many other studies, several major environmental traits including temperature and soil pH were found to be

important in determining network interactions in the microbial communities examined. To facilitate its application

by the scientific community, all these methods and statistical tools have been integrated into a comprehensive

Molecular Ecological Network Analysis Pipeline (MENAP), which is open-accessible now (http://ieg2.ou.edu/MENA).

Conclusions: The RMT-based molecular ecological network analysis provides powerful tools to elucidate network

interactions in microbial communities and their responses to environmental changes, which are fundamentally

important for research in microbial ecology and environmental microbiology.

Keywords: Ecological network, Random Matrix Theory, Microbial community, Microbiological ecology, Network

interaction, Environmental changes

Background
In an ecosystem, different species/populations interact

with each other to form complicated networks through

various types of interactions such as predation, competi-

tion and mutualism. On the basis of ecological interac-

tions, ecological networks can be grouped as

antagonistic, competitive and mutualistic networks [1].

Traditionally, food webs have been intensively studied in

ecological research because they are critical to study the

complexity and stability of ecological communities [2,3].

Recent studies showed that food webs possessed typical

properties of network topology (e.g. degree distribution,

small world effect) [1,4,5]. Within the last decade, mu-

tualistic networks have also been intensively studied [6].

But, it appears that no studies have been performed to

examine competitive networks. This is most likely be-

cause the network structure is not available based on

competitive interactions. Unlike food webs and plant-

animal mutualistic networks where the structure is

already known, quantifying competitive interactions

among different species/populations within a given habi-

tat is difficult so that the network structure for
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competitive interactions is unknown. This is also true

for network studies in microbial ecology. Because of

their vast diversity, as-yet uncultivated status [7] and of

the lack of appropriate theoretical frameworks and ex-

perimental data, very few community-scale network

studies have been performed in microbial ecology.

Various network approaches have been developed and

widely applied in genomic biology [8]. To reveal the

interactions among biological molecules including genes

and proteins, differential equation-based network meth-

ods [9–12], Bayesian network methods [13,14], and rele-

vance/co-expression network methods [15–20], have

been used to infer cellular networks based on gene ex-

pression data. Among them, the correlation-based rele-

vance network method is most commonly used largely

due to its simple calculation procedure and noise toler-

ance [21]. However, most studies involving relevance

network analysis use arbitrary thresholds, and thus the

constructed networks are subjective rather than object-

ive [8]. This problem has been solved by our recent de-

velopment of a random matrix theory (RMT)-based

approach, which is able to automatically identify a

threshold for cellular network construction from micro-

array data [22–24]. Our results showed that the devel-

oped novel RMT-based approach can automatically

identify cellular networks based on microarray data. Our

results also indicated that this approach is a reliable,

sensitive and robust tool for identifying transcriptional

networks for analyzing high-throughput genomics data

for modular network identification and gene function

prediction [22,23].

High-throughput technologies such as microarrays

and high throughout sequencing have generated massive

amounts of data on microbial community diversity and

dynamics across various spatial and temporal scales

[25,26]. These data offer an unprecedented opportunity

to examine interactions among different microbial popu-

lations [7]. Recently, a novel conceptual framework,

termed molecular ecological networks (MENs), has been

proposed and applied to characterize microbial commu-

nities in response to elevated CO2 [27,28]. Here, we pro-

vide detailed mathematical and bioinformatic foundation

of this novel approach, and further applications to

characterize microbial community network interactions

in response to long-term experimental warming. Add-

itionally, we provide an online tool, named the Molecu-

lar Ecological Network Analyses Pipeline (MENAP),

which is freely accessible to the scientific community.

Results
Overview of MENA

An ecological network is a representation of various bio-

logical interactions (e.g., predation, competition, mutual-

ism) in an ecosystem, in which species (nodes) are

connected by pairwise interactions (links) [1,29–32]. As

previously described, we refer such molecule-based eco-

logical networks in microbial communities as molecular

ecological networks (MENs) [27,28], in which different

nodes (molecular markers, e.g., OTUs, functional genes,

intergenic regions) are linked by edges (i.e., interactions).

The MENs derived from functional gene markers are re-

ferred as functional molecular ecological networks

(fMENs) [27] and those based on phylogenetic gene

markers as phylogenetic molecular ecological networks

(pMENs) [28].

The whole process of MENA can be divided into two

phases and each phase is comprised of several major

steps (Figure 1). The first phase is network construction,

which includes four major steps: data collection, data

transformation/standardization, pair-wise similarity

matrix calculation, and the adjacent matrix determin-

ation by RMT-based approach. Among them, the last

step is the key to RMT-based network construction

(Figure 2), which has been well established in biological

systems [22,23]. Once the adjacency matrix is defined,

an undirected network graph can be drawn. The second

phase of MENA is network analyses, which is composed

of network topology characterization (Table 1, 2), mod-

ule detection, module-based eigengene analysis and

identification of modular roles. These methods are im-

portant for revealing the networks’ overall and modular

organizations and identifying key populations at OTU

level. In addition, eigengene network analysis can be

performed to reveal higher order organization of MENs,

and the associations of network properties to environ-

mental characteristics can be established. Finally, the

network differences can be compared under different

conditions to analyze how environments affect network

structure and interactions.

Molecular network under experimental warming

Here we used 16 S rRNA gene-based pyrosequencing

data from a long-term experimental warming site [48]

to construct pMENs and demonstrate the whole process

of MENA. The experimental site was established in

grassland with two atmospheric temperature treatments,

ambient (unwarming) and +2 °C warming. Six replicate

plots were set up for each treatment. The environmen-

tal DNA of microbial community was extracted from

the soil samples of those 12 plots and 2 or 3 unique

tags with 16 S rRNA gene conserved primers were used

to amplify the V4-V5 hypervariable regions of the 16 S

rRNA genes. Altogether, there were 14 replicate datasets

for each treatment of warming or unwarming. After

preprocessing all raw sequences, the numbers of

sequences for all 28 samples ranged from 1,033 to

5,498. After defining OTUs within 0.03 sequence differ-

ence, an OTU distribution table with 1,417 distinct
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OTUs across 28 samples was obtained. Since the num-

bers of sequences of all samples were diverse, the abun-

dance data were transformed into relative abundance by

dividing the sum of each sample as described previously

[48]. The relative abundance table was split into two

datasets: warming and unwarming. For each of the data-

sets, only the OTUs appeared in 7 or more replicates

were used for correlation calculations, resulting in 228

and 197 OTUs for warming and unwarming datasets,

respectively. After threshold scanning through RMT-

based approach, the phylogenetic molecular ecological

networks (pMENs) under warming and unwarming con-

ditions were constructed with an identical similarity

threshold 0.76 (Table 3). The final warming and

unwarming pMENs included 177 and 152 nodes which

had at least one edge, and 279 and 263 total edges,

respectively.

The robustness of MENs to noise

In order to examine the robustness of MEN approach to

noise, different levels (1 to 100 % of original standard de-

viation) of Gaussian noise were added to the warming

dataset. Once various levels of noise were added, new

correlation matrices based on these noise-added datasets

were calculated. The same similarity threshold used for

the original datasets was used for defining adjacency

matrices in the new datasets. When less than 40 % noise

was added, roughly 90 % of the original OTUs were still

detected in the perturbed networks (Figure 3). With

100 % Gaussian noise, more than 85 % nodes from

Figure 1 Overview of the Random Matrix Theory (RMT)-based molecular ecological network analysis. Two major parts are included,

network construction and network analyses. In each of them, several key steps are outlined.
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original network were still preserved and accounted for

75 % nodes of perturbed network. These results indicate

that the RMT-based MEN construction approach is

robust to noise.

The overall MENs topology

Scale-free, small-world, modularity and hierarchy are

common network properties in many complex systems

(Table 2) [8,53,54]. The overall topology indices (Table 3)

revealed that all curves of network connectivity distribu-

tion were fitted well with the power-law model (R2 values

from 0.74 to 0.92), indicative of scale-free networks. Also,

the average path lengths (GD) were 3.09 to 5.08, which

were close to logarithms of the total number of network

nodes and comparable to those in other networks dis-

playing small-world behavior, suggesting that the MENs

in these microbial communities had the typical property

of small world. For modularity, all modularity values (M)

were from 0.44 to 0.86, which were significantly higher

than the M values from their corresponding randomized

networks, Therefore, all constructed MENs appeared to

be modular. Finally, the hierarchy property was examined

by the scaling of clustering coefficient. R2 values of the

linear relationship between logarithms of clustering coef-

ficients and the logarithms of connectivity ranged from

0.10 to 0.73, indicating the hierarchical behavior was

quite variable. MENs from certain habitats may have

highly hierarchical structures like sediment samples from

Lake DePue (0.73), but others may not (Table 3). Overall,

our constructed MENs from different habitats clearly ex-

hibit scale free, small world and modularity properties,

but hierarchy property is displayed on certain networks.

Modular structure

Modularity is a very important concept in ecology. It

could originate from specificity of interactions (e.g.

Figure 2 Process of random matrix theory-based approach for automatically detecting threshold to construct molecular ecological

networks.
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Table 1 The network topological indexes used in this study

Indexes Formula Explanation Note Ref

Part I: network indexes for individual nodes

Connectivity ki ¼
P

j 6¼i aij aij is the connection strength
between nodes i and j.

It is also called node degree.
It is the most commonly
used concept for desibing
the topological property of a
node in a network.

[33]

Stress centrality SCi ¼
P

jk σ j; i; kð Þ σ j; i; kð Þ is the number of shortest
paths between nodes j and k that
pass through node i.

It is used to desibe the
number of geodesic paths that
pass through the ith node.
High Stress node can serve
as a broker.

[34]

Betweenness Bi ¼
P

jk
σ j;i;kð Þ
σ j;kð Þ σ j; kð Þ is the total number of shortest

paths between j and k.
It is used to desibe the ratio
of paths that pass through
the ith node. High Betweenness
node can serve as a broker
similar to stress centrality.

[34]

Eigenvector centrality ECi ¼
1
λ

P
j2M ið Þ ECj M(i) is the set of nodes that are

connected to the ith node and
λ is a constant eigenvalue.

It is used to desibe the degree
of a central node that it is
connected to other central nodes.

[35]

Clustering coefficient CCi ¼
2li

ki
0 ki

0�1ð Þ
li is the number of links between
neighbors of node i and ki’
is the number of neighbors of node i.

It desibes how well a node is
connected with its neighbors.
If it is fully connected to its
neighbors, the clustering coefficient
is 1. A value close to 0 means
that there are hardly any
connections with its neighbors.
It was used to desibe hierarchical
properties of networks.

[36,37]

Vulnerability Vi ¼
E�Ei
E

E is the global efficiency and Ei is the
global efficiency after the removal of
the node i and its entire links.

It measures the deease of node i on
the system performance if node
i and all associated links are removed.

[38]

Part II: The overall network topological indexes

Average connectivity avgK ¼

Pn

i¼1
ki

n
ki is degree of node i and n is the
number of nodes.

Higher avgK means a more
complex network.

[39]

Average geodesic
distance

GD ¼ 1
n n�1ð Þ

P
i 6¼j dij dij is the shortest path between

node i and j.
A smaller GD means all the nodes
in the network are closer.

[39]

Geodesic efficiency E ¼ 1
n n�1ð Þ

P
i 6¼j

1
dij

all parameters shown above. It is the opposite of GD. A higher
E means that the nodes are closer.

[40]

Harmonic geodesic
distance

HD ¼ 1
E

E is geodesic efficiency. The reciprocal of E, which is similar
to GD but more appropriate
for disjoint graph.

[40]

Centralization of degree CD ¼
Pn

i¼1 max kð Þ � kið Þ max(k) is the maximal value of all
connectivity values and ki
represents the connectivity
of ith node. Finally this
value is normalized by the
theoretical maximum
centralization score.

It is close to 1 for a network with
star topology and in contrast close
to 0 for a network where each
node has the same connectivity.

[41]

Centralization of betweenness CB ¼
Pn

i¼1 max Bð Þ � Bið Þ max(B) is the maximal value of all
betweenness values and Bi
represents the betweenness
of ith node. Finally this
value is normalized by the
theoretical maximum
centralization score.

It is close to 0 for a network
where each node has the same
betweenness, and the bigger
the more difference among all
betweenness values.

[41]

Centralization of stress
centrality

CS ¼
Pn

i¼1 max SCð Þ � SCið Þ max(SC) is the maximal value of
all stress centrality values
and SCi represents the
stress centrality of ith node. Finally
this value is normalized by the

It is close to 0 for a network
where each node has the same
stress centrality, and the bigger
the more difference among all
stress centrality values.

[41]
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predation, pollination), habitat heterogeneity, resource

partition, ecological niche overlap, natural selection,

convergent evolution, and phylogenetic relatedness, and

it could be important for system stability and resilience

[55]. In MENs, a module in the network is a group of

OTUs that are highly connected among themselves, but

had much fewer connections with OTUs outside the

group. Random matrix theory-based approach is able to

delineate separate modules, but some modules could still

be very big.

We used several methods, including short random

walks [56], leading eigenvector of the community matrix

[57], simulated annealing approach [58,59] and the

greedy modularity optimization [57], to define modules

and submodules within a large module. From the evalu-

ation of warming and unwarming pMENs, short random

walks generated 27 and 31 modules with M values 0.61

and 0.56, respectively; the leading eigenvector of the

matrix generated 22 and 28 modules with M values 0.61

and 0.54, respectively; the greedy modularity

optimization had 18 and 20 modules with M values 0.67

and 0.61, respectively; the simulated annealing approach

had average 18 and 19 modules with average M values

0.67 and 0.61, respectively. From these results, the

greedy modularity optimization and simulated annealing

approach had higher M values than two other

approaches, indicating they are more effective in separat-

ing the complex networks into submodules. Notably,

since the simulated annealing approach was stochastic

[59], the submodules of pMENs generated by this

approach were slightly different with different runs.

Therefore, the greedy modularity optimization approach

was preferred to identify the submodular structure of

MENs. The modular pMEN of warming pyrosequencing

dataset was shown in Figure 4A. A total of 10 joint sub-

modules with ≥8 nodes were isolated from a single large

module and all the other isolated modules were rela-

tively small (2 to 4 nodes). The size of modules or sub-

modules varied with 2 to 24 nodes.

Eigengene network analysis and the modular topological

roles

After modules and submodules are determined, the

eigengene analysis is used to reveal higher order organi-

zations in the network structure [60–62]. In the eigen-

gene analysis, each module is represented by its singular

value decomposition (SVD) of abundance profile called

module eigengene [62]. In the warming pMEN, the

module eigengenes from top 10 large submodules (≥8

nodes) explained 30 - 68 % variations of relative abun-

dance across different replicates, suggesting that these

eigengenes represented the module profiles relatively

well. The correlations among module eigengenes were

used to define the eigengene network. Eigengene analysis

is important for revealing higher order organization and

identifying key populations based on network topology

[62]. In warming pMEN, these correlations of 10 largest

submodules were visualized as a heat-map and hierarch-

ical clustering diagram (Figure 4B). The eigengenes

within several groups of submodules showed significant

Table 1 The network topological indexes used in this study (Continued)

theoretical
maximum centralization score.

Centralization of
eigenvector centrality

CE ¼
Pn

i¼1 max ECð Þ � ECið Þ max(EC) is the maximal value of all
eigenvector centrality values and ECi
represents the eigenvector
centrality of ith node. Finally
this value is normalized by the
theoretical maximum
centralization score.

It is close to 0 for a network
where each node has the
same eigenvector centrality,
and the bigger the more
difference among all
eigenvector centrality values.

[41]

Density D ¼ l
l exp

¼ 2l
n n�1ð Þ l is the sum of total links and lexp

is the number of possible links.
It is closely related to the
average connectivity.

[41]

Average clustering
coefficient

avgCC ¼

Pn

i¼1
CCi

n
CCi is the clustering coefficient
of node i.

It is used to measure the
extent of module structure
present in a network.

[36]

Transitivity Trans ¼

Pn

i¼1
2lið ÞPn

i¼1
ki
0 ki

0�1ð Þ½ �
li is the number of links between
neighbors of node i and ki’ is the
number of neighbors of node i.

Sometimes it is also called the
entire clustering coefficient.
It has been shown to be
a key structural property in
social networks.

[41]

Connectedness Con ¼ 1� W
n n�1ð Þ=2

h i
W is the number of pairs of nodes
that are not reachable.

It is one of the most important
measurements for summarizing
hierarchical structures. Con is 0 for
graph without edges and is 1
for a connected graph.

[42]
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correlations and clustered together as super-groups,

such as #6 and #8, #2, #5 and #3, and #1, and #7 and #9,

which were referred as meta-modules that exhibit a high

order organization among submodules. Besides, within

each module, eigengene analysis approach was able to

show the representative abundance profile and identify

key members as shown in our previous paper [28].

Different nodes play distinct topological roles in the

network [33]. The analysis of modular topological roles

is important to identify key populations or functional

genes based on the nodes’ roles in their own modules.

Their topological roles can be defined by two para-

meters, within-module connectivity (zi) and among-

module connectivity (Pi). The topological roles of nodes

in warming and unwarming pMENs were illustrated in

ZP-plot (Figure 4C). According to values of zi and Pi,

the roles of nodes were classified into four categories:

peripherals, connectors, module hubs and network hubs.

From ecological perspectives, peripherals might repre-

sent specialists whereas module hubs and connectors

were close to generalists and network hubs as super-

generalists [55]. Here, the majority of OTUs (90.9 %)

under warming and unwarming conditions were periph-

erals with most of their links inside their own modules.

A total of 26 nodes (7.9 %) were connectors and only

four nodes (1.2 %) were module hubs. Those four OTUs

as module hubs were derived from Planctomyces (Planc-

tomycetes), Nocardioides (Actinobacteria) under warm-

ing condition, and Thermoleophilum (Actinobacteria)

and GP4 (Acidobacteria) under unwarming condition,

indicating that the hubs of pMENs were substantially

different under different conditions.

The correlations between network topologies with

environmental traits

The relationships between microbial network topology

and environmental characteristics can be examined in

both direct and indirect ways. Indirectly, as a first step,

the OTU significance (GS) is calculated and defined as

the square of Pearson correlation coefficient (r2) of OTU

abundance profile with environmental traits. Then the

correlation between GS and nodes’ topological indices

(e.g., connectivity) was used to measure the relationship

of network topology with traits. For instance, in warm-

ing pMEN, the GS of average soil temperature was sig-

nificantly correlated with the nodes’ connectivity

(r= 0.30, p= 4.7 × 10-5), indicating that the nodes with

higher connectivity were inclined to have closer relation-

ships with temperature. If multiple GS was involved,

Mantel and partial Mantel tests could be implemented

to calculate correlations between the connectivity and

multiple GS of environmental traits to reveal the internal

associations between network topology and environmen-

tal changes. In warming pMEN, the nodes’ connectivity

was significantly associated with the GS of pH values,

soil NO3-nitrogen and soil carbon contents when the ef-

fect of temperature was controlled (rM= 0.104,

P = 0.018). Meanwhile, the GS of temperature was also

significantly associated with the connectivity when afore-

mentioned soil geochemistry factors were controlled

(rM= 0.159, P = 0.003) (Table 4). Moreover, the OTUs of

β-Proteobacteria and Verrucomicrobia were highly asso-

ciated with the changes of soil geochemistry (rM= 0.59

and 0.926 respectively, both P = 0.013). These results

suggested that the OTUs topology in warming pMEN

was significantly associated with both temperature and

the selected soil variables. In addition, OTUs from β-

Proteobacteria and Verrucomicrobia were most sensitive

to the changes of soil variables.

The correlations between module-based eigengenes

and environmental factors can be used to detect the

modules’ response to environmental changes. In warm-

ing pMEN, the coefficients (r values) and significances

(p values) were shown in a heatmap (Figure 5). Submo-

dules #1 and #9 were positively correlated with the

average soil temperature significantly (p< 0.01) but

Table 2 Common characters of complex networks

Terminology Explanation

Scale-free It is a most notable characteristic in complex systems.
It was used to desibe the finding that most nodes in a
network have few neighbors while few nodes have
large amount of neighbors. In most cases, the
connectivity distribution asymptotically follows a
power law [43]. It can be expressed in P kð Þek�y , where
P(k) is the number of nodes with k degrees, k is
connectivity/degrees and γ is a constant.

Small-world It is a terminology in network analyses to depict the
average distance between nodes in a network is short,
usually logarithmically with the total number of nodes
[44]. It means the network nodes are always closely
related with each other.

Modularity It was used to demonstrate a network which could be
naturally divided into communities or modules [45].
Each module in gene regulation networks is
considered as a functional unit which consisted of
several elementary genes and performed an
identifiable task [23,46]. A modularity value can be
calculated by Newman’s method [45] which was used
to measure how well a network is able to be separated
into modules. The value is between 0 to 1.

Hierarchy It was used to depict the networks which could be
arranged into a hierarchy of groups representing in a
tree structure. Several studies demonstrated that
metabolic networks are usually accompanied by a
hierarchical modularity [37,44]. It was potentially
consistent with the notion that the accumulation of
many local changes affects the small highly integrated
modules more than the larger, less integrated modules
[37]. One of the most important signatures for
hierarchical modular organizations is that the scaling of
clustering coefficient follows C(k) ~ k−γ (scaling law), in
which k is connectivity and γ is a constant [47].
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Table 3 Topological properties of the empirical molecular ecological networks (MENs) of additional miobial communities and their associated random MENsa

Habitats of
communitiesb

Empirical networks Random networks

Similarity
threshold
(st)

Network
size (n)

R2 of
power
law

R2 of
scaling
law

Average
path
(GD)

Average
Clustering
coefficient
(avgCC)

Modularity &
(the number
of modules)

Average
path
(GD)

Average
clustering
coefficient
(avgCC)

Modularity (M)

Functional MENs

Grassland soils under
elevated CO2, MN (i)

0.80 254 0.79 0.25 3.09 0.22 0.44 (18) 3.00 ± 0.03 0.099 ± 0.009 0.31 ± 0.01

Grassland soils under
ambient CO2, MN (i)

0.80 184 0.88 0.11 4.21 0.10 0.65 (16) 3.84 ± 0.06 0.028 ± 0.007 0.52 ± 0.01

Lake sediment,
Lake DePue, WI (ii)

0.92 151 0.85 0.73 3.47 0.09 0.48 (8) 3.46 ± 0.05 0.046 ± 0.010 0.45 ± 0.01

Groundwater, Well
101–2, Oak Ridge, TN (iii)

0.95 107 0.74 0.44 3.12 0.29 0.52 (11) 3.13 ± 0.07 0.081 ± 0.017 0.40 ± 0.01

Groundwater Well
102–2, Oak Ridge, TN (iii)

0.89 140 0.79 0.21 4.22 0.17 0.67 (12) 3.89 ± 0.08 0.033 ± 0.012 0.53 ± 0.01

Groundwater Well
102–3, Oak Ridge, TN (iii)

0.87 117 0.85 0.19 3.57 0.25 0.64 (13) 3.54 ± 0.09 0.049 ± 0.013 0.48 ± 0.01

Phylogenetic MENs (454 pyrosequencing)

Grassland soils under
warming, Norman, OK (iv)

0.76 177 0.83 0.48 3.91 0.13 0.67 (18) 3.94 ± 0.20 0.020 ± 0.008 0.44 ± 0.01

Grassland soils under
unwarming, Norman, OK (iv)

0.76 152 0.88 0.10 2.71 0.09 0.61 (20) 3.39 ± 0.23 0.038 ± 0.010 0.47 ± 0.01

Grassland soils under
elevated CO2, MN (i)

0.78 263 0.89 0.26 3.95 0.25 0.81 (34) 3.98 ± 0.22 0.015 ± 0.006 0.61 ± 0.02

Grassland soils under
ambient CO2, MN (i)

077 292 0.87 0.22 4.26 0.27 0.85 (36) 4.10 ± 0.20 0.017 ± 0.005 0.59 ± 0.01

Agricultural soil, Africa (v) 0.77 384 0.86 0.20 4.99 0.34 0.86 (32) 3.99 ± 0.04 0.020 ± 0.004 0.48 ± 0.01

Human intestine,
Stanford, CA (vi)

0.86 215 0.92 0.18 3.55 0.13 0.69 (27) 4.23 ± 0.10 0.025 ± 0.009 0.58 ± 0.01

aVarious parameters of the empirical networks and generation of random networks are explained in the Table 1.
bSample sources: (i) the grassland soils under elevated and ambient CO2 were collected from a free-air CO2 enrichment field in Minnesota which were analyzed with both GeoChip3.0 and 16 S pyrosequencing [49].

The fMENs analysis was desibed in Zhou et al. [27] and pMENs analysis was desibed in Zhou et al. [28]. (ii) The lake sediment samples from Lake DePue were analyzed with GeoChip 2.0. (iii) The groundwater samples

from three different Wells in Oak Ridge, Tennessee were analyzed with GeoChip 2.0 [50]. (iv) The grassland samples under warming and unwarming were collected from the long term warming experiment at

Oklahoma [51] and analyzed with 16 S pyrosequencing [48]. (v) The pyrosequencing data of agricultural soils from Africa and the groundwater samples from Oak Ridge was provided by Dr. Tiedje and his colleagues at

Michigan State University. (vi) The human intestine sample from Stanford was desibed elsewhere [52].
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negatively (p< 0.01) with soil pH values and soil carbon

contents, indicating that the members in these two sub-

modules might be stimulated by temperature but inhib-

ited by soil pH and carbon. Also, submodules #6 and

#8 were positively correlated with soil pH (p< 0.01), #4

was positively correlated with NO3
- concentration

(p= 0.001) and soil carbon content (p= 0.013). While #3

was positively correlated with carbon content

(p= 0.016), #7 was negatively correlated with soil car-

bon content (p= 0.025). In addition, #2 and #6 were

negatively correlated with temperature (p< 0.05). All

above results demonstrated that different submodules

in warming pMEN responded to the environmental

changes differently and the changes of temperature

could have significant impacts on members of some

submodules (e.g., #1, #2, #6 and #9).

Open-access pipeline

To facilitate the application of MENA in the scientific

community, an open-access pipeline for MEN construc-

tion and analysis (MENAP) was implemented (http://

ieg2.ou.edu/MENA). Although currently microarray-

based intensity data and pyrosequencing data are two

major types of informational sources for microbial com-

munity network analysis, a variety of other data types

can be used for this pipeline as well. MENAP is imple-

mented in Perl integrated common gateway interface

(CGI) and runs on a Windows Server (Windows Server

2007). A user-friendly interface through web browser ap-

plication was developed to facilitate the process of

RMT-based network construction and related analyses

(Figure 6). RMT-based threshold searching is performed

using a Java script [22] and some network analyses are

called in the programs of sna [63], igraph [64] and

WGCNA [65] packages in the R project. The MENAP

includes the following components: (i) user registration

and login, (ii) data upload, (iii) network construction by

the RMT-based method (perhaps other methods as

well), (iv) network analysis, and (v) dataset and network

management (Figure 6).

The network analysis component is further divided

into three major parts:

(a)Network characterization. Various network

properties are calculated and evaluated, such as

connectivity, betweenness, clustering coefficient, and

geodesic distance. The module/submodule detection

and modularity analyses is performed using fast

greedy modularity optimization [66]. Eigengene

network analysis is performed to understand

network characteristics at higher organization levels

and to identify key microbial populations or key

functional genes in terms of network topology.

(b)Network visualization. An automatic pipeline is

constructed to visualize the constructed network.

Moreover, the file format for software Cytoscape

2.6.0 [67] is prepared to visualize more complex and

delicate network graphs. Other data associated with

OTUs, such as taxonomy, relative abundance, edge

information, and positive and negative correlations is

imported and visualized in network figures.

(c)Network comparison. Various randomization

methods like the Maslov-Sneppen method [68] are

used obtain random networks for network

comparison. Various indices are evaluated for

comparing the differences of networks among

different communities in terms of sensitivity and

robustness. In addition, OTU significances are

calculated to reveal associations of the network

structure to the ecological functional traits [27].

Discussion and conclusions
Most previous studies on the biodiversity of microbial

communities have been focused on the number of spe-

cies and the abundance of species, but not interactions

among species. However, species interactions could be

more important to ecosystem functioning than species

richness and abundance, especially in complex ecosys-

tems [1,27–29]. Several recent analyses show that the

ecological networks of ecosystems are highly structured

[1,69,70], thus ignoring the structure of network and the

interactions among network components precludes fur-

ther assessment of biodiversity and its dynamics. Several

recent breakthroughs have been made to analyze species

Figure 3 The robustness to noise of RMT-based MEN

construction. Ineasing levels of Gaussian noise were added to the

pyrosequencing datasets under experimental warming. The mean of

noise was zero and standard deviation (σnoise) was set to 5, 10, 20,

30 to 100 % of the average of relative abundance of whole dataset.

The thresholds (St) of all permutated datasets were set to 0.76 that

was consistent with original dataset.

Deng et al. BMC Bioinformatics 2012, 13:113 Page 9 of 20
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interactions of animals and plants [1,4,31,55,70,71], but

it is difficult to detect network interactions of a micro-

bial community [72–74]. Therefore, in this study, we

systematically described a mathematical and bioinfor-

matic framework of MENA based on RMT, a powerful

method well established in quantitative physics

[23,75,76]. Our results demonstrate that the RMT-based

approach is powerful in discerning network interactions

in microbial communities.

The network approach described is based on the tran-

sition of two universal distributions from the random

matrix theory. A major advantage of RMT method is

that the threshold to construct network is automatically

determined. In contrast, most other methods studies use

arbitrary thresholds, which are usually based on limited

knowledge of biological information [8,72–74,77]. RMT-

based approach selects an optimal threshold without

ambiguity, which ensures its construction of optimal

Figure 4 The submodules of the warming pMEN. (A) The network graph with submodule structure by the fast greedy modularity

optimization method. Each node signifies an OTU, which could correspond to a miobial population. Colors of the nodes indicate different major

phyla. A blue edge indicates a positive interaction between two individual nodes, while a red edge indicates a negative interaction. (B) The

correlations and heatmap to show module eigengenes of warming pMEN. The upper part is the hierarchical clustering based on the Pearson

correlations among module eigengenes and the below heatmap shows the coefficient values (r). Red color means higher correlation whereas

green color signified lower correlation. (C) ZP-plot showing distribution of OTUs based on their module-based topological roles. Each dot

represents an OTU in the dataset of warming (red), or unwarming (green). The topological role of each OTU was determined according to the

scatter plot of within-module connectivity (z) and among-module connectivity (P) [55,60].

Deng et al. BMC Bioinformatics 2012, 13:113 Page 10 of 20
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networks. Another advantage of RMT-based approach is

its remarkable capacity in tolerating noise, resulting in

reliable, robust networks. Our results show even with

100 % Gaussian noise, more than 85 % nodes from ori-

ginal network are still preserved. This characteristic

could be very important for dealing with the large-scale

data, such as metogenomics and micrrorrays, which are

generally inherent with high noise.

Nevertheless, characterizing ecological network of mi-

crobial communities poses major challenges. MENs are

constructed by the adjacency matrix originated from the

pair-wise correlations of relative OTU abundance across

different samples. Therefore, a network interaction be-

tween two OTUs or genes describes the co-occurrence

of these two OTUs or genes across different samples.

The co-occurrence might be caused by species or genes

performing similar or complementary functions, or

shared environmental conditions that microbial species

coexist in [28]. However, the former possibility can be

complicated by the observations that functionally redun-

dant genes are not necessary co-regulated, but instead

co-regulated through other genes, which is coined as

transitive co-regulation [78]. The latter possibility can be

complicated by the distinctiveness of individuals in mi-

crobial niches observed in their behaviors and responses

to environmental perturbation [79]. Therefore, caution

must be taken for the interpretation of underlying

mechanisms that shape microbial communities.

A long-held tenet is that the structure of ecological

networks has significant influence on the dynamics

[1,80]. Most complex systems have common characteris-

tics such as small world, scale-free, modularity and hier-

archy [8,53,54]. Consistently, MENs were found to be

scale-free, small world and modular, in addition to hier-

archical property in some MENs. These network proper-

ties are important for the robustness and stability of

complex systems [8,27,28,81]. For example, our results

showed that any two microbial species in the community

can be linked by just a few other neighbor species, show-

ing small-world property. This may imply that the en-

ergy, materials and information can be easily transported

through entire systems. In microbial communities, this

characteristic drives efficient communications among

different members so that relevant responses can be

taken rapidly to environmental changes. Meanwhile, it is

intriguing to note that modularity is prevailing in MENs,

while hierarchy is present only in some MENs. Research

on a wide range of architectural patterns in mutualistic

(pollination) and trophic (predation) networks showed

that hierarchy, also called nestedness, was strong in mu-

tualistic networks, but that modularity was strong in

trophic networks [82]. Although ecological networks of

microbial communities are very complicated and cannot

be classified into simple mutualistic or trophic networks,

it would be interesting to compare a number of eco-

logical networks of microbial communities to catalog

different architectural patterns and to explore the

mechanisms underlying the stability and resilience of

communities.

In addition to interactions among microbes within a

community, MENs allow for analyses of interactions

with their environment through correlations with abiotic

environmental measurements, which might provide

insights on the conditions that have significant impact

on the co-occurring organisms. It is also possible to link

groups of organisms with biogeochemical measurements

Table 4 The partial Mantel tests on connectivity vs. the OTU significances of soil geochemical variables and soil

temperature in warming pyrosquencing molecular ecological network

Phylogeny # nodes GS of soil geochemistrya partial
GS of temperature

GS of temperature partial GS of
soil geochemistry

rM
b Pc rM P

All detected OTUs 177 0.104 0.018 0.159 0.003

Acidobacteria 35 0.059 0.234 −0.054 0.800

Actinobacteria 63 −0.033 0.650 0.077 0.135

Chloroflexi 5 −0.339 0.663 0.367 0.108

Planctomycetacia 6 −0.082 0.521 −0.202 0.788

α-Proteobacteria 26 −0.057 0.721 0.096 0.155

β-Proteobacteria 12 0.590 0.013 −0.001 0.430

δ-Proteobacteria 6 0.338 0.088 −0.298 0.877

γ-Proteobacteria 4 0.030 0.772 0.796 0.243

Verrucomiobia 5 0.926 0.013 −0.755 1.000

aSoil variables used for OTU significance calculations: pH values, NO3-Nitrogen and soil carbon contents.
bCorrelation coefficient based on Mantel test.
cThe significance (probability) of Mantel test.
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to reveal the functional role of organism in biogeochem-

ical processes. These kinds of data are important for

generating hypotheses to help explain natural environ-

ments that microbial communities reside, which might

lead to forecasting responses of microbial communities

when environment changes [73].

In summary, our study provides a mathematical/bio-

informatic framework for network construction based

on metagenomics data such as sequencing [28] and

microarray hybridization data [27]. It is useful, as

demonstrated with the microbial communities under ex-

perimental warming, for dissecting interactions within a

microbial community as well as with environment, thus

allowing microbial ecologists to address a variety of eco-

logical questions at the community-wide scale [83,84]. It

is also possible to extend MENA to emerging fields of

microbial ecology such as high-throughput proteomics,

since RMT is not stringent on data types. In addition,

broad application of MENA will generate a number of

ecological networks that allow for exploration of archi-

tectural patterns of microbial communities [1]. This

RMT-based molecular ecological network analysis pro-

vides powerful tools to elucidate network interactions in

microbial communities and their responses to environ-

mental changes, which are fundamentally important for

research in microbial ecology, systems microbiology, and

global change.

Methods
Data standardization

The network construction begins with a data table with

n distinct operational taxonomic units (OTUs) based on

16 S rRNA genes or functional genes observed across m

replicates or samples. Typically OTUs are used to refer

taxonomic classification based on ribosomal RNA genes.

For convenience, in the following sections, we use OTUs

to refer the classifications derived from both 16 S rRNA

genes and/or functional genes. Let yik represent the

abundance or relative abundance of the i-th OTU in the

k-th sample (i 2 1; . . . ; nf g, k 2 1; . . . ;mf g) and Ynxm= [

yik] is the abundance matrix. Usually, the abundance

profile of i-th OTU is standardized as below. If the mean

and standard deviation of yi across all samples are �yiand

σ i, the standardized abundance of the i-th OTU in the k-

th sample is xik ¼
yik��yið Þ
σ i

, where xik has mean value of 0

and variance value of 1. Xnxm is the standardized data

matrix and used for subsequent correlation analysis.

Defining adjacency matrix

Molecular ecological networks can be built on the basis

of the measurements of relative OTU abundance in mi-

crobial communities. In MENs, each OTU corresponds

to a node. Each network corresponds to an adjacency

matrix (or interaction matrix), Anxn= [aij], which

encodes the connection strength between each pair of

nodes [20]. In an unweighted network, the adjacency aij
=1 if nodes i and j are connected, and aij =0 otherwise

[20]. For an undirected network, the adjacency matrix is

symmetric. In weighted network, the pairwise adjacency

has values between 0 and 1, i.e., 0≤ aij ≤ 1. The adjacency

matrix is the foundation of all subsequent steps in net-

work analysis.

To define the adjacency matrix, the similarity of OTU

abundance across all samples should be measured first.

Such similarity measures the degree of concordance be-

tween the abundance profiles of OTUs across different

Figure 5 The correlations between module eigengenes and

environmental traits in the warming pMEN. The color of each

plot indicates the correlation between corresponding module

eigengene and environmental trait. Red color means highly positive

correlation and green color means highly negative correlation. The

numbers in each plot are the correlation coefficient (r) and

significance (p) in parentheses. The environmental traits include soil

pH value (pH), NO3-nitrogen content (NO3N), soil carbon content

(SC) and average soil temperature (avgT).
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samples. Similar to widely used gene co-expression ana-

lyses [20,61,85,86], Pairwise Pearson correlation coeffi-

cients (rij) are used to measure the similarity between i-

th and j-th OTU across different samples. Let Rnxn= [rij]

be the Pearson correlation matrix, then

rij ¼ cor xi; xj
� �

¼

Pm
k¼1 xik � �xið Þ xjk � �xj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1 xik � �xið Þ2
Pm

k¼1 xjk � �xj
� �2q ð1Þ

where xik and xjk are the standardized abundance of the

i-th and j-th OTUs in the k-th sample. �xi , �xj are the

mean values of the i-th and j-th OTUs over samples. In

general, the absolute value of the correlation coefficient

(rij) is used to define the abundance similarity between i-

th and j-th OTU (sij), that is

sij ¼ rij
�� ��;where i j 2 1; . . . ; nf g ð2Þ

Let Snxn = [sij], which is a similarity matrix of the OTU

abundance. In molecular ecological network analysis, the

adjacency matrix is derived from the OTU abundance

similarity matrix by applying a threshold. Similar to rele-

vant gene co-expression network analysis [20,61,85,86],

the nodes are connected if they have significant pairwise

similarities (i.e., correlations) across different samples.

Thus, using a threshold value (stb), OTU abundance

similarity matrix, Sn×n = [sij], is converted into the adja-

cency matrix, Ap×p= [aij], where p ≤n. The adjacency aij

between the i-th and j-th OTU is defined by threshold-

ing the OTU abundance similarity [33]:

aij ¼
sij if sij≥stb
0 if sij < stb

�
ð3Þ

where stb is the threshold parameter. The resulting adja-

cency matrix, Ap×p, is generally smaller than the similar-

ity matrix because the rows or columns are removed if

all of their elements are less than the threshold value.

Determining the threshold by random matrix theory-

based approach

The structure of relevance network strongly depends on

the threshold value, st. In some network analysis, the

threshold value is chosen arbitrarily based on known

biological information or set by the empirical study [8].

Thus, the resulting network is more or less subjective

[19,20,85,87]. However, it is difficult to select appropriate

thresholds, especially for poorly studied organisms/com-

munities. In MENA, we use the random matrix theory

(RMT)-based approach, which is able to identify the

threshold automatically based on the data structure itself

[22,46] to select the final threshold parameter, st.

Basic concept of RMT

Initially proposed by Wigner and Dyson in the 1960s for

studying the spectrum of complex nuclei [88], random

matrix theory (RMT) is a powerful approach for

Figure 6 An overview of molecular ecological network analysis pipeline (MENAP).
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identifying and modeling phase transitions associated

with disorder and noise in statistical physics and materi-

als science. It has been successfully used for studying the

behavior of different complex systems, such as spectra

of large atoms [89], metal insulator transitions in dis-

order systems, spectra of quasiperiodic systems [90],

chaotic systems [91], the stock market [76], brain re-

sponse [92], gene co-expression networks [22] and pro-

tein interaction networks [46]. However, its suitability

for complex biological systems, especially microbial

communities, remains largely unexplored.

RMT predicts two universal extreme distributions of

the nearest neighbor spacing distribution (NNSD) of

eigenvalues: Gaussian orthogonal ensemble (GOE) statis-

tics, which corresponds to random properties of complex

system, and Poisson distribution, which corresponds to

system-specific, nonrandom properties of complex sys-

tems [89]. These two different universal laws depend on

the properties of the matrix. On one hand, if consecutive

eigenvalues are completely uncorrelated, the NNSD fol-

lows Poisson statistics. Considering a series of eigenva-

lues, the probability of an eigenvalue falling in a scale [D,

D+ s] is independent of the start point D, where s can be

any positive values. It means the probability of an eigen-

value falling in any scales with certain length s will be

identical, no matter where the scales begin. The NNSD

under such assumption follows a Poisson random

process, so-called exponential distribution of Poisson

process [89]. On the other hand, for correlated eigenva-

lues, the NNSD has Gaussian orthogonal ensemble

(GOE) statistics. Given a series of correlated eigenvalues,

the probability of one eigenvalue falling into a scale [D,

D+ s] is proportional to s. Wigner illustrated that the

NNSD under this assumption was closely to Gaussian

orthogonal ensemble so-called Wigner surmise [89].

The key concept of RMT is to mainly concern with

the local property between eigenvalues rather than the

global property of a series of eigenvalues. Here, the local

property between eigenvalues means the eigenvalue fluc-

tuations and the global property is the average eigen-

value density. In order to reveal the fluctuations of

eigenvalues, the average eigenvalue density has to be

removed from system so that the average eigenspacing is

constant. Also, this procedure to generate a uniform

eigenvalues distribution is called unfolding. The unfolded

eigenvalues will fall between 0 and 1, and its density

does not depend on the overall level distribution. Con-

sider a sequence of eigenvalues λ1; λ2; . . . λn from adja-

cency matrix, and those eigenvalues have been ordered

as λ1≤λ2≤. . .≤λn . In practice, we replace eigenvalues λi
withei ¼ Nav λið Þ where Nav is the continuous density of

eigenvalues obtained by fitting and smoothing the ori-

ginal integrated density of eigenvalues to a cubic spline

or by local density average.

After unfolding the eigenvalues, three statistical quan-

tities can be used to extract information from a se-

quence of eigenvalues, namely, eignevalue spacing

distribution P(d), number variance of eigenvalues
P

,

and spectral rigid △. P(d) is the probability density func-

tion for unfolded eigenvalue spacing, di ¼ eiþ1 � eij j ,
which is the NNSD for eigenvalues. For the completely

uncorrelated eigenvalues, P(d) follows Poisson statistic

and it can be expressed by

P dð Þ ¼ exp �dð Þ: ð4Þ

On the other hand, for the correlated eigenvalues, P(d)

closely follows Wigner-Dyson distribution of the GOE

statistics and it can be expressed by

P dð Þ �
πd

2
exp �

π

2
d2

� �
: ð5Þ

We use the χ2 goodness-of-fit test to assess whether

NNSD follows Wigner-Dyson distribution or Poisson

distribution. We assume that the NNSD of any bio-

logical system obeys these two extreme distributions

[22,23,27,28], and that there is a transition point from

GOE to Poisson distribution, and this transition point

can be used as the threshold for defining adjacency

matrix.

Algorithms of detecting the threshold value

The following major steps are used to define the thresh-

old (st) based on the standardized relative abundance of

OTUs across different samples (Figure 2).

(a)Calculate the Pearson correlation matrix, Rnxn, based

on the standardized relative abundance of OTUs,

Xnxm with n distinct OTUs across m samples.

(b)Obtain similarity data, Snxn, by taking the absolute

value of correlation matrix Rn×n.

(c)Set an initial threshold value, stb (e.g., 0.3 based on

our experiences).

(d)Calculate the adjacency matrix, Apxp= [aij] according

to stb, where p is the number of OTUs retained in

the adjacency matrix with non-zero rows or

columns.

(e)Calculate eigenvalues λi of the adjacency matrix

based on the equation S � λIð Þv ¼ 0, where λ is the

eigenvalue, v is the corresponding eigenvector, and I

is the identity matrix. Because S is the symmetric

matrix and v is a non-zero vector, we can get p

number of eigenvalues to solve the equation

S � λIð Þv ¼ 0. To test NNSD distribution, order the

eigenvalues asλ1≤λ2≤. . .≤λp:
(f ) To get unfolded eigenvalues, replace λi withei ¼

Nav λið Þ, where Nav is the continuous density of

eigenvalues and can be obtained by fitting the

Deng et al. BMC Bioinformatics 2012, 13:113 Page 14 of 20
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original integrated density to a cubic spline or by

local average.

(g)Calculate the nearest neighbor spacing distribution

of eigenvalues, P(d), which defines the probability

density of unfolded eigenvalues spacing,

di ¼ eiþ1 � eij j:
(h)Using the χ2 goodness-of-fit test to determine

whether the probability density function P(d) follows

the exponential distribution of Poisson statistic,

exp �dð Þ.
H0: P(d) follows the Poisson distribution.

H1: P(d) does not follows the Poisson distribution.

The χ2 goodness-of-fit test has the test statistics, χ2 ¼
P

i
di�E dið Þ½ �2

E dið Þ , where di is the observed nearest neighbor

spacing and E(di) is an expected (theoretical) nearest

neighbor spacing from Poisson distribution. The result-

ing χ2 value is compared to the χ2 distribution. Let

χu
2 0:01ð Þbe the critical value at a significant level of 0.01

based on χ2 distribution with u degrees of freedom.

(i) If χ2≤χu
2 0:01ð Þ, the null hypothesis H0 is not

rejected. Then go to step (j).

If χ2 > χu
2 0:01ð Þ , the null hypothesis H0 is rejected.

Then, increase the threshold by 0.1, stb+ 0.1, and repeat

the steps from (e) to (h).

(j) Find a finer scale threshold value by increasing the

threshold with 0.01 within the range of [stb-0.1, stb].

Then repeat the steps from (e) to (h).

(k)If H0 is accepted, i.e., the P(d) follows Poisson

distribution, the finer scale threshold identified is

used as the optimal threshold for defining the

adjacency matrix.

Once the final threshold value st is determined at a

finer scale, an adjacency matrix is obtained by retaining

all the OTUs whose abundance similarity values are

greater than the determined threshold. Currently we

have only adopted the unweighted network in the fol-

lowing network topological analysis. Hence, the final ad-

jacency aij is:

aij ¼
1 if sij≥st
0 if sij < st

:

�
ð6Þ

where st is the final threshold parameter. Two nodes are

linked if the similarity between their abundance profiles

across all samples is equal to 1.

Calculation of MEN topological indices and general

features

Once MENs are determined, various network topology

indices can be calculated based on the adjacency matrix

(Table 1). The overall topological indices describe the

overall network topology in different views and thus are

useful in characterizing various MENs identified under

different situations. The indices for describing individual

nodes are useful in assessing their roles in the network.

Scale-free, small world, modularity and hierarchy are

most common network characteristics of interest

[8,53,93]. A scale-free network is a network whose con-

nectivity follows a power law, at least asymptotically

[94], that is, only a few nodes in the network have many

connections with other nodes while most of nodes have

only a few connections with other nodes. It can be

expressed by P kð Þek�λ , where k is connectivity and λ is

a constant. A small-world network is the network in

which most nodes are not neighbors of one another, but

most nodes can be reached by a few paths (typically, less

than 6). Small world network has a small average short-

est path (GD) typically as the logarithm of the number

of nodes [43]. In addition, there is no formal definition

for hierarchical topology [95]. One of the most import-

ant signatures for hierarchical, modular organizations is

that the scaling of clustering coefficient follows C(k) ~ k
−γ, in which k is connectivity and γ is a constant. By log-

transformation, log[C(k)] ~−γlog(k), the logarithms of

clustering coefficients have a linear relationship with the

logarithms of connectivity.

Module detection

Modularity is a fundamental characteristics of biological

networks as well as many engineering systems [53]. In

MENs, a module in the network is a group of OTUs that

are highly connected within the group, but very few con-

nections outside the group. The maximum modularity

score is used to separate the graph into multiple dense

sub-graphs or modules. The modularity of each network

(M) is estimated using the equation [66]:

M ¼
XNM

b¼1

lb

L
�

Kb

2L

	 
2
" #

; ð7Þ

where NM is the number of modules in the network, lb
is the number of links among all nodes within the bth

module, L is the number of all links in the network, and

Kb is the sum of degrees (connectivity) of nodes which

are in the bth module. M measures the extension whose

nodes have more links within their own modules than

expected if linkage is random. It varies with the range of

[−1, 1].

Several different algorithms can be used to separate

modules, including short random walks, leading eigen-

vector of the community matrix, simulated annealing

approach, and fast greedy modularity optimization

[56,57]. The algorithm of short random walks is based

on the idea that all random walks tend to stay in the

densely connected parts of a graph that was correspond-

ing to the modules [56]. After calculating a distance
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between two nodes or between sets of nodes by random

walk algorithm, it uses a hierarchical clustering approach

to present the structural similarities between all nodes.

Thereafter this approach will choose the best partition

automatically. The advantage of this algorithm is effi-

cient and fast computation.

Once the network modularity value (M) was explicitly

defined, theoretically the module structure can be deter-

mined by maximizing M values over all possible divi-

sions of network. However, exhaustive maximization

over all divisions is computational intractable [57]. The

algorithm of leading eigenvector is one of several ap-

proximate optimization methods have been proven ef-

fectively obtained higher M values with high speed. It

simplified the maximization process in terms of a modu-

larity matrix Bnxn that can be obtained by the adjacent

matrix Anxn subtracting an expected edges matrix Pnxn

from a null model. Then the network can be split into

two groups by finding the leading eigenvector that was

corresponding to the largest positive eigenvalue of

modularity matrix. This splitting process can be looped

until any further divisions will not increase the M value

[57]. This method shows more accurate separations than

other algorithms in several well-studied social networks

[57].

The algorithm of simulated annealing approach usually

produces the best separation of the modules by direct

maximization of M [58]. The simulated annealing is a

stochastic optimization technique to find “low cost” con-

figurations [96]. It carries out the exhaustive search on

network structures to merge and split priori-modules

and move individual nodes from one module to another.

Although this is a time-consuming process, it is

expected to obtain clear module separations with a

higher M.

The algorithm of fast greedy modularity optimization

is to isolate modules via directly optimizing the M score

[66,97]. It starts with treating each node as the unique

member of one module, and then repeatedly combines

two modules if they generate the largest increase in

modularity M. This algorithm has advantages with fast

speed, accurate separations and ability to handle huge

networks [66,97].

Identification of key module members

After all modules are separated, each node can be

assigned a role based on its topological properties [59],

and the role of node i is characterized by its within-

module connectivity (zi) and among-module connectiv-

ity (Pi) as follows

zi ¼
kib � �kb

σkb

; ð8Þ

and

Pi ¼ 1�
XNM

c¼1

kic

ki

	 
2

; ð9Þ

where kibis the number of links of node i to other nodes

in its module b, �kb and σkb are the average and standard

deviation of within-module connectivity, respectively

over all the nodes in module b, ki is the number of links

of node i in the whole network, kic is the number of

links from node i to nodes in module c, and NM is the

number of modules in the network.

The within-module connectivity, zi, describes how well

node i is connected to other nodes in the same module,

and the participation coefficient, Pi, reflects what degree

that node i connects to different modules. Pi is also re-

ferred as the among-module connectivity [98]. If all links

of node i only belong to its own module, Pi= 0. If the

links of node i are distributed evenly among modules, Pi
! 1. The topological roles of individual nodes can be

assigned by their position in the z-parameter space. Ori-

ginally, Guimera et al. [33,59] divided the topological

roles of individual nodes into seven categories. Olesen

et al. [98] simplified this classification into four categor-

ies for pollination networks. In this study, we use the

simplified classification as follows: (i) Peripheral nodes

(zi≤ 2.5, Pi≤ 0.62), which have only a few links and al-

most always to the nodes within their modules, (ii) Con-

nectors (zi≤ 2.5, Pi> 0.62), which are highly linked to

several modules, (iii) Module hubs (zi> 2.5, Pi≤ 0.62),

which are highly connected to many nodes in their own

modules, and (iv) Network hubs (zi> 2.5, Pi> 0.62),

which act as both module hubs and connectors. From

ecological perspective, peripheral nodes represent spe-

cialists whereas the other three are generalists.

Eigen-gene analysis

One of the grand challenges in dealing with high

throughput metagenomics data is the high dimensional-

ity. Various statistical approaches are used to reduce

dimensions and extract major features, including princi-

pal component analysis (PCA), detrended correspond-

ence analysis (DCA), and singular value decomposition

(SVD). SVD is an orthogonal linear transformation of

data (e.g., microbial data) from the complexity to the

comprehensibility [99]. Based on SVD analysis, the

Eigengene is a linear combination of genes and eigenva-

lues. In the diagonalized data, each eigengene is just

expressed in the corresponding eigen arrays. Langfelder

and Horvath [61] proposed eigengene network analysis

to summarize the gene expression data from each mod-

ule as a centroid. Eigengene network analysis is powerful

to reveal higher order organization among gene co-
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expression modules [33,61,62]. Here, we have adopt this

method to analyze modules in MENs.

SVD analysis to define module eigen-gene

Suppose there are nb OTUs in the b-th module. Let

Xb ¼ xbi;q

h i
represent the relative abundance matrix of

the b-th module, where xbi;q is the relative abundance of

the i-th OTU in the q-the sample ( i 2 1; . . . ; nb
� �

, q 2

1; . . . ;mf g). In SVD analysis, Xb can be decomposed as

follows:

Xb ¼ UbDb V b
� �T

; ð10Þ

where both Ub
nb�mð Þ and V b

m�mð Þ are column-orthogonal

matrices, and Db
m�mð Þ is a diagonal matrix of the singular

values db
q

���
���

n o
. The matrices Vb and Db are denoted as

V b ¼ vb1; v
b
2; . . . v

b
m

� �
and Db ¼ diagðjdb

1 j; jd
b
2 j; . . . ; jd

b
mjÞ:

Assuming that the singular values are arranged in de-

creasing order, the first column of Vb is referred as the

Module Eigen-gene, Eb, for the b-th module. That is,

Eb � vb1 .
The relative abundance profile of the OTUs within a

module is represented by the eigen-gene. In addition,

the sum of variance of OTU abundances equals to the

sum of the diagonal matrix in SVD. Therefore, the per-

centage of the variance explained by the eigen-gene is

given by Φb as

Φb ¼
db
1

�� ��2
Pm

j¼1 db
j

���
���
2
: ð11Þ

Generally, the module eigen-gene can explain approxi-

mately 50 % or more of the variance of the OTU abun-

dances in the module [61]. Since PCA and SVD are

identical if each OTU relative abundance has been stan-

dardized to mean 0 and variance 1, Eb is the first princi-

pal component based on PCA analysis [61].

Module membership

Module eigen-gene provides the best summary of vari-

ation in relative abundance of OTUs within a module,

but it is a centroid of a module rather than a real OTU.

In practice, it is always important to understand how

close it is between a given actual OTU and its eigen-

gene. The correlation of the eigen-gene in module b to

the i-th actual OTU across all experimental samples is

defined as

MMEb

i ¼ cor xi; E
b

� �
ð12Þ

If MMEb

t is close to 1 or −1, it is evident that the i-th

OTU is close to the centroid of module b.

Random network construction and network comparison

Since only a single data point is available for each net-

work parameter, we are not able to perform standard

statistical analyses to assess statistical significances. Simi-

lar to the concept of hypothesis testing, the null model

is generated to assess the performance of the alternative

model. Thus, the random networks are generated to

compare different complex networks using the Maslov-

Sneppen procedure [68]. The Maslov-Sneppen method

keeps the numbers of nodes and links unchanged but

rewires the positions of all links in the MENs so that the

sizes of networks are the same and the random rewired

networks are comparable with original ones. This

method has been typically used for ecological network

analyses [4]. For each network identified, a total of 100

randomly rewired networks are usually generated by the

Maslov-Sneppen procedure [68] and all network indices

are calculated individually for each randomized network.

Then the average and standard deviation for each index

of all random networks are obtained. The statistical Z-

test is able to test the differences of the indices between

the MEN and random networks. Meanwhile, for the

comparisons between the network indices under differ-

ent conditions, the Student t-test can be employed by

the standard deviations derived from corresponding ran-

dom networks.

Trait-based gene significance measure

In gene expression network analyses, the gene signifi-

cance (GSi,h) is the correlation between the expression

profile of the i-th gene and the h-th sample trait, Th

[33]. The higher GSi,h, the more biologically significant

gene i is related to the sample trait h. Similarly, in this

study, the trait-based OTU significance is defined as:

GSi;h ¼ cor xi;Thð Þ½ �2 ð13Þ

where xi is the relative abundance of the i-th OTU i 2
1; . . . ; nf g and Th is the h-th sample trait (e.g. soil pH, N

content, total plant biomass) (h 2 1; . . . ; gf g). Since the

measurement units for different traits vary, all trait data

should be standardized prior to statistical analysis. Fi-

nally, an OTU significance matrix, GSnxg, is obtained.

Relationships of microbial interaction networks with soil

variables

To discern the relationships between molecular eco-

logical networks and soil properties, Mantel tests can be

performed [100]. The relationships between the MENs

and environmental variables were determined as follows:

First, the significances of variables are calculated with

the above equation (Eq 13) and the OTU significance

matrix is generated. Then the Euclidean distance matrix

Dn�n
GS is generated by calculating the Euclidean distance
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between every two OTUs. The distance matrix among

all OTUs’ connectivity (Dn�n
k ) was calculated as well. In

addition, Mantel tests are performed between the dis-

tance matrices of the connectivity (Dn�n
GS ) and OTU sig-

nificance (Dn�n
GS ) to examine the relationships between

network structure (i.e., connectivity) and soil variables.

The Mantel tests were performed using the programs

available in R vegan package [101].
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