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ABSTRACT 

MOLECULAR ENGINEERING STRATEGIES FOR THE DESIGN AND SYNTHESIS OF 
NEW ORGANIC PHOTOVOLTAIC MATERIALS 

 
MAY 2014 

 
PAUL J. HOMNICK, B.S., UNIVERSITY OF SCRANTON 

 
M.A., UNIVERSITY OF SCRANTON 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Paul M. Lahti 

 
 
 

Dramatic improvements in organic photovoltaic device efficiency can be obtained by 

optimizing spectral absorbance and frontier molecular orbital (FMO) energies, increasing solid 

state exciton/charge mobility, and utilizing p-/n-type nanoarchitecture. Combining all of these 

properties into a new material presents a considerable synthetic challenge because potential 

commercial applications require materials that are high-performance and inexpensive. Thus, it is 

advantageous to design new materials using a versatile, modular synthetic approach that allows 

each design criterion to be engineered individually, in a synthetically efficient manner. 

Several strategies were successfully pursued using simple interchangeable electron donor 

and acceptor components as functional modules, which provided various donor-acceptor 

chromophores in a synthetically straightforward manner. This approach provided broad 

functional tunability to the range of materials produced and, as a result, various molecular 

engineering requirements were systematically addressed. In some cases, these materials were 

utilized in photovoltaic devices as p-type active layers or redox enhancement additives. In these 

cases, competitive power conversion efficiencies were obtained or test device performance was 

considerably enhanced by comparison to control devices. 
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Fluorenone, fluorenylidene-malononitrile, and squaric acid were utilized as electron 

acceptor modules, and electron donor module strength was varied using a styrene-based and 

several di- and triarylamine-based components. 

 

One strategy, published in Phys. Chem. Chem. Phys., (Chapter 2, DOI-

10.1039/C2CP41813D) is to fix the donor-acceptor lowest unoccupied molecular orbital energy 

using the synthetically versatile fluorenone module. Fluorenone was chosen because of its ready 

availability and synthetic versatility, and its multiple functionalization sites allow for selective 

FMO engineering. Extrapolation of this approach was published in J. Phys. Chem. A. (Chapter 3, 

DOI-10.1021/jp407854r), describing various fluorenylidene-malononitrile derivatives. Chemical 

oxidation of fluorenone-based triarylamines to produce stable radicals was published in 

Tetrahedron Letters (Chapter 4, DOI-10.1016/j.tetlet.2012.10.060).  

Fluorenone derivatives applied as dye sensitized solar cell redox system enhancement 

additives was described in RSC Advances (Chapter 5, DOI-10.1039/C3RA40986D). Development 

of new, functionalized, squaraine-based materials was described in J. Phys. Chem. C. (Chapter 6, 

DOI-10.1021/jp410362d) and was extrapolated for use in single-heterojunction photovoltaic cells 

having 4.8% maximum power conversion efficiency. 

The fundamental insights provided by these findings will be valuable for developing new 

high-performance photovoltaic materials in the future. 

  

http://pubs.rsc.org/en/content/articlelanding/2012/cp/c2cp41813d#!divAbstract
http://pubs.rsc.org/en/content/articlelanding/2012/cp/c2cp41813d#!divAbstract
http://pubs.acs.org/doi/abs/10.1021/jp407854r
http://www.sciencedirect.com/science/article/pii/S0040403912018175
http://pubs.rsc.org/en/content/articlelanding/2013/RA/c3ra40986d#!divAbstract
http://pubs.acs.org/doi/abs/10.1021/jp410362d
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CHAPTER 1 

GENERAL BACKGROUND AND MOLECULAR DESIGN STRATEGIES 

1.1 Introduction 

The amount of solar energy that the sun provides Earth over the course of an hour is the 

same amount of electrical energy that humankind consumes throughout an entire year: over 

130,000 terawatts.1,2 Due to this large availability of solar energy, photovoltaic devices have been 

growing in popularity as a source of CO2-free energy. Since Bell Labs’ first silicon-based solar 

cell in 1954,3 solar cell efficiencies have increased from about 6% up to 24% for typical 

laboratory crystalline silicon-based solar cells.4 Unfortunately, silicon-based solar cells are not 

always economically viable5,6 due to the expensive manufacturing process required to make 

necessarily pure material. In addition to financial drawbacks, silicon-based solar cells are heavy, 

fragile, and bulky, which limits their application to areas where robust structures can support 

them. Manufacturing requirements also limit their size, so many solar cell modules must be 

connected in series for large-area devices. Finally, silicon has a low light absorption coefficient; 

so silicon-based solar cells must be very thick, a major reason that they are so heavy and costly. 

Organic photovoltaic (OPV) devices are emerging as a potential alternatives to inorganic 

solar cells due to prospects that they can be made quickly, cheaply, and under mild manufacturing 

conditions.4,7,8 Because organic materials can have very large molar absorptivities, the active 

layer in an OPV can be as thin as 100 nm, and be placed and on light-weight flexible substrates. 

This wastes less active layer material, and allows the devices to be less fragile and highly 

amenable to thin film roll-to-roll manufacturing techniques such as those already used in the 

photography and inkjet printing industries. Organic molecules are also synthetically tunable, so it 

is possible to engineer the material’s properties using a bottom-up molecular design approach. 

Unfortunately, OPVs have not reached widespread commercial viability due to their so 

far comparably low efficiencies and short device lifetimes. To solve these problems, it is 

important to engineer new organic materials starting on a fundamental physical chemical and 
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molecular/structural level, keeping in mind the structure-property relationships at the heart of the 

molecular design process for light-harvesting photoconverting materials, as well as practical 

requirements for producing efficient devices. 

Specifically, effective photoconverting materials must be photochemically stable, and 

absorb strongly and broadly throughout the visible and near-infrared (NIR) spectrum. Materials 

that absorb light where the solar flux is highest (between 400-900 nm or 3.1-1.4 eV) are 

particularly desirable (Figure 1.1). Because these materials must also be able to transport charges 

and excitons, a π-conjugated molecular architecture is appropriate to allow inter- and 

intramolecular electron mobility. This π-architecture requirement also imparts optoelectronic, 

electrochemical, and bulk electronic tunability into the materials. In particular, the materials 

should form smooth, continuous films in which individual molecules can self-assemble to 

enhance electron mobility through inter- and intra-material interactions (e.g. via π-stacking). 

Finally, these materials should also be solution- or vacuum-processable to allow practical device 

fabrication.  

 

Figure 1.1: Solar flux as a function of wavelength (bottom axis) and energy in electron volts 

(top axis). 

Ideally molecular design strategies for photoconverting compounds should also be 

modular, allowing many structural variations based on common molecular frameworks. Using a 

modular molecular design approach provides a high degree of structural and physical chemical 

tunability, allowing one to assess and integrate a broad array of structure-property choices. 
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Ultimately, this strategy should not only produce a robust library of electronic materials, but also 

provide fundamental insight into the design of whole classes of new organic electronic materials. 

Toward these ends, new molecular frameworks were synthesized and their 

optoelectronic, electrochemical, and in some cases photoconversion properties characterized. 

They were derived from carefully selected examples in a wide range of organic electronics 

literature, to ensure that each of the above fundamental objectives was addressed in each new 

material. 

As general background for this work, some fundamental physical chemical concepts will 

be discussed in relation to bottom-up molecular design. General OPV operating principles will be 

discussed in the context of desired properties, followed by strategies for chromophore design with 

focus on π-conjugation and “push-pull” or “donor-acceptor” (D-A) effects using a theoretical 

molecular orbital mixing or perturbation theory approach. Finally, the molecular design strategies 

used in this work will be introduced briefly, focusing on small molecule development using 

relatively simple yet highly versatile structural components/modules. 

1.2 General OPV Operating Principles and Historical Context 

OPVs all operate by the same general processes (Figure 1.2).4,7,9 First, a photon is 

absorbed by the active layer material (A) promoting an electron from the highest occupied 

molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), and creating an 

excited state or exciton (B). An exciton is a charge-polarized electronic perturbation that can 

travel within the bulk p- or n-type material in which it was formed. In this example, if an exciton 

is formed in the p-type material and migrates to a p/n junction, it can dissociate (C) into (+) and 

(–) free charges that can move separately in the p- and n-type phases (respectively).  This has 

been found to work so long as the LUMO energy of the p-type material is at least 0.3 eV higher 

than the LUMO energy of the n-type material. This energy offset provides the electrochemical 

gradient required to dissociate the coulombically-bound electron and hole components of the 

exciton. Once formed in their respective layers, the free (+) and (–) charges will migrate to anode 
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and cathode (respectively, D) according to the intrinsic potential of the device, thereby producing 

an electric current. 

       

Figure 1.2: Left, generic bilayer p-n heterojunction solar cell diagram showing the main 

photovoltaic processes. A, light absorption to create an exciton. B, exciton migration to the 
p-n junction. C, exciton dissociation at the p/n junction into an hole/electron pair in the p- 

and n-type materials, and charge migration to the anode and cathode, respectively. D, 
charge collection at the electrodes, current generated. Right, the same process depicted 

using an energy level diagram. 

This is, of course, an oversimplified description of real solar cell operation processes.5,9–11 

It depicts a simple, p/n bilayer heterojunction solar cell. Bilayer OPV devices are not as efficient 

for organic semiconductor materials as bulk heterojunction (BHJ) devices, due to the fact that (1) 

they have relatively low p/n interfacial surface area, and (2) most of the excitons formed in each 

organic phase radiatively or vibrationally decay before migrating to a p/n junction or electrode for 

charge transfer. The typical distance an organic material exciton can travel before decaying is 10-

20 nm,11 so it is important for the p- and n-type domains to be no more than 20-40 nm across. 

Because typical organic active layers are often 100-200 nm thick, their component p- and n-type 

materials should form an interspersed p/n nanomorphology that maximizes the p/n junction 

surface area, while providing percolation pathways for the separated charges to reach their 

respective electrodes. With careful material design and device fabrication conditions, it is 

possible to obtain such complex bicontinuous nanomorphology (Figure 1.3). 
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Figure 1.3: Bicontinuous p/n bulk heterojunction with interspersed p- and n-type materials 
and hole/electron percolation pathways. 

Unfortunately, it is difficult to predict and engineer nanoscale assembly based on 

individual molecular design; so it is important to design materials with inherent synthetic 

tunability so that intermolecular interactions can be varied with little synthetic difficulty. For 

example, installation of different types or lengths of alkyl chain is desirable. Even in the few 

situations where morphology can be controlled, it is still important to enhance exciton transport 

distance based on intrinsic molecular properties (versus emergent properties, like unpredictable 

intermolecular interactions). One way to enhance exciton transport distance is to increase exciton 

lifetime. From a molecular design perspective, this can be accomplished, in part, by ensuring that 

a molecule’s excited state is stabilized by either steric (twisting) or electronic effects. This can be 

done by designing compounds that undergo twisted intramolecular charge transfer (TICT)12–16 

upon photoexcitation, or by delocalizing electron density in the excited state by using molecular 

components that withdraw electron density via π-resonance effects.17–24 The latter can be 

accomplished using a push-pull or donor-acceptor (D-A) architecture,20,25–29 which will be 

discussed in more detail later. 

With careful device engineering, organic BHJ devices reached 12% power conversion 

efficiency (PCE, Figure 1.4) in January 2013 at Heliatek, a German company that specializes in 

small molecule organic solar cells.30,31 PCEs for small molecule solar cells were no better than 

0.03%25 in 2005 and stayed consistently low for several years after that.26–28,32 In 2009 and 2011 

Zhang33 et al. and Shang34 et al. described small molecule solar cell efficiencies of 2.36% and 
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4.3%, respectively. Just a short time later in 2012, Chen35 et al. made a small molecule device 

with PCE = 6.6%, followed quickly by Bazan et al., who achieved 6.7%. In 2013, Yang36 and 

coworkers at UCLA obtained 8.02% PCE with a small molecule OPV device. For further 

information, the reader is referred to several good review articles that describe the history and 

molecular design of small molecule OPV materials.11,26–28,32  

Polymer-based solar cells, on the other hand, have historically performed much better 

than small molecules until recently. Although polymer-based OPVs are outside the scope of this 

dissertation, many of the photoconverting polymer design principles apply to small molecule 

development; so their historical and molecular design context is important. Polymer-based solar 

cells initially outperformed small molecules due to their superior film-forming and morphology 

control properties. Now that small molecule design has improved, they will likely continue to 

outperform polymers for a variety of reasons. 

First, small molecule materials have a well-defined molecular weight and structure.  They 

can be made in high purity, with no polydispersity or batch-to-batch variation. They are also 

frequently soluble in a large variety of solvents. These properties provide superior device 

performance reproducibility, since small variations in molecular structure (e.g. polydispersity) 

can have drastic impacts on device active layer fabrication and overall performance. Secondly, 

small molecules can be synthetically optimized in a very controlled manner, and the fundamental 

properties of individual structural components tested. Finally, small molecules are comparatively 

simple to characterize, which makes molecular, bulk material, and device characterization testing 

more straightforward. 

Nonetheless, conjugated polymers research laid much of the fundamental groundwork for 

organic photovoltaic materials design. The first polymer-based OPV consisted of a methoxy-

ethylhexyloxy-poly(phenylenevinylene) (MEH-PPV) p-type material in 1992-1993 with a PCE of 

0.04%.37–39 Subsequently, for many years poly(3-hexylthiophene) (P3HT) based solar cells 

performed the best, with PCEs maximizing at just over 5% in 2006 – but only by using the 



7 
 

 

highest quality material and extensive device engineering.39–41 Since then, the D-A architecture 

became popular for conjugated polymer design, giving rise to many new materials with strong, 

broad spectral coverage and PCEs exceeding 8.6% in 2012.39,42,43 The reader is referred to 

numerous excellent review articles about conjugated polymer design for OPVs and organic 

electronic devices in general.9,10,20,29,39,42,44,45 

 

Figure 1.4: NREL record solar cell efficiency evolution up to 2/25/2014.30 “Emerging PV” 
(red) are mostly organic-based solar cells, most notably including dye-sensitized solar cells 

(DSSCs), perovskite cells, and organic bilayer and bulk heterojunction cells.  At present, 
this chart is periodically updated at www.nrel.gov/ncpv/images/efficiency_chart.jpg 

1.3 Molecular Design Requirements and Donor-Acceptor Architecture 

Organic electronic materials intended for p-type active layer use in photovoltaic devices 

require specific electrochemical and photophysical properties in order to produce photocurrent 

efficiently. First, they must absorb strongly and broadly throughout as much of the visible 

spectrum as possible. This requires a low band gap, or low HOMO/LUMO energy gap (Eg), of 
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≤1.4-1.5 eV (Figure 1.1). Since strong absorption is also important, materials should also have 

high molar absorptivity ≥104 M-1cm-1.  

The second requirement is that a material’s HOMO/LUMO energy levels be favorably 

aligned with those of other electronic device components, in order to maximize power output. 

This is shown in Figure 1.5, where the optimal HOMO/LUMO energies are -5.4 and -3.9 eV, 

respectively, assuming that a typical BHJ device energy level design is used: indium-tin oxide 

anode, p-type active material, n-type C71 fullerene-derivative material, and aluminum cathode (or 

other metal with similar work function). The p-type material’s LUMO energy (ELUMO) is 

particularly important, and typically desired to be ~ 0.3 eV above the n-type material’s LUMO to 

provide a strong enough electrochemical gradient to separate the p-material’s exciton into 

separate electron and hole components, allowing current to flow. This ELUMO requirement 

necessitates that the p-material's HOMO energy (EHOMO) be about -5.4 eV for optimal power 

output. As a result, it is advantageous to design materials whose electrochemical properties can be 

adjusted in a selective and straightforward way. For this purpose, “push-pull” or “donor-acceptor” 

(D-A) molecules consisting of an electron rich “donor” (D) and an electron-poor “acceptor” (A) 

are often used to tune a D-A compound’s properties by the mechanism described below. 

 

Figure 1.5: Energy level alignment requirements for a typical BHJ solar cell using PC71BM 
as the n-type material with an indium tin oxide (ITO) anode and an aluminum cathode. 
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D-A molecules undergo intramolecular charge transfer (ICT) upon photoexcitation, with 

an electron transferred from an electron-rich “donor” component to an electron-poor “acceptor” 

component. From a molecular orbital perspective, the HOMO of a strongly push-pull molecule is 

located primarily on the donor module while the LUMO is located on the acceptor module. So, 

photoexcitation typically reverses the polarity of the molecule, forming a charge-separated 

excited state with a partial positive charge on the donor and a partial negative on the acceptor. 

This process makes push-pull chromophores particularly advantageous for organic solar cell 

applications because the exciton formed upon photoexcitation is charge-separated. Such inherent 

molecular charge separation can therefore potentially lead to better charge transfer between the p- 

and n-type materials. 

D-A molecular design is well-described by MO perturbation theory (Figure 1.6). 

Specifically, using a D-module with a high-lying EHOMO relative to that of the A-module should 

give a D-A molecule whose HOMO character and energy is determined by the D-module. 

Similarly, the A-module’s low-lying ELUMO should dominate the D-A molecule’s LUMO 

character. Using this modular D-A design strategy, a D-A material’s Eg and energy levels can (in 

principle) be engineered in a systematic, synthetically rational way. 

 

Figure 1.6: Perturbation theory model for the modular construction of push-pull system (D-

A) frontier molecular orbitals, using generic acceptor modules A, A1, and A2 with different 
donor modules D, D1, and D2. 

A third p-type material requirement is that it must have a long enough excited state 

lifetime for its excitons to be mobile over a substantial distance (≥ 10 nm). D-A molecules 



10 
 

 

typically have a charge-separated excited state that lengthens exciton lifetime. The materials 

described in this dissertation were designed with this in mind, specifically using primarily di- and 

triarylamine donor modules to form the D-A molecules, since triarylamines are well known to be 

good hole-transporting materials.46 

1.4 π-Conjugation 

Conjugated molecules have an uninterrupted, coplanar network of p-orbitals through 

which electrons can be delocalized. π-Conjugated materials are critical targets for OPVs and other 

organic electronic devices because their π-conjugation allows for electronic interactions within 

molecules, and assists interactions between the molecules in a bulk material. Extended π-

conjugation also decreases absorption band gaps and increases absorption cross sections, which 

can allow a material to absorb very strongly well into the visible and NIR spectral region. As a 

result, π-conjugated polymers and π-extended small molecules and oligomers are popular target 

materials for OPVs. 

The basic mechanism by which conjugation extension decreases the band gap can be 

considered in multiple ways, including the “particle in a one-dimensional box” model,47 Bloch 

functions and band structure,48 and Hückel molecular orbital (HMO) theory.47 The former two 

models follow a physics-based perspective, while HMO theory is the most visually intuitive 

model from an organic chemist’s design perspective.  

Using HMO theory as a model, linearly extending a π-conjugated network results in the 

convergence of HOMO and LUMO energies, by HOMO destabilization with simultaneous 

LUMO stabilization. Using oligoacetylene as a model system, this occurs by splitting of energy 

levels with each successive ethylene extension such that EHOMO and ELUMO approach each other 

(Figure 1.7). But, with each extension the energy difference between the newly-split energy levels 

decreases. As a result, EHOMO and ELUMO eventually reach a specific, nonzero difference (in most 

cases), loosely called the bandgap in borrowing from solid state terminology. 
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Figure 1.7: Energy level splitting with increasing π-conjugation length, starting at n π-

bonds. ΔE decreases with concomitant absorption red-shift, but ΔE = 0 is never reached. 

The bandgap limit is a result of Peierls distortion which, from a molecular orbital theory 

perspective, is due to the mixing of bonding and antibonding interactions between component 

orbitals within the occupied and unoccupied bands. More simply, in most cases electron-electron 

repulsion and electron spin-pairing assure a tendency to bond alternation in conjugated systems, 

which overmatches any tendency for full electron delocalization and degenerate HOMO/LUMO 

energies. But, even decreasing the band gap by conjugation extension in small organic molecules, 

oligomers, and polymers is effective for designing materials that absorb strongly throughout a 

readily attainable range of 3.1-1.4 eV. 

π-Extended compounds are also able to interact electronically in the solid state, to enable 

exciton and charge transport over distances much larger than the size of an individual molecule. 

Intermolecular interactions, such as π-stacking, are crucial to allow organic materials to perform 

an electronic function in devices such as solar cells, light emitting diodes, electrochromic devices, 

transistors, etc. This feature is presently the hardest to control in designing solid state materials. 

So, one molecular design strategy is to extend conjugation linearly by vinylic or aryl 

extension. For example, oxidatively-doped polyacetylene is an excellent organic semiconductor, 

having almost metallic-like conductivity.21,49 Unfortunately polyacetylene is not thermally or 

photochemically stable enough to incorporate into a practical organic electronic device. Also, 

long-chain polyacetylene can adopt numerous distinct conformations giving rise to variable 
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optoelectronic properties and non-ideal intermolecular interactions. Finally, polyacetylene is 

poorly soluble, which makes device fabrication impractical outside of a purely academic 

environment. 

One solution to these problems is to extend conjugation through cyclic π-systems, 

aromatics being the most robust. Unfortunately, these can also pose problems. Polyphenylene, for 

example, is not planar due to ortho-ortho dihedral strain and thus does not provide true 

conjugation throughout the polymer. Also, phenylene units do not easily break aromaticity, which 

creates a large energetic barrier to electronic and geometric changes required in photoexcitation 

and effective charge conduction.50 With polyphenylene-based materials, there is a competition 

between π-electron confinement within the aromatic π-system and electron delocalization along 

the conjugated chain (Figure 1.8). 

 

Figure 1.8:21,49,50 (1) Potential energy wells depicting the aromatic stabilization energy of the 

phenyl system versus the quinonal system shown in (2). (3) Polythiophene versus 

polyacetylene, the latter shown in a topologically-locked conformation for comparison. 

Fortunately, a practical compromise can be achieved by using heteroaromatics such as 

thiophenes, pyrroles, and furans. These systems act to some extent like topologically-locked 

conjugated dienes which can be polymerized or oligomerized to various extents (Figure 1.83).21 

Their π-electron confinement is drastically lower than that of phenyl systems, making them good 

π-extension components despite their pseudoaromaticity. They are also more stable than their 

polyene counterparts while still possessing similar semiconducting properties. Thus one can 

engineer a new material’s optoelectronic properties by tuning heteroaromatic π-system length. 
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Despite these possibilities, there are fundamental limits to how extended a system’s 

conjugation can be. Extended aromatic chains eventually start to kink, or deviate from planarity, 

with growing chain length. Their “effective conjugation length” is the maximum length of 

oligomer or polymer which does not give further bandgap decreases with additional lengthening. 

This limit is due in part to electronic reasons such as Peierls distortion, and geometric reasons 

such as twisting.51,52 Two ways to limit this issue are to (1) design fused, planarized conjugated 

systems such as fluorenones, fluorenylidene-malononitriles, and triangulenes (Figure 1.9), and (2) 

implement a “push-pull” or “donor-acceptor” molecular architecture for more direct (and thus 

more selective and predictable) frontier molecular orbital (FMO) and band gap control, as 

described above.  

 

Figure 1.9: Some fused/linked conjugated systems. 

1.5 Molecular Design Strategy 

To utilize the D-A molecular architecture strategy in designing new low band gap p-type 

organic electronic materials, fluorenone (FO), fluorenylidene malononitrile (FM), and squaric 

acid (SQ) were utilized as electron acceptor modules in D-A molecules. Using one of these 

modules as a molecular core, electron donor module strength was varied using a styrene-based 

and several di- and triarylamine-based electron-rich donor components.  

 

The background described above is applied in various parts of the following chapters, 

which describe the actual work done to pursue the main goal of designing, synthesizing, and 

characterizing conjugated organic molecules for potential use in OPV devices.  Some of the 
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synthesized compounds have been tested in OPVs, with results that are described in each 

appropriate section. 
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CHAPTER 2 

DIARYLAMINOFLUORENONE PUSH-PULL MOLECULES  

Adapted from Homnick, P. J.; Lahti, P. M. Modular Electron Donor Group Tuning of Frontier 
Energy Levels in Diarylaminofluorenone Push-Pull Molecules. Phys. Chem. Chem. Phys. 2012, 

11961–11968.1 Reproduced by permission of the PCCP Owner Societies 
http://pubs.rsc.org/en/content/articlelanding/2012/cp/c2cp41813d#!divAbstract 

[Some changes were made for adapted use in this dissertation.] 
 

2.1 Introduction 

There has recently been a surge in the use of push-pull donor-acceptor (D-A) small 

molecules and polymers for organic electronic applications. The D-A architecture has been 

exploited due to the large amount of synthetic control over HOMO/LUMO energy levels when 

using a modular synthetic approach.1-8 Since energy level and band gap engineering are critical 

components of organic electronic molecular design, especially for photovoltaic applications, 

further developing this modular D-A design strategy is crucial to designing new high 

performance materials. 

I developed a set of fluorenone-based materials using this modular approach, for the 

purpose of selectively tuning the HOMO/LUMO energy levels. Fluorenone (acceptor module) 

and the four arylamine donor modules chosen are relatively simple synthons, and the final D-A 

molecules are synthetically straightforward to access. Using these D and A modules, I 

synthesized six D-A materials with a wide range of visible spectrum absorption coverage and 

highly tuned HOMO/LUMO energies that correlate well with their component D and A modules. 

Push-pull molecules with both electron donor and electron acceptor groups (D and A, 

respectively) have long drawn interest for their second harmonic generation nonlinear optical 

behavior.9-14 More recently, there has been much interest targeted at making molecules with 

decreased band gaps and tunable highest occupied and lowest unoccupied molecular orbital 

(HOMO, LUMO) energy levels, for potential use as electronic and light-harvesting materials, 

http://pubs.rsc.org/en/content/articlelanding/2012/cp/c2cp41813d#!divAbstract
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especially in solar cells.4,6,15-17 This is an important and increasingly used strategy in designing 

new materials for organic electronic applications. 

Fluorenone (9H-fluorenone) has not drawn major attention in synthesis of push-pull 

systems, even though it provides a planarized biphenyl chromophore for conjugation and a 

cyclopentadienone central ring for electron acceptor capability.18-20 Its derivatives frequently 

show excimer photophysics,21-24 and as an impurity it has been implicated in undesirable green 

emission from fluorene based organic blue light emitting diodes (OLEDs).25-28 But, fluorenone 

should be a good electron acceptor module for assembly of push-pull molecules due to its low 

cost and high amenability to synthetic functionalization. As such, more extensive testing of 

electronic materials based on fluorenone-containing molecules is desirable. 

 

Scheme 2.1: General molecular design strategy for the fluorenone-based materials 
described in this chapter. HOMO and LUMO energies (EHOMO and ELUMO) tuned by 

arylamine modules and fluorenone, respectively. 

Thus, highly synthetically-tunable systems are important target materials. For this 

purpose a group of six fluorenone-derived D-A small molecules were designed, synthesized, and 

characterized. These materials were specifically designed using relatively inexpensive starting 

materials which are highly amenable to synthetic functionalization. This chapter describes the 

synthetic strategy, physical chemical analysis, and rationale regarding energy level engineering 

principles using these fluorenone-based materials. The general molecular design strategy is 

summarized in Scheme 2.1. 

In this chapter, the electronic spectroscopy and electrochemistry are compared for a set of 

through-conjugated, push-pull molecules having fluorenone as the common electron acceptor (A) 



21 
 

 

module and diarylamines as electron donor (D) modules. The primary goal of this study was to 

demonstrate systematic band gap and frontier molecular orbital (FMO) energy tuning, as well as 

to promote intramolecular charge transfer (ICT) character in the photoexcited state. Because a 

charge separated excited state in ICT systems tends to be longer lived, the D-A architecture were 

hoped to provide longer-lived excitons for farther exciton transport in a device in addition to 

systematic FMO energy and band gap control. 

As will be shown below, direct C-N attachment of diarylamine onto fluorenone promotes 

strong ICT character in the resulting molecules by comparison to structures where conjugated 

hydrocarbon units intervene. In addition, the electronic behaviors of these materials are well 

described by a modular deconstruction analysis of HOMO and LUMO energy level tuning by 

comparison to the individual donor (D) and acceptor (A) structural units. Finally, some 

preliminary fluorescence lifetime results will be discussed briefly, in the optimistic context of 

potentially increased device exciton lifetime. 

2.2 Experimental Methods 

The basic design strategy for this study was to attach diarylamine units to the 2- or 2,7-

positions of fluorenone. This connectivity permits conjugation of the amine lone pairs through 

both benzene rings. Both simpler D-A push-pull systems and D-A-D systems with a centrally 

placed acceptor fluorenone were tested. 

Figure 2.1 shows the syntheses of D-A type systems FOCz, FODPA, and FODAA, and of 

D-A-D systems FODAAS, FOBDAA, and FOBTMPMPA. The D-A systems test the behaviors 

of directly coupling carbazole (Cz), diphenylamine (DPA), and dianisylamine (DAA) to the 

fluorenone 2-position. As described later, dianisylamine showed the strongest donor effect, due to 

the alkoxy donor substituents on its aryl ring para-positions. Using this evaluation, additional 

donor groups were attached at the 7-position: a trimethoxystyrene unit in FODAAS, an additional 

dianisylamine in FOBDAA, and a diarylamine with extra electron donating alkoxy groups on two 

of the aminophenyl rings in FOBTMPMPA. Intermediates 2-bromofluorenone, 2,7-
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dibromofluorenone, and 2-bromo-7-iodofluorenone were made by oxidizing corresponding 

fluorenes;28-30 dianisylamine was made by a literature31 procedure. Intermediate 7-BrFOS was 

made via Heck coupling with one equivalent of 3,4,5-trimethoxystyrene28 and 2-bromo-7-

iodofluorenone at the iodine-functionalized site (confirmed by 1H-NMR and mass spectrometry). 

The last step in each synthesis was a Pd-catalyzed Buchwald-Hartwig32-34 type amination. Details 

of synthetic procedures and characterization are given in the experimental procedures chapter. 

New compounds were characterized and identified using 1H-NMR, high resolution mass 

spectrometry, FT-IR spectroscopy, and electronic absorption and emission spectroscopy; their 

purities were established by HPLC. 

 

Figure 2.1: Syntheses of FOCz, FODPA, and FODAA: (a) (p-MeOPh)2NH, 0.02 eq Pd2dba3, P(t-
Bu)3, t-BuONa, Δ 2 days for FODAA (70%); (b) Ph2NH, 0.02 eq Pd2dba3, P(t-Bu)3, t-

BuONa, Δ 1 h for FODPA (66%); (c) carbazole, 0.02 eq Pd2dba3, P(t-Bu)3, t-BuONa, Δ 1 h 
for FOCz (51%); (d) I2/KIO3/H2SO4/HOAc, 90 °C, 2 h for 2-bromo-7-iodofluorene (68%); (e) 2.5 
eq CrO3, Ac2O, 16 h for 2-bromo-7-iodofluorenone (97%); (f) 3,4,5-tri-MeOPh-CH=CH2, 0.07 eq 

Pd(OAc)2, 0.2 eq P(o-tolyl)3, DMF, Δ 3 days for 7-BrFOS (44%); (g) (p-MeOPh)2NH, 0.02 eq 
Pd2dba3, P(t-Bu)3, t-BuONa, Δ 5 h for FODAAS (33%); (h) (p-MeOPh)2NH, 0.02 eq Pd2dba3, 

P(t-Bu)3, NaO-t-Bu, Δ for FOBDAA (50%); (i) N-(3,4,5-trimethoxy-Ph)-N-(p-MeOPh)NH, 0.02 
eq Pd2dba3, P(t-Bu)3, t-BuONa, Δ 17 h for FOBTMPMPA (21%). (j) 3,4,5-tri-MeOPh-CH=CH2, 

0.92 eq p-bromobenzaldehyde, 0.07 eq Pd(OAc)2, 0.2 eq P(o-tolyl)3, DMF, Δ 3 days for 
SPhCHO (61%); (k) SPhCHO, 1.3 eq PPh3CH3Br, 1.5 eq n-BuLi, THF, 0-26 °C, overnight for 

SPV (66%). (l) SPV, 0.07 eq Pd(OAc)2, 0.2 eq P(o-tolyl)3, DMF, Δ 3 days for FODPVS (24%). 
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2.3 Results and Discussion 

2.3.1 Solution Electronic Spectroscopy for D-A Systems 

The solution absorption spectroscopy of the push-pull molecules provides insight about 

their excited state behavior, especially intramolecular charge transfer (ICT) character and its 

variation as a function of the donor strengths of the different diarylamine modules while the 

acceptor fluorenone module is held constant. The absorption spectra for asymmetric D-A 

systems FODAA, FODPA, and FOCz in hexane and acetonitrile are compared in Figure 2.2. 

 

 

Figure 2.2: Absorption spectra of FODAA (black),  FODPA (red),  FOCz (blue) in hexane 

(left charts) and in acetonitrile (right charts). 

Fluorenone itself has solvent-dependent absorption bands associated with excited states 

whose π → π* or n → π* character is solvent dependent.35-38 By comparison, dianisylamine 

substituted system FODAA has its lowest energy absorption at λmax = 518 nm, 790 meV red 

shifted versus fluorenone. The analogous band for diphenylamine substituted FODPA is at λmax = 

494 nm, a 116 meV blue shift versus FODAA due to lesser electron donation from the donor 

module. Carbazole substituted FOCz is quite blue shifted by 500 meV versus FODAA with λmax = 

430 nm. Systems FODAA and FODPA show 10-15 nm (75-80 meV) solvatochromic red shifts of 

their long wavelength absorption peaks in polar acetonitrile versus nonpolar hexane, consistent 

http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig2
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig2
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with ICT nature for these transitions. The high energy, lower molar absorptivity, and minimal 

solvatochromism (2 nm) of the longest wavelength band in FOCz presumably occur because its 

carbazole donor unit loses central ring pseudo-aromaticity if it donates its nitrogen lone pair; so 

its electron donating strength is less than those of dianisylamine or diphenylamine. As the 

electron donating strength decreases in FODAA, FODPA, and FOCz the blue shift in the long 

wavelength absorption is even evident by inspection, since acetonitrile solutions of these are 

purple, red, and yellowish-orange, respectively. No qualitative changes in absorption spectra 

occur at higher concentrations to indicate aggregation in hexane, dichloromethane, or 

acetonitrile. Table 2.1 summarizes the absorption spectral results with comparisons to results 

from other measurements described below. 

http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#tab1
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#tab1


25 
 

 

Table 2.1: Optical and oxidation properties of fluorenone-diarylamine D-A molecules. 

Compound 

Absorption 
λmax/nm 

(ε = L [mol 
cm]−1) 
Hexane 

Absorption 
λmax/nm 

(ε = L [mol 
cm]−1) 

Acetonitrile 

Absorption 
λmax/nm 

(onset/nm) 
Neat Film 

Emission 
λmax/nm 
Hexane 

Emission 
λmax/nm 

Acetonitrile 

Oxidation 
Onset/mV

* 

Reduction 
Onset/mV

* 

FODAA 

249  
(33 700) 

250  
(29 400) 

531 (650) 585 Negligible 232, 816 −1980 
295  

(28 400) 
294  

(30 000) 

357  
(16 200) 

350  
(14 300) 

502(1650) 518 (1280) 

FODPA 

247  
(34 400) 

248  
(32 900) 

512 (600) 552 
670  

(weak) 
320, 824 −1370 

295  
(29 400) 

296  
(31 400) 

354  
(18 200) 

350  
(15 700) 

479 (1550) 494 (1190) 

FOCz 

255  
(22 200) 

253  
(51 600) 

445 (540) 521 
600  

(weak) 
715 −1490 290  

(22 000) 
290  

(20 200) 

430 (740) 432 (540) 

FOBDAAS 

298  
(35 700) 

306  
(41 700) 

592 (710) 608 Negligible 
178, 667, 

1040 
−1590 

386  
(40 000) 

384  
(44 000) 

524  
(3310) 543 (2700) 

FOBDAA 

298  
(36 800) 

298  
(53 000) 

600 (700) 
650  

(very  weak) 
Negligible 

155, 355, 
949 

−1410 382  
(29 000) 

376  
(38 200) 

554 (1780) 586 (1740) 

FOBTMPMPA 

298  
(43 000) 

298  
(46 600) 

588 (698) 640 Negligible 
200, 414, 

734 
−1640 382  

(33 900) 
376  

(33 600) 

554 (2080) 585 (1530) 

* Onset potentials in millivolts in acetonitrile versus ferrocene/ferrocenium oxidation. 
 

FODAA, FODPA, and FOCz all show luminescence emission in hexane (Figure 2.3), 

with peak maxima at progressively longer wavelengths following the trend of increasingly 
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electronic π-donor ability: DAA > DPA > Cz. In more polar acetonitrile, FODPA and FOCz show 

greatly weakened, strongly red shifted emission, while DAA substituted FODPA shows virtually 

no emission. The strong emission solvatochromism and polar solvent quenching supports ICT 

type charge separation in the excited state, with the strongest electron donating substituent DAA 

giving the strongest ICT effects. The stronger solvatochromism in emission versus absorption is 

reasonable, since there is time for solvent molecules to adjust position around the molecule 

during the lifetime of an excited state with significant charge separation.39 These data are 

summarized in Table 2.2. 

Table 2.2: Absorption solvatochromism from hexanes to acetonitrile, emission Stokes shifts 
and solvatochromism from hexanes to acetonitrile, in meV. 

Compound 
Absorption 

Solvatochromism from 
Hex to MeCN (meV) 

Stokes Shift Emission 
Solvatochromism from 
Hex to MeCN (meV) Hex (meV) MeCN (meV) 

FODAA 76 350 N/A Quenched 

FODPA 79 342 649 396 

FOCz 20 504 797 313 

FODAAS 83 327 N/A Quenched 

FOBDAA 122 331 N/A Quenched 

FOBTMPMPA 119 301 N/A Quenched 
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Figure 2.3: Normalized emission spectra of FODAA (black line, excited at 355 nm), 

FODPA (red line, excited at 475 nm), and FOCz (blue line, excited at 289 nm) in hexane; 
and FODPA (red dots, excited at 500 nm) and FOCz (blue dots, excited at 289 nm) in 

acetonitrile. FODAA does not emit detectably in acetonitrile. 

2.3.2 Solution Electronic Spectroscopy for D-A-D Systems 

The results for the D-A systems showed that the dianisylamine donor gives the strongest 

ICT type behavior. The D-A-D systems having variable strength donors attached to a 2-

dianisylamofluorenone system were therefore tested: FODAAS with a moderately electron 

donating trimethoxystyrene module added, FOBDAA with two dianisylamine donors, 

and FOBTMPMPA with diarylamine substituents bearing extra electron donating alkoxy 

substituents. 

The D-A-D′ system FODAAS has competition between trimethoxystyrene and 

dianisylamine donors connected in direct resonance through the 2,7-fluorenone module. FODS, a 

fluorenone bearing two trimethoxystyrene units in analogous positions to the compounds of this 

study, is a convenient comparison system to FODAAS and shows excimer formation23,28 at higher 

concentrations, like fluorenone21-24 itself. The intent was to see whether FODAAS would give 

spectral behavior more like FODS, or more like the D-A system FODAA. 

 
 

The absorption spectrum of FODAAS shows two major π → π* transitions in the 280-400 

nm region, significantly red shifted by extended conjugation from the 

trimethoxystyrene versus the analogous bands in FODAA (Figure 2.4). The lower energy, strong 
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π → π* transition is slightly red shifted in acetonitrile versus hexane, similar in behavior 

to FOCz, FODAAS, and FOBDAA. The broad, featureless, ICT transition at 524 nm in hexane 

red shifts to 543 nm in acetonitrile, a solvatochromic shift of 85 meV. FODAAS has a 608 nm 

emission peak in hexane (Figure 2.5) that is completely quenched in acetonitrile, again supporting 

the excited state ICT character. The hexane emission peak does not change shape with 

concentration in the 10-100 micromolar range and shows no indication of excimer band 

formation analogous to the behavior of FODS. Thus, the strong dianisylamine π-donation to the 

fluorenone acceptor changes the fluorenone behavior by comparison to a trimethoxystyrene 

substituent. But, use of a trimethoxystyrene unit conjugated through fluorenone to a 

dianisylamine gives stronger ICT character in FODAAS than occurs in the D-A system FODAA, 

judging by the lower ICT band energy in FODAAS, a 22-25 nm red shift (about 100 meV) 

relative to FODAA. Absorption and emission solvatochromism and Stokes shift data are 

summarized in Table 2.2 above. 



29 
 

 

 

 

Figure 2.4: Absorption spectra of FODAAS (black), FOBDAA (red), and FOBTMPMPA 

(blue) in hexanes (upper chart) and acetonitrile (lower chart). 

 

Figure 2.5: Normalized emission spectra of FODAAS (excited at 545 

nm), FOBDAA (excited at 590 nm), and FOBTMPMPA (excited at 550) in hexane. 

The two bis(diarylamine) D-A-D systems FOBDAA and FOBTMPMPA show the 

strongest solvatochromic absorption spectral characteristics in this study. The relatively intense π 

→ π* absorptions are at similar positions to those in FODAAS (Figure 2.4) and at longer 

wavelengths than in the D-A systems FODAA, FODPA, and FOCz. Connecting the two 

diarylamine groups in FOBDAA and FOBTMPMPA in direct resonance through the 2,7-

positions thus gives an effective conjugation extension effect on the π → π* transitions by 

comparison to FODAA. 

The ICT bands in FOBDAA and FOBTMPMPA appear at 554 nm, which is at lower 

energy by 128 meV versus FODAAS. They strongly red-shift in acetonitrile to 585-586 nm with 
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tailing absorption to ~700 nm. This is a ~140 meV change relative to hexane, a significantly 

larger solvatochromic shift than in the D-A systems or in the D-A-D′ system FODAAS with only 

one dianisylamine module. Figure 2.5 compares the emission spectra of FODAAS, FOBDAA, 

and FOBTMPMPA in hexane. The emission for FOBDAA in hexane is barely detectable at 

roughly 650 nm, and (as with FODAAS) is nil in acetonitrile. FOBTMPMPA shows modest 

emission at 636 nm in hexane, with very weak, broad emission at about 650 nm in acetonitrile. 

The behaviors for all of FODAAS, FOBDAA, and FOBTMPMPA are consistent with ICT type 

fluorescence quenching that is enabled by the strongly electron donating nature of their 

diarylamine substituents. It was somewhat surprising that FOBTMPMPA with extra alkoxy 

groups on its diarylamine modules showed stronger emission than FOBDAA, indicating less 

effective ICT in FOBTMPMPA. Perhaps the extra alkoxy groups in proximity to one another 

cause twisting of the groups out of the phenyl ring plane, limiting resonance delocalization of the 

oxygen lone pairs; but this is speculative. 

Extending the conjugation length of the FODS compound by an extra phenylene-vinylene 

unit on each donor module was also tested, to give FODPVS. It was expected that extending the 

donor group conjugation length would increase the HOMO energy (and decrease the band gap) 

and increase the molar absorptivity. Surprisingly, the band gap did not change, but the ICT band 

molar absorptivity nearly doubled for FODPVS versus FODS (Figure 2.6). However, the π-π* 

band around 375 nm for FODS red-shifted to about 400 nm for FODPVS, and the absorption 

onsets red-shifted from ~400 to ~450 nm, respectively. So, while the band gap for FODPVS did 

not decrease using this strategy, its molar absorptivity and visible spectral coverage increased 

considerably. 

http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig5
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig5
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Figure 2.6: FODS and FODPVS absorption spectra in acetonitrile and dichloromethane. 

Left, 275-600 nm absorption window. Right, focus on ICT band region. 

2.3.3 Comparative Amino Substituent Effects on Fluorenone Acceptors 

In work that has bearing on the present study, Inoue and coworkers29 carried out an 

extensive study of absorption and emission spectral behavior in multiple solvents for twelve D-A 

fluorenone systems functionalized with NH2, NH(CH3), and N(CH3)2 at each of the 1- through 4-

positions shown generically below as structure FO. They found absorption solvatochromic red-

shifts of 130-175 meV in cyclohexane versus acetonitrile, and strong luminescence 

solvatochromic red shifts with quenching in polar media. Increasing amino group methylation 

gave larger ICT absorption band red shifts, due to increased amine electron donor strength. 

Comparatively, the results for FODAA, FODPA, and FOCz show that substituent electronic 

effects that are transmitted indirectly to an amino group through the π-electrons of a para-linked 

benzene ring are also strong enough to be readily observed. 

 

Figure 2.7: Literature examples of fluorenone systems for comparison. 

From the same work,29 2-((N,N)-dimethylamino)fluorenone (2DMAF, FO with -NMe2 in 

the 2-position) exhibits ICT absorption maxima at 484 nm in cyclohexane and 510 nm in 

acetonitrile. It has emission maxima at 600 nm in cyclohexane, 644 nm in benzene, and full 

quenching in acetonitrile. Dianisylamino substituted FODAA in the present study – with the 

strongest donor substitution – has a lower energy ICT band maximum in hexane, but a higher 
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energy emission band maximum. The larger Stokes shift in 2DMAF versus FODAA indicates a 

greater geometric difference between ground and excited ICT states in 2DMAF. Inoue 

considered29 twisted ICT (TICT) state formation in their systems from effects of increasing 

methyl substitution on the amino group, but concluded that only the sterically hindered 1-

aminofluorenones had the possibility of TICT. Qualitative structural considerations and 

computational modeling indicate that all of the diarylamino substituted fluorenones 

except FOCz  (with a planar carbazole) have a propeller shape about the amine nitrogen. The 

smaller Stokes shift for FODAA versus 2DMAF is consistent with a lesser geometric change 

from ground to ICT excited state, since FODAA is already nonplanar in the ground state. 

The electronic spectral results for FODAA, FODPA, FOCz, FODAAS, FOBDAA, and 

FOBTMPMPA can be compared to results from systems where an amino lone pair is not directly 

attached to fluorenone, but is resonance connected through conjugated hydrocarbon units. 

Konishi and coworkers30 reported that FOBDEAP has two π → π* absorption bands analogous to 

those in FODAAS, FOBDAA, and FOBTMPMPA and an ICT band exhibiting a solvatochromic 

shift from 496 nm in hexane to 529 nm in acetonitrile (155 meV); the analogous solvatochromism 

for FOBDAA and FOBTMPMPA in hexane versus acetonitrile is 122 meV. However, the 

luminescence behavior of FOBDEAP is much more complex than that in FODAA, FODPA, 

FOCz, FODAAS, FOBDAA, and FOBTMPMPA, with localized emission at 409-417 nm, ICT 

emission at 436-450 nm, and excimer bands that shift from 619 nm in toluene to 644 nm in 

tetrahydrofuran. The competing behaviors in FOBDEAP are likely due to attenuation of the 

diethylamine electron donation by the intervening phenylene units and the torsional flexibility 

caused thereby, allowing other fluorescent processes to occur that would be quenched in systems 

with strong ICT from stronger, more direct electron donation. 

Neckers and coworkers31 studied D-A-D system CPAFO27 (Figure 2.7) with carbazole 

donor modules linked through intervening but still resonance conjugating phenylethynyl units in a 

2,7-fluorenone connectivity. System CPAFO27 has a π → π* band at 350 mm, which is 
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significantly higher in energy (by ~300 meV) than the corresponding bands in FOBDAA, and 

FOBTMPMPA. The ICT band of CPAFO27 at 440 nm in tetrahydrofuran is 580 meV to higher 

energy by comparison to the 554 nm bands for FOBDAA, and FOBTMPMPA in hexane. The 

difference is attributable both to the attenuating effect of the phenylethynylene units intervening 

between fluorenone and the amino donor lone pair, and a lesser electron donor strength of 

carbazole. But, although FODAAS, FOBDAA, and FOBTMPMPA – like 2DMAF and its 

analogues with less methyl substitution – shows lower energy ICT absorption bands 

than CPAFO27, the ICT band molar absorptivity for CPAFO27 is 5- to 6-fold stronger. Neckers 

described how a non-through-conjugated 3,6-isomer of CPAFO27 gives more intense ICT bands 

due to excited state dipole alignment of donor-acceptor interactions with the C=O group dipole in 

that connectivity. That design model offers increased ICT absorption intensity in push-pull 

substituted fluorenones, albeit at a cost of decreased through-bond resonance donor-acceptor 

interaction that can result in higher energy ICT absorption bands. Analogous 3,6-isomers were 

synthesized as a continuation of the studies described in this chapter, and will be discussed in 

Chapter 3. 

2.3.4 Solid State Absorption Spectroscopy 

The absorption spectral band maxima and onsets for drop-cast solid films of FODAA, 

FODPA, FOCz, FODAAS, FOBDAA, and FOBTMPMPA are given in Table 2.1 and their 

changes compared in Table 2.3; normalized comparisons of the spectra are shown in Figure 2.8. 

FOCz shows the highest energy onset at 530 nm (2.34 eV), while FODAAS, FOBDAA, and 

FOBTMPMPA absorb strongly through much of the visible spectrum with band onsets at 600-

630 nm (2.08-1.97 eV). The samples appear magenta to aquamarine as thin films and dark 

magenta to black as crystals or as thicker films. None of the films exhibits fluorescence emission 

at room temperature. Interestingly, D-A-D′ system FODAAS with only one dianisylamine unit 

exhibits a broadly absorbing film UV-vis spectrum at just slightly lower onset energy 

than FOBDAA, and FOBTMPMPA. FODAAS also shows a large absorption maximum red-shift 

http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#tab1
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#tab1
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig6
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig6
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from acetonitrile to neat film (190 meV), while FODPA, FODAA, and FOBTMPMPA show the 

smallest shift. 

 

Figure 2.8: Normalized solid film absorption spectra for D-A compounds FOCz, FODPA, 
and FODAA (left chart), and D-A-D compounds FODAAS, FOBDAA, and FOBTMPMPA 

(right chart). 

Table 2.3: Solution and neat film band gap onset comparisons. 

Compound 
Solution Band Gap Onset Solid Band Gap Onset Solution-Solid Band Gap Shift 
Wavelength 

(nm) 
Energy 

(eV) 
Wavelength 

(nm) 
Energy 

(eV) 
Wavelength 

(nm) 
Energy 

(eV) 
FODAA 616 2.01 629 1.97 13 0.04 

FODPA 587 2.11 596 2.08 9 0.03 

FOCz 503 2.46 530 2.34 27 0.12 

FODAAS 644 1.93 695 1.78 51 0.15 

FOBDAA 710 1.74 702 1.77 -8 -0.03 

FOBTMPMPA 683 1.82 698 1.78 15 0.04 

 
The large shift in FODAAS – and smaller but still readily observable red shifts 

in FODAA, FODPA, FOCz, and FOBDAA – may be due to generalized dipole effects, although 

it is unlikely that the dielectric field of these materials is stronger than that of acetonitrile with a 

dielectric constant of 37.5 and a molecular dipole of 3.92 D. They may also be due to aggregation 

in the solid state, but there are no shoulders or other features in any of the film spectra that differ 

from the solution spectra to suggest appreciably well-organized aggregate π-stack formation. The 

small shift in FOBTMPMPA for solid versus solution absorption may occur because its 

asymmetric diarylamine substitution inhibits π-stacking in the films. By comparison, the 

relatively large shift in “hybrid” D-A-D′ compound FODAAS may be due to a slightly greater 

amount of π-stacking of its trimethoxyfluorene units in the solid state. However, this hypothesis 
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is speculative at present, and a search of the Cambridge Structure Database showed no 

diarylaminofluorenones or 2-stryrylfluorenones for solid state packing comparisons. 

Since π-stacking is an important feature in organic electronic devices, the permissive 

evidence that these materials may undergo some organization in the solid state suggests that they 

may be promising candidates for solid state organic electronic devices. Indeed, preliminary 

charge carrier mobility measurements conducted in a PMMA matrix using the time of flight 

(TOF) methodology (performed by Dr. Akshay Kokil at UMass Lowell) indicate that FODAA 

and FODAAS each transport holes on the order of 210-5 cm2/Vs, a modest mobility for organic 

electronic materials. 

2.3.5 Electrochemistry 

Cyclic voltammetry of the push-pull compounds in this study was evaluated in solution 

against the ferrocene/ferrocenium redox couple in acetonitrile (Figure 2.9). Table 2.1 gives redox 

onset voltages for all compounds, and half-wave potentials E1/2 where observed. Not all of the 

compounds exhibit sufficiently reversible redox behavior for E1/2 determination, as shown by the 

cyclic voltammograms below. Therefore, redox onsets were used for energy level determinations 

described below, following practices reported44-47 by other workers. 
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Figure 2.9: Cyclic voltammograms for all D-A compounds and their constituent D and A 
modules, obtained in acetonitrile using the ferrocene/ferrocenium redox couple as an 

external standard. 
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All of FODAA, FODPA, FOCz, FODAAS, FOBDAA, and FOBTMPMPA show a 

reduction feature in the -1.4 to -1.7 V range that is attributable to the fluorenone module, although 

in some cases the feature is weak and clearly irreversible. These are all lower potentials than the 

quasireversible -1.9 V half-wave reduction potential observed for fluorenone itself, due to 

variations in LUMO energy from the attached functional groups, as is described later. The 

reduction potentials are similar to Neckers' electrochemical findings31 for CPAFO27 (Figure 2.7) 

and the related system without carbazole groups. The D-A systems FODAA, FODPA, and FOCz 

show increasing voltage oxidation features in order appropriate for their electron donor strengths; 

the +715 mV irreversible oxidation feature for FOCz is again consistent with Neckers' 

electrochemical findings31 for the carbazole group in CPAFO27, and is close to the +809 mV 

irreversible oxidation onset for carbazole itself. FODAA shows reversible onset oxidation at +232 

mV, while FODPA – like FOCz – shows an irreversible oxidation feature, but at +320 mV. The 

poor definition of the amine oxidation features for FODPA and FOCz may be due to a lack of 

protecting or π-stabilizing substituents on their diarylamino groups, making oxidation less 

reversible. In addition to the lack of protecting groups in FOCz, loss of pseudoaromaticity upon 

oxidation also presents a strong driving force against easy oxidation and likely contributes to its 

oxidative irreversibility. 

D-A-D′ system FODAAS shows a reversible oxidation onset at +178 mV that 

presumably arises from its dianisylamine module, with decreased oxidation potential due to 

conjugation to the conjugating trimethoxystyrene unit; a barely resolved oxidation feature at 

about +670 mV may be associated with the trimethoxystyrene-fluorenone unit. By comparison, 

both FOBDAA, and FOBTMPMPA show two reversible, overlapping oxidation peaks from 

monocation and dication products from their two diarylamine modules, at +155/+355 mV and 

+200/+414 mV, respectively. The higher oxidation potentials and second oxidation 

quasireversibility for FOBTMPMPA are in qualitative accord with the spectral evidence that the 
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N(PhOMe)(Ph[OMe]3) groups in FOBTMPMPA are poorer electron donors than the simpler 

dianisylamine groups in FOBDAA.  

The electrochemistry of FODAA, FODPA, FOCz, FODAAS, FOBDAA, and 

FOBTMPMPA provides useful electronic information, especially when combined and compared 

with the spectral data. These are used in the next section to analyze how donor group variation 

modulates the electronic energy levels (FMO energies) of the systems examined. 

2.3.6 Modular Analysis of Donor Group Tuning of Push-Pull Molecule FMO Energies 

Evaluation of organic molecules for potential use as electronic materials typically 

involves estimating the energies of their highest occupied and lowest unoccupied molecular 

orbitals (EHOMO/ELUMO) and their band gaps (Eg). It has been pointed out elsewhere35 that various 

models have been used to estimate EHOMO and ELUMO from solution phase cyclic voltammetry plus 

absorption spectroscopy. This can give uncertainties in comparing nominally analogous 

properties evaluated in different studies. But, this type of evaluation allows reasonable 

comparison of varying electronic effects in structurally related molecules. 

Stearman and coworkers recently reported36 a detailed study of electrochemistry and 

optical spectroscopy to determine frontier orbital energetic and excited state natures for several 

fluorenones having simple electron donor or electron acceptor groups in 2- or 2,7-positions, 

including -NH2. They correlated their molecular electronic findings with Hammett 

substituent σpara constants to gauge the effect of relative electron donating and withdrawing 

effects. Further, they interpreted the HOMO and LUMO energy tuning in these systems in terms 

of substituent effects on band gap excitation of an n → π* transition involving the carbonyl lone 

pair electrons; this was partly based on variation of vibrational carbonyl stretching mode energies. 

Bérces and coworkers similarly concluded37 that singlet excited states in 2-substituted 

fluorenones were much influenced by changes in electron density at the carbonyl oxygen. 

Neckers’ work that included31 studies of CPAFO27, on the other hand, interpreted the band gap 

transitions of that donor-substituted fluorenone as being more ICT than n → π* in character. Of 
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course, structural differences in the molecules evaluated between the two studies allow for 

different mechanisms of behavior. In the discussion below, Neckers’ interpretation was used to 

consider how changes to the diarylamine substituents modulate the electronic properties of the 

materials. An ICT interpretation of the band gap transitions in these systems seems most 

consistent with their DFT-computed HOMO and LUMO natures, and with the strong 

solvatochromic effects seen in the fluorescence spectroscopy. Spectral solvation effects in my and 

Neckers’ systems seemed likely to be similar to one another – since all incorporate diarylamine 

substituents – than they would be to the simpler -NH2 substituted systems in Stearman’s and 

Bérces’ studies. 

In the following discussion, equation (1) was used35 to convert the first oxidation onset 

voltages from Table 2.1 to HOMO energies in Figure 2.10, including values for the individual 

donor modules as determined from the synthetic building blocks DAA, DPA, Cz, S, and FO. 

Spectral band gaps Eg in eV from the low energy absorption peak onsets of the longest 

wavelength spectral peaks in acetonitrile were used to estimate ELUMO using equation (2). this was 

done for consistency among all the systems having amine units, since some of these did not show 

voltammetric reduction features. Under the conditions used in these studies, fluorenone does not 

show a readily interpreted voltammetric oxidation feature, but does give a clear, reversible 

reduction wave yielding a LUMO energy of -2.98 eV directly from equation (1), in reasonable 

agreement with its reported38 electron affinity of -3.1 eV. 

EHOMO/LUMO = – (Eox/red + 4.8) eV           1)    

ELUMO = EHOMO + Eg                                                2) 

Figure 2.10 compares the experimentally determined FMO energies for FODAA, 

FODPA, FOCz, FODAAS, FOBDAA, and FOBTMPMPA and for the modular components used 

to construct them. The FMO energies can be understood using a modular, component analysis 

model. Figure 2.11 shows in a simplified manner how the component MOs can be considered to 

determine the MO energies for a general donor-acceptor π-system. In particular, using a typical 

http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#eqn1
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig7
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig7
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#eqn2
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#eqn1
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig7
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig7
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig8
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig8
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perturbation interaction approach, the low-lying LUMO of the acceptor and the HOMO of the 

donor(s) will dominate the donor-acceptor system's electronic behavior. 

 

Figure 2.10: HOMO and LUMO energy levels derived from equations (1)-(2) for 2-7 and 

modular building blocks. DAA = dianisylamine, DPA = diphenylamine, Cz = carbazole, FO 

= fluorenone. See above for details of energy level determinations. 

   

Figure 2.11: Modular deconstruction of push-pull system (D-A) frontier molecular orbitals 

derivable from interaction of generic acceptor module A with different donor modules 
D1 and D2, where D2 is the stronger donor. 

The nearly constant experimental LUMO energies for FODAA, FODPA, and FOCz 

in Figure 2.10 reflect the dominance of the common fluorenone acceptor component used in all of 

the D-A system LUMOs. Both B3LYP/6-31G(d)51-53 and M06-2X/6-311G(d,p)42,43 hybrid density 

functional computations* further support this, showing the LUMO density to reside almost totally 

on fluorenone (Figure 2.12). Changing the donor HOMO levels alters the D-A system HOMO 

energies, because the D-A HOMO has a large contribution from the donor unit. Neckers' 

                                                      
* Computational modeling was carried out using Spartan 2010 for Linux from Wavefunction Inc., 
Irvine, CA, USA, Gaussian 09,45 and the Gaussian NBO population routines.48 

http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#eqn1
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig7
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig7
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analysis31 of the photophysical behavior of CPAFO27 as an ICT system (which he noted was 

applicable to other donor-substituted fluorenones) outlined a similar reasoning that donor 

substituents on a fluorenone aryl unit will push up the π-orbital energies selectively. Similar 

arguments have been used10,44 with other push-pull systems. 

 

Figure 2.12: HOMO (left) and LUMO (right) plots for FODAA, computed using the 
B3LYP/6-31G* level of theory and basis set in Gaussian09.45 

Table 2.4: Computed ground state dipole moments. 

Compound 
Dipole Moment 

(B3LYP/6-31G*)a 
Dipole Moment 

(M06-2X/6-311G[d,p])b 
Experimental 
EHOMO (eV) 

Computed 
EHOMO (eV) 

FODAA 3.27 D 3.08 D -5.03 -4.74 

FODPA 3.13 D 3.12 D -5.12 -5.05 

FOCz 3.76 D 3.69 D -5.51 -5.41 

FODAAS 5.27 D 5.70 D -4.98 -4.66 

FOBDAA 3.04 Dc 2.01 Dc -4.95 -4.44 

FOBTMPMPA ---d ---d -5.00 -4.51 

Ground state dipole moments (in vacuum) were computed using geometries optimized at the 
same level of theory. aB3LYP/6-31G* dipole moments computed using Spartan 2012 for Linux 
(Wavefunction Inc., Irvine CA, USA). bM06-2X/6-311G(d,p) dipole moments computed using 
NBO routine in Gaussian 0945 for molecules optimized at the same level of theory. cThe two 

computed conformers were different, partly due to symmetry constraints placed on the M06-2X 
computation; this contributes to the difference between dipole moments at the two levels of 

theory. dNot listed due to multiple different conformations. 
 

In the present study, the experimental HOMO energies for the donor modules track the 

donor strengths: dianisylamine > diphenylamine > carbazole. The dianisylamine HOMO 

interaction with fluorenone – generically shown in Figure 2.11 – pushes the HOMO 

of FODAA to higher energy than the diphenylamine HOMO does for the HOMO of FODPA. 

Conversely, the lower energy HOMO of carbazole interacts less with fluorenone, so the HOMO 

http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig8
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig8
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of FOCz is lower than the HOMO for either FODAA or FODPA. Thus, the experimental HOMO 

energies of dianisylamine, diphenylamine, and carbazole largely determine EHOMO for the push-

pull systems FODAA, FODPA, and FOCz, consistent with the Figure 2.11 model. The stable 

LUMO energies from the common fluorenone acceptor module in FODAA, FODPA, and FOCz, 

combined with the variation of HOMO energies by varying their donor modules, provide an 

effective “molecular engineering” strategy for systematically tuning frontier energy levels and 

band gaps in this set of push-pull chromophores. This trend is also supported by computational 

methodology, which further reinforces the predictive engineering nature of this synthetic design 

strategy (computed and experimental HOMO energies shown in Table 2.4). 

The behaviors of the D-A-D systems FODAAS, FOBDAA, and FOBTMPMPA are 

complicated by their having two donor modules per fluorenone (two different donors in the case 

of FODAAS). But, again, their fluorenone acceptor modules essentially determine the energy and 

nature of their LUMOs. System FODAAS with only one dianisylamine group has the same 

LUMO energy as seen in FODAA, FODPA, and FOCz, so adding the conjugating, electron 

donating trimethoxystyrene group in FODAAS does not much alter its frontier orbital energies 

relative to FODAA. The electronic similarity of the donor units for FOBDAA and 

FOBTMPMPA results in these having similar HOMO energies. The LUMO energies 

in FOBDAA and FOBTMPMPA are somewhat decreased relative to the LUMOs of FODAA, 

FODPA, and FOCz, because of the added interaction of a second donor LUMO with the acceptor 

LUMO (Figure 2.11). The change is not large, since the fluorenone acceptor nature still 

dominates the LUMO – as shown in the computed orbital pictures – but the decrease is consistent 

with the donor-acceptor modular interaction model. 

2.3.7 Time Resolved Photoluminescence Spectroscopy for Selected Push-Pull Systems 

Time resolved photoluminescence spectroscopy (TRPL) was done by Boqian Yang from 

Professor Michael Barnes’ group. Fluorescence lifetimes ranged from 1.1 – 4.3 ns, which is 

within the typical 1 – 20 ns lifetime range of solution phase poly(3-hexylthiophene) (P3HT),46,47 a 

http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig8
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig8
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig8
http://pubs.rsc.org/en/content/articlehtml/2012/cp/c2cp41813d#fig8
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commonly used p-type OPV material. These results are given in Figure 2.13 and Table 2.5. 

Although excited state lifetimes in neat films were not determined, it would be desirable if they 

are long enough to allow for moderately long-lived excitons. Because many solid state properties 

are difficult to predict from solution-phase behavior, it is not useful to conjecture about the 

possible exciton lifetime or maximum exciton diffusion length for thin films of these compounds.  

 

Figure 2.13: Fluorescent lifetime studies of FOBDAA (BDAAFO), FODAA (DAAFO), and 

FODAAS (DAAFOPV) in hexanes and FODS (OFOPV) in chloroform. 

Table 2.5: Fluorescence lifetimes of BDAAFO, DAAFO, and DAAFOV in hexanes, and 

OFOPV and NB in chloroform. 

Compound Fluorescence Lifetime (ns) 
FOBDAA 1.10 
FODAA 4.28 

FODAAS 2.62 
FODS 0.640 

 

2.4 Conclusions 

Fluorenone is a simple, readily available electron-accepting module for push-pull 

conjugated systems. Spectral and electrochemical properties were assessed for a set of 2-

diarylaminofluorenone push-pull systems designed using a modular, electronic building block 

approach. Varying the diarylamino donor group strength gave tunable energy levels and band 
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gaps, with strongly quenched emission attributable to intramolecular charge transfer effects. A 

modular analysis of interactions between donor and acceptor modules by a combination of optical 

spectroscopy and electrochemistry works well to interpret and fine-tune molecule orbital energy 

levels for a set of structurally related, push-pull systems. This approach to tuning HOMO and 

LUMO levels and band gaps should be highly effective to optimize properties of such systems for 

electronic materials uses. For example, use of diarylamine donor groups will allow further 

synthetic elaboration at the donor aryl units, including potential incorporation into polymeric 

structures. An extension of this work using a fluorenylidene malononitrile acceptor core, and 3,6- 

versus 2,7-connectivity is discussed further in Chapter 3.  
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CHAPTER 3 

ENGINEERING FRONTIER ENERGY LEVELS IN DONOR-ACCEPTOR FLUOREN-9-

YLIDENE MALONONITRILES VERSUS FLUORENONES 

Adapted with permission from Homnick, P. J.; Tinkham, J. S.; Devaughn, R.; Lahti, P. M. 
Engineering Frontier Energy Levels in Donor-Acceptor Fluoren-9-Ylidene Malononitriles versus 

Fluorenones. J. Phys. Chem. A 2014, 118, 475–486.1 Copyright 2014 American Chemical 
Society. 

http://pubs.acs.org/doi/abs/10.1021/jp407854r 
[Some changes were made for adapted use in this dissertation.] 

 

3.1 Introduction 

Push-pull donor-acceptor (D-A) small molecules and polymers have recently received 

considerable attention for use in organic electronic applications. The D-A architecture is of 

interest due to the large amount of synthetic control over HOMO/LUMO energy levels when 

using a modular synthetic approach.1-8 Since energy level and band gap engineering are critical 

components of organic electronic molecular design, especially for photovoltaic applications, 

further developing this modular D-A design strategy is crucial to designing new high 

performance materials. 

This chapter describes my expansion of the Chapter 2 set of fluorenone materials to 

include some extra donor-fluorenone combinations. This full set of molecules was then converted 

to the corresponding fluoren-9-ylidene malononitrile analogues for the purpose of selectively 

tuning both the HOMO/LUMO energy levels (Scheme 3.1) in the series. Fluorenone (acceptor 

module) and the five donor modules chosen are relatively simple synthons, and the final D-A 

molecules are synthetically straightforward to make. Most importantly, condensation at the C-9 

position to obtain fluorenylidene malononitrile derivatives is a straightforward, moderate yield 

reaction with relatively simple purification. Frontier molecular orbital (FMO) energies are well-

correlated to their structural components, suggesting this modular approach using fluorenone as a 

promising molecular design strategy. 

http://pubs.acs.org/doi/abs/10.1021/jp407854r
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Scheme 3.1: General synthetic plan and FMO energy tuning strategy based on 

donor/acceptor strengths. 

Dipolar molecules incorporating fluoren-9-ylidene malononitrile acceptor units 

conjugated to trimethoxystyrene and/or diarylamine donor units were synthesized, and their 

electronic spectral properties and electrochemical behaviors evaluated by comparison to those of 

the analogous fluorenones. Frontier energy level and band gap trends are explained based on a 

quantitative, modular donor-acceptor interaction model. A connectivity effect on absorption 

transition moment strength is also described, comparing 2,7- versus 3,6-conjugated bis-

dianisylamino-substituted fluorenone and fluorenylidene malononitrile systems. 

3.2 Background 

Dipolar molecules incorporating electron donor and acceptor (D and A, respectively) 

substitution – also called donor-acceptor or "push-pull" systems – have drawn much attention for 

potential use as electronic materials for nonlinear optical, energy harvesting and charge transport 

testing.10–12 Much work and molecular design strategy has aimed for specific band gaps as well as 

specific highest occupied and lowest unoccupied molecular orbital (HOMO, LUMO) energy 

levels in dipolar materials, because of their potential utility in electronic applications. Many 

donor and acceptor units have been tested, each with their own advantages and disadvantages. 

Because of the high promise of molecular electronic devices, considerable effort continues to 
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design new, synthetically simple dipolar and related conjugated organic species, and to improve 

means to predict their spectral and electronic behaviors. 

The synthetically simple and readily functionalized fluorenone has been heavily studied 

for its electronic spectral behavior13–17, and for its role in green emission bands18–20 from fluorene-

based organic LEDs. There have also been a number of studies of substitution effects on 

fluorenone spectroscopy21–28. The previous chapter described29 how synthetically simple 2-

fluorenonyl and 2,7-fluorenonediyl acceptor units can be linked in a modular fashion to 

diarylamine donor groups to give consistent LUMO levels from the fluorenone unit, and tunable 

HOMO levels from the donors. In the work described in this chapter, the initial design is 

extended to additional fluorenone systems and especially to the stronger electron acceptor 

fluoren-9-ylidene malononitrile (FM). FM-based systems have lower LUMO levels relative to 

their FO-based analogues, decreasing all band gaps because the donor-controlled HOMO levels 

remain the same, to a first approximation. The results described below show that the FM-based 

D-A and D-A-D dipolar compounds fit a modular "building block" strategy that is well suited to 

engineering molecular electronic properties that are critical for developing new organic electronic 

materials. This strategy is summarized schematically in Figure 3.1. 

 

  

Figure 3.1: Fluorenone-based molecular design strategy and FMO energy tuning rationale. 
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3.3 Experimental Methods 

Fluorenone (FO) derivatives used in this study were synthesized by variations of 

literature routes,20,29 then converted to fluoren-9-ylidene malononitriles (FMs) by Knoevenagel 

condensation. Full experimental details are given in Chapter 9. 

For the molecules in this study, first oxidation onset voltages were used to estimate30–33 

HOMO energy levels (EHOMO) using equation (1). The spectral band gaps (Eg) in eV from the 

lowest energy absorption peak onsets in acetonitrile were then used to estimate ELUMO using 

equation (2). For electron acceptor units FO and FM both EHOMO and ELUMO were obtained from 

voltammetric oxidation/reduction onsets with equation (1).  

EMO = -(Eredox + 4.8) eV   (1) 
 

ELUMO = EHOMO + Eg   (2) 
 

All computations were carried out using Gaussian 0934 Revision B.01 on a Linux 

computer running openSuSE. Molecular geometries were optimized at a B3LYP35–37/6-31G(d,p) 

level, and these geometries fixed to compute molecular properties at a B3LYP/6-31+G(d,p) level. 

Molecular orbital diagrams were generated from the final checkpoint files using GaussView34 

version 5.0.9 with default parameter settings unless otherwise stated.  

3.4 Results and Discussion 

Subsequent discussions use the abbreviations shown in Scheme 3.2 for the structural 

modules used to make the dipolar molecules of Scheme 3.3. As mentioned earlier, for analogous 

structures having the same donor units, the LUMO level of an FO-based molecule will be lower 

in the analogous FM-based system. The results described below confirm that this approach works 

well to give a range of absorption profiles and electronic HOMO/LUMO levels. 
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Scheme 3.2: General structural design units used in donor-acceptor fluoren-9-ylidne 

malononitrile (FM) and precursor fluorenone (FO) systems in this study. 

3.4.1 Energy levels of electronic donor and acceptor structural modules. 

The spectroscopic behaviors of all of the dipolar systems in this study are interpreted 

below in terms of interactions between the donor (D) and acceptor (A) modules that comprise the 

overall D-A and D-A-D molecules. These interpretations are, in turn, related to HOMO and 

LUMO levels estimated from equations (1)-(2) from the experimental methods section. 

Therefore, each of the building block modules from Scheme 3.1 was electrochemically evaluated. 

The individual donor modules trimethoxystyrene (S), carbazole (Cz), diphenylamine (DPA), and 

anisylamine (AA) each show one irreversible oxidation feature (Table 3.1, Figure 3.2). 

Dianisylamine (DAA) shows well-differentiated oxidation onsets at 140, 783, and 1620 mV: the 

lowest potential oxidation is highly reversible and attributable to formation of the aminium 

radical cation, while the quasi-reversible second oxidation is attributable to diarylaminium 

oxidation. Neither of the acceptor modules FO or FM shows oxidation onset below 1500 mV, so 

oxidation features in the dipolar molecules at lower potentials can confidently be attributed to 

donor module electrochemistry. FO shows a quasi-reversible reduction onset at –1820 mV, and 

FM shows reversible first and second reduction onsets at –1010 mV and–1710 mV, respectively; 

the features in the stronger acceptor-substituent FM are well defined and reversible. Table 3.1 

lists these "building block" electrochemical potentials for use in subsequent discussions, and the 

individual cyclic voltammograms are given in Figure 3.1. 
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Scheme 3.3: Donor-Acceptor systems compared in this study. 
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Table 3.1: Redox potentials and HOMO/LUMO energies of donor-acceptor molecules. 

Compound 
Oxidation onset(s) 

(mV) a 
Reduction onset(s) 

(mV) a 
HOMO Energy (eV) 
Expt. b [Computed c] 

LUMO Energy (eV) 
Expt. b [Computed c] 

FOS 594 Not Observed –5.39 [–5.61] –2.98 [–2.59] 

FMS 591 –817, –1612 –5.39 [–5.72] –3.49 [–3.46] 

FODS 556 –1430 –5.36 [–5.40] –3.12 [–2.61] 

FMDS 642 –1090, –1720 –5.44 [–5.50] –3.71 [–3.44] 

FOCz 715 –1490 –5.51 [–5.73] –3.05 [–2.80] 

FMCz 484, 859 –1140 –5.28 [–5.83] –3.35 [–3.66] 

FODPA 320, 824 –1370 –5.12 [–5.37] –3.01 [–2.54] 

FMDPA 517, 1280 –966, –1700 –5.32 [–5.51] –3.73 [–3.42] 

FOAA 350, 838 –1660 –5.15 [–5.32] –3.07 [–2.44] 

FMAA 438, 984 –970, –1650 –5.24 [–5.53] –3.72 [–3.38] 

FODAA 232, 816 –1980 –5.03 [–5.05] –3.02 [–2.41] 

FMDAA 220, 835 –1290, –1490, –1820 –5.02 [–5.19] –3.55 [–3.30] 

FODAAS 178, 667, 893 –1590 –4.98 [–4.97] –3.05 [–2.40] 

FMDAAS 229, 688, 962 –959, –1670    –5.03 [–5.31 e]    –3.63 [–3.51 e] 

FOBDAA 155, 355, 949 –1410 –4.95 [–4.72] –3.21 [–2.28] 

FMBDAA 176, 401, 943 –1170, –1760 –4.98 [–4.83] -3.77 [–3.14] 

FOBAA 157, 412 –1660 –4.96 [–4.91] –3.13 [–2.33] 

FMBAA 243, 543, 1160 –952, –1610 –5.04 [–5.06] -3.78 [–3.24] 

FOBDAA36 290 (424, 533)  –959, (–1127) d –5.09 [–4.99] –2.86 [–2.01] 

FMBDAA36 279 (437, 572)  
–1060, –1730 

(–1230, –1850) d 
–5.08 [–5.24] –3.32 [–2.79] 

S 637 Not Observed –5.44 [–5.87] –1.51 [–1.11] 

Cz 810 Not Observed –5.61 [–5.78] –2.00 [–1.09] 

DPA 440 Not Observed –5.25 [–5.42] –1.34 [–0.63] 

AA 190 Not Observed –4.99 [–5.31] –1.29 [–0.34] 

DAA 140, 793, 1620 Not Observed –4.94 [–4.92] –1.38 [–0.48] 

FO 1550 –1820 –6.35 [–6.56] –2.98 [–2.63] 

FM 1500 –1010, –1710 –6.36 [–6.87] –3.79 [–3.55] 
a Onset potentials in millivolts. All results obtained in acetonitrile and referenced against 

ferrocene/ferrocenium external standard in acetonitrile. b Calculated using equations 1-2. c 
Computed at the P3LYP/6-31+G(d,p)//B3LYP/6-31G(d,p) level of theory unless otherwise 

stated. d Potential of peak maximum in millivolts. e Computed at the B3LYP/6-
31G(d,p)//B3LYP/6-31G(d) level. 
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Figure 3.2: Cyclic voltammograms for donor-acceptor molecules, obtained in acetonitrile as 

described in Chapter 9. 
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Table 3.2: Absorption spectra maxima of donor-acceptor molecules in low versus high 
polarity solvents. 

Compound Absorption max/nm a ( = log{M-1cm-1}) 
Low Polarity b 

Absorption max/nm a ( = log{M-1cm-1}) 
High Polarity c 

FOS 302(4.45), 348(4.45) 433(3.27) 307(4.49), 347(4.49), 441(3.26) 

FMS 331(4.64) 547 (2.93) d 330(4.77), 539(2.84) 

FODS 306(4.50), 360(4.55), 454(3.63) 312(4.60), 370(4.75), 474(3.65) 

FMDS 345(4.86), 373(4.77), 608(3.24) d 340(4.86), 366(4.81), 589(3.21) 

FOCz 255(4.35), 290 (4.34) 430(2.87) 253(4.71), 290(4.31), 432(2.73) 

FMCz 317(4.33), 340(4.28), 537(2.61) e 310(4.52), 338(4.44), 520(2.62) 

FODPA 295(4.47), 354(4.26), 479(3.19) 296(4.50), 350(4.20), 496(3.08) 

FMDPA 289(4.02), 325(4.20), 627(2.63) 324(4.35), 635(2.76) 

FOAA 288(4.51), 344(4.20), 498(3.05) e 289(4.48), 344(4.13), 505(2.96) 

FMAA (insoluble in multiple solvents) 314(4.61), 342(4.35,sh), 649(2.73) 

FODAA 295(4.45), 357(4.21), 502(3.22) 294(4.48), 350(4.16), 518(3.11) 

FMDAA 212(4.72), 323(4.44), 677(2.96) 323(4.37), 672(2.90) 

FODAAS 298 (4.55) 386 (4.50) 524 (3.52) 306(4.62), 384(4.64), 543(3.43) 

FMDAAS 342(4.58), 397(4.39), 730(2.94) d 370(4.50), 389(4.51), 710(2.98) 

FOBDAA 298(4.57), 382(4.46), 554(3.25) 298(4.72), 376(4.58), 586(3.24) 

FMBDAA 388(4.36), 522(2.05), 788(2.74) e 373(4.33), 531(2.46), 785(2.73) 

FOBAA 295(4.64), 360(4.52), 559(3.11) 296(4.68), 359(4.53), 571(3.07) 

FMBAA (insoluble in multiple solvents) 354(4.38,sh), 450(2.41,sh), 762(2.68) 

FOBDAA36 334(4.28), 388(4.17), 463(4.07) e 327(4.28), 380(4.15), 474(4.02) 

FMBDAA36 359(3.84), 488(4.03), 585(3.70) e 347(3.80), 483(3.97), 597(3.64) 
a Up to three lowest energy maxima above 250 nm. b Hexane solvent used unless otherwise 

stated. c Acetonitrile used unless otherwise stated. d Spectrum obtained in dichloromethane due to 
hexane insolubility. e Spectrum obtained in diethyl ether due to hexane insolubility. 
 

3.4.2 Monosubstituted D-A type dipolar systems 

Figure 3.3 summarizes major solution UV-vis-NIR spectral features for the 

monosubstituted, donor-acceptor (D-A) dipolar FOs and FMs whose structures are given in 

Scheme 3.3. As shown in Table 3.2 and in Figure 3.3, all of the FO-based compounds have 

multiple strong transitions between 250-380 nm with molar absorptivities ranging from about 

9,000-60,000 M-1 cm-1, but mostly about 30,000 M-1 cm-1. The FM-based systems exhibit 

overlapping bands at 300-380 nm with more variable molar absorptivities of about 18,000-60,000 

M-1 cm-1. With minor variations in position, and somewhat greater variations in intensity, these 
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stronger bands are seen in the absorption spectra of all of the Scheme 3.2 compounds, except for 

the FM systems with 3,6-connectivity. This will be subsequently discussed below. 

 

 

Figure 3.3: Absorption spectra of FOs (left) and FMs (right) with one donor substituent, in 

acetonitrile. Full spectra top, ICT bands bottom. 

Figure 3.3 shows the lowest energy absorption band regions of the monosubstituted 

systems. The FO-based systems show absorption onset at 500-650 nm, with molar absorptivities 

of about 500-1800 M-1 cm-1. The FM-based systems are red-shifted by comparison to their FO-

based structural analogues, with absorption onset at about 650-900 nm, and molar absorptivities 

of about 400-800 M-1 cm-1. Despite their modest molar absorptivities by comparison to the main 

transitions below 400 nm, these long wavelength bands impart strong colors to the neat solids and 

in sufficiently concentrated solutions, ranging from red to blue-black.  

The FO- and FM-based systems functionalized with trimethoxystyrene – FOS and FMS – 

exhibit the highest energy absorption onsets, along with the N-carbazolyl (Cz) functionalized 

systems. The longer π-system conjugation in FOS and FMS gives larger molar absorptivities 

compared to the systems monosubstituted by amines, but the relatively high-energy absorption 



59 
 
 

onsets show the styrene unit to be less effective as an electron donor than the non-carbazolyl 

amines tested in this study.  

 

Figure 3.4: B3LYP/6-31+G(d,p) level frontier molecular orbital plots for FMDAA HOMO 

(a) and LUMO (b), and FMBDAA HOMO (c) and LUMO (d).  

The FOS long wavelength absorption band red shifts in polar solvents, a trend typically 

attributed to π→π* transitions. Interestingly, the FMS long wavelength band exhibits a blue shift 

in acetonitrile versus less polar solvents, as do most of the Scheme 3.3 FM-based derivatives 

described subsequently. Such behavior is often attributed to n→π* transitions, but this 

generalization has not proven straightforward to apply to fluorenones, since the lowest energy 

transition nature can be solvent dependent13–17. Computational modeling indicates that the long 

wavelength transitions in both FO- and FM-based systems here are π→π* type, from a π-HOMO 

that is delocalized throughout the full π-system to a LUMO that is largely localized on the FO or 

FM unit. The computed MO plots show the frontier and subjacent orbitals of the Scheme 3.3 

compounds to be π-orbitals, without interspersed n-type orbitals. Examples are given in Figure 

3.4 for both D-A and D-A-D dipolar systems; all of the frontier MOs can be found in the 

supporting information of the published paper arising from work described in this chapter.1 

Conformational differences in the AA donor-substituted systems show only small differences in 
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computed MO energy levels (≤0.1 eV). Therefore, the low energy bands for FOS and FMS, as in 

the amine-substituted systems described subsequently, appear to be π→π* transitions with 

significant intramolecular charge transfer (ICT) character.  

To evaluate ICT character in FOS and FMS, the electrochemistry of these and the related 

amine-substituted D-A compounds needs to be considered. Cyclic voltammetry shows a much 

higher oxidation potential for trimethoxystyrene than for any of the amines except Cz, showing 

trimethoxystyrene to be a reluctant electron donor, despite extending conjugation at the 2-position 

of FO or FM. FOS and FMS show only poorly resolved oxidation features with onsets similar to 

but somewhat lower in voltage from trimethoxystyrene, probably due to conjugation into the 

biphenyl-type π-system of FO and FM. FOS also shows no clear reduction feature, but the more 

strongly electron acceptor substituted FMS shows quasi-reversible reduction features similar to 

(though weaker than) those for the FM group. Converting the FO to the FM group is so electron 

withdrawing that oxidation of the trimethoxystyrene unit becomes ineffective.  

For the D-A systems bearing only one arylamine substituent, voltammetric features can 

be readily identified from reduction of the FO and FM units in each series of molecules (Figure 

3.2). FODAA shows reversible first oxidation and second oxidation features (232 and 816 mV) 

that can be associated with the electron rich DAA group; FOAA also shows reversible first and 

second oxidation features (350 and 838 mV) that can be attributed to the electron rich AA group, 

indicating that even one anisyl group is sufficient to stabilize oxidation to the FOAA aminium 

species. Similarly FODPA and FOCz show quasi-reversible oxidation features that are analogous 

to features in DPA and Cz. Strong electron withdrawing substitution on the FM-based systems 

stabilizes the reduction electrochemistry by comparison, giving clear and reversible FM-

associated reduction features in FMCz, FMDPA, and FMAA, and somewhat less so but still 

readily identified reduction in FMDAA. But, no FMCz, FMDPA, or FMDAA oxidation features 

are strong or clearly reversible (FMAA oxidation is quasi-reversible); the poor reversibility is 

consistent with destabilization of oxidation by the strongly electron-withdrawing FM module.  
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Experimentally, the FO systems all show solvatochromic red shifts of the lowest energy 

transition in more polar solvents, consistent with π→π* and ICT character for these transitions.38–

43 The solvatochromic trends for the FM systems favor small blue shifts in more polar solvents, as 

with the FMS versus FOS. Figure 3.5 shows the long wavelength regions of the spectra for 

FODAA and FMDAA in diethyl ether and acetonitrile. Tabular results for all solvatochromic 

experiments are given in Table 3.3. As mentioned above, the blue shifts in some of the FM 

systems are attributable44 to specific solvent-solute interactions in acetonitrile. 

 

Figure 3.5: Comparison of lowest-energy absorption spectral regions for FODAA and 

FMDAA in diethyl ether (Et2O) and acetonitrile (MeCN). 
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Table 3.3: Solvatochromism data for donor-acceptor molecules, taken in hexane, diethyl 
ether, and acetonitrile. Solvatochromic shifts reported in meV. 

Compound 

Absorption Onset (nm) Absorption Onset (eV) Solvatochromic 
Shift from Hex 

to MeCN 
(meV) 

Solvatochromic 
Shift from Et2O 

to MeCN 
(meV) 

Hexanes Et2O MeCN Hexanes Et2O MeCN 

FOS 433 439 441 2.86 2.82 2.81 52 13 

FODS 454 468 474 2.73 2.65 2.62 115 34 

FOCz 430 428 432 2.88 2.90 2.87 13 27 

FODPA 479 485 496 2.59 2.56 2.50 89 57 

FOAA N/A 489 505 N/A 2.54 2.46 N/A 80 

FODAA 502 510 518 2.47 2.43 2.39 76 38 

FODAAS 524 534 543 2.37 2.32 2.28 83 38 

FOBAA N/A 559 568 N/A 2.22 2.18 N/A 35 

FOBDAA 554 564 586 2.24 2.20 2.12 122 83 

FMS N/A 544 539 N/A 2.28 2.30 N/A -21 

FMDS N/A 586 589 N/A 2.12 2.11 N/A 11 

FMCz N/A 537 520 N/A 2.31 2.38 N/A -75 

FMDPA 627 634 635 1.98 1.96 1.95 25 3 

FMAA N/A N/A 665 N/A N/A 1.86 N/A N/A 

FMDAA 677 684 672 1.83 1.81 1.85 -14 -32 

FMDAAS N/A 722 710 N/A 1.72 1.75 N/A -29 

FMBAA N/A N/A 759 N/A N/A 1.63 N/A N/A 

FMBDAA N/A 788 785 N/A 1.57 1.58 N/A -6 

 
Interestingly, the band onsets for the Cz-functionalized D-A systems are nearly the same 

as those for the trimethoxystyrene-functionalized systems. The pyrrole ring of Cz is less able to 

donate an aromatic-electron, than the other amine donors are to donate a non-aromatic lone pair 

electron. This makes Cz a relatively poor donor for an ICT transition, resulting in a relatively 

higher band gap. Interestingly, the relatively lower oxidation potential and higher computed 

HOMO energy of trimethoxystyrene (Table 3.1) make it a superior electron donor to Cz. For the 

stronger donor amines, the absorption onsets in Figure 1 move to increasingly lower energy in the 

series FOCz > FODPA > FOAA > FODAA. The decreasing band gap correlates with increasing 

EHOMO of Cz < DPA < AA < DAA, while ELUMO in the FO-series remains fixed at about –3.0 eV, 

as shown experimentally by both electrochemical measurements and computational modeling. 

The same trend is seen for the FM-functionalized analogues, but in each case the FM-analogue 
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absorption is lower in energy by about 0.50 eV. The reduced band gaps in the FM-series occur 

because their HOMO levels are essentially defined by the same donor HOMO levels as in their 

FO analogues, but the FM-analogues all have lower ELUMO energies in the range of –3.4 to –3.7 

eV (Table 3.1). The computations for all of the amine-functionalized D-A systems show even 

stronger ICT character than in FOS or FMS, with the π-HOMO in each case favoring the side of 

the FO or FM ring that holds the amine, and the π*-LUMO being localized on the FO or FM 

module. 

3.4.3 Disubstituted D-A-D dipolar systems 

The through-conjugated 2,7-FO and 2,7-FM systems show quite similar higher energy 

absorption spectral features to those of the monosubstituted 2-FO and 2-FM analogues, with 

strong features at higher energy around 400 nm that overlap more thoroughly in the FM systems 

than FO systems. The low energy bands > 400 nm are shown in Figure 3.6. The molar 

absorptivities for these disubstituted systems are higher than for the monosubstituted analogues, 

as expected. Solvatochromic effects parallel the behavior of the monosubstituted analogues for 

both FO- and FM-series disubstituted molecules (Table 3.3).  
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Figure 3.6: Absorption spectra of FOs (left) and FMs (right) with two donor substituents, in 

acetonitrile. Full spectra top, ICT bands bottom. 

The increased effective conjugation achieved by placing two donor substituents in the 

2,7-positions – with resonance connectivity between them – is most strongly seen in red-shifted 

low energy bands by comparison to the monosubstituted systems, plus reduced oxidation 

potentials with more oxidation features in the voltammograms (Figure 3.2). Although FODS and 

FMDS have the longest extended C=C type -systems, the amine-substituted D-A-D systems 

give the largest band gap decrease relative to monosubstituted systems. The band onset for 

FMBDAA is at about 1000 nm (1.2 eV), in the NIR region: the neat solids appear black to the 

naked eye.   

Comparing the monosubstituted to disubstituted systems allows some relative 

comparisons of substituent effects on the spectroscopy. FODAAS has an absorbance maximum at 

0.34 eV lower energy than in FODS: the higher HOMO energy for the DAA group (Table 3.1) 

gives this lower bandgap, since the LUMO levels are very similar for FODS and FODAAS. 
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Similarly, FMDAAS has an absorbance maximum 0.36 eV lower than FMDS. Although 

FMDAAS has only one amine donor group, the combination of the DAA donor with the C=C 

conjugation extension of the trimethoxystyrene unit gives a low energy band onset in acetonitrile 

of ~900 nm (1.4 eV).  

The D-A-D systems with the strongest donor substitution, FOBDAA and FMBDAA, 

show the electrochemical voltammetric features of both their constituent donor (DAA) and 

acceptor modules. FOBDAA shows reduction consistent with FO at -1410 mV, and FMBDAA at 

-1170 and -1760 mV consistent with FM. Both show a closely spaced pair of oxidation features 

attributable to the two DAA groups in each. From the Figure 3.2 and Table 3.1 data, the two 

lowest oxidation onset potentials are split by 200 mV and 225 mV for FOBDAA and FMBDAA; 

the analogous splittings for FOBAA and FMBAA are 255 mV and 300 mV. The splittings in both 

sets of diamines are larger in the FM systems than the FO systems, indicating stronger interaction 

and better 2,7-through-conjugation in the FM system. The larger splittings in the bis-AA versus 

the bis-DAA systems may be due to greater planarity and better through-conjugation in the 

sterically less hindered bis-AA systems. Finally, FODAAS with two different donor groups 

exhibits two oxidation features attributable to the DAA group (178 mV and 893 mV), plus an 

onset feature at 667 mV from the trimethoxystyrene unit. FMDAAS shows three oxidation 

features analogous to those in FODAAS. 

3.4.4 Modular electronic analysis of the dipolar molecules 

The electrochemical findings, in particular, support two critical needs for a modular 

scheme for understanding the electronic behavior of the dipolar molecules in this study. First, the 

molecules exhibit reduction electrochemistry in very reasonable accord with voltammetry 

measured for the FO and FM acceptor modules, with only minor variations with different 

attached donor groups (Figure 3.2). (The reduction half wave potentials also compare well to the 

FM reduction potential -1.01 V given by Neckers and coworkers).22 Second, the oxidation 

potentials of donor components are well retained in both FO- and FM-based systems. These 
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trends encourage the notion that the donor and acceptor components can be considered 

interchangeable modules that can be used to design and understand the electronic properties of 

the overall D-A molecules. From a molecular engineering perspective, this is very desirable for 

designing new electronic materials. In addition, as Table 3.1 shows, the HOMO energy levels 

computed by hybrid density functional theory for the Scheme 3.3 dipolar molecules are 

remarkably close to the experimentally estimated HOMO levels, on average about 0.1±0.2 eV 

lower (uncertainty is standard deviation); the computed LUMO energy levels are 0.4±0.3 eV 

higher than those obtained from voltammetry experiments.  

 

Figure 3.7: Modular deconstruction of push–pull system (D-A) frontier molecular orbitals 

derivable from interaction of generic acceptor module A with different donor modules 

D1 and D2. 

One can rationalize the behavior of a set of dipolar molecules composed of donor and 

acceptor modular units (like those in Scheme 3.2) by using computational and/or experimental 

frontier energy levels for the modular units. Figure 3.7 shows how qualitative interactions 

between the frontier orbitals of donor and acceptor units decreases the band gap of a dipolar 

system, where donor strength D2 > D1 and/e acceptor strength A2 > A1. In the present study, the 

FO and FM acceptor unit HOMO energies are low enough not to interact strongly with the donor 

units. Similarly, the donor unit LUMOs are so high in energy relative to the acceptor LUMOs, 

that the dipolar system LUMOs are determined by the FO or FM units. Figure 3.8 shows 

quantitatively how the experimental dipolar system frontier energy levels track with the energies 
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of their modular components. The B3LYP computational modeling reproduces these trends with 

similar orbital energies. 

 

 

Figure 3.8: Frontier molecular orbital energies for donor-acceptor molecules compared 
with orbital energies of constituent donor and acceptor modules (data from Table 3.1 and 

Equations 1-2). 

Experimentally, the LUMO energy levels in the FM systems are lower by an average of 

0.6±0.1 eV in comparison to their FO-based analogues (uncertainty is standard deviation 

considering only the dipolar systems, not the modular units). This correlates with the 0.8 eV 

LUMO energy decrease from FO to FM, and with the absorption spectroscopic band gap 

decreases (Table 1) in FM derivatives compared to FO derivatives. As shown in Table 3.4 and 

Table 3.5, the HOMO energies of the FO- and FM-based systems are within 0.016±0.095 eV and 



68 
 
 

-0.022±0.15 eV of their constituent donor modules’ HOMO energies, respectively. Similarly, the 

LUMO energies of the FO- and FM-based systems are on average within -0.091±0.067 eV and 

0.15±0.13 eV of the individual FO and FM modules, respectively. Therefore, the modular FMO 

approach of Figure 3.7 is quite self-consistent in describing the electronic behaviors of the 

Scheme 3.3 dipolar molecules. 

Table 3.4: Frontier molecular orbital energy variations for donor-acceptor molecules. 

Compound EHOMO vs. Donor (eV) ELUMO vs. Acceptor (eV) 

FOS 0.05 0.00 

FOCz 0.10 -0.07 

FODPA 0.13 -0.03 

FOAA -0.16 -0.09 

FODAA -0.09 -0.04 

FODS 0.13 -0.14 

FOBAA 0.03 -0.15 

FOBDAA -0.01 -0.23 

FODAAS -0.04 -0.07 

FMS 0.05 0.30 

FMCz 0.33 0.40 

FMDPA -0.07 0.06 

FMAA -0.25 0.07 

FMDAA -0.08 0.24 

FMDS 0.00 0.08 

FMBAA -0.05 0.01 

FMBDAA -0.04 0.02 

FMDAAS -0.09 0.16 
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Table 3.5: Average FMO energy for FO- and FM-based compounds versus their component 

donor and acceptor modules’ FMO energies, obtained by averaging EHOMO and ELUMO 

values for each FO- or FM-set from Table 3.4. FMO energy variations are the standard 
deviations of these sets. 

Compound Series’ 
Acceptor Module 

Average EHOMO 
Change (eV) 

EHOMO Variation 
(eV) 

Average ELUMO 
Change (eV) 

ELUMO Variation 
(eV) 

FO 0.016 0.095 -0.091 0.067 

FM -0.022 0.15 0.15 0.13 

 

3.4.5 Strengthening absorption by a connectivity change 

The success of the Figure 3.7 modular donor-acceptor design strategy is somewhat offset 

(in terms of use for applied purposes) by the decreased molar absorptivities of the desirably low 

band gap absorptions in both FO and FM series. For photovoltaic and photoconversion 

applications, strong absorption bands are desirable to allow use of thinner layers of electroactive 

material. 

 

Scheme 3.4: Neckers’ push-pull FO and FM-based systems with phenylethynylene-linked 
donors. 

To get stronger absorptivity, the strategy of Figure 3.8 was extended to consider work by 

Neckers and coworkers21–23 that tested the effect of connectivity in the FO- and FM-based push-

pull molecules shown in Scheme 3.4. They found that the absorption spectral blue shift from de-

conjugating the donor substituents in the 3,6-FO/FM systems (FOPE36, etc.) by comparison to 

the through-conjugated 2,7-FO/FM systems (FOPE27, etc.) was accompanied by a substantially 

increased molar absorptivity. In the 2,7-connectivity systems, excited state dipole shift effects 

through the phenylethynyl groups cannot interact directly with the C=O or C=C(CN)2 dipoles. In 

the 3,6-connectivity systems, the donor substituents are no longer through-conjugated with one 

another, but they are linked to the C=O or C=C(CN)2 units. This gives a larger band gap, but 
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reinforces excited state dipole moment changes for the donor Cz groups interacting with the C=O 

or C=C(CN)2 dipoles. 

An analogous dipole enhancement was designed using the modules from Scheme 3.2. 

Jonathan Tinkham carried out computational modeling of FOBDAA and FMBDAA with time-

dependent density functional (TDDFT45) methods at the B3LYP/6-31G(d,p) level, and found long 

wavelength bands at 625 nm and 1042 nm, with oscillator strengths of 0.09 and 0.03, respectively 

(Table 3.6). The predicted band positions are good matches to the observed band onsets (Table 

3.1), and the computed decrease in oscillator strength from the FO to the FM based system agrees 

with experiment. By comparison, the isomeric FOBDAA36 and FMBDAA36 were predicted to 

have long wavelength bands at 490 nm and 616 nm, with much stronger oscillator strengths of 

0.23 and 0.24, respectively. Save for different orbital energies due to different connectivities, the 

2,7- and 3,6-systems both have similar, push-pull separation in HOMO versus LUMO, indicating 

ICT type transitions to be expected in both. These computations supported the use of Neckers' 

connectivity change strategy to increase absorptivity, and indicated that FMBDAA36 would 

absorb well into the visible spectrum despite deconjugation of the donor groups from one another. 

Table 3.6: TDDFT B3LYP 6-31G(d,p) predicted band positions and oscillator strengths for 
FO- and FMBDAA 2,7- and 3,6-derivatives using Gaussian 0934. 

Compound Predicted Band Position (eV) Predicted Oscillator Strength Scaling Factor f 

FOBDAA 1.98 0.090 

FMBDAA 1.19 0.035 

FOBDAA36 2.53 0.228 

FMBDAA36 2.01 0.224 
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Figure 3.9: Lowest-energy absorption spectral regions in acetonitrile comparing FOBDAA, 

FMBDAA, FOBDAA36, and FMBDAA36 (left), and frontier molecular orbital energies for 
FOBDAA, FMBDAA, FOBDAA36, and FMBDAA36 compared to constituent modules’ 

FMO energies (right). 

Accordingly, FOBDAA36 and FMBDAA36 were made by methods similar to those used 

for the other systems in this study. Their absorption spectra in acetonitrile are shown in Figure 

3.9, and their cyclic voltammetric redox potentials given in Table 3.1: the full voltammograms 

are given in Figure 3.2. Although feature onsets are given in Table 3.1 for consistent use with 

equations 1-2, oxidation potential maxima are compared here because they are more precisely 

resolved in the voltammograms. The oxidation potential maxima were 424 / 553 mV for 

FOBDAA36 and 437 / 572 mV for FMBDAA36, compared to 268 / 444 mV for FOBDAA and 

314 / 494 mV for FMBDAA. Not only are the oxidation potentials – and therefore the HOMO 

energies (Table 3.1) – raised significantly in the 3,6-isomers, but the splitting between oxidation 

features is decreased: 129 and 135 mV in the FO and FM systems, by comparison to 176 and 180 

mV, in the 2,7-connectivity systems. Smaller splitting indicates a smaller interaction between 

amine units46 in the 3,6-connectivity, as expected because there is no mutual oxidative 

stabilization by amine to amine resonance through direct 2,7-conjugation.  

Figure 3.9 shows that the absorption band energies increase in the 3,6- versus the 2,7-

connectivity systems, as expected. The observed absorption onsets in acetonitrile are 0.3±0.1 eV 

(standard deviation) higher energy than the TDDFT modeling predictions, but the predicted and 

observed spectra both show the desired strong increases in molar absorptivity for both the FO- 
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and FM-based systems for the 3,6-connectivity. Overall, the combination of LUMO lowering by 

use of the FM unit, plus increased dipole coupling by use of the 3,6-connectivity, makes 

FMBDAA36 absorb 8-fold more strongly (molar absorptivity 4500 M-1 cm-1) than any of the 2,7-

connectivity systems, with an absorption profile that still absorbs strongly over much of the 

visible spectrum, 400-700 nm. Figure 3.9 shows how the component frontier molecular orbitals 

compare to those of both the 2,7- and 3,6-connectivity systems. Notably, by this analysis the 

LUMO levels in the 3,6-systems are raised somewhat (relative to those on the 2,7-connectivity 

system) by direct resonance interaction with the DAA donor groups, giving the observed band 

gap increase. 

3.5 Conclusions 

The absorption spectroscopy and electrochemistry of strong electron acceptor 

fluorenylidene malononitriles (FMs) bearing common 2- or 2,7- electron donor substituents were 

compared to the results for less electron withdrawing fluorenone (FO) analogues. The FM and FO 

units are structurally simple and synthetically accessible acceptor (A) units that interact with 

donor (D) substituents to give dipolar donor-acceptor electronic behavior, including longer 

wavelength absorption band gaps associated with intramolecular charge transfer (ICT) behavior.  

This modular electronic engineering approach provides a rational path for tuning EHOMO, 

ELUMO, band gap, and absorptivity strength. Starting from FO-based systems bearing moderate 

donors such as trimethoxystyrene connected in a 2,7-fashion to maximize conjugation, stronger 

donor diarylamine substituents were used to raise HOMO levels, increasing ICT character and 

lowering the overall band gap. Changing to a 3,6-connectivity enhanced molar absorptivity 

considerably, at a cost of increasing the band gap by about 0.50 eV. But, FMBDAA36 derived by 

the above sequence of structure-property manipulations absorbs well in the 400-700 nm region. 

This absorption range is important for organic photoconversion and photoconductivity. For 

example, Chi and coworkers recently showed47 that a close variant of FMBDAA36 (with methyl 

instead of methoxy groups) gives promising solid state photocurrent transport and 
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photoconversion efficiencies, with their best single-junction photovoltaic device (using C70 as an 

electron acceptor material) having power conversion efficiency of 4.04%, with open-circuit 

voltage of 0.99 V, short circuit current of 7.64 mA/cm2, and fill factor of 0.53. Other uses of FO 

or FM derivatives also show promise for hole-transport or dipolar charge transport.48–51  

It is important to keep in mind that organic molecules become effective electronic 

materials only through morphological manipulation (intermolecular control52–56) as well as 

intramolecular electronic control. Because molecular level electronic control is a necessary but 

insufficient criterion to produce desirable bulk electronic behavior, there is a continuing need to 

test many derivatives of electronically similar compounds, to find the best molecular-

morphological electronic property combinations. The present study exemplifies a strategy for 

rational testing of whole families of related molecules for potential electronic materials use, 

starting from electrochemical, spectroscopic, and computational evaluation of donor and acceptor 

components, and using readily available molecular building blocks assembled in a few synthetic 

steps. Evaluation of these new materials for organic-based electronics is presently underway. 
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ADICAL CATIONS FROM DIARYLAMINO-SUBSTITUTED FLUORENONES 

Adapted with premission from Homnick, P. J.; Tinkham, J. S.; Lahti, P. M. Radical Cations from 
Diarylamino-Substituted Fluorenones. Tetrahedron Lett. 2013, 54, 35–39.1 Copyright 2013 

Elsevier Limited. License number 3342511465566 
http://www.sciencedirect.com/science/article/pii/S0040403912018175 

 

4.1 Introduction and Background 

Conjugated aminium radical cations are of much interest as organic electronic materials. 

They can be spin-bearing building blocks in molecule based magnetic materials and polymers,2 

and as charge carriers in organic batteries3 and conducting polymers.4,5 They also play important 

roles in photovoltaic charge pair regeneration,6 typically as p-type materials. simpler model 

triarylaminium radical cations thus are useful models for the behavior of more complex 

electroactive materials. 

 

Scheme 4.1: Chemical oxidation process, and fluorenone-based triarylamine compounds 

studied. 

Triarylaminium cations tend to be very deeply colored, due in part to their strong 

conjugation. When structural connectivity allows direct π-resonance to the radical cation site, the 

resulting absorption bands can be energetically tuned. Adding triarylamine sites in direct π-

resonance with a radical cation site can give intervalence charge transfer (IVCT) that pushes the 

band gap transition well into the near infrared (NIR) region.7 Comparison of the IVCT behavior 

gives insight about the ease of electron hopping through a π-conjugated linker or polymer, shows 

whether or not the radical cation and neutral triarylamine sites are strongly coupled, and shows 

how conjugative IVCT radical to amine coupling varies with linker types and lengths.7,8  

http://www.sciencedirect.com/science/article/pii/S0040403912018175
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This chapter describes the absorption and electron paramagnetic resonance (EPR) spectra 

obtained from oxidation of the diarylamine substituted fluorenones FODAA, FODPA, FODAAS, 

and FOBDAA (Scheme 4.1). The latter two systems were investigated to test the effects of 

extending through-conjugation across the fluorenone unit, with FOBDAA providing linkage for 

intervalence transfer behavior in the radical cation. Although electronic properties have been 

investigated for fluorenes linked to diarylamines,9,10 to our knowledge this has not been done for 

electron deficient fluorenones attached to diarylamines. This study shows that fluorenones yield 

highly persistent triarylaminium cations, and are effective IVCT linkers. 

4.2 Experimental Methods 

The neutral amines used in this study were made and identified using the methods 

described in Chapter 2 of this dissertation, and publishes elsewhere.11 Purities of the compounds 

were established by HPLC. Redox potentials were obtained by cyclic voltammetry using 

platinum auxiliary and working electrodes with an Ag/AgCl reference electrode (in acetonitrile). 

All measurements were done in dry acetonitrile with 0.1 M tetrabutylammonium 

hexafluorophosphate as a supporting electrolyte, using analyte concentrations of about 10 mM. 

Ferrocene oxidation under these conditions was used as an external voltage standard. 

The neutral amines were oxidized by two procedures. For the precipitation protocol, 

roughly 30 μM of amine was dissolved in toluene and treated with SbCl5 to give a very dark, 

powdery precipitate that could be isolated by filtration, and stored under ambient conditions for 

months. Re-dissolution of these precipitates in dichloromethane readily yielded the characteristic 

colors of the aminium cation species. For a solution oxidation protocol, the amine was dissolved 

in dry dichloromethane and directly treated with oxidants such as SbCl5, AgSbF6, Pb(OAc)4, or 

dissolved in acetonitrile for oxidation with CuClO4. 

UV-vis spectra were obtained using a solution oxidation protocol or by re-dissolving the 

solid phase aminium cation salts obtained from a precipitation oxidation protocol; both are 
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described in the experimental procedures chapter. Molar absorptivities given for the oxidized 

species assume 100 % conversion of neutral triarylamine precursors, and so are minimum values. 

EPR spectra were obtained at room temperature by the solution oxidation protocol, or by 

re-dissolving products from the precipitation oxidation protocol. Hyperfine coupling constants 

were obtained by spectral simulation, and g-values obtained for spectra were calibrated using a 

frequency counter and an E-036TM teslameter on a Bruker Elexsys E-500 spectrometer. 

4.3 Results and Discussion 

4.3.1 Mono(diarylamino)fluorenone oxidations 

FODAA and FODAAS have lower oxidation potentials than FODPA (Figure 4.1, Table 

4.1), consistent with the decreased donor strength for diphenylamine versus dianisylamine. Added 

conjugation in FODAAS vs. FODAA does not much change the oxidation potential. All of the 

monoamines show reversible to quasi-reversible behavior, indicating good stability of the radical 

cations, especially when para-donor substituents that block dimerization are present (FODAA, 

FODAAS). Hybrid density functional theory (DFT) B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) 

computations*12–14 for the neutral amines give good agreement of computed HOMO energy levels 

with the observed first oxidation potentials converted11,15–17 into HOMO energies (despite taking 

no computational account of solvent or counterion effects).  Many of these computations were 

carried out by Jonathan Tinkham as part of collaborative work investigating the experimental 

results that I obtained as described below. 

                                                      
* Computational modeling was carried out using Spartan 2010 for Linux from Wavefunction Inc., 
Irvine, CA, USA, and Gaussian 09.31 
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Figure 4.1: Cyclic voltammograms showing the amine oxidation region. Potentials are 
referenced to the ferrocene/ferrocenium redox standard reaction in dry acetonitrile.  

Table 4.1: Spectral and electrochemical characteristics of radical cations and dications. 

Compound 

Oxidized 
absorption, 

nm [eV] 
(log10 ε) a 

Computed 
Transition, ([eV], 

(oscillator 
strength)) b 

Oxidation 
E1/2 (mV) to 

Cation c 

HOMO Energy 
(eV) Observed 
(Computed) 

d 

Oxidized EPR 
spectrum 

Hyperfine (g-
value) e 

FODAA 
777 [1.60] 

(4.41) 
[1.57] (f = 0.24) 
[1.77] (f = 0.22) 

320 −5.03 (−5.03) 
8.6 gauss [1 N] 

(2.0033) 

FODPA 
823 [1.51] 

(4.86) 
[1.54] (f = 0.26) 
[1.66] (f = 0.03) 460 −5.12 (−5.35) 5.8 gauss [1 N], 

(2.0028) f  

FODAAS 

1036 [1.20] 
(4.02) 

747 [1.66] 
(4.32) 

[0.77] (f = 0.65) 
[1.52] (f = 0.02) 

326 −4.98 (−4.95) ≤8 gauss [1 N] 
(2.0033) 

FOBDAA 
1670 [0.74] 

(4.44) g [0.83] (f = 0.59) 220 −4.95 (−4.73) 4.7 gauss [2 N] 
(2.0032) 

 873 [1.42] 
(4.88) h [1.21] (f = 1.38) h 400   

 
699 [1.77] 

(4.46) h [1.79] (f = 0.16) h    

  [1.80] (f = 0.25) h    
a Band maximum; ε = M-1 cm-1. b B3LYP/6-31G(d,p) computed transition energy, oscillator 
strength for radical cations, and FOBDAA singlet dication. c Cyclic voltammetric half-wave 

potential vs. ferrocene/ferrocenium standard (acetonitrile). d EHOMO from Homnick and 
Lahti11 using onset of first oxidation feature; computed EHOMO from B3LYP/6-

31+G(d,p)//B3LYP/6-31G(d) calculations in this work. e Solution X-band spectrum (~9.6 GHz) 
in dichloromethane. f Large linewidth spectrum (unresolved hfc?). g Monocation. h Dication. 

 

Solution EPR spectroscopy obtained from solution oxidation of the neutral monoamines 

or from dissolving solid radical cation salts from the precipitation oxidation protocol gives 

deeply-colored solutions showing 1:1:1 triplet hyperfine coupling from one nitrogen (Figure 

4.2, Table 4.1). The spectra and associated colored solutions are persistent for hours. The FODPA 

oxidation EPR spectrum is quite broadened relative to others (probably in part from unresolved 

http://www.sciencedirect.com/science/article/pii/S0040403912018175#gr1
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hyperfine coupling), but has a similar overall spectral width to others. FODPA oxidation does not 

give the five-line spectrum from dimeric benzidine type products that form rapidly from 

triphenylamine18–20 oxidization. FODPA oxidation also shows no evidence of an IVCT band at 

>800 nm analogous to that from triphenylamine dimerization.20 The fluorenone unit apparently 

provides at least kinetic stabilization for FODPA radical cation compared to the ready 

dimerization seen in triphenylamine radical cation. Indeed, the solid aminium salt products from 

the precipitation oxidation protocol can be stored for months under ambient conditions, and 

readily yield the characteristic radical cation EPR spectra and colors upon re-dissolution. 

 

Figure 4.2: Room temperature CH2Cl2 solution EPR spectra for: (a) 

FODAA/SbCl5 (9.6000 GHz); (b) FODPA/SbCl5(9.6464 GHz); 
FODAAS/SbCl5 (9.6472 GHz); FOBDAA/AgSbF6 (9.6146 Gz).  

The UV-vis-NIR spectra of oxidized FODAA and FODPA (Figure 4.4, Table 4.1) exhibit 

intense long wavelength maxima at 777 and 823 nm, respectively, characteristic of triarylamine 

radical cations. The spectra from oxidation products are readily distinguished from those of the 

neutral11 reactants (Figure 4.3). The FODAA+ bands for FODAA resemble those of the radical 

cations from p-(dianisylamino)benzoic acid (785 nm) and 5-(dianisylamino)isophthalic acid 

(777 nm),21 which also consist of an electron poor arene attached to a dianisylamine unit. 

FODAAS shows two bands at 747 and 1036 nm that increase proportionally together with 

http://www.sciencedirect.com/science/article/pii/S0040403912018175#gr2
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titration of the oxidant, consistent with both arising from the same species. Titration curves 

representing the appearance or depletion of selected peaks with increasing oxidant are also shown 

in Figure 4.3 to help with assigning peaks from the same oxidation product. 

FOCz did not oxidize cleanly like the other triarylamines. Solutions would turn from light 

yellow to darker greenish brown upon oxidant addition, then quickly lose the new color. FOCz 

required a large excess of oxidant (measured in drops of stock oxidant solution) to give changes 

in the UV-vis-NIR spectrum. This behavior was attributed to side reactions occurring on the 

unprotected carbazole unit, but this assumption is speculative. No precipitate formed that might 

indicate polymerization or aggregation, and EPR spectra of FOCz do not indicate formation of 

conjugated diamine interactions that would be expected from carbazole-carbazole C-C 

dimerization (these should give more complex hyperfine patterns from interaction of the unpaired 

electron with multiple nitrogen atoms). 
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Figure 4.3: UV-vis-NIR oxidation spectra (left) and titration curves (right) for FODAA, 

FODPA, FODAAS, and FOCz. 

http://www.sciencedirect.com/science/article/pii/S0040403912018175#gr3
http://www.sciencedirect.com/science/article/pii/S0040403912018175#gr3
http://www.sciencedirect.com/science/article/pii/S0040403912018175#gr3
http://www.sciencedirect.com/science/article/pii/S0040403912018175#gr3
http://www.sciencedirect.com/science/article/pii/S0040403912018175#gr3
http://www.sciencedirect.com/science/article/pii/S0040403912018175#gr3
http://www.sciencedirect.com/science/article/pii/S0040403912018175#gr3
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UB3LYP12–14 and 10/6-31G(d,p) time-dependent DFT (TDDFT)22 computations show the 

longest wavelength bands in the FODAA, FODPA, and FODAAS cations to have some singly 

occupied molecular orbital (MO) to lowest unoccupied π-MO (α-SOMO → α-LUMO) 

intramolecular charge transfer (ICT) character, but much stronger (β-π-HOMO → β-π*-LUMO) 

character. The computed band positions are in relatively good agreement with the experimental 

bands, even though the computations did not include counterion or solvent dielectric effects. The 

presence of two major bands in FODAAS is also supported by TDDFT, although the band gap 

energy and higher energy band oscillator strength are underestimated. Computed band positions 

and relative strengths are shown in Figure 4.4. 

 

Figure 4.4: Normalized UV–vis-NIR spectra from solution protocol oxidation of FODAA, 

FODPA, and FODAAS with SbCl5. Red bars show UB3LYP/6-31G(d,p) TDDFT predicted 
band positions and relative transition moments.  

Since FODAA showed the lowest voltage oxidation with good radical cation stability, the 

dianisylamine unit was used to make the FOBDAA system with two amine nitrogens connected 

in direct conjugation through the 2,7-fluorenonediyl unit. 

4.3.2 Multiple oxidation steps in FOBDAA 

As shown in Figure 4.1, FOBDAA has overlapping reversible cyclic voltammetric 

oxidation peaks at about 220 and 400 mV, from mono- and di-oxidation, respectively. Solution 

http://www.sciencedirect.com/science/article/pii/S0040403912018175#b0145
http://www.sciencedirect.com/science/article/pii/S0040403912018175#gr3
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oxidations with either SbCl5 or AgSbF6 give similar pentet EPR spectra Figure 4.2, Table 

4.1indicating hyperfine coupling from two equivalent nitrogen atoms. Redissolved solid product 

isolated from the precipitation oxidation protocol from FOBDAA gives nearly the same 

spectrum. The spectra do not change significantly when cooled to -70 °C. Thus FOBDAA+ is a 

single, static, delocalized structure, or undergoes equilibrating intervalence charge transfer faster 

than the EPR time scale (Scheme 4.2). 

 

Scheme 4.2: Oxidation sequence for FOBDAA. 

Addition of more than 1 equivalent of oxidant to FOBDAA solutions gave somewhat 

decreased EPR spin counts. Frozen solution EPR spectra for samples oxidized with 4 equivalents 

of SbCl5 showed no dipolar interaction peaks or half-field transition from a possible triplet 

biradical dication state of FOBDAA++. FTIR spectroscopy comparing neutral FOBDAA to 

precipitates from oxidation with limited and excess oxidant gave three different spectra, with the 

C=O stretch not observed in the putative FOBDAA+ sample, and the carbonyl region being 

different between the neutral and the putative FOBDAA++. The UB3LYP/6-31G(d,p) optimized 

computational geometries for FOBDAA+ and FOBDAA++ (no counter ions) showed greater 

quinoidal bond alternation in the dication as shown in Scheme 4.2), but only by about 0.01 Å. 

The MeOPh groups are twisted out of the fluorenone plane, which reduces the tendency to form a 

highly semiquinoidal/quinoidal cation/dication structure. 

Titration of FOBDAA with multiple oxidants in each case clearly shows initial growth of 

a NIR band at 1670 nm (Figure 4.4, Table 4.1), which grows to a maximum and thereafter 

decreases as new, visible region bands grow at 699 and 873 nm. The NIR band is attributable to 

an IVCT transition of monocationic FOBDAA+, and the visible bands to dicationic FOBDAA++. 

A small NIR absorption remains even at high oxidant concentrations, so Scheme 4.1 shows an 
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equilibration of monocation and dication forms. The reaction with AgSbF6 shows a good 

isosbestic point at about 1100 nm, indicating no side reactions or decomposition over a few hours 

during the experiment. The band positions attributed to monocation and dication are completely 

consistent7,8 with assignments of similar bands in oxidation of other through-conjugated 

diamines. 

 

 

Figure 4.5: UV-vis-NIR spectra for FOBDAA in MeCN oxidized with AgSbF6: 0 equiv. (A), 

0.8 equiv. (B), 1.6 equiv. (C), and 4.0 equiv. (D). Long wavelength solvent absorbance 
artifacts were digitally subtracted. Bars show B3LYP/6-31G(d,p) TDDFT predicted band 

positions and transition moment intensities for FOBDAA+(solid) and FOBDAA++ (dashed). 

http://www.sciencedirect.com/science/article/pii/S0040403912018175#gr4
http://www.sciencedirect.com/science/article/pii/S0040403912018175#gr4
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4.3.3 Comparisons to other conjugated aminium cation systems 

Chang, Yueh, and Chen reported9 the oxidation behavior of DTFA-1 and TTFA-2 

(Scheme 4.3), which are connectivity analogues to FODAA and FOBDAA. Solution EPR and 

UV-vis-NIR spectra from Cu++ oxidation of the neutral amines showed triarylaminium cation 

formation with good persistence and minimal side reactions. For DTFA-1 and TTFA-2, the 

monocation absorptions are at 827 (1.5 eV) and 1305 nm (0.95 eV), respectively9; the dication 

band for the latter is at 739 nm (1.68 eV). Although the dianisylamine groups in FOBDAA are 

stronger electron donors than the ditolylamine groups in TTFA-2, the oxidation potentials for 

FOBDAA are somewhat higher at 220 and 400 mV than the 140 and 360 mV values for TTFA-2 

in acetonitrile. The central fluorenone linker unit in FOBDAA is electron withdrawing, not 

electron rich like the dialkylfluorene in TTFA-2, which likely explains the electrochemical trend. 

The cation/dication cyclic voltammetric splitting in TTFA-2 is larger than in FOBDAA and its 

long wavelength IVCT band at higher energy than FOBDAA. 

 

Scheme 4.3: Triarylamine system from the literature for comparison to the fluorenone-

based compounds in Scheme 4.1. 

The systems with ditolylamino groups cannot be directly compared to systems with 

dianisylamine groups, but the electrochemical comparison roughly indicates that 2,7-

fluorenonediyl couples the amino groups somewhat less strongly than 9,9-dialkylfluorenone-2,7-

diyl. The cation/dication voltammetric splitting in FOBDAA is also smaller than the 220 mV 

splitting that Lambert and Nöll8 observed in N-L-N with L = 4,4’-biphenylene, a π-connectivity 

analogue of fluorene, but larger than in aryleneethynylene or arylenediethynylene linked 

analogues. They noted that the splitting in related compounds could be used to compare 

electronic coupling, with stronger coupling giving a larger cation/dication potential difference. 
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Thus, the electrochemistry of FOBDAA suggests somewhat reduced coupling by fluorenone 

relative to 4,4-biphenylene. 

The EPR and UV-vis-NIR behaviors of FOBDAA+ indicate that it acts as a Robin-

Day23 Class III IVCT system. Its EPR hyperfine splitting at room temperature gives an excellent 

fit for 2 equivalent 14N nuclei with much smaller hyperfine than in FODAA, FODPA, and 

FODAAS (Table 4.1even below room temperature. This requires24 that IVCT electron transfer is 

faster than kET >1010 s-1 or that the monocation radical is a single static resonance hybrid between 

the FOBDAA+ structures as shown in Scheme 4.1. Its NIR IVCT band half-height bandwidth, 

simulated by fitting a single gaussian function to the higher energy side of the peak, is 

(ν1/2)IVCT ~3365 cm-1, significantly lower than the high temperature theoretical half-height 

bandwidth of 3710 cm-1 given by (ν1/2)HTL = 47.94(νmax)1/2, where νmax is the band maximum 

position in wavenumbers. The condition (ν1/2) IVCT < (ν1/2)HTL has been used as an indicator24 of 

Class III resonance hybrid delocalization as in Scheme 4.2. 

Alternatively, Hush’s classical model8,25–27 can be used to estimate the IVCT transfer 

integral V between amine sites in FOBDAA+. Details are given below, based on a description8 by 

Lambert and Nöll for Gaussian-shaped transitions. Using a N-N distance of 9.7 Å from 

computational modeling, plus an IVCT band position of 6000 cm-1 and molar 

absorptivity ε = 27500 cm-1 L-1, the intervalence transfer energy V = 1400-1600 cm-1 for 

FOBDAA+. This is similar to the estimate8 published for N-L-N where L = 4,4’-

biphenylene, V = 1550 cm-1, indicating fluorenone to be similar to 4,4’-biphenyl in IVCT 

coupling strength. This is reasonable, since both have connectivity with the same number and 

types of bonds between amine centers.  It is interesting that the planar fluorenone is not a better 

linker than the more freely rotating biphenyl; perhaps an electron-withdrawing effect of the C=O 

in fluorenone offsets the better conjugation of a constrained planar geometry. 

V = (0.0206/r)√(ε νmax ν1/2) 
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V = Hush transfer integral in cm-1 

r = distance between amino nitrogen atoms in angstroms 

νmax = energy of IVCT band in cm-1 

ν1/2 = width at half-height of IVCT band in cm-1 

ε = molar absorptivity of the IVCT band in M-1cm-1 

4.4 A Radical Cation from an Amine-Substituted Fluorenylidene Malononitrile 

The UV-vis-NIR spectrum of oxidized FMDAA (Figure 4.6), the fluorenylidene 

malononitrile (FM) analogue of FODAA, exhibits intense long wavelength maxima at 780 nm 

and 640 nm, similarly to FODAA. The spectra from oxidation products are readily distinguished 

from the neutral28 reactant spectrum even though the new oxidation peaks grow over the same 

region as the intramolecular charge transfer (ICT) peak for neutral FMDAA. 

  

Figure 4.6: UV-vis-NIR oxidation spectra for FMDAA. 

The solution color is qualitatively much darker upon oxidation and the color is persistent 

for several days, similarly to the fluorenone-based (FO-based) systems discussed above. No 

further study was pursued of this compound or any of the other Chapter 3 FM-based compounds; 

but it appears that the radical cations for the FM analogues are about as stable as those of the FO-

based systems. Further study of the Chapter 3 compounds would be interesting due to their 

persistence and their significantly more electron withdrawing FM component. So far only 

qualitative oxidations of some of the Chapter 3 FM compounds was performed, giving persistent 

http://www.sciencedirect.com/science/article/pii/S0040403912018175#gr3
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and deeply colored solutions. No UV-vis-NIR absorption or EPR spectra were obtained. 

Comparison of the 2,7- versus 3,6-bis-dianisylamino substituted FO and FM- based systems 

would be particularly interesting due to the break in amine-amine through-conjugation in the 3,6- 

versus 2,7-diamine systems. Because the amine sites in 3,6-FOBDAA and 3,6-FMBDAA are 

pseudo-meta to each other, the amines may interact ferromagnetically29,30 in the doubly oxidized 

species, which may be especially useful for spin-based applications. 

4.5 Conclusions 

A test set of conjugated amines having one fluorenone substituent yields highly persistent 

aminium radical cations upon solution oxidation. Solid powder samples of the radical cations are 

very stable. UV-vis-NIR transitions for the radical cations are in reasonably good agreement with 

hybrid functional TDDFT computational modeling. The through-conjugated diamine, FOBDAA, 

exhibits an intervalence charge transfer NIR band and EPR spectroscopy consistent with swift 

electron transfer, or one static delocalized structure. Preliminary results suggest that the FM-

based analogues of these compounds are also quite persistent, so future studies on the Chapter 3 

FM-based materials might be worth pursuing. The stabilities of these radical cation species are 

promising for potential use as electronic materials. 
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CHAPTER 5 

FLUORENONE-BASED DONOR-ACCEPTOR MOLECULES THAT ENHANCE DYE 

SENSITIZED SOLAR CELL PERFORMANCE 

Adapted with permission from Kokil, A.; Chudomel, J. M.; Homnick, P. J.; Lahti, P. M.; Kumar, 
J. Push-pull Triarylamine Additives That Enhance Dye Sensitized Solar Cell Performance. RSC 

Adv. 2013, 3, 15626.1 Reproduced by permission of The Royal Society of Chemistry. 
http://pubs.rsc.org/en/content/articlelanding/2013/RA/c3ra40986d#!divAbstract 

 
[This section is based on the publication described above; some portions are used verbatim per 

copyright permission as given above.] 
 
5.1 Introduction 

This chapter describes a new strategy for improving basic dye-sensitized solar cell 

(DSSC) performance, which was developed using three of the D-A and D-A-D fluorenone (FO)-

based compounds described in Chapter 2. The work was published in RSC Advances1 (DOI 

10.1039/C3RA40986D) in collaboration with Dr. Akshay Kokil and Professor Jayant Kumar 

from UMass Lowell, and Dr. John Matthew Chudomel from UMass Amherst. Work at UMass 

Lowell showed device relative power conversion efficiency (PCE) improvements of up to 33 % 

versus control device PCEs that did not use the fluorenone-based additives. Although not initially 

one of the goals of the Chapters 2 and 3 projects, this work is promising and suggests wider uses 

for fluorenone-based triarylamines due to their highly tuned highest occupied molecular orbital 

(HOMO) energies2,3 and their remarkable oxidative stability.4 

DSSCs are of notable interest due to reported power conversion efficiencies (PCEs) up to 

15%.5,6 But, before this record-breaking PCE, DSSC efficiency improvement has been very slow 

over the past two decades, rising from a PCE of 10% in 1997.7 This chapter describes a strategy 

for enhancing DSSC performance by adding a small amount of FO-based triarylamine to the 

iodide/triiodide (I-/I3
-) redox electrolyte solution that is used in many DSSCs for regenerating the 

active layer dye after charge transfer to an n-type substrate. This redox couple additive strategy is 

attractive, because the additives are not attached to the n-type electrode material and thus require 

no extra solid state processing steps. Secondly, the additive design strategy is versatile for testing 

http://pubs.rsc.org/en/content/articlelanding/2013/RA/c3ra40986d#!divAbstract
http://pubs.rsc.org/en/Content/ArticleLanding/2013/RA/c3ra40986d
http://pubs.rsc.org/en/Content/ArticleLanding/2013/RA/c3ra40986d
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a wide variety of compounds or combinations of compounds in the future, such as those described 

in Chapters 2 and 3. Finally, the electronically tunable molecular structures of the FO-based 

additives,2,3 in addition to their stability in the oxidized state,4 allow for fine-tuning their 

electrochemical potentials to fit, in principle, a wide array of specific DSSC electrical 

configurations. 

5.2 Background 

In contrast to bulk heterojunction (BHJ) thin film organic solar cells, DSSCs (or Grätzel 

cells) are frequently constructed from TiO2 nanoparticles (n-type material), an organic or 

inorganic/organic dye (p-type material), and a redox electrolyte system such as I-/I3
-. Grätzel 

DSSCs require a redox system which regenerates the dye molecule to its neutral state after it 

donates an electron to the TiO2 layer post-photoexcitation. Figure 5.1 shows a simplified 

description of this process. First, light is absorbed by a dye molecule (p-type material) that is 

adsorbed onto an n-type metal oxide nanoparticle, typically anatase TiO2 (A). The excited state 

electron is transferred (B) to the TiO2 (LUMO energy is -3.9 eV). The electron is then injected 

into a transparent electrode material (C), which is in circuit with a counter electrode. At the 

counter electrode an electron is transferred to form I3
- (D), which then transfers an electron back 

to the oxidized dye molecule (E), returning it to its neutral ground state. Once the dye is 

regenerated in this manner, the process can continue.  

         

Figure 5.1: Generic DSSC diagram showing the main photovoltaic processes. A, photon 

absorbed by dye molecule to form excited state. B, Excited state electron transferred to 
TiO2 n-type material, followed by electron injection into transparent electrode C. D, 

Electron transferred from counter electrode to I-,I2 to form I3
-. E, I3

- transfers electron to 
oxidized dye molecule to regenerate its neutral ground state. 
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While DSSCs are physically much different than BHJ solar cells, the physical processes 

and molecular design principles are very similar, save for a few, notable differences. In particular, 

the photoactive dye performance is not dictated by intermolecular packing/crystallinity, as it is in 

BHJ solar cell photoactive layers. The hole transport process is performed by the redox 

electrolyte solution, so the dye material does not have to transport charges over a long distance. 

This makes one fewer complicated molecular design parameter to engineer. Still, DSSC dyes are 

typically asymmetrical so that one end has a TiO2 binding group such as a carboxylate. Because 

this group needs to reside at the dye’s TiO2 attachment site, the dye must have a donor-acceptor 

structure that drives electron density towards the attachment interface. This requires some extra 

consideration during the molecular design and synthesis processes, which can sometimes make 

dye development more complicated. Another difference is that DSSCs usually use a liquid phase 

electrolyte redox system. Not only does this need for liquid make commercialization more 

challenging, the use of iodide/triiodide can quickly cause device components to corrode, 

decreasing device lifetime. Solid state hole transporting materials that replace the iodide/triiodide 

redox solution are a promising alternative, but they so far have had much lower PCEs. 

Despite all of the molecular design efforts and device architecture improvements aimed at 

making better DSSC dyes, metal oxides, and redox electrolytes (solution or solid state),8,9 DSSC 

PCEs have not increased greatly over the last 10 years.7 To enhance the energy gathering and 

charge-pair generation process, numerous organometallic ruthenium complexes and organic dyes 

have been used as sensitizers.8 Unfortunately, ruthenium is too expensive to incorporate in 

commercially-viable devices, and organic sensitizers have historically fallen short of the best 

ruthenium-based PCEs. To further improve DSSC PCEs, some groups have utilized sensitizing 

dye pairs that collectively absorb over the whole visible spectrum, with the higher energy 

absorbing dye relaying its energy to the lower energy absorbing dye by Förster resonance energy 

transfer (FRET).10–13 Although relative PCE improvements of 26-28 % have been obtained using 
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sets of energy relay dyes, these FRET-based strategies are limited by the number of dye pairs that 

can effectively be utilized.  

Alternative PCE improvement methods include altering the DSSCs’ electrochemical 

processes. For example, improving the device’s open circuit voltage (VOC) is desirable, since it is 

an important measure of the cell’s power-generating potential. VOC arises from the energy 

difference between the electron quasi-Fermi level (EF) of the TiO2 n-type material and the 

equilibrium redox potential (ERedox) of the redox electrolyte system.14 So, increasing EF or ERedox 

should increase VOC. Recently, N-heterocyclic organic electrolyte additives, such as 4-tert-

butylpyridine, have been reported to increase VOC.15 PCE improvements were attributed to 

increased EF with surface passivation of the nanoporous TiO2 electrode to suppress undesirable 

electron-hole recombination at the inorganic/organic interface.16 The short circuit currents (JSC) of 

these devices were reportedly unaffected, so their overall PCEs increased due to increased VOC. 

Other VOC improvement methods include the use of redox electrolyte systems other than 

iodide/triiodide that have a higher oxidation potential and/or do not require bimolecular redox 

chemistry at the anode, such as the ferrocene/ferrocenium17 redox couple. 

In the work carried out at UMass Lowell using the fluorenone push-pull molecules, the 

goal was to improve basic DSSC performance by improving the redox electrolyte system for dye 

regeneration. Toward this goal, three of the Chapter 2-3 compounds (FODAA, FOBDAA, and 

FODAAS) were used as redox electrolyte solution additives in only ~10-5 M concentration. These 

compounds were used because their HOMO energies reside between the  HOMO of a typical 

DSSC dye (Z907) used in the study, and the I-/I3
- electrolyte system ERedox. PCE improvements 

that were observed are described below, and are attributed to an electron flow improvement 

between the electrolyte system and the oxidized dye by way of the additives’ intermediately 

arranged redox energies (Scheme 5.1).   
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Scheme 5.1: Electron transport processes in control and additive-modified DSSCs, and the 

additives’ molecular structures. Green, dye regeneration via energy cascade through 
additive’s HOMO. Blue, dye regeneration by direct electron transfer from I-/I3

-. 

This redox couple additive strategy is attractive for further development because it is 

versatile for testing a wide variety of compounds or combinations of compounds (like those 

described in Chapters 2 and 3), and it does not add any additional processing steps.  

5.3 Results and Discussion 

A fairly common DSSC configuration was used for all experiments in this study, that has 

Z907 ((cis-bis(isothiocyanato)(2,2′-bipyridyl-4,4′-dicarboxylato)(4,4′-di-nonyl-2′-bipyridyl)-

ruthenium(II)) adsorbed as the sensitizing dye onto a 10 µm thick nanoporous anatase TiO2 

electrode.18 Electrolyte solutions consisted of 0.8 M 1-propyl-3-methylimidazolium iodide and 

0.15 M I2 in 3-methoxypropionitrile, plus push-pull additives tested as described below. DSSC 

test devices were fabricated by Dr. Akshay Kokil at UMass Lowell according to literature 

protocols, using a platinized fluorine doped SnO2 glass counter electrode.19 

The absorption spectra of the additives are compared to that of Z907 in Figure 5.2 (9-

DAAA and 9,10-BAA were synthesized by Dr. J. Matthew Chudomel and used1 as electrolyte 

solution additives, but are outside the scope of this discussion). The molar absorptivity of Z907 is 

about 1.25104 M-1cm-1, much higher than that of the additives. HOMO energies (EHOMO) for all 

compounds were established from cyclic voltammetry half-wave potentials using the equation 
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EHOMO = - (4.8 + [oxidation potential in volts]) eV,20,21 and LUMO energies (ELUMO) were 

determined by adding the optical band gap (low energy onset in eV) to EHOMO. 

 

Figure 5.2: Normalized absorption spectra of Z907 sensitizing dye and the triarylamine 

additive molecules. 

To compare the effects of each triarylamine additive on DSSC performance, the device 

characteristics for a standard control cell were first measured, then aliquots of the additive in 

acetonitrile were added to the electrolyte and the measurements repeated. The incident photon-to-

current conversion efficiency (IPCE) spectra for the devices are similar to the absorption 

spectrum of Z907 and do not appear to change upon addition of the additives. Representative 

IPCE traces for DSSCs using FODAA and FODAAS as additives are shown in Figure 5.3. These 

results indicate that the current in the device is primarily generated from Z907 photoexcitation 

and not from sensitization by the additive molecules. IPCE yields increased substantially upon 

triarylamine additive addition, even though the additive concentrations are significantly lower 

than the N-heterocycle concentrations used in other22 DSSCs. 
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Figure 5.3: IPCE spectra for DSSCs with increasing amounts of FODAA (left) and 
FODAAS (right) in the redox couple solution. 

Current density versus voltage plots for DSSCs with the triarylamine additives FODAA, 

FODAAS, and FOBDAA are displayed in Figure 5.4. In a control experiment, neat acetonitrile 

(without additive) was added to the DSSC electrolyte solution, decreasing PCE, fill factor (FF), 

and JSC (Figure 5.4A) as expected, due to dilution of the iodide/triiodide electrolyte. By 

comparison, all of the D-A compounds gave improved DSSC performance up to a maximum 

additive concentration of 1-3 mM. No further improvement was observed past 3 mM. 

The power curves for DSSCs with addition of FODAA, FODAAS, and FOBDAA into 

the iodide/triiodide electrolyte are displayed in Figure 5.4B-D, showing significant improvements 

in JSC with little to no change in VOC. In contrast, previously studied N-heterocycles used for 

DSSC enhancement increase the VOC with no increase in the JSC.22 FODAA and FODAAS 

improved JSC by as much as 30% and 26% respectively versus control devices, and the devices’ 

current outputs correlate with improved IPCE spectra. These JSC improvements correspond to 

overall PCE improvements of 33% for FODAA and 30% for FODAAS. FOBDAA behaved 

similarly, improving relative PCE by 24% versus control devices. 
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Figure 5.4: Current density versus voltage (J-V) curves for DSSCs incorporating (A) 

Acetonitrile (B) FODAAS (C) FODAA and (D) FOBDAA. The arrows in plots display 

increasing acetonitrile (A) and D-A triarylamine additives (B-D). 

It is unlikely that the additive-enhanced PCEs are due to improved spectral energy 

harvesting by absorption and/or FRET for several reasons. The additives are present in very low 

concentration, their absorption energy is similar to that of Z907, and their molar absorptivities are 

much lower than Z907. Their fluorescence strength in polar solvent is also very weak (see 

Chapter 2) and mostly not in Z907’s absorption region, which rules out a FRET-based 

mechanism. Given the fact that the IPCE spectra track well with the Z907 absorption spectral 

profile, it is reasonable to conclude that the additives do not enhance DSSC performance by 

increasing light harvesting or charge pair generation. 

Thus, the PCE improvements must be a result of some other process. Because the 

additives’ EHOMO values lie between Z907 EHOMO (-5.40 eV) and iodide/triiodide ERedox (-4.85 eV) 

as shown in Scheme 5.1, the additives could provide an additional or alternate pathway for hole 

transport to regenerate Z907 either in cooperation with or instead of the iodide/triiodide redox 

couple. EHOMO for FODAA, FODAAS, and FOBDAA are -5.12 eV, -5.13 eV, and -5.02 eV 

respectively, obtained from cyclic voltammetric halfwave potentials. So, this explanation is 
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consistent with the improved IPCE and JSC data. Experiments using these additives without 

iodide/triiodide give severely decreased device performance, so they turn out not to be effective 

hole transport materials on their own in the DSSC. 

Due to the fact that the additive HOMO energies lie between the EHOMO/Redox of Z907 and 

iodide/triiodide, the additives can assist in electron shuttling between Z907 and the redox couple 

(Scheme 5.1). Because the iodide/triiodide electron shuttling process is so important for DSSC 

performance,8 increasing the effectiveness of this process should result in increased IPCE and JSC 

values as we observed. As such, it is reasonable to conclude that the additives are enhancing this 

electron shuttling process, although lack of PCE improvement past a certain concentration 

suggests a saturation of kinetics among multiple electron shuttling reactions. Unfortunately there 

is no obvious trend with respect to the additives’ capacity to improve JSC, so more work is needed 

to establish the mechanism of their effect on DSSC performance. But, these initial results are 

promising; and the structural versatility of fluorenone-based materials provides the opportunity 

for further study of structure-property-based mechanics involved in this work. 

5.4 Conclusions 

FODAA, FODAAS, and FOBDAA significantly improved DSSC performance as 

iodide/triiodide redox couple additives, in concentrations of less than 3 mM. The intermediately 

placed HOMO energies of these additives appear to assist multiple iodide/triiodide electron 

shuttling processes, improving the regeneration of Z907, although they are alone not effective 

replacements for iodide/triiodide. Unfortunately, the relationship between photoinduced charge 

generation and electrochemistry in DSSCs is complicated and requires simultaneous optimization 

of many variables. Consequently these additives may not necessarily improve DSSC performance 

with a different sensitizing dye or in other configurations. Despite these uncertainties, this work 

demonstrates a potentially useful new strategy for improving DSSC performance using 

structurally versatile yet simple fluorenone-based D-A compounds. 
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CHAPTER 6 

MOLECULAR ENGINEERING OF SQUARAINE-BASED DONOR-ACCEPTOR 

COMPOUNDS FOR ORGANIC PHOTOVOLTAIC DEVICES 

Adapted with permission from Della Pelle, A. M.; Homnick, P. J.; Bae, Y.; Lahti, P. M.; 
Thayumanavan, S. Effect of Substituents on Optical Properties and Charge-Carrier Polarity of 

Squaraine Dyes. J. Phys. Chem. C. 2014, 118, 1793-1799.1 Copyright 2014 American Chemical 
Society. http://pubs.acs.org/doi/abs/10.1021/jp410362d 

 

6.1 Introduction 

This chapter summarizes my part of a collaborative project with Dr. Andrea Della Pelle 

and Youngju Bae from Professor Sankaran Thayumanavan’s group, and Dr. Supravat Karak as 

part of the Energy Frontier Research Center at UMass. In collaboration with the Thayumanavan 

group, I synthesized one of a series of five squaraine triarylamine dyes with a range of electron 

donating (-OH, -C6H13), electron “neutral (-H), and electron withdrawing (-F, -CF3) groups on the 

amine’s peripheral aryl groups. Due to the donor-acceptor (D-A) nature of these dyes, their 

absorption spectra track varying electron donating character of the triarylamine donor module.2–5 

All dyes in the series exhibited an intramolecular charge transfer (ICT) absorption band with high 

molar absorptivity around ε = 104 – 105 M-1cm-1 at low energy with λmax = 660 – 690 nm (1.88 – 

1.80 eV). Due to the central intramolecular hydrogen bonding architecture, absorption spectra are 

also dependent on solvent polarity and hydrogen bonding potential, giving insight into the 

importance of π-coplanarity in these materials. The general structure and molecular design 

rationale for these materials is exemplified in Figure 6.1. 

 

Figure 6.1: General molecular design strategy for the squaraine-based materials in this 

chapter, using a systematic modular synthetic approach for FMO energy tuning. 

http://pubs.acs.org/doi/abs/10.1021/jp410362d
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My synthetic contribution was the OH-functionalized dye (SQ-OH, R = OH, R’ = H)), 

which has the lowest band gap dye in the series due to the strong electron donor OH substitution 

compared to the other dyes. Solution and neat solid absorption spectra onsets for SQ-OH 

occurred at 799 nm (1.55 eV) and 866 nm (1.43 eV) respectively, and the neat films absorb 

broadly throughout the visible spectrum from 540 – 866 nm (2.30 – 1.43 eV). The SQ-OH 

LUMO energy (ELUMO) was -3.9 eV based on electrochemical placement of the HOMO energy 

plus the optical band onset energy. This is considered an ideal ELUMO for the typical organic 

photovoltaic device (OPV) configuration using PC71BM as the n-type material (as discussed in 

Chapter 1).  

In addition to these encouraging results, all dyes in the series exhibited modest solid state 

charge carrier mobilities in a thin film field effect transistor (FET) configuration, as described in 

J. Phys. Chem. C.1 Dr. Della Pelle performed most of the FET mobility testing. 

6.2 Background 

Triarylamine and alkylamine squaraine-based compounds have recently become popular 

as p-type OPV active layer materials due to their typical low band gaps, high molar absorptivities, 

convenient synthetic accessibility, and low-lying HOMO and LUMO energies.6–16 These 

characteristics are ideal for OPVs, and reported PCEs are typically good: from around 4-5%6,7,9,15–

18 to just over 6%.14 But, PCEs can also be quite low for squaraine-based materials (below 

2%13,19–23) and many of the higher-performance solar cells required considerable optimization 

efforts. As a result, there is much molecular engineering work being done on these promising 

materials. 

 

Figure 6.2: Forrest’s amino squaraines used throughout the literature.7,15,16 
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Due to the importance of intermolecular interactions and frontier molecular orbital 

(FMO) energy tuning in OPV materials, a synthetic strategy similar to that in Chapters 2 and 3 

was used4,5 for systematically tuning the squaraine dye EHOMO using a triarylamine-based model 

structure described by Forrest and coworkers (Figure 6.2, DPSQ).7,15,16 The UMass molecular 

development approach was specifically designed to allow a broad range of optoelectronic and 

electrochemical tunability. 

6.3 Results and Discussion 

6.3.1 Molecular Design and Synthetic Procedure 

 

Figure 6.3 Molecular design of squaraine dyes with tunable bandgaps and HOMO energy 
levels.  SQ-H is the control molecule for reference to Forrest’s DPSQ. SQ-C6 and SQ-OH 

are squaraine dyes with increasing electron donor strength.  SQ-F and SQ-CF3 are 
squaraine dyes with increasing electron withdrawing strength. 

Using SQ-H as the control compound for literature comparison, a series of five squaraine 

dyes was synthesized as shown in Figure 6.3. In a manner analogous to the discussions in 

Chapters 2-3, Figure 6.4 depicts the expected EHOMO trend for the substituted 

bis(triarylamino)squaraines. 

 

Figure 6.4: Expected HOMO energy trend based on electron donating/withdrawing 

triarylamine substituents. The stronger the electron donor, the higher the EHOMO. 



110 
 

 
 

Synthesis of SQ-OH was relatively straightforward (Figure 6.5), starting with 

triarylamine donor module synthesis using Buchwald-Hartwig or Ullmann amination conditions 

in modest to good yield. The methoxy groups were then deprotected with boron tribromide in 

quantitative yield, and then condensed with squaric acid in modest to good yield to form the final 

squaraine dyes. This final step is simple, and the final compound typically precipitates from the 

reaction mixture as a pure and very darkly colored solid with no subsequent purification steps 

necessary (aside from washing away high boiling solvent with low boiling solvent). The synthetic 

procedures for all of the squaraines, including those synthesized by Dr. Della Pelle and Youngju 

Bae, are reported in J. Phys. Chem. C.1 

 

Figure 6.5 Representative example for SQ-OH synthesis. Other dyes were synthesized by 
Dr. Della Pelle and Youngju as reported in J. Phys. Chem. C.1 

6.3.2 Optoelectronic Properties 

SQ-OH, like the other squaraine dyes in this study, absorbs broadly throughout the 

orange-NIR region of the spectrum, at 540 – 866 nm, or 2.30 – 1.43 eV (Figure 6.6). Because the 

typical n-type BHJ material PC71BM absorbs throughout the UV-mid-visible region, these 

materials are spectroscopically a good complementary match. 

 

Figure 6.6: SQ-OH DCM solution (red) and neat thin film (black) UV-vis absorption 

spectra. Film absorption intensity normalized to DCM solution molar absorptivity. 
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The central hydroxyl groups on the triarylamine donor modules play an essential role, 

since they are hydrogen bonded with the squarylium oxygens, resulting in the planarization of the 

molecules' cores. To test the importance of this hydrogen bonding, the compounds were dissolved 

in chloroform (CHCl3) and titrated with increasing amounts of dimethylsulfoxide (DMSO), a 

highly polar, hydrogen bond-accepting solvent. In neat DMSO, the compounds' low band gap 

ICT bands were very strongly diminished or completely quenched with concomitant emergence 

of a higher energy absorption band more reminiscent of a non- or weaker-push-pull triarylamine 

(Figure 6.7). This is presumably due to squarylium-triarylamine out-of-plane twisting, which 

interrupts the D-A-D π-conjugation and thereby increases the excitation energy gap.1 

 

Figure 6.7: Left, Titration spectra for SQ-OH in 0-100% DMSO in CHCl3, normalized to 

100% CHCl3. Right, titration curves compiled from the lower energy versus higher energy 
transition strengths using the normalized transition intensities from the titration spectra. 

6.3.3 Electrochemical Properties 

Figure 6.8 depicts compares the SQ-OH FMO energy along with those of the other 

squaraine dyes and the typical BHJ n-type material PC71BM. FMO energies were calculated from 

the cyclic voltammetric redox potentials (performed by Dr. Della Pelle), except for SQ-CF3 

whose EHOMO was determined by subtracting the optical band gap energy from ELUMO. In good 

accord with the initial hypothesis, LUMO energies were essentially locked in by the squarylium 

core around -3.9 eV while the HOMO energies increased with the triarylamine substituents’ 

increasing electron donor strengths. These electrochemical results agree with the absorption 

spectra red shifts observed when going from strongly electron withdrawing to strongly electron 
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donating triarylamine substituents. Most importantly, these data in combination with the 

optoelectronic properties show that the squaraine-triarylamine molecular design approach with 

tunable triarylamines is a useful molecular development model for varying the compounds' redox 

properties.  

 

Figure 6.8: FMO energies for SQ-compounds compared to PC71BM. SQ-compound FMO 

energies obtained using cyclic voltammetric redox potentials. SQ-CF3 EHOMO was calculated 
by subtracting the solution phase optical band gap from ELUMO. 

6.4 Summary of Squaraine Dye Physical Chemistry 

The D-A-D squaraine dyes – including the SQ-OH system primarily described in this 

chapter – were specifically designed to have low band gaps, low-lying LUMO energies, strong 

molar absorptivities, and straightforward synthetic accessibility. All of the dyes absorbed well 

into the red-NIR region of the solar spectrum with high molar absorptivities on the order of 104 – 

105 M-1cm-1. Neat thin film absorption spectra are broad, covering the low energy region of the 

visible-NIR spectrum from 540 – 866 nm (2.30 – 1.43 eV).LUMO energies were locked at about-

3.9 eV while HOMO energies were systematically tunable in good accord with triarylamine 

donor strength.  

These physical chemical properties are very promising for OPV device testing, and serve 

as a useful proof-of-principle molecular design model for future materials. Due to its lowest band 

gap out of the five compounds in the series, SQ-OH was tested as the p-type active layer in 

solution processed BHJ solar cells by Dr. Supravat Karak, as part of the UMass Energy Frontier 
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Research Center’s materials design and device optimization research efforts. The PCEs for SQ-

OH-based devices were as high as 4.8%,24 a competitive value for squaraine-based OPVs,6–16 

suggesting that this design strategy is quite promising. These results are described in the next 

section. 

6.5 SQ-OH:PC71BM BHJ Solar Cell Results 

Due to the fact that SQ-OH has the most ideal band gap throughout the SQ series, it was 

the first to be tested as a p-type OPV active layer. Dr. Karak fabricated the devices using a typical 

configuration: transparent indium tin oxide (ITO) anode on glass, poly(ethylenedioxythiophene): 

poly(styrenesulfonate) (PEDOT:PSS) electron blocking layer, SQ-OH:PC71BM active layer, 

lithium fluoride (LiF) hole blocking layer, and aluminum (Al) cathode (Figure 6.9). At the time of 

this writing, these results are being prepared for submission.24 

 

Figure 6.9: Left, SQ-OH:PC71BM device configuration, using ITO anode, PEDOT:PSS 

electron blocking layer, LiF hole blocking layer, and Al cathode. Right, energy level 
diagram for SQ-OH device components. Neat thin film SQ-OH and PC71BM EHOMO 

determined by Professor Volodimyr Duzhko using ultraviolet photoelectron spectroscopy 
(UPS). 

Although a detailed discussion of the device engineering and characterization processes 

are outside the scope of this chapter, it is useful to discuss them briefly because they provide 

insight into some of the bulk material properties of this new squaraine compound. First, because 

these devices were solution-processed via spin-coating, both SQ-OH and PC71BM had to be 

soluble in the processing medium. A typical solvent for PC71BM is chlorobenzene (CB), but SQ-
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OH is poorly soluble in this medium. While a better solvent for SQ-OH is the more polar solvent 

tetrahydrofuran (THF), PC71BM is poorly soluble in THF. To avoid wasteful and time consuming 

testing of a broad range of solvents to find one compatible with both materials, Dr. Karak utilized 

a THF/CB mixture that fortunately dissolved both components sufficiently for spin-coating. The 

optimized THF:CB ratio used for all subsequent SQ-OH-based OPV devices was 3:7 THF:CB. 

Squaraine materials in the literature tend to have a relatively short exciton diffusion 

length, as low as 4.5 nm, in contrast to PC60BM’s exciton diffusion length of approximately 23 

nm.18 One way to increase the exciton diffusion length is by thermal or solvent vapor annealing, 

which works well to improve squaraine-based OPV PCE.6,7,10,15,16 Even with better nanophase 

crystallinity, the exciton diffusion length is still shorter than fullerene-based n-type materials, so 

devices using a squaraine-fullerene blend require a low squaraine:fullerene weight ratio. 

6,7,10,15,16,18 Dr. Karak’s device optimization process is consistent with these observations, 

requiring a 1:5 SQ-OH:PC71BM weight ratio to obtain 0.63% PCE, the best out of the other ratios 

tested (0.21%, 0.43%, and 0.32% PCE using 1:1, 1:3, and 1:7 weight ratios, respectively). This 

0.63% PCE was obtained using neat THF as the processing solvent, but using the optimized 3:7 

THF/CB solvent blend increased PCE considerably to 2.44%. 

Before doing any additional annealing techniques or using any special solvent additives, 

2.44% PCE is already better than many of the optimized squaraine-based devices in the 

literature.13,19–23 Due to the fact that crystallinity and nanoscale morphology are so important for 

exciton and charge transport in bulk organic materials, thermal and/or solvent vapor annealing are 

useful techniques for improving nanodomain size and crystallinity. Similar to solvent annealing, 

using a high-boiling solvent additive that selectively dissolves one of the p- or n-type active layer 

materials is a useful method of manipulating the crystallinity and nanodomain size scales of just 

one of the p/n components. 
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A typical additive for this purpose is 1,8-diiodo-n-octane (DIO), which tends to 

selectively dissolve PC71BM versus most p-type materials. Thus, using DIO as a processing 

solvent additive typically has the effect of increasing fullerene domain crystallinity and allowing 

for better control over the n-type material phase and overall device nanomorphology. Dr. Karak 

tested DIO as a solution processing solvent additive, which increased device PCE to 3.74% from 

2.44% using just 0.5% DIO by volume in 3:7 THF/CB. Subsequent thermal annealing at 130 °C 

for 10 minutes further increased PCE to 4.44% on average, and to 4.8% for the single best device 

(Figure 6.10). 

  

Figure 6.10: SQ-OH solution vs. neat thin film absorption spectra (left) and current density 

versus voltage curve for BHJ solar cells using 1:5 SQ-OH:PC71BM and 0.5% diiodooctane 
additive. 

Electronic properties for optimized SQ-OH:PC71BM OPVs are shown in Figure 6.10. 

Using a device configuration consisting of ITO/PEDOT:PSS/SQ-OH:PC71BM/LiF/Al, a 

maximum PCE of 4.8% was obtained with VOC = 0.84 – 0.86 V, JSC = 10 mA/cm2, and FF = 0.53. 

This final PCE is well within the upper echelon of squaraine-based OPV devices in the 

literature.6,7,9,15–18 Although outside the scope of this discussion, much additional device 

characterization was performed by Dr. Feng Liu from Professor Thomas Russell’s research 

group. These results consist of some detailed morphological studies using several advanced light 

source x-ray diffraction techniques, and are reported in detail in the manuscript submitted for 

publication. 
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6.6 Conclusions 

SQ-OH is a promising variant of the low band gap, high molar absorptivity family of 

squaraine-based p-type OPV materials. Solution-processed BHJ type solar cells using SQ-OH and 

PC71BM spin-cast from a 3:7 mixed tetrahydrofuran/chlorobenzene solvent system containing 

0.5% diiodooctane exhibited a reproducible average efficiency of 4.4% with a top PCE of 4.8%. 

This is a competitive value among the squaraine-based OPV materials in the literature, especially 

since device engineering strategies and material preparation/purification efforts were not as 

intensive as those reported elsewhere.6,7,9,14–18 Final optimized device PCEs are sevenfold higher 

than for devices fabricated using the initial testing conditions using just THF as the processing 

solvent with no active layer p/n ratio optimization, annealing, or solvent additives. These latter 

device engineering techniques are cheap, simple to use, and are scalable to an industrial 

production setting. So, even though much more work needs to be done in this area, these SQ-OH-

based devices can serve as promising model systems for the continuing advancement of OPV 

device technology. Most importantly, this work represents the synergistic power of collaborative 

efforts among synthetic and physical organic chemists, device fabrication engineers, and device 

characterization physicists. The organic photovoltaics field is progressing forward in great strides, 

and collaborative interdisciplinary relationships are a major part of this advancement. Because 

new materials design is at the foundation of this technology, and these materials may serve as 

useful molecular design models for future materials. Chapter 8 discusses some of the future 

directions this work may lead, from a molecular engineering perspective. 
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CHAPTER 7 

ORGANIC PHOTOVOLTAIC DEVICES USING FMBDAA36 AS A MOLECULAR LOW 

BAND GAP HOLE TRANSPORTING MATERIAL 

7.1 Introduction 

This chapter summarizes organic photovoltaic (OPV) device results obtained by Dr. 

Supravat Karak as part of the Energy Frontier Research Center (EFRC) at UMass, using the low 

band gap small molecule FMBDAA36 described in Chapter 31 (Figure 7.1). FMBDAA36 was 

tested as an OPV device p-type material due to its promising optoelectronic and electrochemical 

properties. FMBDAA36’s optical band gap in the solid state is approximately 1.6 eV, with EHOMO 

= -5.2 eV (determined by Professor Volodimyr Duzhko using ultraviolet photoelectron 

spectroscopy, UPS) and ELUMO = -3.6 eV = EHOMO + (optical band gap). These FMO energies are 

close to the ideal values (-5.4 eV and -3.9 eV, respectively) desired for organic photovoltaics 

when using PC71BM as the n-type active layer component. With this configuration, OPV devices 

would have a good maximum theoretical voltage of 1.0 V. 

  

Figure 7.1: FMO energies for FMBDAA36 and PC71BM. LUMO-LUMO offset is 0.6 eV, 

and maximum theoretical device voltage is 1.0 V based on FMBDAA36 EHOMO to PC71BM 
ELUMO difference of 1.0 eV. HOMO energies were determined by Professor Volodimyr 

Duzhko using UPS. 

FMBDAA36’s optoelectronic properties are also quite promising. FMBDAA36 absorbs 

strongly throughout much of the visible spectrum, from approximately 400 – 700 nm (3.1 – 1.8 

eV) with two λmax at approximately 475 nm (2.61 eV, ε = 10,000 M-1cm-1) and 600 nm (2.07 eV, ε 
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= 5,010 M-1cm-1) in acetonitrile (Figure 7.2, left). As a neat thin film, FMBDAA36 absorbs over 

400 – 750 nm (3.1 – 1.6 eV) with λmax at approximately 500 nm (2.48 eV) and 625 nm (1.99 eV). 

Due to this broad absorption profile and strong molar absorptivity, FMBDAA36 looks very dark 

purple, almost black, to the naked eye as a neat film. PC71BM also absorbs strongly in this region 

of the visible spectrum, most importantly where FMBDAA36’s absorption is weaker at 

approximately 400 nm and 575 nm). When FMBDAA36 and PC71BM are blended as thin films, 

their collective absorption is nearly panchromatic over 400 – 750 nm (Figure 7.2, right). 

  

Figure 7.2: FMBDAA36 and PC71BM UV-vis absorption spectra (left). UV-vis absorption 

spectra for thin film mixtures of FMBDAA36 and PC71BM (right). Thin film UV-vis spectra 
obtained by Dr. Karak. 

Recently, Chi and coworkers2 showed that a close variant of FMBDAA36 (with methyl 

instead of methoxy groups, Figure 7.3) gives promising solid state photocurrent transport and 

photoconversion efficiencies, with their best single-junction OPV device (using C70 as an electron 

acceptor material) having a PCE of 4.04% with VOC (open-circuit voltage) = 0.99 V, JSC (short 

circuit current) = 7.64 mA/cm2, and FF (fill factor) = 0.53. Also recently, Andrew and Bulovic3 

synthesized some dicyanofulvalenes (e.g. DCF1 Figure 7.3) for use as a PC61BM supplement for 

poly(3-hexylthiophene)- (P3HT)-based OPV devices. Bulovic’s compounds are interesting 

because they are constructed from a cyclopentadienylidene core like the fluorenone- and 

fluorenylidene malononitrile-based compounds discussed in Chapters 2-3. DCF1 was able to 

replace up to 50% of the PC61BM in 1:1 P3HT:PC61BM devices, increasing PCE by 

approximately 55% from 2.9% in P3HT:PC61BM control devices to 4.5% in 
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P3HT:DCF1/PC61BM devices. These results further encouraged us to test FMBDAA36 as a p-

type active layer material with PC71BM. 

 

Figure 7.3: Bis-cyanofulvalene analogues of FMBDAA36 used in OPV devices.2,3 

7.2 Results and Discussion – FMBDAA36:PC71BM BHJ Solar Cells 

Although a detailed discussion of Dr. Karak's solution-processed BHJ device engineering 

and characterization processes using FMBDAA36 are outside the scope of this chapter, a basic 

description of the device fabrication is given here. Dr. Karak fabricated FMBDAA36:PC71BM 

OPV devices by spin-coating from chlorobenzene (CB) onto glass substrates treated with indium 

tin oxide (ITO) and coated with a poly(ethylenedioxythiophene):poly(styrenesulfonate) 

(PEDOT:PSS) electron blocking layer. Lithium fluoride (LiF) was then applied as a hole blocking 

layer, followed by thermal deposition of aluminum (Al) cathodes. The device configuration and 

energy levels are shown in Figure 7.4. 

  

Figure 7.4: Left, FMBDAA36:PC71BM device configuration, using ITO anode, PEDOT:PSS 

electron blocking layer, LiF hole blocking layer, and Al cathode. Right, energy level 
diagram for FMBDAA36 device components. Neat thin film FMBDAA36 and PC71BM 

EHOMO determined by Professor Volodimyr Duzhko using ultraviolet photoelectron 
spectroscopy (UPS). 
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After optimizing the FMBDAA36:PC71BM material ratio, Dr. Karak obtained a 

maximum PCE of 4.1% using 1:3 (w/w) FMBDAA36:PC71BM. Optimized devices gave JSC = 

10.35 mA/cm2, VOC = 0.89 V, and FF = 0.448 (Figure 7.5 and Table 7.1). This PCE is essentially 

the same as reported for Chi and coworkers’2 single junction device PCE of 4.04% with VOC = 

0.99 V, JSC = 7.64 mA/cm2, and FF = 0.53 using their FMBDTA36 material. Our higher JSC 

compared to Chi’s can be attributed (at least in part) to the fact that FMBDAA36’s thin film 

absorption onset is 1.60 eV while Chi’s FMBDTA36’s onset is at 1.77 eV. This broader 

absorption profile may allow the device to collect more photons for photoconversion – in 

principle, more photoconversion results in higher current. Our VOC is lower than Chi’s, despite 

the similar HOMO energies of the materials (FMBDAA36 is -5.2 eV, FMBDTA36 is -5.25 eV as 

also determined by photoelectron spectroscopy), although different device fabrication procedures 

can also effect VOC. Our FF is somewhat lower, but Chi’s devices were vacuum-processed while 

ours were solution-processed so it is difficult to compare this sensitive parameter. 

  

Figure 7.5: Current density versus voltage curve for BHJ solar cells using 1:3 
FMBDAA36:PC71BM. 
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Table 7.1: FMBDAA36:PC71BM ratio optimization and OPV device performance results. 

Weight ratio 
(FMBDAA36:PC71BM) 

JSC 
 (mA/cm2) 

VOC  
(V) 

FF 
(%) 

η  
(%) 

1:1 7.14 0.86 34.1 2.1 

1:2 9.09 0.87 34.2 2.7 

1:3 10.35 0.89 44.8 4.1 

1:4  4.18 0.90 34.3 1.3 

 

7.3 Conclusions 

FMBDAA36 was specifically designed to have a low band gap, low-lying LUMO 

energy, strong molar absorptivity, and straightforward synthetic accessibility. FMBDAA absorbs 

broadly throughout the visible spectrum with modest molar absorptivity, and has favorable FMO 

energies. Due to these promising optoelectronic and electrochemical properties, FMBDAA36 was 

tested as the p-type active layer in solution processed BHJ solar cells by Dr. Supravat Karak. The 

PCEs for FMBDAA36-based devices were as high as 4.1%, a good value for a simple molecular 

material,2 suggesting that this design strategy is quite promising. Indeed, FMBDAA36 is a 

particularly simple molecule in comparison to many small molecule materials being tested for 

photovoltaics in the literature,4 so 4.1% PCE is an encouraging accomplishment. Most 

importantly, these results show the value of employing the molecular engineering strategies 

discussed in Chapters 2-3. FMBDAA36 was specifically engineered using a bottom-up physical 

chemical approach, using simple, synthetically accessible molecular components. Since new 

materials design is at the foundation of OPV device technology, this material may serve as useful 

molecular design model for future materials. 
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CHAPTER 8 

FUTURE WORK: π-MACROCYCLES, INDIGO-BASED MATERIALS, AND 
PANCHROMATIC A-D-A’ CHROMOPHORE ENGINEERING 

8.1 Introduction 

Bottom-up control of molecular electronic properties with simultaneous control over 

photovoltaic device nanoarchitecture has long been a "grail" of interest in materials chemistry due 

to its inherent challenge and large application payout.1 Dramatic improvements in organic bulk 

heterojunction solar cell efficiency can be realized by enhancing visible spectrum absorption 

strength and coverage and improving frontier molecular orbital energy alignment, exciton/charge 

mobility, and p-/n-type domain nanoarchitecture.2–6 Designing new materials that address all of 

these molecular optimization criteria presents a considerable synthetic challenge; but there are 

some fundamental molecular design principles that can provide rational synthetic direction. 

Absorption characteristics and energy level alignment can be controlled through selective 

highest occupied and lowest unoccupied molecular orbital energy (EHOMO and ELUMO) engineering 

as described in Chapters 1-3.2–5 Absorption strength can be enhanced through direct conjugation 

effects7–9 as well as by increasing π-conjugation length or optical cross section with large 

aromatic π-extended chromophores.5,10–13 Large aromatic π-systems and hydrogen bonding 

capability can also impart strong intermolecular interactions like π-stacking and extended 

hydrogen bonded networks, which can aid in exciton/charge transport throughout the material, 

and can also assist p-n nanoarchitecture engineering.14–21 

In addition to enhancing transport and nanoarchitecture properties, strongly self-

assembling materials can also increase absorption breadth in the solid state, further enhancing 

spectral activity. Interdigitated nanoscale domains with good interfacial contact enable efficient 

exciton dissociation and charge transport to the electrodes in an organic photovoltaic device, and 

conjugated materials containing triarylamine modules often have modest hole mobility 

characteristics as p-type materials.2–4,6 Given these structure-property design tools, it should be 
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possible to engineer new high-performance materials using a bottom-up molecular design 

approach that allows each property to be systematically adjusted in a modular, synthetically 

efficient way. 

This chapter describes three research proposals that integrate the design principles and 

molecular design strategies discussed in previous chapters. The first proposal describes some 

preliminary and proposed work on the design and synthesis of large π-macrocycle chromophores. 

These materials are intended to have FMO energies and self-assembly properties that are tunable 

over a broad range by manipulating their molecular structure. The second proposal involves the 

synthesis and hydrogen bond-directed self-assembly of indigo-based compounds. These 

compounds were specifically designed to be straightforward to synthesize, and to possess a broad 

range of tunability for testing substituent and connectivity effects on their optoelectronic, 

electrochemical, charge carrier mobility, and self-assembly properties. Finally, the third proposal 

describes the design and synthesis of potentially panchromatically absorbing squaraine-based 

materials using the molecular design principles from Chapters 2, 3, and 6. 

8.2 Preliminary and Proposed Development of Fused Aromatic π-Macrocycles as Self-

Assembling Push-Pull Chromophores 

π-Macrocycle materials are promising targets for OPVs and general organic electronics 

applications due to their potential supramolecular assembly properties.14–19 They can have 

excellent absorption strength and spectral coverage due to their large π-conjugation system.5,10–13 

Also, large aromatic systems can impart strong intermolecular π-stacking properties, which can 

aid in exciton/charge transport throughout the material and assist p-n nanoarchitecture 

engineering.14–19 In addition to these transport and nanoarchitecture properties, strongly self-

assembling materials can also have increased absorption breadth and optical density in the solid 

state, further enhancing spectral activity.  

Several new disk-shaped π-macrocycle-cored donor-acceptor molecules were designed 

that should provide synthetic access to all of these properties, most notably columnar π-stacking 
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self-assembly and considerable electronic and morphological tunability at each synthetic step. 

The proposed synthetic route should also provide the opportunity to develop a new set of 2D 

polymeric covalent organic framework (COF) electronic materials using strategies recently 

reported in the literature.22–31 

The ultimate goal of this project is to prepare new high-performance photovoltaic 

materials by using a modular synthetic approach that integrates each design requirement into 

individual modular components for systematic molecular property engineering. 

8.2.1 Background Information for Truxene- and Heterotriangulene-Based π-Macrocycles 

Truxene and truxenone derivatives have seen some use in OLEDs32 and NLO 

materials.33,34 The work done in both fields indicates that these structures are promising 

candidates for organic electronic materials due to their propensity to form π-stacked networks. 

Truxenones are particularly interesting due to their large molar extinction coefficients (~35,000-

95,000 M-1cm-1), multiple reversible redox states, and strong self-assembly properties.32–35 

Another module of interest is the heterotriangulene synthesized by Professor Dhandapani 

Venkataraman’s group36 at UMass Amherst, and utilized by Wan37 and Zhang38 as a triangular 

acceptor component that could serve as another electron-withdrawing core for the proposed 

systems (Figure 8.1). 

 

Figure 8.1: π-Macrocycles synthesized by DV Group (left), Wan et al. (middle), and Zhang 
et al. (right). 

The truxenone system is related to the FO- and FM-based chromophores discussed in 

Chapters 2-3. Truxenone is structurally comprised of three fused fluorenones sharing one central 

benzene ring. Thus, reactive similarities to fluorenones should follow in such a way that the 
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triangulene chromophores proposed should be attainable using similar procedures to those used 

for the fluorenone systems already made. The proposed systems should behave similarly to those 

already characterized, with the added benefit of much larger molar absorptivities and better 

intermolecular assembly properties. 

 

In addition to these optoelectronic and intramolecular assembly properties, bridge-

carbon-substituted truxenes are especially promising targets due to the fact that many of them 

have been found to adopt bowl-shape geometries.34,35,39 The benefits of these geometric properties 

arise because such bowl-shaped molecules have been shown computationally to interface well 

with PCBM (Figure 8.2).39–42 As discussed, increasing donor-acceptor interactions through an 

inherent molecular drive for intra- and inter-material self-assembly is one of the keys to 

engineering efficient materials. 

 

Figure 8.2:39 DFT results exhibiting dithiafulvalenyl truxenes (a-c) interacting with C60 
through π-π stacking. See Martín et al (permission license number 3342620583207).39  

8.2.2 Molecular Design and Preliminary Work 

I prepared the electron-poor “acceptor” π-macrocycles tribromotruxenone and tris-

iodoheterotriangulene shown in Figure 8.3, and attempted to couple 1 to styrene or diarylamine 

derivative donor modules. Synthetic procedures for truxenone and heterotriangulene-based 

compounds are shown in Scheme 8.1-Scheme 8.3. This architecture was designed to allow for 

EHOMO tuning based on the electron donating strength of the donor module, and provide a means 
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to control packing/self-assembly characteristics by the nature of the donor functionalities chosen. 

The π-macrocycle cores serve as the LUMO-tuning acceptor modules, and they should form 

columnar π-stacks.36–38,43 

 

Figure 8.3: Truxenone and heterotriangulene π-macrocycle acceptor cores, and proposed π-
macrocycle D-A compounds. 

The π-macrocycle core modules chosen for this work also provide the opportunity for 

subsequent LUMO energy (ELUMO) tuning via Knoevenagel condensation at the ketone groups, as 

described previously in Chapter 3 and shown in Figure 8.4. Core functionalization should also 

impart interesting self-assembly properties, since installing dicyanomethylene groups in place of 

the ketones is predicted39–42 by DFT to impart a bowl-shaped molecular deformation which may 

provide better interfacial contact with adjacent fullerene-type materials (Figure 8.2). This 

molecular design plan thus serves to address multiple issues important for photovoltaic materials 

design: band gap and FMO energy control, self-assembly properties, good interfacial interactions 

with fullerene-based n-type materials, and favorable π-overlap for exciton and charge transport. 
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Figure 8.4: Proposed D-A π-macrocycle compounds, condensed to their bis-cyanofulvenoid 

analogues. 

Unfortunately, this sub-project did not yield any of the pure final compounds proposed. 

Tribromotruxenone and triiodoheterotriangulene are poorly soluble in most organic solvents 

useful for Heck or Buchwald-Hartwig coupling reactions, so the only compound produced in 

even a crude, impure state was tris(trimethoxystyryl)truxenone (TrOS). This crude material is a 

reddish-brown solid which looks much like its fluorenone analogue FODS when dissolved in 

CHCl3.44,45 LR-MS (FAB+) indicates the presence of the desired molecular ion peak along with 

various fragmentation peaks. Molecular ion peaks corresponding to mono- and dicoupled 

products are absent, suggesting reaction completion. However, HPLC, TLC, 1H-NMR, and MP 

all indicate that the product is impure. All attempts to purify TrOS were unsuccessful, although 

its deep red color and positive FAB-MS results are promising. 

 

Scheme 8.1: Synthesis of 4,9,14-tribromotruxenone, adapted from the literature.33 
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Scheme 8.2: Attempted synthesis of truxenone-cored D-A compounds TrOS and TrODAA. 

 

Scheme 8.3: Synthesis of triiodoheterotriangulene, adapted from the literature.36,38,46 

Lambert47 and coworkers recently synthesized the proposed TrODAA compound, which 

exhibited a molar absorptivity of around 30,000 M-1cm-1 at about 500 nm, with strong spectral 

coverage between 300-600 nm. In my hands, it was too difficult to obtain these materials – likely 

due to the difficulty in obtaining pure tribromotruxenone, and its poor solubility. But, Lambert’s 

results lend promise to this molecular design although their materials’ electronic and 

electrochemical properties have not been reported at the time of this writing. 

Should it be possible to obtain pure tribromotruxenone more easily, the proposed 

truxenone materials in Figure 8.3 and Figure 8.4 might be worth pursuing in light of these 

preliminary results and Lambert’s findings. In particular, condensation of Lambert’s TrODAA 

with malononitrile to form the proposed TrCNDAA may decrease the band gap from 600 nm 

(2.06 eV) to around 790 nm (1.56 eV) if the 0.5 eV band gap decrease trend described in Chapter 

3 would translate to these systems. In addition, since the D-A connectivity is pseudo-para in 

these systems, the bis-cyanofulvenoid TrCNDAA analogue may behave panchromatically like its 
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fluorenylidene analogue FMBDAA36. Lastly, computational evidence39–42 indicates that 

sterically-hindered truxene compounds tend to be bowl-shaped, which may provide improved 

interfacial interactions between TrCNDAA or TrCNS and a fullerene derivative (Figure 8.2). 

For photovoltaic purposes, further pursuit of the proposed heterotriangulene materials 

HTODAA (Figure 8.3) and HTCNDAA (Figure 8.4) is not recommended. Although their 

molecular architecture lends itself to the optoelectronic tunability strategies discussed here and in 

earlier chapters, their D-A connectivity is pseudo-meta and thus not likely to give large ICT 

molar absorptivities. Indeed, carbazole- and anisyl-ethynylene-functionalized heterotriangulene 

derivatives studied by Zhang38 and Wan37, respectively, exhibit molar absorptivities that are 

somewhat low (~12,000 M-1cm-1) for their large π-cross section. While the proposed 

heterotriangulene systems are interesting, it was decided to discontinue pursuing them. 

8.2.3 Highly Structurally Tunable π-Macrocycles via Soluble Synthetic Intermediates 

Despite the above difficulties, π-macrocycle chromophores are still philosophically and 

practically worth pursuing as long as they can be obtained by route of soluble precursors and 

intermediates. One such possibility is proposed below (Scheme 8.4), which integrates a soluble π-

macrocycle core obtained from soluble precursors that can serve as an electron-rich donor module 

as well as a self-assembly platform. This synthetic route should provide a high degree of HOMO 

tunability based on the wide range of primary amine starting materials that can be chosen (critical 

step A). With a soluble π-macrocycle in hand, installation of aldehyde components should 

provide a wide range of LUMO tunability based on the many electron-poor condensation partners 

that could be chosen (critical step B).  
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Scheme 8.4: Soluble D-A π-macrocycle proposal, using a wide variety of soluble components 

for structural and physical chemical engineering. 

In this Phase 1 of work, the EHOMO and self-assembly molecular properties would be 

factored into a new π-macrocycle molecular core, starting with the bromination of commercially 

available tritolylamine for the preparation of cyclization precursor 1 (Scheme 8.5). This 

intermediate would then be cyclized with various primary amines using Buchwald-Hartwig 

amination conditions to form intermediate 2 and its R-substituted variants. These amine 

functionalities are specifically designed to have various electron donating strengths for EHOMO 

tuning, and different alkyl/aryl chains for morphological tunability. This critical step provides a 

high degree of electronic tunability and solubility during the cyclization process. This synthetic 

strategy also provides a substantial improvement over previous work in this area, since large 

aromatic cores, once cyclized from their soluble precursors, are typically very insoluble, difficult 

to obtain in high yield, and thus extremely hard to work with.32–38,48 In studies where the core is 

soluble upon cyclization, the electronic properties are not as orthogonally tunable as proposed 

herein.15–17 In this work, the aromatic core would be cyclized with modules specifically designed 

to increase the solubility of the final product, while also fulfilling the primary objective of EHOMO 

and intermolecular interaction engineering. This dual-purpose synthetic strategy is inherently 

efficient and straightforward, and should provide fundamental insight into the efficient design of 

new large-core aromatic materials in a synthetically-versatile manner. 
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Scheme 8.5: Modular engineering of EHOMO levels and intermolecular interactions using 

primary amines with various electronic and side chain interaction properties. 

In addition to providing substantial EHOMO engineering capability, this strategy would 

provide a means to control self-assembly and exciton/charge mobility characteristics by the 

nature of the alkyl/arylamine chosen. The triarylamine core should provide modest exciton/hole 

mobility due to its large conjugation, and the fact that triarylamines typically impart good hole 

transport characteristics. Due to the wide range of molecular properties engineered into these new 

core materials, they should possess a range of photophysical and electronic transport properties. 

Since much more work needs to be done to thoroughly understand mobility characteristics in 

organic electronic materials, this proposal should provide important insight in this area.49,50 

Specifically, the individual tuning of morphology and electronic properties by use of amines with 

different side chains and electron donating characteristics should provide the means to study 

mobility as independent functions of morphology and electronic properties: set morphology with 

side chain properties and then tune the electronics, or set the electronics and then tune the 

morphology properties by side chain interchange (Scheme 8.5). 

 

Scheme 8.6: Modular engineering of ELUMO levels using electron withdrawing groups with 
various electronic properties. 
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Phase 2 of development will involve the synthesis of materials 4 via straightforward 

condensation chemistry with electron-withdrawing acceptor modules for ELUMO engineering 

(Scheme 8.6). This second series of synthetic modifications introduces ELUMO control through 

straightforward condensation chemistry with various electron accepting modules. π-Macrocycle 

core 2 and its R-substituted variants will be oxidized to the trialdehyde under mild conditions, for 

subsequent Knoevenagel condensation with the chosen acceptor modules. These modules are 

either commercially available or straightforward to synthesize, thereby increasing the synthetic 

efficiency of producing these new materials. Due to the different electron withdrawing strengths 

of the modules chosen, the ELUMO should be tunable as a function of module choice. It should also 

be possible to tune ELUMO separately from EHOMO due to the distinct separation donor-acceptor 

portions of the structures.12,13 

Following the preparation of this large library of new materials, their optoelectronic and 

electrochemical properties would be thoroughly characterized using UV-vis-NIR absorption and 

fluorescence spectroscopy, and cyclic voltammetry. These data would provide crucial information 

about the new materials’ FMO energies, band gaps, and electrochemical characteristics. These 

materials are also expected to exhibit some different molecular assembly properties compared to 

their non-functionalized precursors, due to their peripheral π-conjugated acceptor modules. 

Specifically, these peripheral π-systems should impart useful intermolecular interactions in 

addition to their optoelectronic and electrochemical properties. As with the materials obtained in 

Phase 1, it should also be possible to relate the photophysical and electronic transport properties 

of these Phase 2 materials back to the molecular design components. Since molecular property 

engineering is the primary objective of this work, these resulting structure-property correlations 

should augment fundamental design principles for future work. 

Finally, π-macrocycles like this should also be amenable to 2-dimensional covalent 

organic framework (COF) integration, shown in Scheme 8.7. 2-D COFs have become quite 

popular recently,22–31 and this synthetic materials technology may be useful for photovoltaic or 
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other organic electronic applications. With the proposed π-macrocycles in hand, especially 

intermediate 3, it should be possible to synthesis a wide variety of COFs using commercially-

available or easily synthesized coupling partners. COF1 for example, would be a push-pull COF, 

which may be useful for photovoltaic applications, while COF2 may be more applicable to p-

type field effect transistors (due to its lack of LUMO control character). These proposals are just 

two examples to illustrate the richness of this research approach. 

 

Scheme 8.7: Covalent organic framework possibilities for π-macrocycles, using proposed π-

macrocycle 3 and primary-amine-containing condensation partners. 

8.3 Proposed Development of Indigo-Based Organic Electronic Materials 

Indigo-based materials have recently become popular p-type materials for organic 

photovoltaic (OPV) devices51 and p-/n-type and ambipolar materials for field effect transistors 

(FETs) due to their modest molar absorptivities,20,52–54 self-assembly properties,21 and modest to 

excellent charge carrier mobilities.20,55–58 Indigo dyes are straightforward to synthesize from 2-
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nitrobenzaldehydes and acetone in water/NaOH solution,59,60 and there are many commercially 

available starting materials. Although this section will not focus on isoindigo-based materials, 

there are some excellent review articles describing their molecular design for organic electronic 

applications.61–65 The work proposed in this section describes a relatively simple, straightforward 

approach to obtain a wide variety of functionalized indigos using relatively inexpensive, 

commercially available starting materials. The basic molecular structures of the proposed indigo-

based materials are shown in Figure 8.5. 

  

Figure 8.5: (A) Indigo, with the 5,5’- and 6,6’-connectivity positions labeled. (B) 
“Nindigo”,52–54 an aniline-condensate of indigo, with variable R groups for different 

electronic and molecular packing effects. (C) Isoindigo. 

Unfortunately most indigo-based OPV devices are on the lower end of the PCE scale in 

tests to date; but, they often exhibit good charge carrier mobility properties in FET devices, which 

is attributed to strong hydrogen-bonding networks in the solid state (Figure 8.6). For example, 

indigo and Tyrian purple (5,5’-dibromoindigo) exhibit quite good hole and electron thin film FET 

mobilities20 at 0.01-0.2 cm2/V·s. Although most of these indigo derivatives will likely be 

sparingly soluble in most organic solvents relevant to device fabrication, similar compounds have 

been vacuum deposited onto substrates for OPV and FET testing.20,21,56,57 No testing seems to 

have been done on single crystals grown from solution or by chemical vapor deposition (CVD) 

techniques. Single crystal and vacuum-deposited thin film device fabrication techniques are well 

established66–68 for highly crystalline materials, so this may be considered a relatively available 

area for fast advances. 
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Figure 8.6: (A) indigo and (B) nindigo intramolecular hydrogen bonding. (C) Indigo intra- 
and intermolecular hydrogen bonding and crystal packing scheme.20 

Synthetically, this work could be done by an undergraduate59,60 or a young graduate 

student due to its simplicity; so the work is technically and logically straightforward. But, this 

work also spans a broad landscape of indigo-based material derivatives, so substituent and π-

connectivity effects can be studied on a physical chemical, single crystal (when available), and 

device level (5,5’- vs. 6,6’-connectivity, Figure 8.5). This broad functionalization landscape 

should provide fundamental insight into the systematic design and synthesis of structurally simple 

small molecule organic electronic materials. Systematic structure-property engineering is 

important for organic electronics, so this has the potential to be a rich area of study. 

Finally, this work should have a strong educational impact on the research student since a 

wide range of functional compounds can be synthesized and tested relatively quickly and with 

limited initial technical expertise. Educational development during this project would follow a 

natural progression of technical difficulty, starting with straightforward one-step synthesis and 

subsequent development of crystallization/sublimation purification techniques. CVD and solution 

crystallization techniques66,68–71 and rudimentary thin film and single crystal device testing 

techniques should take no more than six months of dedicated practice to develop (with some 

initial mentoring). This work would also expose the student to a broad range of other important 

organic electronics skills, including optoelectronic and electrochemical testing via UV-vis-NIR 

absorption and fluorescence spectroscopy and cyclic voltammetry, computational chemistry, x-

ray crystallography (XRD), physical organic molecular design, and invaluable collaborative soft 

skills while learning these techniques and teaching them to others. 
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The ultimate goal of this project is to provide fundamental insight into the development 

of small molecule OPV and OFET materials by exploring a wide structure-property landscape 

using few synthetic steps. The specific synthetic plan is summarized in Figure 8.7. Tyrian purple 

and indigo are known ambipolar charge transport materials in the FET configuration,20,55–58 but 

compounds 3-7 have not been reported at the time of this writing. These proposed materials span 

a wide range of functionality, including aryl fluorides and alkoxy/amine donor groups in different 

connectivities. 

 

Figure 8.7: Proposed indigo-based materials for OPV and FET applications. 

8.3.1 Experimental Plan and Expectations for Indigo-Based Materials 

Bottom-up molecular control over charge carrier mobility and optical band gap in organic 

electronic materials has long been a topic of interest in synthetic organic chemistry. This is 

especially true for air-stable organic n-type materials,72–75 which are difficult to design due to 

LUMO limitations (cannot be below -3.8 eV)68 and intermolecular packing requirements,74 and 

due to the fact that still little is known about why and how they work.76 Incorporation of halogens 

(usually fluoro)74,77,78 or cyano74,79 groups tends to help, but mobility trends are more difficult to 
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establish with n-type materials. As a result, designing new materials while establishing 

fundamental molecular design principles presents a considerable synthetic challenge. But, due to 

our understanding of the limited but effective pool of excellent charge carrying organic materials, 

there are some fundamental molecular design principles that can provide rational synthetic 

direction. 

This proposal focuses on frontier molecular orbital (FMO) energy tuning in two different 

ways: by substituent type and connectivity around the indigo π-system, in addition to indigo-to-

nindigo conversion (Scheme 8.8) using aniline derivatives with different electronic properties 

(electron donating versus withdrawing substituents). Part of this molecular design strategy 

involves intermolecular interaction engineering, which is driven by indigo’s inherent inter- and 

intramolecular hydrogen bonding capabilities (Figure 8.6). The intermolecular interaction 

landscape will be tested by varying the type and connectivity of peripheral π-system substituents, 

in addition to indigo-to-nindigo conversion with aniline derivatives. The latter should provide 

similar intramolecular hydrogen bonding capability, while providing a π-system (aniline 

derivative) that is out of plane relative to the indigo core. Like rubrene, this may provide extra 

modes of contact between adjacent molecules, and alternative electron/hole percolation 

directionality within the crystal lattice. In addition, this extra functionality may impart better 

solubility to the nindigo materials due to the wide range of solubilizing anilines that can be used 

(e.g. R=alkoxy). 

 

Scheme 8.8: Nindigo synthesis from indigo and aniline derivatives, following the procedure 
used by Hicks52 and coworkers. 

As discussed in previous chapters, inherent synthetic tunability is crucial for the 

development of a wide variety of materials for fundamental structure/property analysis. Robust 
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synthetic methods are important, so that a broad structural landscape can be surveyed with 

minimal synthetic effort. This is expected to be the case with these proposed indigo-based 

materials, since they can be assembled in just one synthetic step from commercially-available 

starting materials using fast, high-yield, low-difficulty synthetic methodology. Since energy level 

modulation is an important part of electronic materials development, this proposal makes use of 

several different functional groups, from electron withdrawing (e.g. fluoro, bromo) to electron 

donating (e.g. alkoxy, amino), for the purpose of synthetically tuning the frontier molecular 

orbital (FMO) energies. Substituent connectivity effects are also important, and can be easily 

studied using this synthetic approach.  

Conversion of the indigo to derivatives to their nindigo analogues can be completed in 

just one step, and provides an even broader structure/property molecular design landscape. This 

structural change should allow for finer tuning of the FMO electronics, in addition to molecular 

packing and solubility. In all, this work should serve as a strong molecular engineering platform 

based on the structural simplicity and broad range of functionality inherently built into the 

proposed molecular architecture. 

If the new indigo-based materials perform well as organic electronic materials, this work 

should provide a strategic stepping stone for future indigo-based materials development. Due to 

the synthetic simplicity of the materials proposed herein, it should be possible to quickly survey a 

broad functional landscape for the purpose of establishing reliable molecular design trends. 

Because indigo based compounds have already shown promise as hole and electron transport 

materials, this work should propel forward the optimization of this molecular architecture, and/or 

at the very least provide fundamental insight into the design and synthesis of new small molecule 

organic electronic materials. 

8.4 Panchromatic Materials Design 

This section briefly outlines a molecular engineering proposal built using the concepts 

discussed in Chapters 2, 3, and 6. Ideally, an organic photoconversion material would absorb 
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strongly and broadly throughout the visible spectrum, spanning the entire 400-900 nm or 3.1-1.4 

eV region (Figure 1.1). While photoexcitation bands in π-conjugated organic materials can be 

quite broad, most organic materials do not absorb over the entire 1.7 eV width of the visible 

spectrum. In OPV devices, this issue is typically circumvented by blending p/n materials that 

additively cover the visible spectrum, with one compound being a mid-low band gap absorber 

(e.g. SQ-OH from Chapter 6) and the other being a mid-high band gap absorber (e.g. PC71BM). 

 

Figure 8.8: Solar flux as a function of wavelength (bottom axis) and energy in electron volts 
(top axis). 

Unfortunately, this blending strategy limits the number of p/n material pairs that can be 

used together. If one p-type (or n-type) material could do all of the photoabsorption in the device, 

it would be possible to focus device engineering efforts on pairing electronically and 

morphologically compatible partner materials without the added frustration of spectral coverage 

pairing. For example, it might not be best to pair a p-type material with PC71BM for 

morphological, economic, or other reasons; but if a p-type material only covers the low energy 

region of the solar spectrum, it might be necessary to sacrifice ideal morphology to collect more 

photons – a difficult balancing process between optimizing photon collection, charge pair 

generation, and exciton/charge transport. 

There are few literature examples of molecular design attempts to specifically engineer 

panchromatic absorption behavior in organic electronic materials involving rational molecular 

design rules, although a couple are worth noting. Jiang and coworkers80 performed a density 
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functional theory study on numerous azulene-porphyrins (Figure 8.9), where low molecular 

symmetry and low HOMO-LUMO/LUMO+1 gaps provide multiple strong transitions throughout 

the visible-NIR spectrum. Jiang’s theoretical azulene-porphyrins possessed desirable 

panchromatic absorption based on their computations, but porphyrins can be difficult to 

synthesize and purify, and are often poorly soluble without peripheral solubilizing alkyl groups. 

So, while porphyrin dyes such as zinc phthalocyanines have worked well in OPV81 and DSSC82 

devices,  they are not necessarily ideal synthetic targets. Grätzel et al.83,84 and Meyer et al.85 

describe design rules for panchromatic ruthenium-based organometallic sensitizers for dye 

sensitized solar cells. Their organoruthenium systems are heteroleptic, with one set of ligands 

providing strong σ-donating character to destabilize the Ru t2g orbital, and another set of ligands 

providing a low π* orbital for lower energy metal to ligand charge transfer (MLCT). These 

organoruthenium structural/electronic properties provide multiple allowed optical transitions 

within the visible-NIR spectrum, giving dark black dyes that absorb well between 400 – 700 nm 

or 400 – 800 nm depending on the ligands used. Figure 8.9 shows an example of Grätzel’s 

ruthenium dye. 

 

Figure 8.9: Panchromatic azulene-porphyrin (Jiang et al.)80 and heteroleptic 
organoruthenium complex (Grätzel et al.).83,84 

This proposal aims to provide a physical chemical model for organic non-porphyrin 

molecular design, and some examples of molecular structures that may accomplish the goals 

dictated by the proposed model. The proposed materials were designed using some of the 

fluorenone and squaraine results and underlying physical chemistry discussed in Chapters 2, 3, 

and 6. 



145 
 

 

8.4.1 Proposed Physical Chemical Model for Panchromatic Absorption Behavior 

This proposal takes advantage of some of the inherent properties of donor-acceptor 

molecules. In strong D-A molecules, the HOMO is located over the donor region of the structure 

while the LUMO is located over the acceptor region of the structure. Photoexcitation creates a 

charge-separated excited state, with the excited state electron residing over the acceptor 

component of the molecule, where the LUMO is largely separated from the HOMO region of the 

molecule. 

It might be possible to take advantage of this inherent excited state charge separation, by 

connecting a donor module to two different acceptor modules with different electron affinities. 

An example of this would be using an A1-D-A2 molecular architecture where A2 is a stronger 

acceptor than A1. This would be, in principle, like having two donor-acceptor compounds within 

one structure, with the two acceptor modules separated by their common donor component. As 

separate molecules, A1-D and A2-D would have different band gaps defined by a common 

HOMO energy (driven by the common donor module) and different LUMO energies each driven 

by the different electron affinities of the acceptor modules. This is represented by the perturbation 

theory model in Figure 8.10. In this example, A2 is a stronger acceptor (has a lower LUMO 

energy) than A1, and thus D-A2 has a lower band gap than D-A1 (Eg2 < Eg1). 

 

Figure 8.10: Perturbation theory model for two separate D-A compounds where they each 
have the same donor module but different acceptor modules with different electron affinity. 
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As an A1-D-A2 triad, the acceptor modules are only conjugated together through their 

common donor module. But, since the LUMO of each D-A1 and D-A2 resides on the acceptor 

modules, the acceptor modules should not be able to interact in the A1-D-A2 triad’s excited state 

(no molecular orbital overlap, since the donor module intervenes). If the acceptor modules cannot 

interact due to spatial separation of their molecular orbitals, then the A1-D-A2 triad may have two 

allowed photoexcitation processes: a low energy process exciting an electron from the donor to 

A2 (HOMO-LUMO), and a higher energy process exciting an electron from the donor to A1 

(HOMO-LUMO+1). If the acceptor modules’ electron affinities differ by 0.5 eV, and each D-A1 

and D-A2 ICT band is approximately 0.5 eV wide at full width half max (FWHM), then this 

would give combined FWHM absorption coverage over 1.5 eV, which is most of the 1.7 eV 

width of the visible spectrum. Most of the compounds in this dissertation have ICT FWHM 

around 0.5 eV, so this is not an unreasonable expectation. 

Extrapolating from Chapters 2, 3, and 6, the proposed compounds in Figure 8.11 

integrate a squarylium core with diarylamine donor modules. These compounds are designed as 

A1-D-A2-D-A1 chromophores, where the D-A2-D portion is a low band gap squaraine-diarylamine 

and the A1-D portion is mid-band gap with a weaker acceptor module. Because the squaraine-

triarylamines in Figure 8.11 are so similar to those in Chapter 6, it is reasonable to expect them to 

impart a low ELUMO, low band gap, and strong molar absorptivity. Benzothiadiazole- and 

fluorenone-based materials are also typically low band gap strong absorbers with fairly low 

LUMO energies, although not as low as the Chapter 6 squaraines. If the proposed physical 

chemical model holds, then this general molecular architecture may be able to combine all of 

these properties into one small molecule material that absorbs throughout most of the visible 

spectrum. 
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Figure 8.11: Proposed examples of A-D-A’ donor-acceptor materials for panchromatic 

visible spectrum absorption. 

8.5 Concluding Remarks 

The π-macrocycles, indigos, and A-D-A’ dual acceptor push-pull compounds should 

serve as a logical extension of the work described in this dissertation. The proposed materials 

were specifically designed to possess a high degree of synthetic tunability for a broad range of 

important organic electronic materials properties. This group of proposals is intended to provide 

specific physical chemical insight into charge carrier mobility engineering, FMO energy tuning, 

panchromatic absorption behavior, and self-assembly design. Should this work be successful, 

these materials should provide fundamental insight into a wide variety of organic electronic 

materials design, most notably photovoltaics and field effect transistors.  
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CHAPTER 9 

EXPERIMENTAL AND SYNTHETIC PROCUEDURES 

9.1 Materials, Abbreviations, Instrumentation, Computational Methods 

All reactions were carried out in sealed round bottom flasks under nitrogen atmosphere 

unless otherwise specified, and heated using sand baths. Tetrahydrofuran (THF) and toluene were 

freshly distilled from sodium/benzophenone before use, and dichloromethane (DCM) was freshly 

distilled from phosphorous pentoxide. All other solvents and commercial reagents were used as 

received unless otherwise stated.  Abbreviations used for various solvents and reagents can be 

found on page 157. 

All new compounds were identified by 1H-NMR and high resolution mass spectrometry 

(FAB). 1H-NMR and 13C-NMR spectra were recorded on a Bruker Avance 400 MHz FT-NMR 

spectrometer, and the chemical shifts recorded in ppm downfield of tetramethylsilane. Mass 

spectral data were obtained at the University of Massachusetts Mass Spectrometry Facility, which 

is supported in part by the National Science Foundation. UV-vis-NIR, photoluminescence, and 

FT-IR spectra were obtained at room temperature using a Shimadzu UV-3600 UV-vis-NIR 

spectrophotometer, a Photon Technology International QuantaMaster 30 

Phosphorescence/Fluorescence spectrophotometer, and a Bruker Alpha FT-IR spectrophotometer 

fitted with a Platinum ATR QuickSnap sampling module, respectively. Purities were established 

by HPLC obtained on a Buck Scientific BLC-10-11 instrument with a C18 reverse-phase column, 

using acetonitrile as solvent eluent at a rate of 0.25 mL/min where HPLC analysis is indicated 

below. Melting points are uncorrected. Cyclic voltammograms were obtained using a BASi 

Epsilon Electrochemical Workstation equipped with platinum auxiliary and working electrodes, 

and an Ag/AgCl reference electrode using 0.1 M tetrabutylammonium hexafluorophosphate as 

conducting electrolyte in acetonitrile and 0.01 M ferrocene in acetonitrile as an external standard. 

X-ray crystallography was either performed at UMass using a Bruker-Nonius Kappa-CCD 

diffractometer, or done where stated by Prof. Joel T. Mague at Tulane University or by Dr. John 
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A. Schleuter at Argonne National Lab. Field effect transistor (FET) charge carrier mobility 

measurements were carried out under inert atmosphere using an Agilent 4156C precision 

semiconductor parameter analyzer. All computations were carried out using Gaussian 09 

Revision B.01 or Spartan10 on a Linux computer running openSuSE. Molecular geometries were 

optimized using the methodologies described for each system, and molecular orbital diagrams 

were generated from the final checkpoint files using GaussView version 5.0.9 or Spartan10 with 

default parameter settings, unless otherwise stated. The following abbreviations are used for 

various solvents and reagents: 
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Table 9.1: Abbreviations for solvents and reagents used in this chapter. 

1,1'-Bis(diphenylphosphino)ferrocene DPPF n-butyllithium n-BuLi 

Antimony pentachloride SbCl5 Nitric acid HNO3 

Boron tribromide BBr3 ortho-dichlorobenzene o-DCB 

Bromine Br2 Palladium (0) dibenzylideneacetone Pd2dba3 

Cesium carbonate Cs2CO3 Palladium (II) acetate Pd(OAc)2 

Chloroform CHCl3 Palladium on carbon Pd/C 

Chromium trioxide CrO3 Palladium tetrakis Pd(PPh3)4 

Copper Cu Potassium carbonate K2CO3 

Copper (I) iodide CuI Potassium fluoride KF 

Copper (II) sulfate CuSO4 Potassium hydroxide KOH 

Copper perchlorate CuClO4 Potassium permanganate KMnO4 

Deuterochloroform CDCl3 Silver hexafluoroantimonate AgSbF6 

Dichloromethane DCM Silver sulfate AgSO4 

Diethyl ether Et2O Sodium carbonate Na2CO3 

Dimethylsulfoxide DMSO Sodium hydroxide NaOH 

Ethanol EtOH Sodium tert-butoxide t-BuONa 

Ethyl acetate EtOAc Sulfuric acid H2SO4 

Hexadeutero dimethylsulfoxide DMSO-d6 Tetrahydrofuran THF 

Hydrochloric acid HCl Thin layer chromatography TLC 

Hydrogen bromide HBr Thionyl chloride SOCl2 

Iodine I2 Tin tetrachloride SnCl4 

Lead tetraacetate Pb(OAc)4 Toluene Tol, PhMe 

Magnesium sulfate MgSO4 Tributyltin chloride SnBu3Cl 

Methanol MeOH Trifluoroacetic acid TFA 

Methyltriphenylphosphonium bromide CH3PPh3Br Tri-ortho-tolyl phosphine P(o-tolyl)3 

N,N’-dimethylethylenediamine DMEDA Tri-tert-butyl phosphine P(t-Bu)3 

N,N-dimethylformamide DMF Water H2O 
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9.2 Triarylamine Oxidation Experiments1 

Neutral triarylamines were oxidized by two procedures. For the precipitation protocol, 

roughly 30 μM amine was dissolved in toluene and treated with SbCl5 to give a very dark, 

powdery precipitate that could be isolated by filtration, and stored under ambient conditions for 

months. Re-dissolution of these precipitates in dichloromethane readily yielded the characteristic 

colors of the aminium cation species. 

For the solution oxidation protocol, the triarylamine was dissolved in dry 

dichloromethane and directly treated with oxidants such as SbCl5, AgSbF6, Pb(OAc)4; 

alternatively, it was dissolved in acetonitrile for oxidation with CuClO4. A set of at least five 2 

mL triarylamine stock solutions on the order of 10-5 M were treated by mixing with increasingly 

concentrated 2 mL oxidant solutions, from 0.2 eq up to 5 eq oxidant, and their UV-vis-NIR 

spectra were obtained immediately. Titration curves were plotted for absorption peak maximum 

values versus amounts of oxidant used, and molar absorptivities were calculated for the oxidized 

species by assuming 100 % conversion of the neutral triarylamine precursors. 

EPR spectra were obtained at room temperature by the solution oxidation protocol, or by 

re-dissolving products from the precipitation oxidation protocol. Hyperfine coupling constants 

were obtained by spectral simulation, and g-values obtained for spectra were calibrated using a 

built-in frequency counter and an E-036TM teslameter on a Bruker Elexsys E-500 spectrometer. 

9.3 Field Effect Transistors (FET - Thin Film, Spin-Cast) 

A given compound was dissolved in a good solvent typically at about 10 mg/mL 

concentration, and spin-coated at 1000 RPM onto a Fraunhofer OFET-G4 substrate circuit for one 

minute with a 3 second ramp-up time. The substrates were purchased from Fraunhofer IPMS 

(Dresden, Germany) as prefabricated wafers with sixteen device regions, four sets each of four 

different channel lengths, 2.5, 5.0, 10, and 20 μm. The device configuration was a bottom-

contact, Si/SiO2 (230 nm SiO2) substrate with four sets of 30 nm thick gold contacts with 1.0 mm 

channel width. Spin-coated devices were analyzed under inert atmosphere using an Agilent 
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4156C precision semiconductor parameter analyzer. Two transistors of each channel length were 

tested as-spun, and the final two transistors in each channel length set were tested after annealing 

at approximately 60 °C for 30 min. Squaraine material FETs were analyzed by Dr. Andrea Della 

Pelle. 

9.4 Chemical Vapor Deposition (CVD) 

Crystallization by chemical vapor deposition was performed under nitrogen flow using 

either a homemade tube furnace or a Thermo Scientific Lindberg Blue M tube furnace. The 

general process is shown in Scheme 9.1 below, illustrated using a homemade furnace with 

temperature zones controlled by the spacing between heating wire wraps (black spiral). A quartz 

tube (about 1’’ inner diameter) is fitted with several 3’’ glass tubes arranged end-to-end along its 

entire length. A small spatula full of the sample material is placed in a small pile within the inner 

glass tube at the high-temperature zone, and the quartz tube is inserted in a larger tube with 

heating wire wrapped around it with variable spacing to control temperature. The quartz tube 

ends are fitted with gas inlet/outlet caps, and purified inert gas (typically nitrogen) is passed 

slowly through the CVD chamber. 

 

Scheme 9.1: Typical chemical vapor deposition crystal growth process. Reproduced from 
Bao and coworkers (permission license number 3360900411130).2 

Once the apparatus is assembled and the gas is flowing, the temperature at the hot zone is 

increased to approximately the melting point of the sample material. BUT, the effective hot zone 

temperature varies from sample to sample, since some materials require a higher or lower 

temperature than their recorded melting point to sublime an appreciable amount. As a result, trial 

and error with temperature control and gas flow rates is typically unavoidable. Under the proper 

operating conditions, chemical vapor is transported with the carrier gas from the source material 

down the tube toward increasingly cooler temperature zones, where the material may finally 
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crystallize or form a film. The intermediate zone between the crystallization and source zones 

may collect heavy impurities, while the cooler zones past the crystallization zone may collect 

lighter impurities. Purified material at the crystallization zone can be collected by carefully 

removing the inner glass sleeves. Most of this work was done in with mentorship and assistance 

from Professor Alex Briseño using home-made CVD apparatus. 

9.5 General Synthetic and Purification Procedures 

Copper Purification Procedure 

I2 (0.4 g, 3.15 mmol)was dissolved in 40 mL of acetone with stirring. Cu powder (2.0 g, 

31.5 mmol, mesh size not available) was added and the mixture stirred for 15 min. During this 

time, the mixture becomes grayish in color and the Cu settles to the bottom when stirring is 

stopped. The solids were filtered and were twice stirred in 50 mL of 1:1 concentrated 

HCl/acetone for 15 min with subsequent filtration. The final filtered solids were washed with 

acetone, and dried under vacuum. This purified copper retained catalytic effectiveness for a 

couple of weeks when stored in a desiccator with no special efforts taken to ensure inert 

atmosphere. 

General Procedure for the Oxidation of Fluorene Derivatives: 

This procedure was adapted from the literature.3 A fluorene derivative was combined 

with sufficient acetic anhydride to make a 0.1 M solution. Then, 2.5 eq of CrO3 was slowly added 

and the reaction mixture stirred at room temperature overnight, during which it turned from a 

dark brown slurry to a dark green slurry with yellowish particulates. The mixture was poured into 

excess 1:1 ice/H2O, acidified with conc. HCl, and stirred until the ice was melted. Vacuum 

filtration yielded a powdery yellow solid which was thoroughly washed with water to give the 

product. Recrystallization from 95% EtOH afforded pure product if the crude material was 

impure after filtering and washing (generally only necessary for large-scale reactions, e.g. 10 g).  
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Alternative Procedure for the Oxidation of Fluorene Derivatives (via Cs2CO3): 

A 9-H-fluorene derivative and 2.5 eq of Cs2CO3 were added sequentially to sufficient dry 

DMSO to make a 0.5 M solution, and dry air was passed over the briskly stirred reaction mixture 

overnight. The reaction mixture was then poured into water, filtered, and the aqueous layer 

extracted with solvents such as DCM or EtOAc. The organic layers were combined, dried over 

anhydrous MgSO4 , filtered, and the solvent evaporated; the crude product is purified as described 

if necessary. Yield is typically quantitative. 

General Procedure for Heck Coupling: 

Aryl halide (ArX; X = Br or I), a styrene derivative, 0.2 eq of P(o-tolyl)3 plus 0.07 eq of 

Pd(OAc)2 (with respect to ArX) were combined under nitrogen atmosphere. Dry DMF (5 mL per 

1 mmol of ArX) was added and the reaction mixture was heated to 80 ºC under nitrogen. After 

stirring at 80 ºC for 30 min, freshly nitrogen-sparged triethylamine (1 mL per 1 mmol of ArX) 

was added and the reaction stirred until complete by TLC. The reaction mixture was then allowed 

to cool to room temperature, poured into approximately aqueous 1 M HCl  and stirred for 15 min. 

Any resulting solids were separated by filtration and dissolved in CHCl3:the filtrate was also 

extracted using CHCl3. The combined organic layers were filtered through Celite, dried over 

anhydrous MgSO4, and concentrated in vacuo. The resulting solids were purified as described. 

General Procedure for Buchwald-Hartwig Amination: 

Aryl halide (ArX; X = Br, I), aryl amine, 0.02 eq of P(t-butyl)3, 0.02 eq of Pd2dba3, and 

1.06 eq of t-BuONa were combined under nitrogen. Toluene (5 mL per 1 mmol of ArX) was 

added and the reaction mixture was heated at 110 °C until complete by TLC. The reaction 

mixture was allowed to cool to room temperature, filtered through Celite, and concentrated in 

vacuo. The resulting solids were purified as described below for each specific compound 

prepared using this procedure.  
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General Procedure for Knoevenagel Condensation Reactions between Fluorenone 
Derivatives and Malononitrile: 

This procedure was adapted from the literature.4  A mixture of 1 eq of fluorenone 

derivative and 6 eq of malononitrile were added to a flask under nitrogen atmosphere, enough dry 

DMSO added to make a 0.1 M solution, and the reaction mixture heated with stirring at 110 °C 

under nitrogen until complete by TLC. The reaction was then cooled to room temperature, and 

worked up and purified as described below for each specific compound prepared using this 

procedure.  

General Procedure for Buchwald/Ullmann-Goldberg Amidation: 

This procedure was adapted from the literature.5,6 Aryl halide (ArX; X = Br, I), BOC-

aniline derivative, 0.2 eq of N,N’-dimethylethylenediamine (DMEDA), 0.1 eq of CuI, and 1.5 eq 

of K2CO3 were placed in a flask under nitrogen, toluene (freshly distilled from potassium, 5 mL 

per 1 mmol ArX) was added and the reaction mixture heated at 110 °C until complete by TLC. 

[CAUTION: potassium metal is very hazardous if exposed to even small amounts of water, 

alcohols, or organohalides! Appropriate precautions are required!] The reaction mixture was 

allowed to cool to room temperature, filtered through Celite, and concentrated in vacuo. The 

resulting solids were purified as described below for each specific compound prepared using this 

procedure. 

General Procedure for Ullmann Coupling: 

Arylamine, 3 eq of aryl iodide, 0.2 eq of Cu (freshly purified using the above procedure), 

0.1 eq of anhydrous CuSO4, 0.1 eq of sodium ascorbate, and 2.3 eq of anhydrous K2CO3 were 

placed in a flask under nitrogen, o-dichlorobenzene (5 mL per 1 mmol arylamine) was added, and 

the reaction mixture heated at 230 °C until complete by TLC. The reaction mixture was allowed 

to cool to room temperature, filtered through Celite, and concentrated in vacuo. The resulting o-

DCB solution/suspension was purified as described below for each specific compound prepared 

using this procedure. 
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General Procedure for Demethylation: 

A methoxybenzene derivative was dissolved in dry DCM under nitrogen and cooled to -

78 °C. BBr3 (1 eq per –OCH3 group) was added dropwise and the reaction mixture stirred at room 

temperature overnight. The reaction mixture was poured onto ice, neutralized with saturated aq. 

Na2CO3 (caution: foaming), and extracted with DCM. The combined organic layers were dried 

over anhydrous MgSO4, filtered, and concentrated in vacuo. Crude product was typically 

acceptable to use in subsequent steps without further purification. 

9.6 Specific Synthetic and Purification Procedures 

2,7-Dibromo-9H-fluoren-9-one: 

 

Prepared using the general procedure for fluorene derivative oxidation from 2,7-

dibromofluorene (Aldrich). Mp = 202-203 ºC (lit mp = 202-203 °C).3 1H-NMR (400 MHz, 

CDCl3): 7.40 (d, 2H, J = 8 Hz), 7.64 (dd, , J = 8 Hz, 2 Hz, 2H), 7.77 (d, J = 2 Hz, 2H).  

2-Bromo-9H-fluoren-9-one: 

 

Prepared using the general procedure for fluorene derivative oxidation from 2-

bromofluorene (Aldrich). Mp = 147-149 ºC (lit mp = 146-148 °C).7 1H-NMR (400 MHz, CDCl3): 

7.31 (s, 1H), 7.40-7.42 (d, 1H, J = 8 Hz), 7.50-7.52 (m, 2H), 7.61-7.63 (dd, 1H, J = 8 Hz, 2 Hz), 

7.66-7.68 (d, 1H, J = 8 Hz), 7.77 (d, 1H, J = 2 Hz).  

2-Bromo-7-iodo-9H-fluorene: 

 

2-Bromofluorene (1.00 g, 4.08 mmol), I2 (0.434 g, 1.71 mmol), and KIO3 (0.210 g, 0.979 

mmol) were added to a round bottom flask under nitrogen atmosphere. Upon addition of a 

solution of 1.2 mL H2SO4 in 22 mL of acetic acid, the resulting suspension turned dark red and 

the mixture was heated at 90 ºC for 2 h. The reaction was cooled to room temperature and the 
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resulting yellow precipitate was vacuum filtered and washed sequentially with acetic acid and 

then H2O. The filtered solid was recrystallized from DCM/MeOH to give 1.03 g (68% yield) of 

white crystalline solid. Mp = 184-185ºC (lit mp = 178-180 °C).8,9 1H-NMR (400 MHz, CDCl3): 

3.86 (s, 2H), 7.48-7.51 (m, 2H), 7.60-7.62 (d, 1H, J = 8 Hz), 7.67 (s, 1H), 7.69-7.71 (d, 1H, J = 8 

Hz), 7.88 (s, 1H).  

2-Bromo-9H-fluorylinene malononitrile: 

 

Prepared using the general procedure for Knoevenagel condensation from 2-bromo-

fluorenone. 85% yield. Mp = 297-299 ºC (no lit mp).  1H-NMR (400 MHz, CDCl3): 7.36 (m, 1H), 

7.44 (d, 1H, J = 8 Hz), 7.53 (m, 1H), 7.64 (dd, 1H, J = 8 Hz, 2 Hz), 8.39 (d, 1H, J = 8 Hz), 8.50 

(d, 1H, J = 2 Hz). 

9H-fluorylinene malononitrile: 

 

Prepared using the general procedure for Knoevenagel condensation from fluorenone. 

97% yield. Mp = 231-233 ºC (lit mp = 230-232 °C).10 1H-NMR not obtained. 

2,7-Dibromo-9H-fluorylinene malononitrile: 

 

Prepared using the general procedure for Knoevenagel condensation from 2,7-

dibromofluorenone. 96% yield. Mp not obtained. 1H-NMR not obtained. 

2-Bromo-7-iodo-9H-fluorenone: 

 

Prepared using the general procedure for fluorene derivative oxidation from 2-bromo-7-

iodofluorene. 97 % yield. Mp = 198-200 ºC (no lit mp)  1H-NMR (400 MHz, CDCl3): 7.28 (d, 
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1H, J = 8 Hz), 7.39-7.41 (d, 1H, J = 8 Hz), 7.62-7.64 (dd, 1H, J = 8 Hz, 2 Hz), 7.77 (d, 1H, J = 2 

Hz), 7.83-7.86 (dd, 1H, J = 8 Hz, 2 Hz), 7.97 (d, 1H, J = 2 Hz).  

Dibromophenanthrenequinone [3,6-dibromophenanthrene-9,10-dione]: 

 

This procedure was modified from the literature.11 9,10-phenanthraquinone (10.4 g, 50.0 

mmol) and benzoyl peroxide (0.400 g, 1.66 mmol) were dissolved in 50 mL of nitrobenzene. The 

solution was heated to 110 °C while stirring. Br2 (5.57 m L, 108 mmol) was slowly dripped into 

the reaction mixture using an addition funnel, while exposing the vessel to light using a simple 

desktop incandescent lamp. The mixture was heated at 110 °C for another 2 h, then cooled to 

room temperature, poured into 100 mL of cold methanol, and the resulting precipitate filtered. 

Recrystallization from hot nitrobenzene afforded 11.84 g of product as yellow-orange needles 

(65% yield). Mp = 294-296 °C (lit mp = 278-279 °C).12  1H NMR (DMSO-d6, 400 MHz): 7.85-

7.78 (dd, 2H, J = 8 Hz, 2 Hz), 7.92-7.94 (d, 2H, J = 8 Hz), 8.67 (s, 2H).  

3,6-Dibromofluorenone [3,6-dibromo-9H-fluoren-9-one]: 

 

This procedure was modified from the literature.11  In a three-necked round-bottom flask, 

KOH (5.98 g, 107 mmol) was dissolved in about 15 mL of H2O and heated to 130 °C. Next, 3,6-

dibromophenanthrenequinone (3.00 g, 8.20 mmol) was added and the reaction heated with 

stirring for 30 min, during which it became viscous and darker in color. Then, KMnO4 (6.87 g, 

43.4 mmol) was slowly added to the reaction mixture over 2 h, which was allowed to react for an 

additional hour at 130 °C. The mixture was cooled to room temperature and treated with several 

drops of conc. H2SO4. Solid sodium bisulfite was slowly added to quench excess KMnO4 until the 

solution became pale yellow in color. The resulting solids were filtered, washed liberally with 

cold water, and thoroughly air-dried. Recrystallization from hot 95% ethanol gave 1.86 g of 
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product as a yellow powder (67 % yield). Mp = 258-261 °C (lit mp = 320-323 °C).13  1H NMR 

(CDCl3, 300 MHz): 7.50-7.58 (m, 2H), 7.67-7.71 (m, 2H), 8.08-8.14 (m, 2H).  

Trimethoxystyrene (1,2,3-trimethoxy-5-vinylbenzene): 

 

This procedure was modified from the literature.14 CH3PPh3Br (9.64 g, 27 mmol) 

was added to a three-neck round bottom flask under nitrogen atmosphere. Dry THF (150 mL) was 

added and the suspension cooled to 0 °C. n-BuLi (14.4 mL, 2.5 M in hexanes 30.6 mmol) was 

added dropwise and the solution allowed to warm to room temperature for 10 min to give a 

yellow ylide solution.  [CAUTION: n-BuLi is a fire hazard and extremely reactive with even 

small amounts of water or alcohols! Appropriate precautions are required!]]   3,4,5-

Trimethoxybenzaldehyde (4.00 g, 20.4 mmol) was dissolved in 50 mL of dry THF under nitrogen 

atmosphere and then added dropwise to the ylide solution. The reaction mixture was allowed to 

stir overnight, after which the resulting light yellow milky suspension was poured into H2O 

stirred for 10 min. The organic layer was separated, and the aqueous layer was extracted with 

Et2O. The combined organic extracts were dried over anhydrous MgSO4, concentrated in vacuo, 

and purified on silica eluted with Et2O to yield 3.33 g (84%) of clear yellow oil. 1H-NMR (400 

MHz, CDCl3): 3.84 (s, 3H), 3.87 (s, 6H), 5.20 (d, 1H, J = 12 Hz), 5.657 (d, 1H, J = 16 Hz), 6.63 

(m, 3H). 

FOS (E)-2-(3,4,5-trimethoxystyryl)-9H-fluoren-9-one:15 

 

Prepared using the general procedure for Heck coupling using 0.500 g (1.93 mmol) of 2-

bromofluorenone and 0.431 g (2.22 mmol) of 3,4,5-trimethoxystyrene after a 3 day reaction time. 

The reaction mixture was poured into acidified water, stirred for 10 min, extracted with DCM, 

and filtered through Celite to give an orange-red solution. The filtrate was washed with H2O, 
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dried over anhydrous MgSO4, and concentrated in vacuo to give an orange-red pasty solid. The 

crude material was recrystallized from 100 % EtOH and further purified by flash chromatography 

on silica eluted with 1:3 ethyl acetate/hexanes to give 0.121 g of orange solid (17 % yield). Mp = 

147-149 ºC; ATR-IR (neat, cm-1) 1703 (s, C=O str); 1H-NMR (400 MHz, CDCl3): 3.88 (s, 3H), 

3.93 (s, 6H), 6.75 (s, 2H), 6.99-7.03 (d, 1H, J = 16 Hz), 7.10-7.14 (d, 1H, J = 16 Hz), 7.30-7.31 

(td, 1H, J = 16 Hz, J’ = 8 Hz, J’’ = 1.6 Hz), 7.48-7.53 (m, 3H), 7.56-7.57 (dd, 1H, J = 16 Hz, J’ = 

8 Hz), 7.66-7.68 (d, 1H, J = 8 Hz), 7.87 (s, 1H); MS (FAB, m/z): found 372.1362, calculated for 

C24H20O4 372.1362. 

FODS (2,7-(E,E)-bis(3,4,5-trimethoxystyryl)-9H-fluoren-9-one): 

 

Prepared using the general procedure for Heck Coupling using 2.50 g (7.40 mmol) of 2,7-

dibromo-9H-fluoren-9-one and 3.30 g (17.0 mmol) of trimethoxystyrene. After three days, the 

product mixture was worked up as described in the general procedure. The resulting red solid was 

further triturated with ethanol, then recrystallized from boiling 95% ethanol to yield 3.42 g (82 

%) of product. Mp = 170-172 ºC (lit mp = 168-172 °C).3  1H-NMR (400 MHz, CDCl3): 3.88 (s, 

6H), 3.93 (s, 12H), 6.75 (s, 4H), 6.98-7.03 (d, 2H, J = 16 Hz), 7.10-7.14 (d, 2H, J = 16 Hz), 7.48-

7.50 (d, 2H, J = 8 Hz), 7.56-7.58 (dd, 2H, J = 8 Hz, 2 Hz), 7.86 (s, 2H).  

2-BrFOPV [(E)-2-bromo-7-(3,4,5-trimethoxystyryl)-9H-fluoren-9-one]:15 

 

Prepared using the general procedure for Heck Coupling using 1.00 g (2.60 mmol) of 2-

bromo-7-iodo-9H-fluorenone and 0.504 g (2.60 mmol) of 1,2,3-trimethoxy-5-vinylbenzene 

(trimethoxystyrene). After three days, the product mixture was worked up as described in the 

general procedure. The resulting red solid was triturated with ethanol, then recrystallized from 

boiling DCM/MeOH to yield 0.515 g (44 %) of product. Mp = 218-220 ºC. 1H-NMR (400 MHz, 
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CDCl3): 3.88 (s, 3H), 3.93 (s, 6H), 6.75 (s, 2H), 6.98-7.02 (d, 1H, J = 16 Hz), 7.09-7.13 (d, 1H, J 

= 16 Hz) 7.50-7.52 (d, 1H, J = 8 Hz), 7.55-7.59 (t, 2H, J = 7 Hz), 7.74-7.76 (dd, 1H, J = 8 Hz, 2 

Hz), 7.86 (s, 1H), 7.89 (s, 1H). 

TMSBA (trimethoxystyrylbenzaldehyde) [(E)-4-(3,4,5-trimethoxystyryl)benzaldehyde]: 

 

Prepared using the general procedure for Heck Coupling using 2.28 g (11.7 mmol) 

trimethoxystyrene and 3.09 g (10.7 mmol) p-bromobenzaldehyde. After three days the reaction 

mixture was worked up as described in the general procedure. The resulting orange solid was 

purified on silica eluted with EtOAc/hexanes (1:9 increasing in polarity to 9:1) to yield 1.94 g (61 

%) of product as a yellow-orange solid. Mp not determined. 1H-NMR (400 MHz, CDCl3): 3.89 (s, 

3H), 3.93 (s, 6H), 6.78 (s, 2H), 7.03-7.07 (d, 1H, J = 16 Hz), 7.18-7.22 (d, 1H, J = 16 Hz), 7.64-

7.66 (d, 2H, J = 8 Hz), 7.86-7.88 (d, 2H, J = 8 Hz), 10.0 (s, 1H).  

TMSS (trimethoxystyrylstyrene) [(E)-1,2,3-trimethoxy-5-(4-vinylstyryl)benzene]: 

 

CH3PPh3Br (4.00 g, 11.2 mmol) was added to a three-neck round bottom flask under 

nitrogen atmosphere. Dry THF (70 mL) was added and the suspension cooled to 0 ºC. n-BuLi 

(5.2 mL, 2.5 M in hexanes, 12.9 mmol) was added dropwise and the solution allowed to warm to 

room temperature for 10 min. [CAUTION: n-BuLi is a fire hazard and extremely reactive with 

even small amounts of water or alcohols! Appropriate precautions are required!]]   Solid TMSBA 

(2.57 g, 8.62 mmol) was added in portions and the reaction mixture was allowed to stir overnight. 

The resulting yellowish-brown reaction mixture was poured into 150 mL H2O and the organic 

layer separated. The aqueous layer was extracted with CHCl3, then the combined organic extracts 

were dried over MgSO4, concentrated in vacuo, and purified on silica eluted with Et2O/hexanes 

(9:1) to yield 1.69 g (66%) of light yellow crystalline solid. Mp not determined. 1H-NMR (400 
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MHz, CDCl3): 3.87 (s, 3H), 3.92 (s, 6H), 5.24-5.27 (d, 1H, J = 12 Hz), 5.75-5.79 (d, 1H, J = 16 

Hz), 6.64-6.75 (m, 3H), 6.97-7.01 (d, 1H, J = 16 Hz), 7.03-7.07 (d, 1H, J = 16 Hz), 7.40-7.42 (d, 

2H, J = 8 Hz), 7.46-7.48 (d, 2H, J = 8 Hz).  

FODS2 [2,7-bis(4-(3,4,5-trimethoxystyryl)styryl)-9H-fluoren-9-one]: 

 

Prepared using the general procedure for Heck Coupling using 0.272 g (0.805 mmol) 2,7-

dibromo-9H-fluoren-9-one and 0.500 g (1.69 mmol) TMSS. After three days the reaction mixture 

was worked up as described in the general procedure. Crude product was extracted with CHCl3, 

dried over anhydrous MgSO4, concentrated in vacuo, and purified on silica eluted with 

EtOAc/hexanes (1:9 ratio increasing in polarity to 100% EtOAc), and then eluted further with 

DCM/EtOAc (1:1) to yield 0.141 g (24%) of dark red crystalline solid. Mp = 254-256 °C. 1H-

NMR (400 MHz, CDCl3): 3.88 (s, 6H), 3.93 (s, 12H), 6.76 (s, 4H), 6.99-7.03 (d, 2H, J = 16 Hz), 

7.05-7.09 (d, 2H, J = 16 Hz), 7.08-7.12 (d, 2H, J = 16 Hz), 7.15-7.19 (d, 2H, J = 16 Hz), 7.47-

7.49 (d, 2H, J = 8 Hz), 7.51 (s, 8H), 7.55-7.57 (d, 2H, J = 8 Hz), 7.85 (s, 2H); MS (FAB, m/z): 

found 769.314, calculated for C51H44O7 768.3087. 

FOS-n-octyl-FOS (2,2'-((1E,1'E)-((octane-1,8-diylbis(oxy))bis(3,5-dimethoxy-4,1-
phenylene))bis(ethene-2,1-diyl))bis(9H-fluoren-9-one)): 

 

Prepared using the general procedure for Heck Coupling using 0.319 g (1.23 mmol) of 2-

bromofluorenone and 0.289 g (0.614 mmol) of 1,8-bis(2,6-dimethoxy-4-vinylphenoxy)octane 

(provided by Jeffrey Lucas). After three days the reaction mixture was worked up using the 

general method. The product was crudely purified on silica eluted with 35 % ethyl 

acetate/hexanes, and the resulting yellowish-orange solid was dissolved in minimal boiling 

MeOH/DCM, cooled to -20 °C, and precipitated in hexanes to yield 0.105 g (21 %) of orange 
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solid. 1H-NMR (400 MHz, CDCl3): 1.38 (m, 4H), 1.48 (m, 4H), 1.74-1.81 (p, 4H), 3.90 (s, 12H), 

3.98-4.01 (t, 4H, J = 7 Hz), 6.74 (s, 4H), 6.98-7.02 (d, 2H, J = 16 Hz), 7.09-7.13 (d, 2H, J = 16 

Hz), 7.28-7.30 (dd, 2H, J = 7 Hz, J’ = 2 Hz), 7.46-7.51 (m, 6H), 7.54-7.56 (dd, 2H, J = 8 Hz, J’ = 

1 Hz ), 7.65-7.67 (d, 2H, J = 7 Hz), 7.85 (s, 2H). Further development of this compound was done 

by Jeffrey Lucas, who will report those results subsequently. 

DAA (Dianisylamine) [bis(4-methoxyphenyl)amine]: 

 

Prepared using the general procedure for Buchwald-Hartwig amination using 2.99 g (16.0 

mmol) of p-bromoanisole and 2.47 g (20.0 mmol) of p-anisidine in 40 mL of toluene. After three 

days, the reaction mixture was worked up as described in the general procedure. The resulting 

reddish-brown solid was recrystallized twice from heptane to yield 2.72 g (74 %) of flaky gray 

solid. Mp = 96-97 °C, lit mp = 98 °C.16 1H-NMR (DMSO-d6): δ 3.68 (s, 6H), 6.79-6.81 (d, 4H), 

6.90-6.92 (d, 4H), 7.51 (s, 1H).  

FOBDAA27 (2,7-bis(bis(4-methoxyphenyl)amino)-9H-fluoren-9-one):15 

 

Prepared using the general procedure for Buchwald-Hartwig amination using 0.250 g 

(1.48 mmol) of 2,7-dibromo-9H-fluoren-9-one and 0.424 g (3.70 mmol) of DAA. After three 

days, the reaction mixture was worked up as described in the general procedure. The resulting 

dark blue solid was purified by dry-column chromatography on silica gel eluted with 

EtOAc/hexanes (20:80). The resulting dark blue crystalline solid was collected to yield 0.470 g 

(50 %) of product. Mp = 202-203 oC (d). 1H-NMR (400 MHz, DMSO-d6): 3.75 (s, 12H), 6.78 (d, 

2H, J = 2.0 Hz), 6.82-6.85 (dd, 2H, J = 8.0 Hz, 2.5 Hz), 6.93-6.95 (d, 8H, J = 8.8 Hz), 7.05-7.07 

(d, 8H, J = 8.8 Hz), 7.34-7.36 (d, 2H, J = 8.1 Hz); MS (FAB, m/z): found 634.2468, calculated for 

C41H34N2O4 634.2468.  
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FODAA [2-(bis(4-methoxyphenyl)amino)-9H-fluoren-9-one]:15 

 

Prepared using the general procedure for Buchwald-Hartwig amination using 0.250 g 

(0.965 mmol) of 2,7-dibromo-9H-fluoren-9-one and 0.277 g (1.21 mmol) of DAA. After two 

days, the reaction mixture was worked up as described in the general procedure. The resulting 

magenta oil (thick) was purified by dry-column chromatography on basic alumina eluted with 

EtOAc/hexanes (15:85). The resulting dark magenta oil was collected to yield 0.275 g (70 %) of 

product. After a few days the thick oil formed a solid. Mp = 57-59 °C. 1H-NMR (400 MHz, 

DMSO-d6): 3.75 (s, 6H), 6.84-6.86 (d, 2H, J = 10.9 Hz), 6.94-6.96 (d, 4H, J = 8.6 Hz), 7.08-7.10 

(d, 4H, J = 8.6 Hz), 7.20-7.23 (t, 1H, J = 7.2 Hz), 7.48-7.52 (m, 3H), 7.56-7.58 (d, 1H, J = 7.3 

Hz). MS (FAB+, m/z): found 407.1521, calculated for C27H23NO3 407.1520. 

FODPA [2-(diphenylamino)-9H-fluoren-9-one]:15 

 

Prepared using the general procedure for Buchwald-Hartwig amination using 0.250 g 

(0.965 mmol) of 2-bromo-9H-fluoren-9-one and 0.205 g (1.21 mmol) of diphenylamine. After 1 

h, the reaction mixture was worked up as described in the general procedure. The resulting red 

solid was purified by dry-column chromatography on silica eluted with hexanes. The resulting 

powdery red solid was collected to yield 0.222 g (66 %) of product. Mp = 122-124 ºC; ATR-IR 

(neat, cm-1) 1706 (s, C=O str); 1H NMR (400 MHz, DMSO-d6) 7.03-7.04 (d, 1H, J = 1.5 Hz), 

7.08-7.15 (m, 7H), 7.26-7.30 (t, 1H, J = 7.3 Hz), 7.34-7.38 (t, 4H, J = 7.7 Hz), 7.53-7.58 (m, 2H), 

7.63-7.67 (t, 2H, 7.7 Hz); MS (FAB+, m/z): found 347.131, calculated for C25H17NO 347.13. 
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FOCz [2-(9H-carbazol-9-yl)-9H-fluoren-9-one]:15 

 

Prepared using the general procedure for Buchwald-Hartwig amination using 0.250 g 

(0.965 mmol) 2-bromo-9H-fluoren-9-one and 0.202 g (1.21 mmol) carbazole. After 1 hour, the 

reaction mixture was worked up as described in the general procedure. The resulting yellow solid 

was purified by recrystallization from hot heptane/EtOAc to yield 0.170 g (51 %) of yellow 

crystalline solid. Mp = 196-197 ºC; ATR-IR (neat, cm-1) 1705-1716 (d, C=O str); 1H NMR (400 

MHz, DMSO-d6, /ppm) 7.30-7.34 (m, 2H), 7.43-7.50 (m, 5H), 7.68-7.72 (m, 2H), 7.77-7.78 (d, 

1H, J = 1.8 Hz), 7.88-7.90 (dd, 1H, J = 8 Hz, 1.8 Hz), 7.94-7.96 (d, 1H, J = 7.6 Hz), 8.10-8.12 (d, 

1H, J = 7.8 Hz), 8.26-8.28 (d, 2H, J = 7.8 Hz); MS (FAB+, m/z): found 345.117, calculated for 

C25H17NO 345.12. 

FODAAS [(E)-2-(bis(4-methoxyphenyl)amino)-7-(3,4,5-trimethoxystyryl)-9H-fluoren-9-
one]:15 

 

Prepared using the general procedure for Buchwald-Hartwig amination using 0.250 g 

(0.554 mmol) of 2-BrFOPV and 0.159 g (0.693 mmol) of dianisylamine. After 5 h, the reaction 

mixture was worked up as described in the general procedure. The resulting dark purple solid was 

purified by dry-column chromatography on silica eluted with EtOAc/hexanes (40:60). The 

resulting dark purple crystalline solid was collected to yield 0.110 g (33 %) of product. Mp = 99-

101 ºC. 1H-NMR (400 MHz, DMSO-d6): 3.67 (s, 3H), 3.77 (s, 6H), 3.83 (s, 6H), 6.84-6.85 (d, 

1H, J = 2 Hz), 6.86-6.89 (dd, 1H, J = 8.4 Hz, 2.3 Hz), 6.95-6.98 (m, 6H), 7.11-7.13 (d, 4H, J = 8.8 

Hz), 7.24-7.28 (d, 1H, J = 16 Hz), 7.29-7.33 (d, 1 H, J = 16 Hz), 7.52-7.54 (d, 1H, J = 8.1 Hz), 

7.58-7.60 (d, 1H, J = 7.8 Hz), 7.67-7.69 (dd, 1H, J = 7.6 Hz, 0.8 Hz), 7.78 (s, 1H); MS (FAB, 

m/z): found 599.2308, calculated for C38H33NO6 599.2308. 
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TMPMPA (Trimethoxyphenyl-methoxyphenylamine) [3,4,5-trimethoxy-N-(4-
methoxyphenyl)aniline]: 

 

Prepared using the general procedure for Buchwald-Hartwig amination using 3.95 g (16.0 

mmol) of 5-bromo-1,2,3-trimethoxybenzene and 2.47 g (20.0 mmol) of p-anisidine in 40 mL of 

toluene. After two days, the reaction mixture was worked up as described in the general 

procedure. The resulting tan solid was purified on silica eluted with diethyl ether to yield 3.90 g 

(84 %) of tan solid.  Mp = 99-100 °C.1H-NMR (DMSO-d6): δ 3.58 (s, 3H), 3.69 (s, 6H), 3.70 (s, 

3H), 6.22 (s, 2H), 6.84-6.86 (d, 2H, J = 8 Hz), 7.03-7.05 (d, 2H, J = 8 Hz), 7.72 (s, 1H).  

FOBTMPMPA [2,7-bis((4-methoxyphenyl)(3,4,5-trimethoxyphenyl)amino)-9H-fluoren-9-
one]:15 

 

Prepared using the general procedure for Buchwald-Hartwig amination using 0.250 g 

(0.740 mmol) of 2,7-dibromo-9H-fluoren-9-one and 0.545 g (1.85 mmol) of TMPMPA. After 17 

h, the reaction mixture was worked up as described in the general procedure. The resulting dark 

blue solid was purified by dry-column chromatography on silica gel eluted with Et2O/hexanes 

(66:33). The resulting dark blue crystalline solid was collected to yield 0.117 g (21 %) of product. 

Mp = 68-70 ºC. 1H-NMR (400 MHz, DMSO-d6): 3.63 (s, 12H), 3.65 (s, 6H), 3.76 (s, 6H), 6.35 

(d, 4H, J = 2 Hz), 6.87 (d, 2H, J = 8 Hz), 6.94-6.97 (m, 6H), 7.10-7.12 (d, 4H, J = 8 Hz), 7.40-7.4 

(d, 2H, J = 8 Hz); MS (FAB, m/z): found 754.2890, calculated for C45H42N2O9 754.2892. 
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DAAAQ [2-(bis(4-methoxyphenyl)amino)anthracene-9,10-dione]: 

 

Prepared using the general procedure for Buchwald-Hartwig amination using 0.250 g 

(1.12 mmol) of 2-aminoanthraquinone and 0.31 mL (2.46 mmol, 2.2 eq) of 4-bromoanisole. After 

17 h, the reaction mixture was worked up as described in the general procedure. The resulting 

dark red solid was purified by dry-column chromatography on silica gel eluted with 20 % ethyl 

acetate/hexanes to yield 0.059 g (12 %) of dark red solid. Mp not determined.  1H-NMR (400 

MHz, DMSO-d6): 3.80 (s, 6H), 6.98-7.01 (dd, 1H, J = 8 Hz, J’ = 40 Hz), 7.03-7.05 (d, 4H, J = 8 

Hz), 7.27-7.29 (d, 5H, J = 8 Hz), 7.83-7.91 (m, 2H), 7.99-8.01 (d, 1H, J = 8 Hz) , 8.09-8.11 (dd, 

1H, J = 8 Hz, J’ = 1 Hz) , 8.15-8.17 (dd, 1H, J = 8 Hz, J’ = 1 Hz).  

FMDS 2-(2,7-bis(3,4,5-trimethoxystyryl)-9H-fluoren-9-ylidene)malononitrile:17 

 

Prepared using the general procedure for Knoevenagel condensation using 1.00 g (1.77 

mmol) of FODS and 0.700 g (10.6 mmol) of malononitrile overnight, during which time the 

solution turned from bright red to dark greenish-blue. The reaction mixture was then cooled to 

room temperature and poured into 300 mL water. The precipitate was collected via suction 

filtration, dissolved in chloroform, dried over anhydrous MgSO4, and concentrated in vacuo. The 

resulting blue solid was purified by crystallization from hot 95% ethanol to yield 0.900 g (83 %) 

of product. Mp = 267-269 ºC (d); ATR-IR (neat, cm-1) 2225 (s, C≡N str); 1H-NMR (400 MHz, 

CDCl3): 3.89 (s, 6H), 3.94 (s, 12H), 6.75 (s, 4H), 6.97-7.01 (d, 2H, J = 16 Hz), 7.07-7.11 (d, 2H, 

J = 16 Hz), 7.49-7.51 (d, 2H, J = 8 Hz), 7.61-7.63 (d, 2H, J = 8 Hz), 8.48 (s, 2H); MS (FAB, m/z): 

found 612.2260, calculated for C38H32N2O6 612.2260. 
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FMDS2 [2-(2,7-bis(4-(3,4,5-trimethoxystyryl)styryl))-9H-fluoren-9-ylidene)malononitrile]: 

 

To a three-necked round-bottom flask were added 0.0400 g (0.0520 mmol) of 

FODS2 and 0.0206 g (0.312 mmol) of malononitrile under nitrogen atmosphere. Dry DMSO (10 

mL) was added and the solution was heated at 110 °C overnight, during which time the solution 

turned from dark red to dark green. The reaction mixture was then cooled to room temperature 

and poured into 100 mL of water. The precipitate was collected via suction filtration and 

dissolved in chloroform. The filtrate was extracted with CHCl3, and the combined organic 

solutions were dried over anhydrous MgSO4 and concentrated in vacuo. The resulting greenish-

gray solid was purified by crystallization from hot ethanol/acetone to give 0.045 g of product 

(81% yield). Mp not determined. 1H-NMR (400 MHz, CDCl3): 3.88 (s, 6H), 3.93 (s, 12H), 6.75 

(s, 4H), 6.96-7.06 (m, 4H), 7.10-7.13 (m, 4H), 7.51-7.54 (m, 12H), 7.61-7.62 (m, 2H), 8.50 (s, 

2H).  

FMS (E)-2-(2-(3,4,5-trimethoxystyryl)-9H-fluoren-9-ylidene)malononitrile:17 

 

Prepared using the general procedure for Knoevenagel condensation using 0.100 g (0.269 

mmol) FOS and 0.106 g (1.61 mmol) malononitrile after a 22 h reaction time. The reaction 

mixture was poured into water, stirred for 10 min, and extracted with DCM. The organic layers 

were combined, dried over anhydrous MgSO4, and concentrated in vacuo to give a dark purple 

pasty solid. The crude material was recrystallized from 100 % EtOH to furnish 0.0810 g (72 % 

yield) of product as a dark purple crystalline solid. Recrystallization from DCM by slow 

evaporation yielded dark purple needles. Mp = 203-204 ºC. ATR-IR (neat, cm-1) 2220 (s, C≡N 

str); 1H-NMR (400 MHz, DMSO-d6): 3.68 (s, 3 H), 3.85 (s, 6H), 6.96 (s, 2H), 7.16-7.20 (d, 1H, J 

= 16 Hz), 7.29-7.33 (d, 1H, J = 16 Hz), 7.43-7.47 (t, 1H, J = 16 Hz, J’ = 8 Hz), 7.61-7.65 (t, 1H, J 
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= 16 Hz, J’ = 8 Hz), 7.86-7.89 (m, 3H), 8.22-8.24 (d, 1H, J = 8 Hz), 8.36 (s, 1H); 1H-NMR (400 

MHz, CDCl3): 3.89 (s, 3 H), 3.94 (s, 6H), 6.76 (s, 2H), 6.99-7.03 (d, 1H, J = 16 Hz), 7.08-7.12 (d, 

1H, J = 16 Hz), 7.29-7.33 (t, 1H, J = 16 Hz, J’ = 8 Hz), 7.48-7.54 (m, 3H), 7.62-7.64 (d, 1H, J = 8 

Hz), 8.36-8.38 (d, 1H, J = 8 Hz), 8.50 (s, 1H); MS (FAB, m/z): found 420.14606, calculated for 

C27H20N2O3 420.14740. 

FMDAAS (E)-2-(2-(bis(4-methoxyphenyl)amino)-7-(3,4,5-trimethoxystyryl)-9H-fluoren-9-
ylidene)malononitrile:17 

 

Prepared using the general procedure for Knoevenagel condensation using 0.0670 g 

(0.112 mmol) of FODAAS and 0.0444 g (0.672 mmol) of malononitrile after an 18 h reaction 

time. The reaction mixture was poured into water, stirred for 10 min, and extracted with EtOAc. 

The organic layers were combined, dried over anhydrous MgSO4, and concentrated in vacuo to 

give a pasty green solid. The crude material was purified by a quick recrystallization from 100 % 

EtOH to remove malononitrile, then by flash chromatography on silica eluted with 40 % 

EtOAc/hexanes to furnish 0.060 g (83 % yield) of product as a greasy dark green film. Mp N/A 

(greasy film). ATR-IR (neat, cm-1) 2222 (s, C≡N str); 1H-NMR (400 MHz, DMSO-d6): 3.67 (s, 3 

H), 3.75 (s, 6 H), 3.83 (s, 6 H), 6.85-6.87 (dd, 1 H, J = 8 Hz, J’ = 2 Hz), 6.92-6.96 (m, 6 H), 7.08-

7.11 (m, 5 H), 7.22-7.26 (d, 1 H, J = 16 Hz), 7.55-7.57 (d, 1 H, J = 8 Hz), 7.62-7.64 (d, 1 H, J = 8 

Hz), 7.75-7.77 (dd, 2 H, J = 8 Hz, J’ = 1.6 Hz), 8.24 (s, 1 H); MS (FAB, m/z): found 647.2413, 

calculated for C41H33N3O5 647.24202. 
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FMBDAA27 2-(2,7-bis(bis(4-methoxyphenyl)amino)-9H-fluoren-9-ylidene)malononitrile:17 

 

Prepared using the general procedure for Knoevenagel condensation using 0.250 g (0.394 

mmol) of FOBDAA and 0.156 g (2.36 mmol) of malononitrile after a 4 day reaction time. The 

reaction mixture was poured into water, stirred for 10 min, and extracted with EtOAc. The 

organic layers were combined, dried over anhydrous MgSO4, and concentrated in vacuo to give a 

pasty black solid. The crude material was recrystallized from a gradient of hot acetone and 95 % 

EtOH to furnish 0.198 g (73 % yield) of black crystalline solid. Mp = 106-108 ºC. ATR-IR (neat, 

cm-1) 2221 (s, C≡N str); 1H-NMR (400 MHz, DMSO-d6): 3.73 (s, 12 H), 6.81-6.83 (dd, 2H, J = 8 

Hz, J’ = 2 Hz), 6.91-6.93 (d, 8H, J = 8 Hz), 7.03-7.05 (d, 8H, J = 8 Hz), 7.34-7.36 (d, 2H, J = 8 

Hz), 7.68-7.69 (d, 2H, J = 2 Hz); MS (FAB, m/z): found 682.2580, calculated for C44H34N4O4 

682.2580. 

FMDAA 2-(2-(bis(4-methoxyphenyl)amino)-9H-fluoren-9-ylidene)malononitrile:17 

 

Prepared using the general procedure for Knoevenagel condensation using 0.250 g (0.614 

mmol) of FODAA and 0.243 g (3.68 mmol) of malononitrile after a 2 day reaction time. The 

reaction mixture was poured into water, stirred for 10 min, and extracted with EtOAc. The 

organic layers were combined, dried over anhydrous MgSO4, and concentrated in vacuo to give a 

dark green pasty solid. The crude material was recrystallized from 95 % EtOH to furnish 0.176 g 

(63 % yield) of product as fine green needles. Mp = 182-184 ºC. ATR-IR (neat, cm-1) 2224 (s, 

C≡N str); 1H-NMR (400 MHz, DMSO-d6): 3.75 (s, 6 H), 6.85-6.88 (dd, 1H, J = 8 Hz, J’ = 2 Hz), 

6.94-6.96 (d, 4H, J = 8 Hz), 7.09-7.11 (d, 4H, J = 8 Hz), 7.26-7.30 (t, 1H, J = 16 Hz, J’ = 8 Hz), 

7.50-7.54 (t, 1H, J = 16 Hz, J’ = 8 Hz), 7.56-7.58 (d, 1H, J = 8 Hz), 7.62-7.63 (d, 1H, J = 2 Hz), 
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7.77 (d, 1H, J = 8 Hz), 8.09-8.11 (d, 1H, J = 8 Hz); MS (FAB, m/z): found 455.1634, calculated 

for C30H21N3O2 455.1634. 

FMDPA 2-(2-(diphenylamino)-9H-fluoren-9-ylidene)malononitrile:17 

 

Prepared using the general procedure for Knoevenagel condensation using 0.250 g (0.720 

mmol) of FODPA and 0.285 g (4.31 mmol) of malononitrile after a 22 h reaction time. The 

reaction mixture was poured into water, stirred for 10 min, and extracted with DCM. The organic 

layers were combined, dried over anhydrous MgSO4, and concentrated in vacuo to give a dark 

blue pasty solid. The crude material was recrystallized from 100 % EtOH to furnish 0.203 g (71 

% yield) of product as a dark blue crystalline solid. Crystallization from 1:1 EtOAc/DCM by slow 

evaporation yielded dark blue needles. Mp = 199-200 ºC. ATR-IR (neat, cm-1) 2219 (s, C≡N str); 

1H-NMR (400 MHz, DMSO-d6): 7.09-7.15 (m, 7 H), 7.32-7.38 (m, 5H), 7.54-7.58 (t, 1H, J = 16 

Hz, J’ = 8 Hz), 7.68-7.72 (t, 2H, J = 16 Hz, J’ = 8 Hz), 7.92 (s, 1H), 8.13-8.15 (d, 1H, J = 8 Hz); 

1H-NMR (400 MHz, CDCl3): 7.09-7.16 (m, 7 H), 7.18-7.22 (td, 1H, J = 16 Hz, J’ = 8 Hz, J’’ = 

1.2 Hz), 7.29-7.35 (m, 5H), 7.40-7.45 (m, 2H), 8.06 (d, 1H, J = 1.6 Hz), 8.28-8.29 (d, 1H, J = 8 

Hz); MS (FAB, m/z): found 395.14180, calculated for C28H17N3 395.14225. 

FMCz 2-(2-(9H-carbazol-9-yl)-9H-fluoren-9-ylidene)malononitrile:17 

 

Prepared using the general procedure for Knoevenagel condensation using 0.100 g (0.290 

mmol) of FOCz and 0.115 g (1.74 mmol) of malononitrile after a 5 h reaction time. The reaction 

mixture was poured into water, stirred for 10 min, and filtered to give an orange-red powdery 

solid. The solid was dissolved in DCM, washed with H2O, dried over anhydrous MgSO4, and 

concentrated in vacuo to give an orange-red pasty solid. The crude material was recrystallized 

from 100 % EtOH to furnish 0.0830 g (73 % yield) of product as an orange-red solid. Mp >260 
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ºC. ATR-IR (neat, cm-1) 2224 (s, C≡N str); 1H-NMR (400 MHz, DMSO-d6): 7.32-7.36 (t, 2H, J = 

16 Hz, J’ = 8 Hz), 7.46-7.55 (m, 5H), 7.70-7.74 (t, 1H, J = 16 Hz, J’ = 8 Hz), 7.94-7.96 (dd, 1H, J 

= 8 Hz, J’ = 1.2 Hz), 8.02-8.04 (dd, 1H, J = 8 Hz, J’ = 0.4 Hz), 8.18-8.20 (d, 1H, J = 8 Hz), 8.28-

8.31 (t, 3H, J = 12 Hz, J’ = 8 Hz), 8.45 (s, 1H); 1H-NMR (400 MHz, CDCl3): 7.32 (m, 2 H), 7.39-

7.45 (m, 5H), 7.58-7.60 (t, 1H, J = 16 Hz, J’ = 8 Hz), 7.64-7.66 (d, 1H, J = 8 Hz), 7.71-7.73 (d, 

1H, J = 8 Hz), 7.78-7.80 (d, 1H, J = 8 Hz), 8.14-8.16 (d, 2H, J = 8 Hz), 8.44-8.46 (d, 1H, J = 8 

Hz), 8.64 (s, 1H); MS (FAB, m/z): found 393.12562, calculated for C28H15N3 393.12660. 

BOC-AA (tert-butyl (4-methoxyphenyl)carbamate):17 

 

This procedure was adapted from the literature.18 indium tribromide (0.035 g, 0.100 

mmol) was added to 2.18 g (10.0 mmol) of di-t-butylcarbonate with stirring. 4-Anisylamine (1.24 

g, 10.0 mmol) was added to the reaction mixture in one portion, and the mixture stirred for 30 

min. Hexane was added during the reaction as needed to prevent clumping. When complete, the 

reaction was diluted with EtOAc and washed with water. The organic layer was separated and 

dried over anhydrous MgSO4, then concentrated in vacuo to give a gray-brown solid. 

Recrystallization from hot heptane yielded 2.14 g (96 %) of large, gun-metal gray needles (two 

crops). Mp = 94-96 ºC. 1H-NMR (400 MHz, acetone-d6): 1.47 (s, 9H), 3.75 (s, 3 H), 6.84-6.86 (d, 

2H, J = 8 Hz), 7.44-7.46 (d, 2H, J = 8 Hz), 8.18 (s, 1H).  

FOAA (2-((4-methoxyphenyl)amino)-9H-fluoren-9-one):17 

 

Prepared using the general procedure for Buchwald/Goldberg amidation using 0.250 g 

(0.965 mmol) of 2-bromofluorenone and 0.259 g (1.16 mmol) of BOC-AA after a 3 day reaction 

time. The dark orange-brown reaction mixture was worked up as described in the general 

procedure, and crudely purified on silica eluted with 20 % EtOAc/hexanes to give a yellow-
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orange solid. The solid was dissolved in EtOAc at room temperature and a few mL of conc. HCl 

was added. The mixture was stirred for about 2 h and then quenched with saturated aq. Na2CO3 

(caution: foaming). The organic layer was separated, washed again with saturated aq. Na2CO3, 

dried over anhydrous Na2SO4, and concentrated in vacuo to give a red-purple solid. 

Crystallization from hot heptane yielded a combined 0.261 g (67 %) of analytically pure (HPLC) 

product as dark red-purple crystalline solid from two crops. Mp = 152-154 ºC. ATR-IR (neat, cm-

1) 3355 (N-H str), 1704 (s, C=O str); 1H-NMR (400 MHz, DMSO-d6): 3.74 (s, 3 H), 6.92-6.96 (d, 

2H, J = 8 Hz), 7.00-7.02 (dd, 1H, J = 8 Hz, J’ = 1.6 Hz), 7.06-7.10 (m, 3H), 7.17-7.21 (t, 1H, J = 

8 Hz), 7.47-7.56 (m, 4H), 8.31 (s, 1H) MS (FAB, m/z): found 302.1171 (M+H), calculated for 

C20H15NO2 301.11028. 

FOAA (2-((4-methoxyphenyl)amino)-9H-fluoren-9-one) (Alternate Route):17 

 

Prepared in two steps via Buchwald-Hartwig amination between 2-aminofluorene and 4-

bromoanisole, followed by the general oxidation procedure in dry DMSO. For the amination 

reaction, 0.131 g (0.725 mmol) of 2-aminofluorene, 0.1 mL (0.797 mmol, 1.1 eq) of 4-

bromoanisole, 0.0402 g (0.0725 mmol, 0.1 eq) of DPPF, 0.0166 g (0.0181 mol, 0.025 eq) of 

Pd2dba3, and 0.0836 g (0.870 mmol, 1.2 eq) of t-BuONa were added to 5 mL dry toluene under 

nitrogen and heated at 160 °C in a CEM MARS Organic Reactor (microwave reactor) at 200 W 

for 30 min. The yellowish-brown reaction mixture was worked up as described in the general 

procedure, and crudely purified on silica eluted with 20 % EtOAc/hexanes to give 0.105 g (51 %) 

of N-(4-methoxyphenyl)-9H-fluoren-2-amine as a tan solid. 1H-NMR (400 MHz, acetone-d6): 

3.78 (s, 3 H), 3.81 (s, 2H), 6.89-6.91 (d, 2H, J = 8 Hz), 6.99-7.01 (d, 1H, J = 8 Hz), 7.14-7.16 (m, 

3H), 7.19-7.23 (m, 2H), 7.28-7.31 (t, 1H), 7.47-7.48 (d, 1H), 7.65-7.69 (overlapping doublets, 

2H, J1 = 8 Hz, J2 = 8 Hz). The product was then oxidized via the general fluorene oxidation 

procedure using 0.118 g (0.411 mmol) of 2-anisylaminofluorene and 0.670 g (2.05 mmol, 5 eq) of 
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Cs2CO3 in 10 mL of dry DMSO at 40 °C over 3 h. The reaction then was cooled to room 

temperature, poured into water, extracted with ethyl acetate, dried over anhydrous MgSO4, and 

concentrated in vacuo to give dark red solid in quantitative yield (0.123 g). Mp = 152-154 ºC. See 

the previous entry for characterization data. 

FOBAA (2,7-bis((4-methoxyphenyl)amino)-9H-fluoren-9-one):17 

 

Prepared using the general procedure for Buchwald/Ullmann-Goldberg amidation using 

0.250 g (0.740 mmol) of 2,7-dibromofluorenone and 0.397 g (1.78 mmol) of BOC-AA after a 3 

day reaction time. The dark red-brown reaction mixture was worked up as described in the 

general procedure, and crudely purified on silica eluted with 20 % EtOAc/hexanes to give a red 

solid. The solid was dissolved in EtOAc at room temperature and a few mL of conc. HCl was 

added. The reaction was allowed to stir for about 2 h and then quenched with saturated Na2CO3. 

The dark blue organic layer was separated, washed with saturated Na2CO3, dried over anhydrous 

Na2SO4, and concentrated in vacuo to give a shiny gold-colored solid. Recrystallization from hot 

heptane yielded a combined 0.149 g (48 %) analytically pure (HPLC) product as shiny gold-

colored crystalline solid after two crops. Mp = 214-216 ºC. ATR-IR (neat, cm-1) 3329-3394 (N-H 

str), 1714 (s,  C=O str); 1H-NMR (400 MHz, DMSO-d6): 3.74 (s, 3 H), 6.92-6.96 (d, 2H, J = 8 

Hz), 7.00-7.02 (dd, 1H, J = 8 Hz, J’ = 1.6 Hz), 7.06-7.10 (m, 3H), 7.17-7.21 (t, 1H, J = 8 Hz), 

7.47-7.56 (m, 4H), 8.31 (s, 1H) MS (FAB, m/z): found 422.1596, calculated for C27H22N2O3 

422.16304. 

FMAA (2-(2-((4-methoxyphenyl)amino)-9H-fluoren-9-ylidene)malononitrile):17 

 

Prepared using the general procedure for Knoevenagel condensation using 0.100 g (0.332 

mmol) of FOAA and 0.132 g (1.99 mmol) of malononitrile after a 16 h reaction time. The dark 
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aqua-blue reaction mixture was cooled to room temperature, poured into water, stirred for 10 min, 

and filtered to get a purple solid. The solid was dissolved in DCM to give an aqua-blue solution, 

washed sequentially with water and brine, dried over anhydrous MgSO4, and concentrated in 

vacuo to give a dark purple pasty solid. The crude material was crystallized from hot 95% EtOH 

to yield 0.0790 g (68 %) of black/green crystalline solid. Mp = 187-188 ºC. ATR-IR (neat, cm-1) 

3337 (N-H str), 2222 (sh, C≡N str); 1H-NMR (400 MHz, DMSO-d6): 3.73 (s, 3 H), 6.89-6.91 (d, 

2H, J = 8 Hz), 7.01-7.03 (dd, 1H, J = 8 Hz, J’ = 2 Hz), 7.09-7.11 (d, 2H, J = 8 Hz), 7.22-7.26 (t, 

1H, J = 8 Hz), 7.47-7.51 (t, 1H, J = 8 Hz), 7.55-7.59 (t, 2H, J = 8 Hz), 7.89 (dd, 1H, J = 2 Hz), 

8.08-8.10 (d, 1H, J = 8 Hz), 8.49 (s, 1H) MS (FAB, m/z): found 372.1087 (M+Na), calculated for 

C23H15N3O 349.12151. 

FMBAA (2-(2,7-bis((4-methoxyphenyl)amino)-9H-fluoren-9-ylidene)malononitrile):17 

 

Prepared using the general procedure for Knoevenagel condensation using 0.0500 g 

(0.119 mmol) of FOBAA and 0.0469 g (0.710 mmol) of malononitrile after a 16 h reaction time. 

The reaction mixture was cooled to room temperature, poured into water, stirred for 10 min, and 

extracted with Et2O. The organic layers were combined, dried over anhydrous MgSO4, and 

concentrated in vacuo to give a pasty reddish solid. The crude material was column purified on 

silica eluted with 20 % EtOAc/hexanes to give a dark green/gray solution which when 

concentrated yielded 0.039 g (70 %) of dark green/black solid. Slow crystallization from elution 

solvent yielded fine, long, green/gray needles. Mp = 204-205 ºC. ATR-IR (neat, cm-1) 3344 (N-H  

str),  2225 (sh,  C≡N str); 1H-NMR (400 MHz, DMSO-d6): 3.72 (s, 6 H), 6.86-6.88 (d, 4H, J = 8 

Hz), 6.94-6.96 (dd, 2H, J = 8 Hz, J’ = 1.6 Hz), 7.04-7.06 (d, 4H, J = 8 Hz), 7.30-7.32 (d, 2H, J = 8 

Hz), 7.80-7.81 (d, 2H, J = 1.6 Hz), 8.26 (s, 2H); MS (FAB, m/z): found 471.1793 (M+H), 

calculated for C30H22N4O2 470.17428. 
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Tris(FOPh)Amine (2,2',2''-(nitrilotris(benzene-4,1-diyl))tris(9H-fluoren-9-one): 

 

Tris-4-bromophenylamine (0.250 g, 0.519 mmol) was dissolved in 20 mL of dry Et2O 

and cooled to -78 °C under nitrogen. t-BuLi (1.2 mL, 1.6 M, 1.87 mmol, 3.6 eq) was added 

carefully dropwise, and the reaction was stirred 1 h with continued cooling. [CAUTION: t-BuLi 

is a severe fire hazard, is extremely reactive with even small amounts of water or alcohols, and is 

pyrophoric in air! Appropriate precautions are required!] SnBu3Cl (0.5 mL, 1.71 mmol, 3.33 eq) 

was added dropwise while keeping the stirred reaction at -78 °C, following which the mixture 

was allowed to warm to room temperature. After 16 h, the reaction mixture was poured into 150 

mL of H2O, extracted with Et2O, dried over anhydrous MgSO4, and conc. in vacuo to give the 

stannane intermediate as a yellowish oil which was used immediately without purification. 2-

Bromofluorenone (0.606 g, 2.34 mmol, 4.5 eq)  and Pd(PPh3)4 (0.060 g, 0.0519 mmol, 0.1 eq) 

were and dissolved in toluene and combined with the stannane obtained in the previous steps. The 

reaction mixture was heated at 110 °C for 3 days and then cooled to room temperature. Aqueous 

KF (0.1 g/mL) was added, and the reaction mixture stirred 2.5 h to remove tin impurities. The 

reaction mixture was poured into H2O, extracted with DCM, dried over anhydrous MgSO4, and 

concentrated in vacuo to give an orange-red solid. The crude material was column purified on 

silica eluted with 30 % EtOAc/hexanes to give 0.100 g (25 % overall) of powdery orange-red 

solid. Mp = 196-198 ºC. ATR-IR not obtained. 1H-NMR (400 MHz, DMSO-d6): 7.20-7.22 (d, 

6H, J = 8 Hz), 7.37-7.41 (t, 3H, J = 7 Hz), 7.62-7.65 (m, 6H), 7.78-7.80 (m, 6H), 7.83-7.85 (m, 

3H), 7.88-7.89 (m, 6H), 7.94-7.96 (m, 3H). MS (FAB, m/z): found m/z = 779.2444, calculated for 

C57H33NO3 m/z = 779.24604. 
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FODS-Hex (2,7-bis((E)-3,4,5-tris(hexyloxy)styryl)-9H-fluoren-9-one): 

 

Prepared using the general procedure for Heck Coupling using 0.362 g (1.07 mmol) of 

2,7-dibromo-9H-fluoren-9-one and 1.00 g (2.47 mmol, 2.3 eq) of trihexyloxystyrene (provided by 

Timothy Gehan). After three days, the reaction mixture was worked up as described in the 

general procedure. The resulting aqueous suspension was extracted with DCM, dried over 

MgSO4, and concentrated in vacuo to give an orange-red solid. Recrystallization from 95 % 

ethanol yielded 0.782 g (75 %) of product. Mp = 81-83 °C. ATR-IR not obtained. 1H-NMR (400 

MHz, CDCl3): 0.91-0.94 (m, 18 H), 1.33-1.37 (m, 24 H), 1.49-1.51 (m, 12 H), 1.72-1.78 (p, 4H), 

1.80-1.87 (p, 8H), 3.97-4.01 (t, 4H, J = 6 Hz), 4.02-4.05 (t, 8H, J = 6 Hz), 6.72 (s, 4H), 6.95-6.99 

(d, 2H, J = 16 Hz), 7.07-7.11 (d, 2H, J = 16 Hz), 7.47-7.49 (d, 2H, J = 8 Hz), 7.54-7.56 (d, 2H J = 

8 Hz), 7.85 (s, 2H). MP = 81-83 oC. MS (FAB, m/z): found m/z = 984.680, calculated for 

C65H92O7m/z = 984.68431. 

FMDS-Hex (2-(2,7-bis((E)-3,4,5-tris(hexyloxy)styryl)-9H-fluoren-9-ylidene)malononitrile): 

 

Prepared using the general procedure for Knoevenagel condensation using 0.100 g (0.102 

mmol) of FODS-Hex and 0.0400 g (0.612 mmol) of malononitrile overnight, during which time 

the solution turned from bright red to dark greenish-blue. The reaction mixture was cooled to 

room temperature, poured into 100 mL water, extracted with EtOAc, dried over anhydrous 

MgSO4, and concentrated in vacuo. The resulting blue-green solid was purified by crystallization 

from hot ethanol to yield 0.0851 g (81 %) of sticky blue-green product. Mp N/A greasy. ATR-IR 

not obtained. 1H-NMR (400 MHz, CDCl3): 0.91-0.93 (m, 18 H), 1.33-1.36 (m, 24 H), 1.47-1.53 

(m, 12 H), 1.72-1.80 (p, 4H), 1.80-1.87 (p, 8H), 3.97-4.00 (t, 4H, J = 7 Hz), 4.02-4.05 (t, 8H, J = 

7 Hz), 6.73 (s, 4H), 6.94-6.98 (d, 2H, J = 16 Hz), 7.04-7.08 (d, 2H, J = 16 Hz), 7.47-7.49 (d, 2H, J 
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= 8 Hz), 7.59-7.61 (d, 2H, J = 8 Hz), 8.47 (s, 2H); MS (FAB, m/z): found 1033.7074, calculated 

for C68H92N2O6 1032.69554. 

FOBDAA36 (3,6-bis(bis(4-methoxyphenyl)amino)-9H-fluoren-9-one):17 

 

Prepared using the general procedure for Buchwald-Hartwig amination using 0.250 g 

(0.740 mmol) of 3,6-dibromofluorenone and 0.442 g (1.85 mmol) of dianisylamine. After 2 days, 

the red reaction mixture was worked up as described in the general procedure. The crude mixture 

was purified on silica eluted with 30:70 EtOAc/hexanes to yield 0.306 g (65 %) of dark red 

crystalline solid. Mp = 119-120 ºC. ATR-IR (neat, cm-1) 1684 (s, C=O str); 1H-NMR (400 MHz, 

DMSO-d6): 3.75 (s, 12 H), 6.42-6.44 (dd, 2H, J = 8 Hz, J’ = 2 Hz), 6.58-6.59 (d, 2H, J = 1.6 Hz), 

6.94-6.96 (d, 8H, J = 8 Hz), 7.12-7.14 (d, 8H, J = 8 Hz), 7.30-7.32 (d, 2H, J = 8 Hz); MS (FAB, 

m/z): found 634.2455, calculated for C41H34N2O5 634.24677. 

FMBDAA36 (2-(3,6-bis(bis(4-methoxyphenyl)amino)-9H-fluoren-9-ylidene)malononitrile):17 

 

Prepared using the general procedure for Knoevenagel condensation using 0.0183 g 

(0.0288 mmol) of FOBDAA36 and 0.0114 g (0.173 mmol) of malononitrile after a 2 day reaction 

time. The reaction mixture was poured into water, stirred for 10 min, and extracted with Et2O. 

The organic layers were combined, dried over anhydrous MgSO4, and concentrated in vacuo to 

give a pasty purple solid. The crude material was recrystallized from hot 95% EtOH to yield 

0.013 g (66 %) of purple powdery solid. Mp = 178-180 ºC. ATR-IR (neat, cm-1) 2212 (s, C≡N 

str); 1H-NMR (400 MHz, DMSO-d6): 3.76 (s, 12 H), 6.48-6.51 (dd, 2H, J = 8 Hz, J’ = 2 Hz), 
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6.54-6.55 (d, 2H, J = 1.6 Hz), 6.96-6.98 (d, 8H, J = 8 Hz), 7.16-7.18 (d, 8H, J = 8 Hz), 7.90-7.92 

(d, 2H, J = 8 Hz); MS (FAB, m/z): found 682.2580, calculated for C44H34N4O4 682.25801. 

FODS36 (3,6-bis(bis(4-methoxyphenyl)amino)-9H-fluoren-9-one): 

 

Prepared using the general procedure for Heck Coupling using 0.250 g (0.740 mmol) of 

3,6-dibromo-9H-fluoren-9-one and 0.359 g (1.85 mmol, 2.5 eq) of trimethoxystyrene. After two 

days the reaction mixture was worked up as described in the general procedure. The resulting 

aqueous suspension was extracted with DCM, dried over anhydrous MgSO4, and concentrated in 

vacuo to give an reddish orange solid. The crude mixture was purified on silica eluted with 

30→50 % EtOAc/hexanes to yield 0.063 g (15 %) of reddish orange solid. Mp = 228-230 °C. 

ATR-IR not obtained. 1H-NMR (400 MHz, CDCl3): 3.90 (s, 6H), 3.95 (s, 12H), 6.80 (s, 4H), 

7.05-7.09 (d, 2H, J = 16 Hz), 7.21-7.25 (d, 2H, J = 16 Hz), 7.40-7.42 (d, 2H, J = 8 Hz), 7.66-7.68 

(d, 2H, J = 8 Hz), 7.75 (s, 2H). 

Dianisylamino-3,5-dimethoxybenzene (3,5-dimethoxy-N,N-bis(4-methoxyphenyl)aniline):19 

 

Prepared using the general procedure for Ullmann Coupling using 0.554 g (3.62 mmol) 

of 3,5-dimethoxyaniline and 2.54 g (10.9 mmol, 3 eq) of iodoanisole. After three days, the 

reaction mixture was worked up as described in the general procedure. The crude mixture was 

purified on silica eluted with 100 % hexanes → 100 % DCM to yield 0.850 g (64 %) tan-white 

solid. Mp not obtained. ATR-IR (neat, cm-1) 1200 (s, Ar-O, Ar-N str); 1H-NMR (400 MHz, 

DMSO-d6): 3.59 (s, 6H), 3.73 (s, 6H), 5.84-5.85 (d, 2H, J = 2 Hz), 6.02 (t, 1H, J = 2 Hz), 6.88-

6.90 (d, 4H, J = 8 Hz), 7.00-7.02 (d, 4H, J = 8 Hz). MS (FAB, m/z): found 365.2, calculated for 

C22H23NO4 365.16271. 
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Diphenolyl-3,5-dihydroxybenzene (5-(bis(4-hydroxyphenyl)amino)benzene-1,3-diol):19 

 

Prepared using the general procedure for demethylation using 1.20 g (3.29 mmol) of 

dianisylamino-3,5-dimethoxybenzene and 1.25 mL (13.2 mmol, 4 eq) of BBr3 in 16 mL of dry 

DCM. The reaction mixture turned bright red upon BBr3 addition, and gave an orange-red slurry 

after time. The reaction was worked up as described in the general procedure to give a tan-white 

solid in quantitative yield (1.01 g). Product was used in the next step without further purification. 

Mp not obtained. ATR-IR (neat, cm-1) 3293 (br, O-H str), 1219-1258 (s, Ar-O, Ar-N str); 1H-

NMR (400 MHz, DMSO-d6): 5.56-5.57 (d, 2H, J = 2 Hz), 5.61-5.62 (t, 1H, J = 2 Hz), 6.69-6.71 

(d, 4H, J = 8 Hz), 6.87-6.90 (d, 4H, J = 8 Hz) 8.84 (s, 2H), 9.26 (s, 2H). MS (FAB, m/z): found 

309.1, calculated for C18H15NO4 309.10011. 

SQ-OH (2,4-bis-(4-(bis(4-hydroxyphenyl)amino)-2,6-dihydroxyphenyl)-3-oxocyclobut-1-
enolate):19 

 

Diphenolyl-3,5-dihydroxylbenzene (1.18 g, 3.81 mmol) and) squaric acid (0.218 g, 1.91 

mmol, 0.5 eq) were dissolved in 25 mL of 1:1 toluene/n-butanol under nitrogen and heat at reflux 

overnight. After just 30 min the reaction mixture turned from clear tan to very dark green/blue. 

After 16 h the reaction was cooled to -20 °C and filtered to collect the dark green precipitate, 

which was washed thoroughly with toluene, then hexanes to give 1.00 g (75 %) of green solid. 

Mp > 260 °C. ATR-IR (neat, cm-1) 1208 (s, C-O, C-N str), 3342-3459 (s/br, O-H str); 1H-NMR 

(400 MHz, DMSO-d6): 5.47 (s, 4H), 6.81-6.83 (d, 8H, J = 8 Hz), 7.13-7.15 (d, 8H, J = 8 Hz), 

9.76 (s, 4H) 11.3 (s, 4H). MS (FAB, m/z): found 696.2, calculated for C40H28N2O10 696.17440. 



188 
 

 

Bis-N,N-(p-cyanophenyl)amino-3,5-dimethoxybenzene (4,4'-((3,5-
dimethoxyphenyl)azanediyl)dibenzonitrile): 

 

Prepared using the general procedure for Ullmann Coupling using 0.554 g (3.62 mmol) 

of 3,5-dimethoxyaniline and 2.49 g (10.9 mmol, 3 eq) of p-iodobenzonitrile. After three days, the 

reaction mixture was worked up as described in the general procedure. The crude mixture was 

purified on silica eluted with 100 % hexanes → 100 % DCM → 10 % MeOH/DCM to yield 1.02 

g (78 %) of white solid. Mp = 158-159 °C. ATR-IR (neat, cm-1) 2216 (s, C≡N str); 1H-NMR (400 

MHz, DMSO-d6): 3.70 (s, 6H), 6.31-6.32 (d, 2H, J = 2 Hz), 6.47-6.48 (d, 1H, J = 2 Hz), 7.12-7.14 

(d, 4H, J = 8 Hz), 7.72-7.74 (d, 4H, J = 8 Hz). 

Bis-p-cyanophenylamino-3,5-dihydroxybenzene (4,4'-((3,5-
dihydroxyphenyl)azanediyl)dibenzonitrile): 

 

Prepared using the general procedure for demethylation using 1.16 g (3.26 mmol) of N,N-

bis-(p-cyanophenyl)amino-3,5-dimethoxybenzene and 1.25 mL (13.2 mmol, 4 eq) of BBr3 

(required 2 eq per –OCH3) in 32 mL of dry DCM. The reaction mixture turned bright red upon 

BBr3 addition, and gave an orange-red slurry after time. The reaction was worked up as described 

in the general procedure to give a tan solid in quantitative yield (1.06 g). Product used in the next 

step without further purification. Mp not obtained. ATR-IR (neat, cm-1) 2228 (s, C≡N str), 3349 

(br, O-H str); 1H-NMR (400 MHz, DMSO-d6): 5.56-5.57 (d, 2H, J = 2 Hz), 5.61-5.62 (t, 1H, J = 2 

Hz), 6.69-6.71 (d, 4H, J = 8 Hz), 6.87-6.90 (d, 4H, J = 8 Hz) 8.84 (s, 2H), 9.26 (s, 2H). 
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Attempted synthesis of SQ-CN (2,4-bis-(4-(bis(4-cyanophenyl)amino)-2,6-
dihydroxyphenyl)-3-oxocyclobut-1-enolate): 

 

Bis-p-cyanophenylamino-3,5-dihydroxybenzene (0.710 g, 3.81 mmol) and 0.124 g (1.09 

mmol, 0.5 eq) of squaric acid were dissolved in 25 mL of 1:1 toluene/n-butanol under nitrogen 

and heated at reflux for 3 days. The reaction was cooled to -20 oC to maximize precipitate, 

filtered, and the solid washed with toluene followed by hexanes to give a dark violet powdery 

product. 1H-NMR was inconclusive, and product impure by TLC. Column chromatography 

failed, crystallization does not give pure product by NMR, dark blue filtrates decomposed into 

light brown solutions. 

TAA-Triester (trimethyl 2,2',2''-nitrilotribenzoate): 

 

This procedure was modified from the literature.20,21  Prepared using the general 

procedure for Ullmann Coupling using 1.0 mL (1.17 g, 7.74 mmol) of methyl 2-aminobenzoate 

and 3.4 mL (6.08 g, 20.3 mmol, 3 eq) of methyl 2-iodobenzoate. (Note: Reaction should be 

carried out in the dark, since methyl 2-aminobenzoate is light-sensitive.) After three days, the 

reaction mixture was worked up as described in the general procedure. The crude mixture was 

poured into hexanes and cooled at -20 °C for 30-60 minutes to give 2.02 g of powdery yellow 

precipitate (62 %). The filtrate was concentrated in vacuo, and purified on silica eluted with 100 

% hexanes → 100 % DCM → 10-20 % MeOH/DCM giving 2.63 g (81 %) of product. Mp = 134-

135 °C (lit mp 130.0-130.8).22  1H-NMR (400 MHz, DMSO-d6): 3.26 (s, 9H), 6.93-6.95 (d, 3H, J 

= 8 Hz), 7.13-7.17 (dt, 3H, J = 8 Hz), 7.43-7.47 (dt, 3H, J = 8 Hz), 7.49-7.52 (dd, 3H, J = 8 Hz, J’ 

= 2 Hz).  
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TriIodo-TAA-Triester (trimethyl 2,2',2''-nitrilotribenzoate): 

 

The procedure was modified from the literature.21 TAA-triester (0.250 g, 0.596 mmol) 

was combined with I2 (0.454 g, 1.79 mmol, 3 eq) and of Ag2SO4 (0.558 g, 1.79 mmol, 3 eq). 95% 

EtOH (40 mL) was added, and the reaction stirred overnight at room temperature. The resulting 

yellow precipitate was filtered away, the solids were washed with DCM, and combined organic 

layers was concentrated in vacuo to give a powdery yellow solid, 0.433 g (92 %). No further 

purification was deemed necessary, and this product used immediately for the next step 

(hydrolysis). 1H-NMR (400 MHz, DMSO-d6): 3.31 (s, 9H), 6.72-6.74 (d, 3H, J = 8 Hz), 7.78-7.81 

(m, 6H).  

TriIodo-TAA-Triacid (trimethyl 2,2',2''-nitrilotribenzoate): 

 

This procedure was modified from the literature.21 Triiodo-TAA-Triester (0.250 g, 0.314 

mmol) was combined with KOH (0.264 g, 4.71 mmol, 15 eq) in 15 mL of 4:1 MeOH/H2O. The 

reaction mixture was heated overnight at 50 °C, cooled to room temperature, poured into 80 mL 

of H2O, and acidified with 1 M aq HCl to pH ≈ 3 to produce a white precipitate. The solids were 

filtered away, dissolved in EtOAc, and dried over anhydrous MgSO4 to give 0.204 g (86 %) of 

off-white solid. 1H-NMR indicates some minor impurity, but the product was used anyway 

without further purification. 1H-NMR (400 MHz, DMSO-d6): 3.33 (s, broad with H2O peak, 3H), 

6.65-6.67 (m, 3H), 7.75-7.91 (m, 6H).  
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TriIodo-Heterotriangulene (2,6,10-triiodo-12c-aza-dibenzo[cd,mn]pyrene-4,8,12-trione): 

 

This procedure was modified from the literature.20,21 TriIodo-TAA-Triacid (0.500 g, 

0.662 mmol) was dissolved in 13 mL of dry DCM under nitrogen. SOCl2 (1.5 mL, of ~20 mmol, 

~30 eq) and 0.5 mL of dry DMF were added, and the reaction mixture heated at reflux for 3 h. 

SnCl4 (1.4 mL, 11.9 mmol, 18 eq) was then added dropwise (slowly!) with continued heating to 

give a bright red solution with some red precipitate. After 24 h, the reaction was allowed to cool 

to room temperature and poured carefully into ice cold 1 M aq NaOH. Red chunks were broken 

up with stirring to give a yellow solid. The solids were then filtered away,  washed with H2O, and 

then thoroughly with acetone. The aqueous filtrate was extracted with DCM, dried over 

anhydrous MgSO4, and concentrated in vacuo. The resulting solids were combined with the 

filtered solids to give 0.214 g yellow solid (46% yield). 1H-NMR (400 MHz, CDCl3/TFA): 9.32 

(s, 6H), peak very small due to low solubility.  

Tribromoindanone (2,2,5-tribromo-2,3-dihydro-1H-inden-1-one): 

 

Procedure adapted from the literature.23 5-Bromoindan-1-one (7.00 g, 4.74 mmol) was 

dissolved in chloroform and cooled to 0 °C, and Br2 (3.5 mL, 68.7 mmol, 2.07 eq) added slowly. 

The reaction mixture was stirred for 1 h at room temperature, and then nitrogen was bubbled in to 

remove excess Br2. The reaction mixture was concentrated in vacuo and recrystallized from 

boiling methanol to give 10.8 g (88 %) of product after two crops. 1H-NMR (400 MHz, 

CDCl3/TFA): 4.26 (s, 1H), 7.59 (s, 1H), 7.63-7.65 (d, 1H, J = 8 Hz), 7.79-7.81 (d, 1H, J = 8Hz). 

Mp = 93-95 oC (lit mp = 93 °C).19 



192 
 

 

4,9,14-Tribromotruxenone (3,8,13-tribromo-5H-diindeno[1,2-a:1',2'-c]fluorene-5,10,15-
trione): 

 

This procedure was adapted from the literature.23 2,2,5-tribromoindanone (23.9 g, 64.7 

mmol) was heated at 220 °C in a preheated oil bath for 1.5 h during which time a vapor evolved 

(presumably HBr). After vapor evolution ceased, the crude blackish-brown solid was suspended 

in chloroform, sonicated for 15 min, filtered, and washed with chloroform until the filtrate was 

not sludgy; the remaining crude solid weighted 2.15 g (16 % yield). Recrystallization from 

nitrobenzene, filtration, chloroform washing, and air drying gave 0.644 g (4.8 %) of tan solid that 

was not soluble enough for NMR. ATR-IR (neat, cm-1) 1706 (s, C=O str).  

Attempted synthesis of 4,9,14-Tris-(trimethoxystryryl)truxenone (3,8,13-tris((E)-3,4,5-
trimethoxystyryl)-5H-diindeno[1,2-a:1',2'-c]fluorene-5,10,15-trione): 

 

Attempted using the general procedure for Heck Coupling using 0.250 g (0.403 mmol) of 

4,9,14-tribromotruxenone and 0.293 g (1.51 mmol, 3.75 eq) of 3,4,5-trimethoxystyrene. After 

three days, the dark red reaction mixture was worked up as described in the general procedure. 

The resulting aqueous suspension was extracted with DCM, dried over anhydrous MgSO4, and 

concentrated in vacuo to give a dark red solid. Attempts to purify by column or crystallization did 

not succeed. Crude MS (FAB, m/z): found m/z = 961.3, calculated for C60H48O12 m/z = 

960.31458. 
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5-Trihexyloxystyrylindan-1-one ((E)-5-(3,4,5-tris(hexyloxy)styryl)-2,3-dihydro-1H-inden-1-
one): 

 

Prepared using the general procedure for Heck Coupling using 0.476 g (2.25 mmol) of 5-

bromoindan-1-one and 1.00 g (2.47 mmol, 1.1 eq) of 3,4,5-trihexyloxystyrene (provided by 

Timothy Gehan). After three days, the reaction mixture was worked up as described in the 

general procedure. The resulting aqueous suspension was extracted with DCM, dried over 

MgSO4, and concentrated in vacuo to give crude tan solid. Purification on silica eluted with 5 → 

20 % EtOAc/hexanes yielded 0.825 g (70 %) of tan solid that fluoresces teal-white under long-

wave UV. Mp = 62-64 °C. ATR-IR not obtained; 1H-NMR (400 MHz, CDCl3): 0.90-0.93 (m, 

9H), 1.33-1.36 (m, 12H), 1.46-1.52 (m, 6H), 1.72-1.80 (m, 2H), 1.80-1.87 (m, 4H), 2.70-2.73 (t, 

2H, J = 6 Hz), 3.13-3.16 (t, 2H, J = 6 Hz), 3.97-4.00 (t, 2H, J = 7 Hz), 4.00-4.05 (t, 4H, J = 7 Hz), 

6.74 (s, 2H), 7.00-7.04 (d, 1H, J = 8 Hz), 7.14-7.18 (d, 1H, J = 8 Hz), 7.49-7.51 (d, 1H, J = 4 Hz), 

7.56 (s, 1H), 7.72-7.74 (d, 1H, J = 8 Hz). MS (FAB, m/z): found 534.4, calculated for C35H50O4 

534.76910. 

4,9,14-Tris-(trihexyloxystryryl)truxene (3,8,13-tris((E)-3,4,5-tris(hexyloxy)styryl)-10,15-
dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene): 

 

5-Trihexyloxystyrylindan-1-one (0.250 g, 0.468 mmol) and p-toluene sulfonic acid 

(0.282 g, 1.64 mmol, 3.5 eq) were combined under nitrogen atmosphere in 0.1 mL of acetic acid 

and 0.35 mL of o-dichlorobenzene. The mixture was sparged with nitrogen and heated at 105 °C 

overnight. This reaction seems never to go to completion, always showing starting material by 
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TLC (20 % ethyl acetate/hexanes), with a second spot having higher Rf. Isolation of the crude 

reaction mixture gave inconclusive 1H-NMR. 

1-Bromo-4-hexyloxybenzene: 

 

This procedure was modified from the literature.24 4-Bromophenol (5.00 g, 29.0 mmol) 

was combined with K2CO3 (4.00 g, 29.0 mmol, 1 eq) and NaI (0.435 g, 2.90 mmol, 0.1 eq) in 60 

mL of 2-butanone under nitrogen. The reaction mixture was heated to 80 °C 5 mL (32.0 mmol, 

1.1 eq) of n-bromohexane was added, and the reaction stirred with heating overnight. The 

reaction was cooled to room temperature, filtered, and washed with H2O. The organic layer was 

separated and dried over anhydrous MgSO4, and concentrated in vacuo. The crude product was 

purified by running through a pad of silica gel with hexanes to give 7.28 g (98 %) of yellowish 

oil. 1H-NMR (400 MHz, CDCl3): 0.89-0.92 (m, 3H), 1.31-1.36 (m, 4H), 1.41-1.48 (m, 2H), 1.72-

1.80 (p, 2H, J = 7 Hz), 3.89-3.92 (t, 2H, J = 7 Hz), 6.76-6.78 (d, 2H J = 8 Hz), 7.34-7.36 (d, 2H, J 

= 8 Hz).  

1-Hexyloxy-4-iodobenzene: 

 

This procedure was modified from the literature.24 4-Iodophenol (5.00 g, 22.8 mmol) was 

combined with anhydrous K2CO3 (3.15 g, 22.8 mmol, 1 eq) and NaI (0.337 g, 2.28 mmol, 0.1 eq) 

in 50 mL of 2-butanone under nitrogen. The reaction mixture was heated to 80 °C, 3.9 mL (25.1 

mmol, 1.1 eq) of n-bromohexane was added, and the reaction heated with stirring overnight. The 

reaction was cooled to room temperature, filtered, and washed with H2O.  The organic layer was 

separated and dried over anhydrous MgSO4, and concentrated in vacuo. The crude product was 

purified by running through a pad of silica with 20 % ethyl acetate/hexanes to give 6.80 g (99 %) 

of yellowish oil.  
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1-Hexyloxy-4-nitrobenzene: 

 

This procedure was modified from the literature.25,26 4-Nitrophenol (1.00 g, 7.40 mmol) 

was combined with 1.99 g anhydrous K2CO3 (14.4 mmol, 2 eq) and NaI (0.108 g, 0.720 mmol, 

0.1 eq) in 24 mL of 2-butanone under nitrogen. The reaction mixture was heated to 80 °C, 1.1 mL 

(7.92 mmol, 1.1 eq) n-bromohexane was added, and the reaction heated with stirring overnight. 

The reaction was cooled to room temperature, filtered, and washed with H2O.  The organic layer 

was separated and  extracted with ethyl acetate, dried over anhydrous MgSO4, and concentrated 

in vacuo. The crude product was purified over silica with 20 % ethyl acetate/hexanes to give 1.54 

g (96 %) of yellowish oil. 1H-NMR (400 MHz, acetone-d6): 0.89-0.92 (m, 3H), 1.34-1.38 (m, 

4H), 1.45-1.53 (m, 2H), 1.79-1.86 (p, 2H, J = 8 Hz), 4.14-4.18 (t, 2H, J = 8 Hz), 7.12-7.14 (d, 2H, 

J = 8 Hz), 8.20-8.22 (d, 2H, J = 8 Hz).  

4-Hexyloxyaniline: 

 

This procedure was adapted from the literature.27 1-(Hexyloxy)-4-nitrobenzene (10.9 g, 

48.8 mmol) was dissolved in 80 mL of 95 % ethanol under nitrogen. The reaction mixture was 

heated to 50 °C, and a few milligrams of 10 % Pd/C was added, followed by 3 mL of hydrazine 

hydrate, followed by another few milligrams of 10 % Pd/C, at which time the reaction mixture 

began to bubble vigorously. The reaction was heated at 50 °C overnight, cooled to room 

temperature, and filtered. The solid was washed with H2O, the filtrate was extracted with DCM, 

and the combined organic layers were dried over anhydrous MgSO4,, filtered and concentrated in 

vacuo to give 8.57 g (90 %) of brown crystalline solid. 1H-NMR (400 MHz, DMSO-d6): 0.85-

0.88 (t, 3H, J = 8 Hz), 1.26-1.30 (m, 4H), 1.34-1.39 (m, 2H), 1.59-1.66 (p, 2H, J = 8 Hz), 3.77-

3.80 (t, 2H, J = 8 Hz), 4.56 (s, 2 H), 6.47-6.49 (d, 2H, J = 8 Hz), 6.71-6.93 (d, 2H, J = 8 Hz).  
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1-(Dodecyloxy)-4-nitrobenzene: 

 

This procedure was modified from the literature.25,26  4-Nitrophenol (5.00 g, 35.9 mmol) 

was combined with anhydrous K2CO3 (9.92 g, 71.8 mmol, 2 eq) and NaI (0.538 g, 3.59 mmol, 0.1 

eq) in 120 mL of 2-butanone under nitrogen. The reaction mixture was heated to 80 °C and n-

bromododecane (13.0 mL, 53.9 mmol, 1.5 eq) was added, and the mixture was heated with 

stirring overnight. The reaction was cooled to room temperature and filtered. The solid was 

washed with H2O, the filtrate was extracted with DCM, and the combined organic layers were 

dried over anhydrous MgSO4, filtered, and concentrated in vacuo to give a yellowish oil in 

quantitative yield (11.0 g). 1H-NMR (400 MHz, DMSO-d6): 0.83-0.86 (t, 3H, J = 6 Hz), 1.24 (m, 

16H), 1.37-1.42 (m, 2H), 1.70-1.75 (p, 2H), 4.09-4.13 (t, 2H, J = 6 Hz), 7.12-7.15 (d, 2H, J = 9 

Hz), 8.18-8.21 (d, 2H, J = 9 Hz).  

4-Dodecyloxyaniline: 

 

This procedure was adapted from the literature.27  1-(dodecyloxy)-4-nitrobenzene (0.345 

g, 2.48 mmol) was dissolved in 80 mL of 95 % ethanol under nitrogen. The reaction mixture was 

heated to 50 °C and a few milligrams of 10 % Pd/C was added, followed by 1 mL of hydrazine 

hydrate, followed by another few milligrams of 10 % Pd/C, at which time the reaction mixture 

began to bubble vigorously. The reaction was heated at 50 °C overnight, cooled to room 

temperature, and filtered. The solid was washed with H2O, the filtrate was extracted with DCM, 

and the combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated in 

vacuo to give 0.0830 g (23 %) of tan solid after crystallization from boiling heptane. Mp not 

obtained. 1H-NMR (400 MHz, DMSO-d6): 0.84-0.87 (m, 3H), 1.25-1.39 (m, 18H), 1.59-1.66 (p, 

2H), 3.77-3.81 (t, 2H, J = 6 Hz), 4.57 (s, 2H), 6.47-6.49 (d, 2H, J = 8 Hz), 6.61-6.63 (d, 2H, J = 8 

Hz). 
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BHPA [bis(4-(hexyloxy)phenyl)amine]: 

 

Prepared via Buchwald-Hartwig amination using 0.500 g (1.94 mmol) of p-

bromohexyloxybenzene, 0.470 g (2.43 mmol, 1.25 eq) of p-hexyloxyaniline, 0.108 g (0.194 

mmol, 0.1 eq) of DPPF, 0.0444 g (0.0485 mmol, 0.025 eq) of Pd2dba3, and 0.361 g (2.72 mmol, 

1.4 eq) of t-BuONa in 4 mL of dry toluene. After reacting 2 h the reaction mixture was worked up 

as described in the general procedure. The resulting reddish-brown solid was recrystallized in two 

crops from heptane to yield 0.469 g (65 %) of brown solid. 1H-NMR (DMSO-d6): δ 0.86-0.89 (t, 

6H, J = 7 Hz), 1.29-1.31 (m, 8 H), 1.36-1.43 (p, 4H), 1.63-1.70 (p, 4H), 3.85-3.88 (t, 4H, J = 7 

Hz), 6.78-6.80 (d, 4H, J = 8 Hz), 6.87-6.89 (d, 4H, J = 8 Hz), 7.48 (s, 1H). Mp not obtained (lit 

mp = 77-79 °C).28 

BOC-HexOAniline (tert-butyl (4-(hexyloxy)phenyl)carbamate): 

 

This procedure was adapted from the literature.18  indium tribromide  (0.018 g, 0.0500 

mmol, 0.01 eq) was added to of di-t-butyl carbonate (1.09 g, 5.00 mmol, 1 eq) with stirring. 4-

(Hexyloxy)aniline (0.966 g, 5.00 mmol) was added to the reaction mixture in one portion, and the 

mixture stirred for 30 min at room temperature. Hexane was added during the reaction as needed 

to prevent clumping. When complete, the reaction mixture was diluted with EtOAc and washed 

with water. The organic layer was dried over anhydrous MgSO4, filtered, and concentrated in 

vacuo to give a gray-brown solid. Recrystallization from hot heptane yielded 1.12 g (76 %) of 

small, light gray needles after two crops. Mp not obtained. 1H-NMR (400 MHz, DMSO-d6): 

0.85-0.89 (m, 3H), 1.27-1.31 (m, 4H), 1.37-1.41 (m, 2H), 1.45 (s, 9H), 1.63-1.70 (m, 2H), 3.86-

3.89 (t, 2H, J = 6 Hz), 6.79-6.82 (d, 2H, J = 8 Hz), 7.30-7.32 (d, 2H, J = 8 Hz), 9.10 (s, 1H).  
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DAAPP (4-Dianisylamino-N-phenylpyrrole) (N-(4-(1H-pyrrol-1-yl)phenyl)-4-methoxy-N-(4-
methoxyphenyl)aniline): 

 

Prepared using the general procedure for Buchwald-Hartwig amination using 0.250 g 

(1.13 mmol) of 4-bromo-N-phenylpyrrole and 0.312 g (1.36 mmol, 1.2 eq) of DAA. After 2 h, the 

reaction mixture was worked up as described in the general procedure. The crude mixture was 

purified on silica eluted with hexanes → 10:90 EtOAc/hexanes to yield 0.293 g (70 %) of sticky 

clear yellowish oil. 1H-NMR (400 MHz, DMSO-d6): 3.73 (s, 3 H), 6.21 (s, 2H), 6.83-6.85 (d, 2H, 

J = 8 Hz), 6.89-6.91 (d, 4H, J = 8 Hz), 6.99-7.01 (d, 4H, J = 8 Hz), 7.20 (s, 2H), 7.35-7.37 (d, 2H, 

J = 8 Hz); MS (FAB, m/z): found 370.2, calculated for C24H22N2O2 370.16813. 

DAAPDTP (Dianisylaminophenyl-dithienylpyrrole) (4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-
yl)-N,N-bis(4-methoxyphenyl)aniline): 

 

Prepared under Buchwald-Hartwig amination conditions using 0.229 g (0.593 mmol) of 

4-bromo-N-phenyl-2,5-(dithiophen-2-yl)pyrrole (provided by Jonathan Tinkham), 0.148 g (0.652 

mmol, 1.1 eq) of dianisylamine, 0.0359 g (0.0647 mmol, 0.1 eq) of DPPF, 0.0148 g (0.0162 

mmol, 0.025 eq) of Pd2dba3, and 0.0871 g (0.906 mmol, 1.4 eq) of t-BuONa in 3 mL of dry 

toluene. After 3 days, the reaction mixture was worked up as described in the general procedure. 

The crude mixture was purified on silica eluted with 5 % → 20 % EtOAc/hexanes to yield 0.265 

g (84 %) of brown sticky solid. 1H-NMR (400 MHz, DMSO-d6): 3.80 (s, 6H), 6.53 (s, 2H), 6.70-

6.71 (dd, 2H, J = 4 Hz, J’ = 1 Hz), 6.84-6.89 (m, 6H), 6.91-6.93 (d, 2H, J = 8 Hz), 7.06-7.12 (m, 

8H). This material was subjected to further use and testing by Jonathan Tinkham, who will report 

those results subsequently. 
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N-Fluorenyl-dithienylpyrrole (1-(9H-fluoren-2-yl)-2,5-di(thiophen-2-yl)-1H-pyrrole): 

 

1,4-Di(thiophen-2-yl)butane-1,4-dione (0.0500 g, 0.200 mmol, 1 eq) and (0.181 g, 1.00 

mmol, 5 eq) of 2-aminofluorene were combined in 3.5 mL acetic acid. The reaction mixture was 

heating using a CEM MARS Organic Reactor (microwave reactor) at 180 °C for 15 min. The 

product was precipitated into water, washed with water, air-dried, and purified by silica gel 

chromatography eluting with 10 % ethyl acetate/hexanes to give 0.0540 g (68 %) of tan solid 

product. Mp = 220-222 ºC. 1H-NMR (400 MHz, CDCl3): 3.93 (s, 2H), 6.56-6.57 (m, 4H), 6.77-

6.79 (m, 2H), 7.00-7.01 (d, 2H, J = 4 Hz), 7.34-7.38 (m, 2H), 7.41-7.45 (t, 1H, J = 8 Hz), 7.48 (s, 

1H), 7.57-7.59 (d, 1H, J = 8 Hz), 7.83-7.86 (m, 2H). MS (FAB, m/z): found 395.1, calculated for 

C25H17NS2 395.08024.  

N-Fluorenonyl-dithienylpyrrole (2-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)-9H-fluoren-9-
one): 

 

Prepared using the general fluorene oxidation procedure using 0.0250 g (0.0632 mmol, 1 

eq) of N-fluorenyl-dithienylpyrrole and 0.103 g (0316 mmol, 5 eq) of Cs2O3 in 4 mL of dry 

DMSO at 40 °C. After 3 h, the reaction was worked up as described in the general procedure to 

give 0.0255 g (99 %) of yellow solid. Mp not obtained. 1H-NMR (400 MHz, acetone-d6): 6.58 (s, 

2H), 6.78-6.79 (dd, 2H, J = 4 Hz, J’ = 1 Hz), 6.87-6.89 (dd, 2H, J = 4 Hz, J’ = 1 Hz), 7.24-7.25 

(dd, 2H, J = 5 Hz, J’ = 1 Hz), 7.45-7.49 (t, 1H, J = 8 Hz), 7.52-7.56 (m, 2H), 7.66-7.70 (m, 2H), 

7.87-7.91 (t, 2H, J = 8 Hz). This material was subjected to further use and testing by Jonathan 

Tinkham, who will report those results subsequently. 
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BrNO2Fl (2-bromo-7-nitro-9H-fluorene): 

 

This procedure was adapted from the literature.29 2-Bromofluorene (8.82 g, 36.0 mmol) 

was suspended in 100 mL of acetic acid and heated to 100 °C until dissolved, then cooled to 50 

°C. Concentrated HNO3 (8 mL) was added dropwise, as the reaction mixture fumed with white 

vapor. The reaction was allowed to stir with heating at 50 °C overnight, as a yellow precipitate 

formed. The reaction was then cooled to room temperature, filtered, and the precipitate washed 

with acetic acid until the washings were colorless. The solids were then washed thoroughly with 

water to give 8.00 g (77 %) of yellowish-white solid. Mp = 235-237 ºC, lit. 233-234 °C);30 1H-

NMR (400 MHz, CDCl3): 4.01 (s, 2H), 7.58-7.60 (dd, 1H, J = 8 Hz, J’ = 1 Hz), 7.72-7.74 (d, 1H, 

J = 8 Hz), 7.72 (s, 1H), 7.84-7.86 (d, 1H, J = 8 Hz), 8.29-8.32 (dd, 1H, J = 8 Hz, J’ = 2 Hz), 8.40 

(s, 1H).  

BrAFl (7-bromo-9H-fluoren-2-amine): 

 

BrNO2Fl (1.50 g, 5.17 mmol) was suspended in 17 mL of 100 % ethanol under nitrogen, 

and the reaction mixture vigorously boiled. Iron powder (0.866 g, 15.5 mmol, 3 eq) was added, 

followed by careful addition of 22 mL of concentrated HCl (4.2 mL/mmol of starting material) 

over 20 min, during which time the reaction mixture became yellow and chunky. The reaction 

mixture was heated at 90 °C overnight, cooled to room temperature, and the precipitate was 

filtered and washed with ethanol and conc. aq. Na2CO3. The white solid was column purified over 

silica eluted with DCM → 10 % MeOH/DCM to give 0.490 g (37 %) of white powdery solid. Mp 

not obtained. 1H-NMR (400 MHz, DMSO-d6): 3.76 (s, 2H), 5.29 (s, 2H), 6.57-6.59 (d, 1H, J = 8 

Hz), 6.75 (s, 1H), 7.41-7.43 (d, 1H, J = 8 Hz), 7.51-7.56 (overlapping doublets, 2H, J1 = J2 = 8 

Hz), 8.60 (s, 1H). 
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Bis-hexyloxyphenylamino-nitrobenzene (N,N-Bis-(4-(hexyloxy)phenyl)-4-nitroaniline): 

 

Prepared using the general procedure for Ullmann Coupling using 0.250 g (1.81 mmol) 

4-nitroaniline and 1.65 g (5.44 mmol, 3 eq) 1-(hexyloxy)-4-iodobenzene. After three days, the 

reaction mixture was worked up as described in the general procedure. The crude mixture was 

purified on silica eluted with 100 % hexanes → 20 % ethyl acetate/hexanes to yield 0.886 g (96 

%) of a sticky reddish-orange oil. 1H-NMR (400 MHz, DMSO-d6): 0.86-0.89 (m, 6H), 1.29 (m, 

8H), 1.40 (m, 4H), 1.68-1.71 (m, 4H), 3.95 (m, 4H), 6.60-6.62 (d, 2H, J = 8 Hz), 6.97-6.99 (d, 

4H, J = 8 Hz), 7.21-7.23 (d, 4H, J = 8 Hz), 7.99-8.01 (d, 2H, J = 8 Hz). 

4-[Bis-N,N-(p-hexyloxyphenyl)amino]aniline:  

 

N,N-Bis-hexyloxyphenylamino-N-nitrobenzene (0.250 g, 0.510 mmol) was dissolved in 1 

mL of 95 % ethanol under nitrogen. The reaction mixture was heated to 50 °C and a few 

milligrams of 10 % Pd/C was added, followed by 0.05 mL of hydrazine hydrate, followed by 

another few milligrams of 10 % Pd/C, at which time the reaction mixture began to bubble 

vigorously. The reaction was heated at 50 °C for 12 h with a few 50 microliter extra additions of 

hydrazine hydrate. Subsequently, it was allowed to cool to room temperature and filtered. The  

solids were filtered and washed with DCM to collect the organic product, and the DCM filtrate 

was washed with water, dried over anhydrous MgSO4, and concentrated in vacuo to give a crude 

brown sticky oil in quantitative yield (0.230 g). Column purification attempts resulted in 

decomposition, crude 1H-NMR too messy for characterization.  
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SQ-OH (2,4-bis-((4-methoxyphenyl)(9-oxo-9H-fluoren-3-yl)amino)-3-oxocyclobut-1-
enolate): 

 

Anisylaminofluorenone (FOAA, 0.100 g, 0.332 mmol) and squaric acid (0.189 g, 0.166 

mmol, 0.5 eq) were dissolved in 10 mL of 1:1 toluene/n-butanol under nitrogen and heated at 

reflux for 3 days. The reaction was cooled to -20 oC and filtered to collect a bright orange 

precipitate (fluorescent yellowish orange under long wave UV). The precipitate was washed 

thoroughly with toluene, then hexanes to give an orange solid (mass not obtained). Much of the 

FOAA starting material was not consumed even after 3 days and did not precipitate with the 

product. Mp not obtained. ATR-IR not obtained. 1H-NMR (400 MHz, DMSO-d6): 3.80-3.81 (d, 6 

H), 5.75-5.76 (d, 7.77H??), 6.99-7.02 (dd, 4H, J = 9 Hz, J’ = 2 Hz), 7.28-7.30 (d, 2H, J = 8 Hz), 

7.34 (s, 2H), 7.37-7.41 (m, 2H), 7.46-7.48 (d, 2H, J = 8 Hz), 7.62-7.66 (m, 4H), 7.82-7.87 (m, 

4H). NMR peaks are well defined, but the results are inconclusive. MS not obtained. 

AAPh(OMe)2 (Anisylamino-dimethoxybenzene) (3,5-dimethoxy-N-(4-
methoxyphenyl)aniline): 

 

Prepared using the general procedure for Buchwald-Hartwig amination using 0.800 g 

(5.22 mmol, 1.25 eq) of 3,5-dimethoxyaniline and 0.52 mL (4.18 mmol, 1 eq) of 4-bromoanisole. 

The mixture was reacted overnight and worked up as described in the general procedure. The 

crude brown oil was purified on silica eluted with hexanes → 20 % EtOAc/hexanes to yield 0.880 

g (82 %) of sticky clear yellowish-tan oil. 1H-NMR (400 MHz, DMSO-d6): 3.66 (s, 6H), 3.71 (s, 

3H), 5.89 (s, 1H), 6.06-6.07 (d, 2H, J = 4 Hz), 6.86-6.88 (d, 2H, J = 8 Hz), 7.04-7.06 (d, 2H, J = 8 

Hz), 7.84 (s, 1H). 
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FPhAPh(OMe)2 (Fluorophenylamino-dimethoxybenzene) (N-(4-fluorophenyl)-3,5-
dimethoxyaniline): 

 

Prepared using the general procedure for Buchwald-Hartwig amination using 0.800 g 

(5.22 mmol, 1.25 eq) of 3,5-dimethoxyaniline and 0.46 mL (4.18 mmol, 1 eq) of 1-bromo-4-

fluorobenzene. The mixture was reacted overnight and worked up as described in the general 

procedure. The crude brown oil was purified on silica eluted with hexanes → 20 % 

EtOAc/hexanes to yield 0.939 g (91 %) of sticky clear yellowish-tan oil. 1H-NMR (400 MHz, 

DMSO-d6): 3.68 (s, 6H), 5.98 (s, 1H), 6.14-6.15 (d, 2H, J = 2 Hz), 7.08-7.10 (m, 4H), 8.10 (s, 

1H). 

6-Bromoisoindigo [(E)-6-bromo-[3,3'-biindolinylidene]-2,2'-dione]: 

 

This procedure was adapted from Reynolds and coworkers.31 Indolin-2-one (1.47 g, 11.1 

mmol) and 6-bromoindoline-2,3-dione (2.50 g, 11.1 mmol) were refluxed with 0.2 mL 

concentrated hydrochloric acid in 40 mL of glacial acetic acid for 24 h. The reaction mixture was 

then allowed to cool to room temperature and the purplish red solids were filtered and washed 

liberally with 95 % ethanol followed by ethyl acetate to give 3.12 g (82% yield) pure purplish red 

powdery solid. 1H-NMR (400 MHz, DMSO-d6): 6.83-6.86 (d, 1H, J = 8 Hz), 6.95-6.99 (m, 2H), 

7.16-7.19 (dd, 1H, J = 8 Hz, 2Hz), 7.34-7.37 (t, 1H, J = 8 Hz), 8.99-9.05 (2 doublets, 2H, J = 8 

Hz), 10.9 (s, 1H), 11.0 (s, 1H). 

6,6’-Dibromoisoindigo [(E)-6,6'-dibromo-[3,3'-biindolinylidene]-2,2'-dione]: 

 

This procedure was adapted from Reynolds and coworkers.31 6-bromoindolin-2-one (2.13 

g, 9.43 mmol) and 6-bromoindoline-2,3-dione (2.00 g, 9.43 mmol) were refluxed with 0.4 mL 
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concentrated hydrochloric acid in 80 mL of glacial acetic acid for 24 h. The reaction mixture was 

then allowed to cool to room temperature and the purplish red solids were filtered and washed 

liberally with 95 % ethanol followed by ethyl acetate to give 3.54 g (89% yield) pure purplish red 

powdery solid. 1H-NMR (400 MHz, DMSO-d6): 6.83-6.86 (d, 1H, J = 8 Hz), 6.95-6.99 (m, 2H), 

7.16-7.19 (dd, 1H, J = 8 Hz, 2Hz), 7.34-7.37 (t, 1H, J = 8 Hz), 8.99-9.05 (2 doublets, 2H, J = 8 

Hz), 10.9 (s, 1H), 11.0 (s, 1H). 

6-Bromoisoindigo-ethylhexyl [(E)-6-bromo-1,1'-bis(2-ethylhexyl)-[3,3'-biindolinylidene]-2,2'-

dione]: 

 

This procedure was adapted from Reynolds and coworkers.31 6-bromoisoindigo (1.00 g, 

2.93 mmol) and potassium carbonate (2.43 g, 17.6 mmol) were combined under nitrogen. Dry 

DMF (20 mL) was added, followed by 1-bromo-2-ethylhexane (1.70 g, 8.79 mmol). The reaction 

mixture heated at 100 °C overnight, cooled to room temperature, and poured into 500 mL water. 

The product was extracted with DCM, dried over anhydrous MgSO4, and concentrated in vacuo. 

The crude reddish brown solid was purified over silica eluted with 40% DCM/hexanes to give 

0.497 g (30% yield) pure reddish brown powdery solid. 1H-NMR (400 MHz, DMSO-d6): 0.81-

0.90 (m, 12H), 1.23-1.36 (m, 18H), 3.65-3.69 (t, 4H, J = 8Hz), 7.01-7.07 (m, 2H), 7.25-7.27 (m, 

2H), 7.44-7.48 (t, 1H, J = 7 Hz), 9.03-9.10 (m, 2H). 
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6,6’-Dibromoisoindigo-ethylhexyl [(E)-6,6'-dibromo-1,1'-bis(2-ethylhexyl)-[3,3'-

biindolinylidene]-2,2'-dione]: 

 

This procedure was adapted from Reynolds and coworkers.31 6,6’-dibromoisoindigo 

(2.10 g, 5.00 mmol) and potassium carbonate (3.46 g, 25.0 mmol) were combined under nitrogen. 

Dry DMF (100 mL) was added, followed by 1-bromo-2-ethylhexane (2.0 mL, 11.0 mmol). The 

reaction mixture was heated at 100 °C overnight, cooled to room temperature, and poured into 1 

L water. The product was extracted with DCM, dried over anhydrous MgSO4, and concentrated 

in vacuo. The crude reddish brown solid was recrystallized from ethanol to give 1.66 g (52% 

yield) pure reddish brown powdery solid. 1H-NMR (400 MHz, DMSO-d6): 0.78-0.91 (m, 12H), 

1.19-1.33 (m, 16H), 1.79-1.82 (m, 2H), 3.65-3.67 (t, 4H, J = 8Hz), 7.24-7.25 (d, 2H J = 4 Hz), 

7.27 (s, 2H), 9.01-9.03 (d, 2H, J = 8 Hz). 
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CHAPTER 10 

SUPPLEMENTARY DATA 

10.1 Crystallographic Data 

10.1.1. Crystallographic Summary for DAAAQ 

 

Chemical Formula C28H21NO4 

Molecular Weight 435.46 

Temperature 293 K 

Cell Setting, Space Group Monoclinic, P21/c 

a, b, c (Angstroms) 9.925, 18.681, 12.195 

, ,  (Degrees) 90, 106.81, 90 

V (Å3) 2164.5 

Z 4 

Dcalc (g/cm) 1.336 

Color Dark Red Prisms 

R-Factor (%) 4.05 

 

CIF Location: XRD\DAAAQ\DAAAQ.cif 



210 
 

 

10.1.2. Crystallographic Summary for FOBDAA 

 

Chemical Formula C41H34N2O5 

Molecular Weight 634.70 

Temperature 293 K 

Cell Setting, Space Group Monoclinic, P21/c 

a, b, c (Angstroms) 16.4812(2), 10.1301(1), 20.0948(2) 

, ,  (Degrees) 90, 2.1331(6), 90 

V (Å3) 3352.71(6) 

Z 4 

Dcalc (g/cm) 1.257 

Color Dark Blue-Green Prisms 

R-Factor (%) 3.97 

 

 
CIF Location: XRD\FOBDAA27\PH1.cif 

  



211 
 

 

10.1.3. Crystallographic Summary for FOBDAA36 

 

Chemical Formula C41H34N2O5 

Molecular Weight 634.70 

Temperature 100 K 

Cell Setting, Space Group Triclinic, P-1 

a, b, c (Angstroms) 11.5095(7), 12.0831(8), 14.0025(9) 

, ,  (Degrees) 65.322(1), 67.184(1), 59.931(1) 

V (Å3) 1600.73(18) 

Z 2 

Dcalc (g/cm) 1.317 

Color Dark Red Blocks 

R-Factor (%) 4.39 

 

CIF Location: XRD\FOBDAA36\pml031_0m.cif 
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10.1.4. Crystallographic Summary for FOCz 

 

Chemical Formula C25H15NO 

Molecular Weight 345.38 

Temperature 293 K 

Cell Setting, Space Group Monoclinic, P21/c 

a, b, c (Angstroms) 11.884(5), 16.903(5), 18.435(5) 

, ,  (Degrees) 90.000(5), 107.859(5), 90.000(5) 

V (Å3) 3525(2) 

Z 4 

Dcalc (g/cm) 1.302 

Color Orange Needles 

R-Factor (%) 7.74 

 

CIF Location: XRD\FOCz\New folder (2)\import (4).cif 
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10.1.5. Crystallographic Summary for FODPA 

 

Chemical Formula C25H17NO 

Molecular Weight 347.42 

Temperature 293 K 

Cell Setting, Space Group Orthorhombic, P21 21 21 

a, b, c (Angstroms) 7.6226(3), 15.9411(7), 30.0752(13) 

, ,  (Degrees) 90, 90, 90 

V (Å3) 3654.5(3) 

Z 8 

Dcalc (g/cm) 1.263 

Color Bright Red Needles 

R-Factor (%) 5.5 

 

CIF Location: XRD\FODPA\GOOD\FODPA.cif 
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10.1.6. Crystallographic Summary for FOAA 

 

Chemical Formula C20H15NO2 

Molecular Weight 301.33 

Temperature 100 K 

Cell Setting, Space Group Monoclinic, P21/c 

a, b, c (Angstroms) 16.338(2), 5.5322(7), 16.807(2) 

, ,  (Degrees) 90, 105.592(2), 90 

V (Å3) 1463.2(3) 

Z 4 

Dcalc (g/cm) 1.368 

Color Dark Red Plates 

R-Factor (%) 4.71 

 

CIF Location: XRD\FOAA\PML022_0m.cif 
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10.1.7. Crystallographic Summary for FOS 

 

Chemical Formula C24H20O4 

Molecular Weight 372.42 

Temperature 293 K 

Cell Setting, Space Group Not Determined, Not Determined 

a, b, c (Angstroms) 7.7616(2), 8.5241(2), 28.0497(8) 

, ,  (Degrees) 90, 90, 90 

V (Å3) 1855.79 

Z Not Determined 

Dcalc (g/cm) Not Determined 

Color Orange-Red Needles 

R-Factor (%) Not Determined 

 

RES Location (No CIF – crystal twinned, complicated to solve): XRD\FOS GOOD\FOS.res 
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10.1.8. Crystallographic Summary for SQ-TAA-OH 

 

Chemical Formula C46H40N2O12 

Molecular Weight 812.83 

Temperature 293 K 

Cell Setting, Space Group Monoclinic, P21/n 

a, b, c (Angstroms) 12.5208(10), 10.0602(5), 16.3679(14) 

, ,  (Degrees) 90, 103.221(3), 90 

V (Å3) 2007.1(3) 

Z 2 

Dcalc (g/cm) 1.346 

Color Dark Green-Blue Prisms 

R-Factor (%) 6.73 

 

CIF Location: XRD\SQ-OH\Good\SQ-OH.cif 
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10.1.9. Crystallographic Summary for FMAA 

 

Chemical Formula C23H15N3O 

Molecular Weight 349.3930 

Temperature 100 K 

Cell Setting, Space Group Monoclinic, P21 

a, b, c (Angstroms) 5.4188(2), 33.7580(13), 9.5644(4) 

, ,  (Degrees) 90, 102.858(2), 90 

V (Å3) 1708.72 

Z Not Determined 

Dcalc (g/cm) Not Determined 

Color Dark Green Needles 

R-Factor (%) Not Determined 

 

CIF Location: XRD\FMAA\100kdata.cif 
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10.1.10. Crystallographic Summary for FMDAA 

 

Chemical Formula C30H21N3O2 

Molecular Weight 455.50 

Temperature 293 K 

Cell Setting, Space Group Monoclinic, P21/c 

a, b, c (Angstroms) 17.3506(5), 7.0892(1), 19.1145(5) 

, ,  (Degrees) 90, 92.4911(12), 90 

V (Å3) 2348.90(10) 

Z 4 

Dcalc (g/cm) 1.288 

Color Dark Green Needles 

R-Factor (%) 4.37 

 

CIF Location: XRD\FMDAA\ph2.cif 
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10.1.11. Crystallographic Summary for FMDPA 

 

Chemical Formula C28H17N3 

Molecular Weight 395.45 

Temperature 100 K 

Cell Setting, Space Group Monoclinic, P21/c 

a, b, c (Angstroms) 10.7809(11), 18.3482(19), 10.4690(10) 

, ,  (Degrees) 90, 107.8470(10), 90 

V (Å3) 1971.22 

Z 4 

Dcalc (g/cm) 1.332 

Color Dark Blue Needles 

R-Factor (%) 4.46 

 

CIF Location: XRD\FMDPA\pml025_1m.cif 
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10.1.12. Crystallographic Summary for FM 

 

Chemical Formula C16H8N2 

Molecular Weight 228.24 

Temperature 100 K 

Cell Setting, Space Group Orthorhombic, P212121 

a, b, c (Angstroms) 3.8456(4), 9.2678(9), 30.666(3) 

, ,  (Degrees) 90, 90, 90 

V (Å3) 1092.95(19) 

Z 4 

Dcalc (g/cm) 1.387 

Color Orange Plates 

R-Factor (%) 4.28 

 

CIF Location: XRD\FM\pml023_0m.cif 
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10.2 1H-NMR Spectrum for FODAAS, Peak Assignments Amended from Homnick, P. J.; 
Lahti, P. M. Phys. Chem. Chem. Phys. 2012, 11961-11968. 
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