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Molecular electrometer and binding of cations
to phospholipid bilayers†

Andrea Catte,‡a Mykhailo Girych,b Matti Javanainen,cd Claire Loison,e Josef Melcr,fg

Markus S. Miettinen,hi Luca Monticelli,j Jukka Määttä,k Vasily S. Oganesyan,a

O. H. Samuli Ollila,*b Joona Tynkkynenc and Sergey Vilove

Despite the vast amount of experimental and theoretical studies on the binding affinity of cations – especially

the biologically relevant Na+ and Ca2+ – for phospholipid bilayers, there is no consensus in the literature.

Here we show that by interpreting changes in the choline headgroup order parameters according to the

‘molecular electrometer’ concept [Seelig et al., Biochemistry, 1987, 26, 7535], one can directly compare the

ion binding affinities between simulations and experiments. Our findings strongly support the view that in

contrast to Ca2+ and other multivalent ions, Na+ and other monovalent ions (except Li+) do not specifically

bind to phosphatidylcholine lipid bilayers at sub-molar concentrations. However, the Na+ binding affinity was

overestimated by several molecular dynamics simulation models, resulting in artificially positively charged

bilayers and exaggerated structural effects in the lipid headgroups. While qualitatively correct headgroup

order parameter response was observed with Ca2+ binding in all the tested models, no model had

sufficient quantitative accuracy to interpret the Ca2+:lipid stoichiometry or the induced atomistic

resolution structural changes. All scientific contributions to this open collaboration work were made

publicly, using nmrlipids.blogspot.fi as the main communication platform.

1 Introduction

Due to its high physiological importance – nerve cell signalling
being the prime example – interaction of cations with phospho-
lipidmembranes has been widely studied via theory, simulations,
and experiments. The relative ion binding affinities are generally
agreed to follow the Hofmeister series,1–9 however, consensus
on the quantitative affinities is currently lacking. Until 1990,
the consensus (documented in two extensive reviews2,3) was

that while multivalent cations interact significantly with phos-
pholipid bilayers, for monovalent cations (with the exception
of Li+) the interactions are weak. This conclusion has since
been strengthened by further studies showing that bilayer
properties remain unaltered upon the addition of sub-molar
concentrations of monovalent salt.4,10,11 Since 2000, however,
another view has emerged, suggesting much stronger inter-
actions between phospholipids and monovalent cations, and
strong Na+ binding in particular.6–9,12–18

The pre-2000 view has the experimental support that
(in contrast to the significant effects caused by any multivalent
cations) sub-molar concentrations of NaCl have a negligible
effect on phospholipid infrared spectra,4 area per molecule,10

dipole potential,19 lateral diffusion,11 and choline head group
order parameters;20 in addition, the water sorption isotherm
of a NaCl–phospholipid system is highly similar to that of a
pure NaCl solution – indicating that the ion–lipid interaction
is very weak.4

The post-2000 ‘strong binding’ view rests on experimental and
above all simulational findings. At sub-molar NaCl concentra-
tions, the rotational and translational dynamics of membrane-
embedded fluorescent probes decreased,7,9,12 and atomic force
microscopy (AFM) experiments showed changes in bilayer
hardness;14–18 in atomistic molecular dynamics (MD) simula-
tions, phospholipid bilayers consistently bound Na+, although
the binding strength depended on the model used.12,13,21–26
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Some observables have been interpreted in favour of
both views. For example, as the effect of monovalent ions
(except Li+) on the phase transition temperature is tiny
(compared to the effect of multivalent ions), it was initially
interpreted as an indication that only multivalent ions and
Li+ specifically bind to phospholipid bilayers;2 however, such
a small effect in calorimetric measurements was later inter-
preted to indicate that also Na+ binds.8,12 Similarly, the lack of
significant positive electrophoretic mobility of phosphatidyl-
choline (PC) vesicles in the presence of NaCl (again in contrast
to multivalent ions and Li+) suggested weak binding of
Na+;1,8,14,15,27 however, these data were also explained by a
countering effect of the Cl� ions.22,28 Furthermore, to reduce
the area per lipid in scattering experiments, molar concentra-
tions of NaCl were required,10 indicating weak ion–lipid
interaction; in MD simulations, however, already orders of
magnitude lower concentrations resulted in Na+ binding and a
clear reduction of area per lipid.12,23 Finally, lipid lateral
diffusion was unaltered by NaCl in noninvasive NMR experi-
ments;11 however, as it was reduced upon Na+ binding in
simulations, the reduced lateral diffusion of fluorescent
probes7,9,12 has been interpreted to support the post-2000
‘strong binding’ view.

In this paper, we set out to solve the apparent contradictions
between the pre-2000 and post-2000 views. To this end, we
employ the ‘molecular electrometer’ concept, according to
which the changes in the C–H order parameters of the a and
b carbons in the phospholipid head group (see Fig. 1) can be
used to measure the ion affinity for a PC lipid bilayer.20,29–32

As the order parameters can be accurately measured in experi-
ments and directly compared to simulations,33 applying the
molecular electrometer as a function of cation concentration
allows the comparison of binding affinity between simulations
and experiments. In addition to demonstrating the usefulness
of this general concept, we show that the response of the a and
b order parameters to penetrating cations is qualitatively
correct in MD simulations, but that in several models the
affinity of Na+ for PC bilayers is grossly overestimated. More-
over, we show that the accuracy of lipid–Ca2+ interactions in
current models is not enough for atomistic resolution inter-
pretation of NMR experiments.

This work was done as an Open Collaboration at nmrlipids.
blogspot.fi; all the related files34 and almost all the simulation
data (https://zenodo.org/collection/user-nmrlipids) are openly
available.

2 Results and discussion
2.1 Background: molecular electrometer in experiments

The basis for the molecular electrometer is the experimental
observation that binding of any charged objects (ions, peptides,
anesthetics, amphiphiles) on a PC bilayer interface induced
systematic changes in the choline a and b segment C–H order
parameters.20,29–32,35–40 Being systematic, these changes could
be employed for determining the binding affinities of the charged
objects in question. Originally the molecular electrometer was
devised for cations,20,29,30 but further experimental quantification
with various positively and negatively charged molecules showed
that the choline order parameters SaCH and SbCH in general vary
linearly with small amount of bound charge per lipid.30–32,35–40

Let now SiCH(0), where i refers to either a or b, denote the order
parameter in the absence of bound charge; the empirically
observed linear relation can then be written as41

DSi

CH
¼ S

i

CH
X

�
� �

� S
i

CH
ð0Þ ¼

4mi

3w
X

�
: (1)

Here X� is the amount of bound charge per lipid,mi an empirical
constant depending on the valency and position of bound
charge, and the value of the quadrupole coupling constant
w E 167 kHz.

With bound positive charge, the absolute value of the b segment
order parameter increases and the a segment order parameter
decreases (and vice versa for negative charge).20,29–32,35,40 However,
as SbCH(0)o 0 while SaCH(0)4 0,42–44 both DSbCH and DSaCH in fact
decrease with bound positive charge (and increase with bound
negative charge). Consequently, values of mi are negative for
bound positive charges; for Ca2+ binding to POPC bilayer
(in the presence of 100 mM NaCl), combination of atomic
absorption spectra and 2H NMR experiments gave ma = �20.5
and mb = �10.0.30 This decrease can be rationalised by electro-
statically induced tilting of the choline P–N dipole31,32,46 – also
seen in simulations23,24,47,48 – and is in line with the order
parameter increase related to the P–N vector tilting more
parallel to the membrane plane seen with decreasing hydration
levels.45

Quantification of DSaCH and DSbCH for a wide range of
different cations (aqueous cations, cationic peptides, cationic
anesthetics) has revealed that DSbCH/DS

a
CH E 0.5.38,40 More

specifically, the relation DSbCH = 0.43DSaCH was found to hold
for DPPC bilayers at various CaCl2 concentrations.

20

2.2 Molecular electrometer in MD simulations

The black curves in Fig. 2 show how the headgroup order
parameters for DPPC and POPC bilayers change in H2 NMR
experiments as a function of salt solution concentration:20,30

Only minor changes are seen as a function of [NaCl], but the
effect of [CaCl2] is an order of magnitude larger. Thus, according
to the molecular electrometer, the monovalent Na+ ions have
negligible affinity for PC lipid bilayers at concentrations up to
1 M, while binding of Ca2+ ions at the same concentration is
significant.20,30

Fig. 1 Chemical structure of 1-palmitoyl-2-oleoylphosphatidylcholine
(POPC), and the definition of g, b, a, g1, g2 and g3 segments.
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Fig. 2 also reports order parameter changes calculated from
MD simulations of DPPC and POPC lipid bilayers as a function
of NaCl or CaCl2 initial concentrations in solution (for details
of the simulated systems see Table 1 and ESI†). Note that
although none of these MD models reproduces within experi-
mental uncertainty the order parameters for a pure PC bilayer
without ions (Fig. 2 in ref. 45), which indicates structural
inaccuracies of varying severity in all models,45 all the models
qualitatively reproduce the experimentally observed headgroup
order parameter increase with dehydration.45 Similarly here
(Fig. 2) the presence of cations led to the decrease of SaCH and
SbCH, in qualitative agreement with experiments. The changes
were, however, overestimated by most models, which according
to the molecular electrometer indicates overbinding of cations
in most MD simulations.

While the molecular electrometer is well established in experi-
ments (see Section 2.1 above), it is not a priori clear that it works in
simulations. The overestimated order parameter decrease could,
in principle, arise from an exaggerated response of the choline
headgroups to the binding cations, instead of overbinding.

Therefore, to evaluate the usability of the molecular electro-
meter in MD simulations, we analysed the relation between
cation binding and choline order parameter decrease in
simulations.

According to the molecular electrometer, the order para-
meter changes are linearly proportional to the amount of
bound cations (eqn (1)). Fig. 3 shows this proportionality in
MD simulations (see ESI† for the definition of bound ions);
in keeping with the molecular electrometer, a roughly linear
correlation between bound cation charge and order parameter
change was found in all the eight models. Note that quantita-
tive comparison of the proportionality constants (i.e. slopes
in Fig. 3) between different models and experimental slopes
(ma = �20.5 and mb = �10.0 for Ca2+ binding in DPPC bilayer in
the presence of 100 mMNaCl30) is not straightforward since the
simulation slopes depend on the definition used for bound
ions (see ESI†).

We note that the quantitative comparison of order para-
meter changes in response to bound charge should be more
straightforward for systems with charged amphiphiles fully

Fig. 2 Changes in the PC lipid headgroup b (top row) and a (bottom) segment order parameters in response to NaCl (left column) or CaCl2 (right column)
salt solution concentration increase. Comparison between simulations (Table 1) and experiments (DPPCs from ref. 20, POPC from ref. 30). The signs of the
experimental values, from experiments without ions,42–44 can be assumed unchanged at these salt concentrations.30,33 We stress that none of the models
reproduces the order parameters without salt within experimental error, indicating structural inaccuracies of varying severity in all of them.45 Note that the
relatively large drop in CHARMM36 at 450 mM CaCl2 arose from more equilibrated binding due to a very long simulation time, see ESI.†
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associated in the bilayer, as the amount of bound charge is
then explicitly known in both simulations and experiments. In
such a comparison between experiments32,49 and previously
published Berger-model-based simulations,50 we could not rule
out overestimation of order parameter response to bound
cations (slopes ma and mb), see ESI.† This might, in principle,
explain the overestimated order parameter response of the

Berger model to CaCl2, but not to NaCl (see discussion in ESI†).
Since simulation data with charged amphiphiles are not avail-
able for other models, an extended comparison with different
models is left for further studies.

Fig. 3 shows that the decrease of order parameters clearly
correlated with the amount of bound cations in simulations.
This is also evident from Fig. 4, which shows the Na+ density

Table 1 List of MD simulations. The salt concentrations calculated as [salt] = Nc � [water]/Nw, where [water] = 55.5 M; these correspond to the
concentrations reported in the experiments by Akutsu et al.20 The lipid force fields named as in our previous work45

Force field for lipids/ions Lipid Salt [Salt] (mM) Nl
a Nw

b Nc
c T d (K) tsim

e (ns) tanal
f (ns) Filesg

Berger-POPC-0751/— POPC No 0 128 7290 0 298 270 50 52
Berger-POPC-0751/ffgmx53 POPC NaCl 340 128 7202 44 298 110 50 54
Berger-POPC-0751/ffgmx53 POPC CaCl2 340 128 7157 44 298 108 58 55
Berger-DPPC-9756/— DPPC No 0 72 2880 0 323 60 50 57
Berger-DPPC-9756/ffgmx53 DPPC NaCl 150 72 2880 8 323 120 60 58
Berger-DPPC-9756/ffgmx53 DPPC NaCl 1000 72 2778 51 323 120 60 59

Berger-OPLS-DPPC-0660/— DPPC No 0 72 2880 0 323 120 60 61
Berger-OPLS-DPPC-0660/OPLS62 DPPC NaCl 150 72 2880 8 323 120 60 63
Berger-OPLS-DPPC-0660/OPLS62 DPPC NaCl 1000 72 2778 51 323 120 60 64

CHARMM3665/— POPC No 0 128 5210 0 303 200 150 66
CHARMM3665/— POPC No 0 72 2242 0 303 30 20 67
CHARMM3665/CHARMM3668 POPC NaCl 350 72 2085 13 303 80 60 69
CHARMM3665/CHARMM3668 POPC NaCl 690 72 2085 26 303 73 60 70
CHARMM3665/CHARMM3668 POPC NaCl 950 72 2168 37 303 80 60 71
CHARMM3665/CHARMM36 POPC CaCl2 350 128 6400 35 303 200 100 72
CHARMM3665/CHARMM36 POPC CaCl2 450 200 9000 73 310 2000 100 73
CHARMM3665/CHARMM36 POPC CaCl2 670 128 6400 67 303 200 120 74
CHARMM3665/CHARMM36 POPC CaCl2 1000 128 6400 100 303 200 100 75
CHARMM3665/— DPPC No 0 128 8000 0 323 170 150 —
CHARMM3665/Yoo76 DPPC CaCl2 430 128 7760 60 323 200 170 —
CHARMM3665/Yoo76 DPPC CaCl2 890 128 7520 120 323 200 170 —

MacRog77/— POPC No 0 128 6400 0 310 400 200 78
MacRog77/— POPC No 0 288 14 400 0 310 90 40 79
MacRog77/OPLS62 POPC NaCl 100 288 14 554 27 310 90 50 80
MacRog77/OPLS62 POPC NaCl 210 288 14 500 54 310 90 50 80
MacRog77/OPLS62 POPC NaCl 310 288 14 446 81 310 90 50 80
MacRog77/OPLS62 POPC NaCl 420 288 14 392 108 310 90 50 80

Orange/— POPC No 0 72 2880 0 298 60 50 81
Orange/OPLS62 POPC NaCl 140 72 2866 7 298 120 60 82
Orange/OPLS62 POPC NaCl 510 72 2802 26 298 120 100 83
Orange/OPLS62 POPC NaCl 1000 72 2780 50 298 120 80 84
Orange/OPLS POPC CaCl2 510 72 2802 26 298 120 60 85

Slipids86/— POPC No 0 128 5120 0 310 200 150 87
Slipids86/AMBER88 POPC NaCl 130 200 9000 21 310 105 100 89
Slipids86/AMBER62 POPC CaCl2 450 200 9000 73 310 2000 100 90
Slipids91/— DPPC No 0 128 3840 0 323 150 100 92
Slipids91/AMBER93,94 DPPC NaCl 150 600 18 000 49 323 100 40 —
Slipids91/AMBER93,94 DPPC NaCl 850 128 3726 57 323 205 200 95
Slipids91/AMBER93,94 DPPC NaCl 1750 128 3612 114 323 105 100 95
Slipids91/AMBER93,94 DPPC NaCl 2570 128 3514 163 323 105 100 95

Lipid1496/— POPC No 0 128 5120 0 298 205 200 97
Lipid1496/AMBER62 POPC NaCl 150 128 5120 12 298 205 200 98
Lipid1496/AMBER62 POPC NaCl 1000 128 5120 77 298 205 200 99
Lipid1496/AMBER62 POPC CaCl2 350 128 6400 35 298 200 100 100
Lipid1496/AMBER62 POPC CaCl2 1000 128 6400 100 298 200 100 101

Ulmschneiders102/— POPC No 0 128 5120 0 298 2 � 205 2 � 200 103
Ulmschneiders102/OPLS62 POPC NaCl 150 128 5120 12 298 205 200 104
Ulmschneiders102/OPLS62 POPC NaCl 1000 128 5120 77 298 205 200 105

a Number of lipid molecules. b Number of water molecules. c Number of cations. d Simulation temperature. e Total simulation time. f Time used
for analysis. g Reference for simulation files.
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profiles of the MD models ordered according to the order
parameter change (in Fig. 2) from the smallest (top) to the
largest (bottom). The general trend in the figure is that the Na+

density peaks are larger for models with larger changes in order
parameters, in line with the observed correlation between
cation binding and order parameter decrease in Fig. 3.

Fig. 5 compares the relation between DSbCH and DSaCH in
experiments20 and in MD models. Only Lipid14 gave DSbCH/DS

a
CH

ratio in agreement with the experimental ratio; all other models
underestimated the a segment order parameter decrease with
bound cations with respect to the b segment decrease.

In conclusion, a clear correlation between bound cations
and order parameter decrease was observed for all simulation
models. Consequently, the molecular electrometer can be used
to compare the cation binding affinity between experiments
and simulations. However, we found that quantitatively the
response of a and b segment order parameters to bound cations
in simulations did not generally agree with the experiments;
e.g., the DSbCH/DS

a
CH ratio agreed with experiments only in the

Lipid14 model (Fig. 5). Thus, the observed overestimation of
the order parameter changes with salt concentrations could,
in principle, arise from overbinding of cations or from an
oversensitive lipid headgroup response to the bound cations

Fig. 3 Change of order parameters (from salt-free solution) of the b and a

segments, DSbCH and DSaCH, as a function of bound cation charge. Eight MD
simulation models compared; the two lines per model denote to the two
hydrogens per carbon. The order parameters as well as the bound charge
calculated separately for each leaflet; cations residing between the bilayer
centre and the density maximum of phosphorus considered bound; error
bars (shaded) show standard error of mean over lipids.

Fig. 4 Na+ (solid line) and Cl� (dashed) distributions along the lipid bilayer
normal from MD simulations at several NaCl concentrations. The eight MD
models are ordered according to their strength of order parameter change
in response to NaCl (Fig. 2) from the weakest (top panel) to the strongest
(bottom). The light green vertical lines indicate the locations of the
phosphorus maxima, used to define bound cations in Fig. 3.

PCCP Paper

P
u
b
li

sh
ed

 o
n
 1

4
 N

o
v
em

b
er

 2
0
1
6
. 
D

o
w

n
lo

ad
ed

 b
y
 F

re
ie

 U
n
iv

er
si

ta
et

 B
er

li
n
 o

n
 2

3
/0

3
/2

0
1
7
 1

2
:2

4
:3

6
. 

View Article Online

http://dx.doi.org/10.1039/c6cp04883h


This journal is© the Owner Societies 2016 Phys. Chem. Chem. Phys., 2016, 18, 32560--32569 | 32565

(see also discussion in ESI†). A careful analysis with current
lipid models is performed in the next section.

2.3 Cation binding in different simulation models

The order parameter changes (Fig. 2) and density distributions
(Fig. 4) demonstrated significantly different Na+ binding affinities
in different simulation models. The best agreement with experi-
ments (lowest DSaCH and DSbCH) was observed for the three models
(Orange, Lipid14, CHARMM36; see Fig. 2) that predicted the
lowest Na+ densities near the bilayer (Fig. 4). All the other models
clearly overestimated the choline order parameter responses to
NaCl (Fig. 2) – and notably the strength of the overestimation was
clearly linked to the strength of the Na+ binding affinity (compare
Fig. 2 and 4), which leads us to conclude that Na+ binding affinity
was overestimated in all these models.

As in the best three models the order parameter changes
with NaCl were small (o0.02), the achieved statistical accuracy
did not allow us to conclude which of the three had the most
realistic Na+ binding affinity, especially at physiological NaCl
concentrations (B150 mM) relevant for most applications. The
overestimated binding in the other models raises questions
concerning the quality of predictions from these models when
NaCl is present. Especially interactions between charged mole-
cules and the bilayer might be significantly affected by the
strong Na+ binding, which gives the otherwise neutral bilayer
an effective positive charge.

Significant Ca2+ binding affinity for phosphatidylcholine
bilayers at sub-molar concentrations is agreed on in the
literature,2,3,20,30 however, several details remain under discussion.
Simulations suggest that Ca2+ binds to lipid carbonyl oxygens
with a coordination number of 4.2,13 while interpretation
of NMR and scattering experiments suggest that one
Ca2+ interacts mainly with the choline groups106–108 of two
phospholipid molecules.30 A simulation model correctly
reproducing the order parameter changes would resolve the

discussion by giving atomistic resolution interpretation for
the experiments.

As a function of CaCl2 concentration, all models but one
(CHARMM36 with the recent heptahydrated Ca2+ by Yoo
et al.76) overestimated the order parameter decrease (Fig. 2),
which according to the molecular electrometer indicates too
strong Ca2+ binding. (We note that while this is the most likely
scenario for the models that overestimated changes in both
order parameters, for CaCl2 it is possible also that the head-
group response is oversensitive to bound cations, see ESI.†)
In CHARMM36 with the heptahydrated Ca2+ by Yoo et al.,76

DSbCH was overestimated but DSaCH underestimated (Fig. 2), in
line with the DSbCH/DS

a
CH ratio in CHARMM36 being larger than

in experiments (Fig. 5). As we do not know whether DSbCH or
DSaCH was more realistic, we cannot conclude whether Ca2+

binding was too strong or too weak in CHARMM36. This could
be resolved by comparing against experimental data with a
known amount of bound charge (e.g., amphiphilic cations32,49),
however, such simulation data are not currently available.

The density distributions with CaCl2 showed significant
Ca2+ binding in all models (Fig. 6), however, some differences
occurred in details. The Berger model predicted deeper
penetration (density maximum at B1.8 nm) compared to other
models (B2 nm); the latter value is probably more realistic
as 1H NMR and neutron scattering data indicate that Ca2+

interacts mainly with the choline group.2,106–108 In CHARMM36
(but not in Slipids) practically all Ca2+ ions present in the
simulation bound the bilayer within 2 ms (Fig. 6 and ESI†),
which hints that the Ca2+ binding affinity of CHARMM36 is
among the strongest of these models.

The origin of inaccuracies in lipid–ion interactions and
binding affinities is far from clear. Potential candidates are,
e.g., discrepancies in the ionmodels,109–111 incomplete treatment
of electronic polarizability,112 and inaccuracies in the lipid head-
group description.45

Considering the ion models, Cordomi et al.24 showed the
Na+ binding affinity to decrease when ion radius is increased;
however, in their DPPC bilayer simulations (with the OPLS-AA
force field113) even the largest Na+ radii still resulted in
significant binding. In our results, the Slipids force field gave
essentially similar binding affinity with ion parameters from
ref. 88, 93 and 94 (Fig. 4). Further, compensation of missing
electronic polarizability by scaling the ion charge112,114 reduced
Na+ binding in Berger, Berger-OPLS and Slipids, but not enough
to reach agreement with experiments (ESI†). The charge-scaled
Ca2+ model115 slightly reduced binding in CHARMM36, but did
not have significant influence in Slipids (ESI†). The hepta-
hydrated Ca2+ ions by Yoo et al.76 significantly reduced Ca2+

binding in CHARMM36 (Fig. 6), however, the model must be
further analysed to fully interpret the results.

The lipid models may also have a significant influence on
ion binding behaviour. For example, the same ion model and
non-bonded parameters are used in Orange and Berger-OPLS,60

but while Na+ ion binding affinity appeared realistic in Orange,
it was significantly overestimated in Berger-OPLS (Fig. 4). However,
realistic Na+ binding does not automatically imply realistic

Fig. 5 Relation between DSbCH and DSaCH from experiments20 and different
simulation models. Solid line is DSbCH = 0.43DSaCH determined for DPPC
bilayer from 2H NMR experiment with various CaCl2 concentrations.20
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Ca2+ binding (see Orange, Lipid14, and CHARMM36 in Fig. 2)
or realistic choline order parameter response to bound charge
(see Orange and CHARMM36 in Fig. 5). It should also be noted
that the low binding affinity of Na+ in CHARMM36 is due to the
additional repulsion (NBFIX68) added between the sodium ions
and lipid oxygens (ESI†), and that in the Ca2+ model by Yoo
et al.76 the calcium is forced to be solvated solely by water.
Altogether, our results indicate that probably both, lipid and

ion force field parameters, need improvement to correctly pre-
dict the cation binding affinity, and the associated structural
changes.

3 Conclusions

In accordance with the molecular electrometer,20,29–32 cation
binding to lipid bilayers was accompanied with a decrease in
the C–H order parameters of the PC head group a and b

carbons in all the simulation models tested (Fig. 3) – despite
of the known inaccuracies in the actual atomistic resolution
structures.45 Hence, the molecular electrometer allowed a
direct comparison of Na+ binding affinity between simulations
and noninvasive NMR experiments. The comparison revealed
that most models overestimated Na+ binding; only Orange,
Lipid14, and CHARMM36 predicted realistic binding affinities.
None of the tested models had the accuracy required to inter-
pret the Ca2+:lipid stoichiometry or the induced structural
changes with atomistic resolution.

Taken together, our results corroborate the pre-2000 view
that at sub-molar concentrations, in contrast to Ca2+ and other
multivalent ions,1–4,10,11,19,20,27,30 Na+ and other monovalent
ions (except Li+) do not specifically bind to phospholipid
bilayers. Concerning the interpretation of existing experimental
data, our work supports Cevc’s view2 that the observed small
shift in phase transition temperature is not indicative of Na+

binding. Further, our findings are in line with the noninvasive
NMR spectroscopy work of Filippov et al.11 that proved the
results of ref. 7, 9 and 12 to be explainable by direct interactions
between Na+ ions and fluorescent probes. Finally, as spectro-
scopic methods are in general more sensitive to atomistic
details in fluid-like environment than AFM, our work indirectly
suggests that the ion binding reported from AFM experiments
on fluid-like lipid bilayer systems14–18 might be confounded
with other physical features of the system. Concerning contra-
dictions in MD simulation results, we reinterpret the strong
Na+ binding as an artefact of several simulation models, e.g.,
the Berger model used in ref. 12 and 13.

The artificial specific Na+ binding in MD simulations may lead
to doubtful results, as it effectively results in a positively charged
phosphatidylcholine lipid bilayer even at physiological NaCl con-
centrations. Such a charged bilayer will have distinctly different
interactions with charged objects than what a (more realistic)
model without specific Na+ binding would predict. Furthermore,
the overestimation of binding affinity may extend from ions to
other positively charged objects, say, membrane protein segments.
This would affect lipid–protein interactions and could explain, for
example, certain contradicting results on electrostatic interactions
between charged protein segments and lipid bilayers.116,117 In
conclusion, more careful studies and model development on lipid
bilayer-charged object interactions are urgently called for to make
molecular dynamics simulations directly usable in a physio-
logically relevant electrolytic environment.

This work was done as a fully open collaboration, using
nmrlipids.blogspot.fi as the communication platform. All the

Fig. 6 Ca2+ (solid line) and Cl� (dashed) distributions along the lipid bilayer
normal from MD simulations. For clarity, only one CaCl2 concentration per
MD model is shown; see ESI† for a plot including all the available concen-
trations. The light green vertical lines indicate the locations of the phos-
phorus maxima, used to define bound cations in Fig. 3.
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scientific contributions were communicated publicly through
this blog or the GitHub repository.34 All the related content and
data are available at ref. 34.
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