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Plants contain a sophisticated innate immune network to prevent pathogenic microbes

from gaining access to nutrients and from colonizing internal structures. The first layer

of inducible response is governed by the plant following the perception of microbe- or

modified plant-derived molecules. As the perception of these molecules results in a

plant response that can provide efficient resistance toward non-adapted pathogens they

can also be described as “defense elicitors.” In compatible plant/microbe interactions,

adapted microorganisms have means to avoid or disable this resistance response and

promote virulence. However, this requires a detailed spatial and temporal response from

the invading pathogens. In agricultural practice, treating plants with isolated defense

elicitors in the absence of pathogens can promote plant resistance by uncoupling defense

activation from the effects of pathogen virulence determinants. The plant responses to

plant, bacterial, oomycete, or fungal-derived elicitors are not, in all cases, universal and

need elucidating prior to the application in agriculture. This review provides an overview of

currently known elicitors of biological rather than synthetic origin and places their activity

into a molecular context.
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THE ROLE OF DEFENSE ELICITORS IN PLANT IMMUNITY

Plants are under constant threat of microbial pathogen attack.

Plant cell walls, cuticles and phytoanticipins are preformed,

physical and chemical barriers that limit access of microbes

to plant cells (Underwood, 2012; Newman et al., 2013). In

addition to these non-inducible defenses, plants recognize and

respond to defense elicitors which are signal-inducing com-

pounds perceived by the innate immune system that prime and/or

induce defense responses (Henry et al., 2012; Maffei et al., 2012;

Newman et al., 2013). Elicitor compounds can be biological in

origin, derived from either the plant or the microbe, or can

be synthetically generated (Walters et al., 2013). We will focus

on elicitors from biological origin (Table 1) rather than syn-

thetic analogs of known signaling or defense molecules such

as Bion, acibenzolar-S-methyl (ASM), beta-amino-butyric acid

(BABA), and cis-jasmone. Elicitor activity has, for example,

been shown for plant-derived cell wall components such as oli-

gogalacturonides (Ferrari et al., 2013), proteinaceous pathogen

molecules such as bacterial flagellin (Gomez-Gomez and Boller,

2002), oomycete-derived elicitin INF1 (reviewed in Hein et al.,

2009) and non-proteinaceous molecules such as lipopolysac-

charides (Erbs and Newman, 2012). However, intact plant-

or microbe-derived structures as well as highly-polymerized

molecules often tend to result in few recognition responses.

In contrast, leakage of metabolites or even minor or partial

breakdown of complex host or pathogen molecules leads to

the production of eliciting components that are biologically

active.

The co-evolution between plants and potential microbial

pathogens has been described as a zigzag model by Jones and

Dangl (2006) and can also be applied to deducing the biologi-

cal activity of elicitors (Figure 1). According to the zigzag model,

the first inducible responses are a consequence of the percep-

tion of chemical elicitors, microbe-associated molecular patterns

(MAMPs), pathogen-associated molecular patterns (PAMPs)

and/or damage-associated molecular patterns (DAMPs). The

latter are also known as danger-associated molecular patterns

(Mazzotta and Kemmerling, 2011). MAMPs describe general

microbe-derived molecules including those originating from ben-

eficial microbes whereas PAMPs specifically describe molecules

from pathogenic microbes such as fungi, oomycetes, and bac-

teria (Henry et al., 2012; Newman et al., 2013). Thus, PAMPS

are a subgroup of MAMPs (Maffei et al., 2012). In contrast,

DAMPs are typically plant-derived and are produced after, for

example, wounding by insects or herbivores as well as degra-

dation or perturbation of host molecules by microbes (Henry

et al., 2012; Newman et al., 2013). All of these molecules, which

could universally be described as “patterns that elicit immu-

nity” (PEIs), are often recognized by transmembrane pattern

recognition receptors (PRRs) in plant cells (Jones and Dangl,

2006; Maffei et al., 2012; Newman et al., 2013). Upon recog-

nition of MAMP- or DAMP-derived patterns, PTI (PAMP- or
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Wiesel et al. Molecular effects of biological elicitors

Table 1 | List of plant-, bacterial-, oomycete-, and fungal-derived elicitor compounds, their activity against pathogens and effectiveness in

plants.

Origin Elicitor compound Effective toward Plants effects shown in References

Plant Oligogalacturonides Botrytis cinerea, Blumeria

graminis

Several Aziz et al., 2007; Randoux et al., 2010;

Galletti et al., 2011

Milsana (giant

knotweed)

Botrytis cinerea, Leveillula

taurica

Cucumber, tomato Daayf et al., 1997, 2000;

Konstantinidou-Doltsinis et al., 2006

Burdock

fructooligosaccharide

Colletotrichum lagenarium,

Botrytis cinerea, TMV

Cucumber, tobacco, tomato Wang et al., 2009; Guo et al., 2012

Elicitor peptide 1 (Pep1) Cochliobolis heterostrophus,

Colletotrichum graminicola

Maize Huffaker et al., 2011

Carrageenans Sclerotinia sclerotiorum, TMV A. thaliana, tobacco Sangha et al., 2010; Vera et al., 2011

Fucans TMV Tobacco Vera et al., 2011

Ulvans Several Several Jaulneau et al., 2011; Vera et al., 2011

Laminarin Erwinia carotovora,

Plasmopara viticola, Botrytis

cinerea, Fusarium solani

Beans, grapevine, tobacco Craigie, 2011; Vera et al., 2011

Bacteria Harpin Xanthomonas oryzae Rice Lee et al., 2001; Li et al., 2012

Lipopeptides Botrytis cinerea Tomato Henry et al., 2012

Dimethylsulfide Cochliobolus heterostrophus,

Botrytis cinerea

Maize, tobacco Huang et al., 2012

Pseudobactin Botrytis cinerea, Erwinia

carotovora

Several De Vleesschauwer and Höfte, 2009

Oomycetes CBEL Phytophthora parasitica A. thaliana, tobacco Mateos et al., 1997; Khatib et al., 2004

Cryptogein Phytophthora parasitica,

Sclerotinia sclerotiorum

Tobacco Bonnet et al., 1996

Eicosapentaenoic acid Phytophthora infestans Potato Henriquez et al., 2012

Pep-13 Phytophthora spp. Parsley, potato Nürnberger et al., 1994; Brunner et al.,

2002; Parker, 2003

INF1 Phytophthora infestans Tobacco Takahashi et al., 2007; Hein et al., 2009;

Kawamura et al., 2009

Fungi β-glucans Several Several Hahn and Albersheim, 1978; Fu et al., 2011;

Falcón-Rodríguez et al., 2012; Henriquez

et al., 2012

Chitosan Several Several Kishimoto et al., 2010; Kombrink et al., 2011

Chitin Several Several El Ghaouth et al., 1994; Copping and Duke,

2007; El Hadrami et al., 2012

Ergosterol Botrytis cinerea Grapevine, tobacco Laquitaine et al., 2006; Vatsa et al., 2011

Trichoderma species:

xylanases, peptaibol,

cerato-platanin family

Pseudomonas syringae,

Botrytis cinerea,

Colletotrichum graminicola

A. thaliana, cotton, maize Ron and Avni, 2004; Djonoviç et al., 2007;

Viterbo et al., 2007; Yang et al., 2009; de

Oliveira et al., 2011

Cerebrosides Fusarium spp. Several Umemura et al., 2004

HR-inducing protein Magnaporthe oryzae Rice Chen et al., 2012; Kulye et al., 2012

(Continued)
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Table 1 | Continued

Origin Elicitor compound Effective toward Plants effects shown in References

PeaT1 TMV Tobacco Zhang et al., 2010, 2011b

PebC1 Botrytis cinerea Tomato Zhang et al., 2010

PevD1 TMV Tobacco Wang et al., 2012a,b

PemG1 Pseudomonas syringae,

Xanthomonas oryzae

A. thaliana, rice Qiu et al., 2009; Peng et al., 2011

pattern-triggered immunity) is activated in the plant and the per-

ceived molecules could be described as immune elicitors. This

defense reaction aims to restrict the growth of the intruder and

can lead to systemic induced resistance leaving the plant less

susceptible to subsequent pathogen attack (Henry et al., 2012).

Systemic induced resistance can be divided into systemic

acquired resistance (SAR) or induced systemic resistance (ISR).

Systemic acquired resistance is often characterized by localized

necrosis, expression of pathogenesis related (PR) protein genes,

and involves the salicylic acid (SA) pathway whereas ISR is

often triggered by plant growth-promoting rhizobacteria (PGPR)

(Walters et al., 2013), is not associated with necrosis and involves

the jasmonic acid (JA) and ethylene (ET) pathways (Walters

and Heil, 2007; Henry et al., 2012). Typical responses of PTI

include cell wall alterations and the production of reactive oxy-

gen species (ROS) which can be directly cytotoxic but also play

a role in signaling. Other responses comprise the production of

phytoalexins, expression of PR proteins, activation of mitogen

activated protein kinase (MAPK) pathways, and defense signal-

ing involving calcium (Ca2+) influx from extracellular spaces and

changes in free cytosolic Ca2+ concentrations (Garcion et al.,

2007). To counteract the initial plant defense reaction, successful

microbes have evolved specialized effectors that perturb recogni-

tion of defense elicitors or subsequent plant defense mechanisms

to promote effector-triggered susceptibility (ETS). However, if

these pathogen effectors are in turn recognized by cognate plant

resistance (R) proteins, the second layer of inducible response,

effector-triggered immunity (ETI), is initiated that often yields a

hypersensitive resistance response (HR) (Jones and Dangl, 2006;

Deslandes and Rivas, 2012).

The outcome of plant/microbe interactions can result in sym-

biosis, disease or disease resistance and is governed by further

levels of sophisticated co-evolution. Indeed, it must be recog-

nized that pathogen colonization of plants can generate dynamic

pathogenic, mutualistic or parasitic interactions of varying mag-

nitude and specificity. Furthermore, organisms recognized as

pathogens in, for example, a crop context, could be benign or

even beneficial in another context such as a different host or

environment (Newton et al., 2010). It is thus essential for the

plant to evaluate the scale of threat and to mount appropriate

and proportionate responses. These may range from priming,

being ready to respond faster to actual attack, or expression of

PTI-based defense mechanisms to yield incompatibility if the

microbe/pathogen is unable to suppress these responses. The use

of elicitors in agriculture holds the potential to decrease the need

for pesticide application by using the plant’s own defense sys-

tem. However, there is a need to understand this process on a

molecular level to maximize the efficacy of the treatments.

INDUCIBLE DEFENSE RESPONSE IN THE ABSENCE OF

PATHOGENS

In agricultural practice, elicitor treatments of plants in the

absence of virulent pathogens yields a defense response such as

priming and/or PTI that is uncoupled from ETS and can provide

some protection to subsequent pathogen challenges. Priming is

defined as a physiological status of plants leading to faster and

stronger activation of defense responses to subsequent biotic and

abiotic stresses (reviewed in Conrath et al., 2006; Conrath, 2011;

Pastor et al., 2013). Crucially, this is distinct from the level of resis-

tance induction in response to the recognition of true pathogens

that are potentially capable of causing disease and where recog-

nition would cause resistance mechanism expression that is more

costly to the plant but still proportionate to potential disease cost

(Walters and Heil, 2007).

In primed plants, chromatin modifications in the form of

methylation and acetylation of histones take place that impact on

the interaction of DNA with histones and/or open binding sites

for transcriptional co-activators such as WRKY22 and WRKY29

(Eulgem, 2005; Conrath, 2011; Po-Wen et al., 2013). These chro-

matin modifications in primed plants have been shown to lead to

increased expression of transcription factors WRKY6, WRKY29,

and WRKY53 after stress exposure (Jaskiewicz et al., 2011).

In Arabidopsis thaliana, mRNA and inactive MPK3 and MPK6

accumulate in cells of elicitor-treated plants. Upon exposure to

Pseudomonas syringae both MAP kinases are more strongly acti-

vated in primed plants than in non-primed plants (Beckers et al.,

2009).

When PTI-associated mechanisms are primed by elicitor treat-

ments plants often accumulate ROS and produce a stronger,

secondary oxidative burst following pathogen challenge, activate

MPKs and stimulate SA-, JA-, and abscisic acid (ABA)-pathways

(Beckers et al., 2009; Pastor et al., 2013). Callose deposition, which

is potentially also linked to the ABA-pathway, can be enhanced

in elicitor-treated plants (Kohler et al., 2002; Flors et al., 2005;

Pastor et al., 2013) and elicitor treatment often induces expres-

sion of phenylalanine ammonia lyase (PAL) which is required for

the production of SA precursors (Chen et al., 2009). In line with

SA involvement, pathogenesis-related genes such as PR-1, PR-2,

and PR-5 have been implicated with elicitor treatments (Kohler

et al., 2002; Conrath et al., 2006). Both priming and the activation
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FIGURE 1 | Plants recognize chemical elicitors, Microbe-Associated

Molecular Patterns (MAMPS) derived from non-pathogenic microbes,

Pathogen-Associated Molecular Patterns (PAMPS) derived from

pathogens and Damage-Associated Molecular Patterns (DAMPS) that

are produced by plants upon insect, herbivore or pathogen attack, via

transmembrane Pattern Recognition Receptors (PRRs). The recognition

leads to the onset of defense mechanisms referred to as pattern-triggered

immunity (PTI). Adapted pathogens secrete effectors that disturb plant

defense mechanisms leading to effector-triggered susceptibility (ETS). Plant

resistance (R) proteins recognize pathogen effectors and induce

effector-triggered immunity (ETI). Treatment of plants with elicitor

compounds (chemicals, MAMPs, DAMPs, or PAMPs) in the absence of

adapted pathogen leads to priming and/or PTI-based immunity that put

plants into an alerted stage of defense that provides some enhanced

resistance toward otherwise virulent pathogens. Figure adapted from

Henry et al. (2012), and Jones and Dangl (2006).

of defense mechanisms due to elicitor treatment can lead to a

reduction of disease severity when subsequent pathogen attack

occurs. Biologically active defense elicitors that either prime plant

defenses or initiate PTI responses have been identified from

diverse sources. Molecular studies have provided clues to their

mechanism and to the processes that govern specificity.

A MOLECULAR PERSPECTIVE OF ELICITOR ACTIVITY IN

PLANT IMMUNITY

Several studies have shown that elicitor-treated plants show lower

infection rates following inoculation with virulent pathogens but

responses can vary between plant species (Table 1). In addition

to the observed disease reduction, molecular studies are reveal-

ing how the elicitor compounds affect gene expression levels in

plants and therefore impact on defense responses (Section Plant

Genes and Pathways Involved in Elicitor Recognition). Similarly,

the diverse mechanisms by which pathogen effectors suppress

PTI responses are emerging but, due to the complexity of this

research, only selected examples are highlighted in this review.

PLANT-DERIVED ELICITORS

Plant cell walls are composed of cellulose, hemicellulose (cross-

linking glycans), pectic polysaccharides, protein, lignin, and a

variety of lipids (Wei et al., 2009). Bacteria and fungi can pro-

duce cellulases, xylanases, and lignin peroxidases that break

down plant cell wall components and common products are

β-glucans, xylose, and phenylpropanoid-containing compounds.

These break-down products function as plant-derived elicitors

and several examples of disease reduction due to the applica-

tion of plant-derived elicitors exist (Table 1). Well studied plant-

derived elicitors include oligogalacturonides (OGs), which are

structural components of plant cell walls and are released upon

partial degradation of homogalacturonan by microbial poly-

galacturonases during infection or by plant polygalacturonases

induced upon wounding (Ferrari et al., 2013). Plant cell wall-

derived OGs are recognized by wall-associated kinase 1 (WAK1)

and subsequent signaling is JA-, SA-, and ET-independent (Brutus

et al., 2010; Ferrari et al., 2013). A MAP kinase cascade is trig-

gered upon OG perception in A. thaliana, and MPK3 and MPK6

are phosphorylated. However, the importance of these signaling

events remains elusive and it has been shown, for example, that

lack of MPK3 increases basal susceptibility to Botrytis cinerea but

elicitor-induced resistances are not affected (Galletti et al., 2011).

In contrast, MPK6 is necessary for OG-induced resistance but

does not play a role in basal resistance toward B. cinerea (Galletti

et al., 2011).

BACTERIAL-DERIVED ELICITORS

In addition to plant-derived elicitors, the application of bacterial-

derived elicitors has also been shown to reduce pathogen infection

in plants (Table 1). Extracellular polysaccharides (EPS) produced

by the bacterial wilt causing pathogen Ralstonia solanacearum

have been shown to induce defense responses in tomato (Milling

et al., 2011) and lipopolysaccharides (LPS) from Gram-negative

bacteria also trigger induced resistance in several other plant

species (Dow et al., 2000; Gerber et al., 2004; Desaki et al., 2006;

Erbs and Newman, 2012). PGPRs (plant growth-promoting rhi-

zobacteria) can induce resistance in plants by exudating elicitors

(De Vleesschauwer and Höfte, 2009 and references therein) and

filtrates from cultures of bacteria such as Bacillus subtilis can

also elicit crop protection effects (Schönbeck et al., 1980, 1982),

though these may be a combination of direct toxicity and/or

elicitor recognition events.

The molecular background to bacterial MAMPs, effectors and

their plant targets has been reviewed recently (Deslandes and

Rivas, 2012) and two well-studied bacterial MAMPs are flagellin

and the elongation factor Tu (EF-Tu). Flagellin is recognized in a

variety of plant species whereas EF-Tu, one of the most abundant

proteins in bacterial cells, and bacterial cold-shock proteins seem
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to be specifically recognized in Brassicaceae and Solanaceae plants,

respectively (Gomez-Gomez and Boller, 2002; Felix and Boller,

2003; Bittel and Robatzek, 2007; Jeworutzki et al., 2010). In both

proteins, the N-terminus contains the eliciting site which, for

flagellin, can often be described as a 22 amino acid long epi-

tope (flg22), whereas that for EF-Tu is 18 amino acids (Elf18).

Flagellin and EF-Tu are recognized by two distinct plant receptors

(Gomez-Gomez and Boller, 2002; Kunze et al., 2004). Flagellin

is recognized by FLAGELLIN-SENSING 2 (FLS2) whereas EF-Tu

is recognized by EF-Tu RECEPTOR (EFR) which has only been

found in Brassicaceae (Gomez-Gomez and Boller, 2002; Zipfel

et al., 2006). This provides molecular insight into the specificity

of elicitors and emphasizes the need to assess candidate defense

eliciting compounds in a diverse range of plant species. It is inter-

esting to note that heterologous expression of EFR in Solanaceae

plants provides some resistance to bacteria that express EF-Tu

(Lacombe et al., 2010) which suggests that downstream signaling

cascades could be conserved for different PRRs and in differ-

ent plant species. Indeed, both FLS2 and EFR are leucine rich

repeat receptor like kinases (LRR-RLK) and both interact with

BRI1-associated receptor kinase 1 (BAK1) triggering SA-, JA-, and

ET-independent signaling (Zipfel et al., 2004, 2006; Chinchilla

et al., 2007). Recognition of flg22 and Elf18 leads to an increase in

cytosolic Ca2+ and it has been show that early signaling is BAK1-

dependent and involves calcium associated plasma membrane

anion channel opening (Jeworutzki et al., 2010). Subsequently, a

MAP kinase cascade involving MPK3, MPK4, MPK6 and MPK11,

and other genes such as Ca2+-dependent proteinase kinases are

activated to establish PTI (Zipfel et al., 2004, 2006; Chinchilla

et al., 2007; Bethke et al., 2012).

Pathogenic bacteria secrete, amongst others, type III effec-

tors into plant cells to supress PTI and this mechanism has

been well studied in the plant pathogen P. syringae (reviewed

by Block and Alfano, 2011; Deslandes and Rivas, 2012). These

bacterial effectors target a variety of plant genes and metabolites

including plasma membrane components like RPM1-interacting

protein 4 (RIN4) in A. thaliana (Day et al., 2006). Similarly, host

nuclear components are, for example, perturbed by effectors such

as PopP2 as well as by transcription-activator like (TAL) type

III effectors from Xanthomonas that directly bind to plant DNA

and thereby activate gene expression changes that promote vir-

ulence and pathogen colonization (Boch et al., 2009; Deslandes

and Rivas, 2012; Coll and Valls, 2013). Other examples include

the effector HopAl1 that is widely conserved in bacterial plant

pathogens and interferes with the MAPK signaling genes MPK3

and MPK6 to supress PTI (Zhang et al., 2007). Furthermore,

chloroplast components are also modified by bacterial effectors

such as HopI1 that causes remodeling of the chloroplast thylakoid

structure and interferes with SA accumulation (Jelenska et al.,

2007). As mentioned above, plants have a variety of R genes, the

products of which, directly or indirectly, recognize some of these

bacterial effectors to elicit ETI (reviewed by Block and Alfano,

2011; Deslandes and Rivas, 2012).

OOMYCETE-DERIVED ELICITORS

Oomycetes are taxonomically and structurally distinct from both

plants and fungi. Several oomycetes are plant pathogenic and

include those from the genus Phytophthora that are responsible

for substantial yield losses in crops. Oomycete cell walls consist

of cellulose, glycan, and hydroxyproline-rich proteins and several

oomycete elicitors have been described (Table 1). For example,

necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins

(NLP) are recognized in dicots and it has been shown that these

proteins trigger a variety of defense responses in A. thaliana

(Qutob et al., 2006). Similarly, P. infestans INF1 elicitin causes an

HR response in Nicotiana benthamiana (Kamoun et al., 1998) that

is dependent on the receptor-like kinase SERK3/BAK1 which, as

a central regulator of innate immunity in plants, is required for

multiple resistance responses, including those mediated through

FLS2 (Heese et al., 2007). Other PTI eliciting molecules from

Phytophthora include GP42, a member of the transglutaminase

family, and for which the active peptide has been described as

Pep-13 (Nürnberger et al., 1994; Brunner et al., 2002), as well as

the cellulose binding elicitor lectin (CBEL) that is associated with

adhesion to the plant cell (Gaulin et al., 2006; reviewed in Hein

et al., 2009).

To suppress PTI during infection, Phytophthora, like other

plant pathogens, secretes extracellular and intracellular effec-

tors into plants. Some extracellular effectors encode protease or

glucanase inhibitors to prevent, respectively, host protease or glu-

canase activity in the apoplast (reviewed in Hein et al., 2009;

Schornack et al., 2009). Some intracellular effectors contain the

canonical RXLR motif and contain an N-terminal signal peptide

and a C-terminal effector activity site (Birch et al., 2009).

The modes of action of RXLR effectors in promoting viru-

lence are diverse. For example, it has recently been shown that

the P. infestans RXLR effector PexRD2 interacts with the kinase

domain of the host MAPKKKε to perturb PTI signaling path-

ways and to yield ETS responses (King et al., 2014). The RXLR

effector PITG_03192, on the other hand, targets two membrane-

associated NAC transcription factors that rapidly accumulate

following PTI elicitation (McLellan et al., 2013). The effector pre-

vents the release of these NAC transcription factors from the

endoplasmic reticulum and subsequent accumulation in the plant

nucleus that is typically observed as part of a PTI response. In

contrast, the P. infestans RXLR effector Avrblb2 prevents secretion

of an immune-associated protease (Bozkurt et al., 2011), whereas

two P. sojae RXLRs have been shown to act as silencing suppres-

sors (Qiao et al., 2013). One of the best-characterized intracellular

RXLR effectors is Avr3a from P. infestans. Avr3a interacts with

and stabilizes the potato E3 ubiquitin ligase CMPG1 and thus

perturbs cell death responses triggered by INF1 (Bos et al., 2010)

and a range of other pathogen elicitors (Gilroy et al., 2011).

Avr3a exists in two forms that both suppress INF1 responses

but differ in two amino acids that determine recognition by the

potato R gene R3 that subsequently triggers ETI (Armstrong

et al., 2005). Finally, several RXLRs from P. infestans act redun-

dantly to suppress flg22-mediated signal transduction and early

transcriptional changes (Zheng et al., 2014).

FUNGAL-DERIVED ELICITORS

As with plant and oomycete cell walls, break-down products

from fungal cell walls, which contain chitin, mannoproteins,

and β-glucans, can elicit a range of defense responses as signals
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of potential colonization (Table 1). Yeast extracts, for example,

have widely been used to study defense responses in plants (e.g.,

Hahn and Albersheim, 1978; Reglinski et al., 1994b, 1995; Suzuki

et al., 2005; Khokon et al., 2010). Ergosterol, a fungal cell mem-

brane component, induces defense responses in tobacco, and

Cladosporium fulvum host and non-host plant necrosis inducer

1 (CfHNNI1), which shows high homologies to genes encod-

ing bZIP transcription factors, has been shown to induce resis-

tance in tomato and tobacco (Takken et al., 2000; Xu et al.,

2012). Similarly, a proteinaceous elicitor called SCLEROTINIA

CULTURE FILTRATE ELICITOR1 (SCFE1) has recently been

identified from the necrotrophic fungal pathogen Sclerotinia

sclerotiorum that induces BAK1-dependent PTI responses upon

recognition by the A. thaliana RECEPTOR-LIKE PROTEIN30

(RLP30) (Zhang et al., 2013).

Two of the best studied fungal-derived elicitors are chitin and

chitosan, a deacetylated derivative of chitin. Both have been well

described as active components that increase resistance to bac-

terial and fungal pathogens in several plant species including

crop plants (El Ghaouth et al., 1994; Copping and Duke, 2007;

Kishimoto et al., 2010; El Hadrami et al., 2012; Kombrink et al.,

2011). Chitin is detected in plants by a chitin elicitor recep-

tor kinase (CERK1) which is also known as LysMRLK1 (Wan

et al., 2008; Kombrink et al., 2011). In A. thaliana, chitin-induced

dimerization of AtCERK1 has shown to be necessary for activa-

tion of PTI (Liu et al., 2012). In rice, OsCERK1 forms a complex

with chitin elicitor binding protein (CEBiP) upon chitin percep-

tion and both proteins are critical for chitin-induced signaling

(Shimizu et al., 2010). A homolog of OsCEBiP has been identi-

fied in barley and HvCEBiP has also been shown to play a role in

responses to Magnaporthe oryzae (Tanaka et al., 2010). In contrast

to rice, the homolog in A. thaliana, AtCEBiP, binds chitin but does

not seem to be required for chitin-induced signaling (Shinya et al.,

2012). Chitin-induced PTI is JA-, SA-, and ET-independent but a

RING zinc-finger like protein (ATL9) has shown to be induced

upon chitin treatment (Berrocal-Lobo et al., 2010).

To suppress these responses, the fungal pathogen C. fulvum

has developed two distinct effectors that suppress chitin-induced

PTI leading to ETS in planta (de Jonge and Thomma, 2009; de

Jonge et al., 2010; Kombrink et al., 2011). The fungal chitin-

binding protein Avr4 specifically binds chitin in fungal cell walls

and thereby prevents the chitin from degradation by plant chiti-

nases (van den Burg et al., 2006; Wan et al., 2008). Furthermore,

the extracellular protein 6 (Ecp6), an effector protein with 3

LysM domains, binds chitin competitively to prevent recogni-

tion of chitin by CEBiP (de Jonge and Thomma, 2009; de Jonge

et al., 2010). Homologs of Avr4 have been identified in fungi

belonging to the class of Dothideomycetes and Ecp6-like genes are

widespread within the fungal kingdom (Kombrink et al., 2011).

The plant receptor Cf4 is a receptor-like protein (RLP) without

kinase activity that recognizes Avr4 (Thomas et al., 1997) and

it has recently been shown that SOBIR1, a receptor-like kinase

(RLK) from tomato interacts with Cf4 and might be required for

Cf4-mediated resistance (Liebrand et al., 2013).

Compared with bacterial and oomycete effectors, the biolog-

ical function and the targets of fungal effectors remain more

elusive (Rafiqi et al., 2012; Liu et al., 2013). This has partly been

attributed to the fact that fungal effectors do not seem to have

canonical amino acid domains that enable a rapid candidate effec-

tor discovery (Rafiqi et al., 2012). Recently, Doehlemann and

Hemetsberger (2013) reviewed the current knowledge of effec-

tors from filamentous plant pathogens and compiled a list of

known apoplastic effectors and their function. Most fungal effec-

tors are secreted through the fungal endoplasmic reticulum (ER)

secretory pathway but the way by which cytoplasmic effector pro-

teins enter the host cells remains unknown (Rafiqi et al., 2012).

In the genome of Blumeria graminis, 491 potential effector pro-

teins have been identified but their biological function remains

unknown (Pedersen et al., 2012). Similarly, in M. oryzae 15 candi-

date effector proteins have been identified so far (Liu et al., 2013).

An effector protein from Ustilago maydis has been identified as

a chorismate mutase, Cmu1, which is required for full virulence.

Cmu1 functions by diverting metabolic precursors of the shiki-

mate pathway toward production of aromatic amino acids, and

away from the production of SA (Djamei and Kahmann, 2012).

PLANT GENES AND PATHWAYS INVOLVED IN ELICITOR

RECOGNITION

GENES UP-REGULATED DUE TO ELICITOR TREATMENTS

In the elicitor research field, the response of plant genes to elic-

itor treatment is of great interest and several gene expression

studies have been conducted. More recently, several microarray

studies have been performed in different plant species to gain

greater knowledge of the diversity of genes responsive to elicitors

(e.g., Medeiros et al., 2009; Kano et al., 2011; Povero et al., 2011;

Amelot et al., 2012), albeit knowledge on plant gene expression in

response to elicitors has mainly been focused on A. thaliana. As

mentioned previously, the presence of the cognate receptors can

determine responsiveness to elicitors (Lacombe et al., 2010) and it

is thus essential to investigate elicitor effects in diverse crop plants

(Nguyen et al., 2010).

As part of this review, we aim to provide an overview of the

current knowledge of differentially expressed plant genes fol-

lowing elicitor treatments and identify typically affected plant

processes. This will facilitate identification of responses to elic-

itor application such as plant growth or nutrient metabolisms

that are not directly linked to defense but impact on agricul-

ture. For this we have combined over 50 publications to create

a list of plant genes that are differentially expressed following

the recognition of elicitors (Table S1). Reciprocal BLAST (Basic

Local Alignment Search Tool; Altschul et al., 1990) has been used

to identify the A. thaliana homologs when the original experi-

ment was performed in a different plant species (>70% identity

of nucleotide sequences, E-value < 0.0001). In addition to the

publications, PathoPlant®, a database featuring compiled expres-

sion data and components of signal transduction pathways related

to plant pathogenesis, has been used (Bülow et al., 2004, 2007).

This database enables querying differential plant gene expression

following diverse pathogen stimuli which, for this study, include

Botrytis cinerea, chitin, Erysiphe orontii, Phytophthora infestans,

Pseudomonas syringae pv. Maculicola, and Pseudomonas syringae

pv. Phaseolicola.

A total of 1592 plant genes that were activated by the recog-

nition of elicitors have been identified (Table S1). Ontological
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analysis was performed using agriGo (Du et al., 2010). In

this analysis, genes of interest are grouped by gene ontology

(GO) terms describing biological processes, molecular func-

tions and cellular components (Ashburner et al., 2000). The

list of genes of interest is compared to a defined background

gene list which, in this study, included the whole genome

of A. thaliana as provided by The Arabidopsis Information

Resource (TAIR) (Lamesch et al., 2011) to identify GO terms

that are significantly over-represented. A total of 762 shared

GO terms were identified, comprising 474 biological pro-

cesses, 206 molecular functions and 82 cellular components

(Table S2).

The three most over-represented biological processes were

“response to stimulus” (GO:0050896), “multi-organism process”

(GO:0051704), and “immune system process” (GO:0002376).

The GO term “response to stimulus” contained 36.5% of the elic-

itor responsive genes in comparison to 10.7% representation in

the whole A. thaliana genome. The GO term “multi-organism

process” contained 11.1% of the genes in the target gene list, com-

pared to 2.1% of the whole genome, and 6.6% instead of 1% were

classed in the GO term “immune system process” (Figure 2).

Three of the over-represented molecular functions were “cat-

alytic activity” (GO:0003824), “binding” (GO:0005488), and

“molecular transducer activity” (GO:0060089). The GO term

“catalytic activity” featured in 48.5% of the elicitor responsive

genes in comparison to 25.5% of the whole A. thaliana genome.

The GO term “binding” contained 37.8% of the genes in the tar-

get gene list in comparison to 29.8% of the whole genome and

3.1% instead of 1.1% were classed in the GO term “molecular

transducer activity” (Figure 3).

FIGURE 2 | Highly significant shared biological processes within

Arabidopsis thaliana genes that are induced and overrepresented

following the recognition of elicitor compounds (black) in comparison

to the whole genome of A. thaliana (gray).

The relationships of all over-represented genes in the clas-

sification “biological processes” are shown in Figure S1. These

include metabolic processes such as amine-, phosphate-, and phy-

toalexin metabolism; immune system processes and cell death,

including regulation of defense response; plant-type hypersensi-

tive response and apoptosis; response to stimuli including JA and

SA; systemic acquired resistance and defense responses to fungi

and bacteria (Figure S1).

The relationship of all genes over-represented in the GO term

“molecular functions” are shown in Figure S2. These functions

contain catalytic activity including oxidoreductase, lyase, and

kinase activities; and binding activities including ATP and sugar

binding (Figure S2). The relationships of all over-represented

genes in the classification “cellular components” are shown in

Figure S3. All cell parts are involved but the involvements of cell

wall and plasma membranes are highly significant (Figure S3).

TARGETS OF PATHOGEN EFFECTORS

As noted above, pathogens produce effector molecules to

interfere with plant defense responses. An analysis of plant-

pathogen protein-protein interactions using A. thaliana and two

pathogens, P. syringae and the obligate biotrophic oomycete

Hyaloperonospora arabidopsidis revealed 137 A. thaliana proteins

that were potentially targeted by pathogen effectors (Mukhtar

et al., 2011). A recent review on bacterial effectors listed an addi-

tional 22 plant proteins targeted by several bacterial effectors

(Deslandes and Rivas, 2012). In the analysis here, genes encod-

ing these 159 proteins were used to search for overlap with the

plant genes differentially induced upon elicitor recognition. A

total of 23 genes were identified that are both induced by elicitors

and targeted by pathogen effectors (Table S3). These comprise

FIGURE 3 | Highly significant shared molecular functions within

Arabidopsis thaliana genes that are induced and overrepresented

following the recognition of elicitor compounds (black) in comparison

to the whole genome of A. thaliana (gray).
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receptors such as FLS2 and EFR, genes involved in MAPK cas-

cades like RIPK, MPK3, MPK4, and MPK6, R protein-guarded

host proteins such as RIN4 and genes involved in L-phenylalanine

biosynthetic process like ADT4 and ADT5 (Table S3). These

overlapping genes are grouped into several biological processes,

molecular functions and cell parts and their involvements are

highlighted with stars in Figures S1–S3. This analysis highlights

the complexity of priming and plant immune responses, and

the sophisticated interactions with pathogen effectors. It shows

that the plant response to elicitor compounds does not only

involve genes that are annotated as defense-related but that other

metabolic pathways are also involved. We know that elicitor treat-

ments result in positive and negative trade-offs (Walters and Heil,

2007) and therefore expression profiling of some of these genes

should result in a better understanding of these responses and

how they might be exploited.

“NON-DEFENSE” EFFECTS OF ELICITORS

As mentioned above, for successful use of elicitors in agriculture it

is important to understand their effects not only on plant defense

but also on other aspects of plant development and environmen-

tal responses. The activation of defense pathways as part of PTI

can be very costly to plants but should be less than the potential

loss caused by disease if no defense was mounted. However, in the

context of crop protection, such costs are unlikely to be accept-

able in the absence of known pathogen challenges of a high order.

Crop protectants are preferred that enhance the efficacy of PTI

assisting a quicker and more effective response when an actual

pathogen challenge occurs and therefore is more efficient in its

use of resources. This can be achieved through priming if prim-

ing is either not costly to the plant or its costs are mitigated by

other beneficial means.

Some of the known priming genes are generally regulatory

but not necessarily restricted to defense pathways. They regulate

signal transduction events, particularly those identified in stress

responses or in the GO terms “response to stimulus,” “multi-

organism processes,” and “immune system processes,” i.e., the

genes disproportionately up-regulated by elicitors highlighted

above (see Figures S1, S2). Thus, many non-defense mechanism

processes will be affected in their expression by elicitors. These

might result in additional costs above those incurred by defense

gene expression, but they may also have benefits. An exam-

ple of a non-defense effect of an elicitor is reduced water use

of pepper plants upon treatment with chitosan (Bittelli et al.,

2001). Chitosan was also found to affect the net photosynthetic

rate of soybean and maize after application (Khan et al., 2002).

More general effects on yield, not directly attributable to disease

control, were also found from applications of B. subtilis culture fil-

trates (Dehne et al., 1984; Steiner et al., 1988). Similar effects were

recorded for some treatments of yeast cell wall-derived extracts

(Reglinski et al., 1994a).

Indeed, on a molecular level, there is evidence of cross talk

between the MAPKs involved in PTI and abiotic stress responses.

For example, the transcription of MEKK1 is induced by diverse

stresses including cold, salt, drought and wounding (Mizoguchi

et al., 1998). Conversely, the activation of EDS1/PAD4-dependent

signaling during ETI responses can rapidly antagonize ABA signal

transduction at the level of Ca2+ signaling (Kim et al., 2011). The

overexpression of the gene ACTIVATED DISEASE RESISTANCE1

(ADS1) in A. thaliana, a member of the nucleotide-binding (NB)

and leucine-rich repeat (LRR) containing NB-LRR genes, con-

fers both disease resistance (Grant et al., 2003) and drought

tolerance, requiring SA, EDS1 and ABA-INSENSITIVE1 (ABI1)

(Chini et al., 2004).

Much depends on the basis of determination of costs as

we tend to calculate these from an end-user yield perspective.

We should also recognize that each of these pathways, whether

defense-related or not, is in a complex expression and metabolic

network of cross-talk and feedback mechanisms and thus affected

by many environmental factors. Those that can be manipulated

beneficially and perhaps synergistically fall in the category of

nutrition (Walters and Bingham, 2007). Primed plants showed

considerably higher fitness than non-primed plants when they

were challenged by pathogens without major trade-off effects on

growth and seed set (Conrath et al., 2006; van Hulten et al., 2006).

Correlation of priming benefits with gene expression profiles may

lead to very practical means for developing elicitor-based crop

protectants that either off-set any direct costs, increase some

aspect of resource use efficiency or specifically enhance other

processes beneficial to yield or quality.
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