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HIGHLIGHTS 21 

• Gram-positive bacteria (GPB) isolated from human, animal and environmental samples were of the 22 

same clones and/or shared common resistance genes and mobile genetic (MGEs). 23 

• Multidrug resistant (MDR) clones such as S. aureus ST5 and E. faecium ST80 were isolated from 24 

human, animal and environmental sources. 25 

• mecA, erm(B), erm(C) tet(M/K/L), and vanA/B/C were common in GPB, including VRSA.  26 

• Mean drug resistance rates of isolates from humans, animals and the environment were respectively 27 

62.0% (95% CI: 54.7 – 69.3%), 68.2% (95% CI: 58.0 -78.4%) and 84.6% (95% CI: 69.9 – 99.31%) 28 

(P-value<0.0001). 29 

• SCCmec, IS16, and Tn916 mobilized mecA, erm(B) and tet(M) respectively across various GPB 30 

species isolated from animals, humans, and the environment. 31 

• A One Health approach to studying antibiotic resistance mechanisms and molecular epidemiology of 32 

GPB is warranted. 33 

ABSTRACT 34 

A systematic review and meta-analysis of antibiotic-resistant Gram-positive bacteria in Africa, showing 35 

the molecular epidemiology of resistant species from animal, human and environmental sources, is 36 

lacking. Thus, the current burden, type, and sources of Gram-positive bacterial resistance and their 37 

dissemination routes from farm to fork is absent. To fill this One Health information gap, we 38 

systematically searched PubMed, Web of Science and African Journals Online for English research 39 

articles reporting on the resistance mechanisms and clonality of resistant Gram-positive bacteria in Africa 40 

within 2007 to 2018. The review and all statistical analysis were undertaken with 130 included articles.  41 

From our analyses, the same resistant Gram-positive bacterial clones, resistance genes, and mobile 42 

genetic elements (MGEs) are circulating in humans, animals and the environment. The resistance genes, 43 

mecA, erm(B), erm(C), tet(M), tet(K), tet(L), vanB, vanA, vanC, and tet(O), were found in isolates from 44 
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humans, animals and the environment. Commonest clones and mobile genetic elements identified from all 45 

three sample sources included Staphylococcus aureus ST5 (n=208 isolates), ST 8 (n=116 isolates), ST 80 46 

(n=123 isolates) and ST 88 (n=105 isolates), and IS16 (n=18 isolates), Tn916 (n=60 isolates) and 47 

SCCmec (n=202 isolates). Resistance to penicillin (n=4 224 isolates, 76.2%), erythromycin (n=3 552 48 

isolates, 62.6%), ampicillin (n=1 507 isolates, 54.0%), sulfamethoxazole/trimethoprim (n=2 261 isolates, 49 

46.0%), tetracycline (n=3 054 isolates, 42.1%), vancomycin (n=1 281 isolates, 41.2%), streptomycin (n=1 50 

198 isolates, 37.0%), rifampicin (n=2 645 isolates, 33.1%), ciprofloxacin (n=1 394 isolates, 30.5%), 51 

clindamycin (n=1 256 isolates, 29.9%) and gentamicin (n=1 502 isolates, 27.3%) (p-value <0.0001) were 52 

commonest. 53 

Mean resistance rates of 14.2% to 98.5% were recorded in 20 countries within the study period, which 54 

were mediated by clonal, polyclonal and horizontal transmission of resistance genes. A One Health 55 

approach to research, surveillance, molecular epidemiology, and antibiotic stewardship to contain ABR 56 

should be prioritized. 57 

Keywords: Staphylococcus spp.; Enterococcus spp.; Streptococcus spp.; MRSA; VRE 58 

1. INTRODUCTION  59 

Antibiotic resistance, a threat to public health  60 

Limited research and surveillance data in Africa makes it impossible to track and monitor the true burden 61 

of antibiotic resistance (ABR) 
1
, particularly the distribution and dissemination of resistance genes 62 

between humans, animals and the environment. According to a recent WHO report, the potential for ABR 63 

to lead to higher mortalities and morbidities in low- and middle-income countries such as Africa may 64 

even be greater as a result of the higher burden of bacterial infections, limited diagnostic capacity and 65 

lower access to second-line antibiotics
1,2

. This makes it imperative to have a One Health analysis that 66 

describes the burden and epidemiology of resistance genes in bacteria isolated from humans, animals and 67 

the environment 
3
. 68 
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In a recent review, Gram-positive bacteria (GPB) were responsible for a high proportion of infections 69 

among children and showed a high level of resistance to WHO-recommended drugs in Africa 
4
. In some 70 

African regions, as many as 80% of Staphylococcus aureus infections are methicillin-resistant S. aureus 71 

(MRSA), which  show resistance to most standard licensed drugs including quinolones and peptides 
25

. 72 

Although Enterococcus spp. are mostly not as virulent as S. aureus, their multidrug resistance (MDR) 73 

propensities restrict drug options for clinicians 
7
. Patients infected with MRSA are estimated to be 64% 74 

more likely to demise than those infected with methicillin-susceptible S. aureus (MSSA) 
6
.  75 

Reviews addressing GPB in Africa have reported on increasing rates of ABR from blood-stream 76 

infections, pneumonia, urinary tract infections and meningitis caused by Streptococcus agalactiae, S. 77 

aureus, Streptococcus pneumoniae and Enterococcus faecium in both children and adults. Sepsis due to S. 78 

agalactiae accounts for about 26% of all neonatal deaths and 10% maternal deaths in Sub-Saharan Africa 79 

8
 However, the potential dissemination of these resistant strains from farm (environment and animals) to 80 

fork (humans), are less described. 81 

Sources and anthropogenic activities driving resistance 82 

High-level ABR has been reported in humans, animals and the environment, with indiscriminate 83 

antibiotic use being fingered as a major contributor in Africa.  Resistance genes have been detected in 84 

surface water fed with runoff effluents from farms utilizing antibiotics, hospitals, and sewage processing 85 

plants as well as in ground water 
9–11

. Furthermore, genes mediating resistance to last-resort GPB 86 

antibiotics such as vancomycin have been recovered from raw milk and animal products, pigs, wild 87 

animals (buffalo, zebra and cattle), waste water, effluents and patients, implicating veterinary and 88 

agricultural use of antibiotics as potential sources of resistance genes in humans 
12–14

. These reports 89 

suggest that a larger share of the antibiotics that end up polluting the environment and communities 90 

emanate from livestock production 
15–17

. This interconnectivity between animals, humans and the 91 

environment, explains the need to adopt a One Health research policy. 92 
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Several studies have reported high rates of MDR among GPB isolates from humans, animals and the 93 

environment in Africa, mainly as a result of overuse, underuse and wrong choice of antibiotics  
18–24

.  94 

Different factors have been implicated in the high rate of ABR to the limited drugs in Africa. These 95 

include: unrestricted access to antibiotics over-the-counter without prescription such as selling on the 96 

streets; inadequate hygienic practices; uncontrolled usage of antibiotics as growth promoters in food 97 

animals production; wrong diagnosis and prescription, off-label use and errors in dosage regimens; use of 98 

untreated poultry and cattle manure to fertilize agriculture lands; extensive use of broad-spectrum 99 

antibiotics in poultry production; and inefficient chlorination of hospital wastewater effluents before 100 

discharge into the environment 
10,18,22,25–29

. Additionally, inadequate knowledge of animals’ diseases, 101 

misdiagnosis and poor antibiotic handling practices in animal production add up to the overall burden of 102 

ABR in Africa 
17

.  103 

Molecular ABR mechanisms 104 

Selective pressures exerted by various antibiotics used in human and veterinary medicine, as well as in 105 

agriculture, have resulted in the emergence and dissemination of numerous mechanisms of resistance in 106 

GPB in Africa. Commonly reported mechanisms include blaZ, erm(B), mecA, tet(M), vanB and vanC 
30–

107 

33
. These resistance genes have been found to be associated with mobile genetic elements (MGEs) such as 108 

transposons, conjugative plasmids, integrons, and insertion sequences, which are capable of mobilizing 109 

resistance genes across a wide spectrum of bacterial species 
34,35

. SCCmec, Tn916 and IS16 are notable 110 

MGEs that carry major ABR determinants in Africa and are transmissible between clones of the same or 111 

different bacteria species by a conjugative mechanism. These MGEs have the potential to thus spread 112 

resistance genes from environmental and animal bacterial hosts to human pathogens in Africa; they have 113 

therefore been analysed herein 
36–38

.  114 

Purpose of this review 115 
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Excellent reviews addressing antimicrobial resistance in some  GPB and Gram-Negative ones in Africa 116 

have been published 
4,39–44

. However, reviews discussing the molecular epidemiology and mechanisms of 117 

ABR in GPB such as Staphylococcus spp., Streptococcus spp. and Enterococcus spp. in Africa in the 118 

context of resistance rates, resistance mechanisms (and MGEs), clonality, and geographical distribution 119 

from a One Health perspective are non-existent, to the best of our knowledge. This review sought to fill 120 

this gap by analyzing the burden, types, and molecular epidemiology of resistant GPB from a One Health 121 

context.  122 

1.1 Search strategy and inclusion criteria 123 

English research articles published within the last ten years (01/01/2007 to 07/08/ 2018) and indexed in 124 

PubMed, Web of Science and African Journals Online were searched with the following keywords: 125 

“Enterococcus”, and “Streptococcus”, “Staphylococcus”, in permutations and combinations with 126 

“resistance AND Africa”. Studies which did not identify the underlying ABR mechanisms/genes as well 127 

as the clonality of antibiotic-resistant GPB were excluded. Thus, studies that only reported on antibiotic 128 

sensitivity testing (AST) results or undertook ABR surveillance studies without further molecular tests to 129 

characterize the ABR mechanisms and/or clonality of the isolates were excluded (Figure 1).  In all, 248 130 

studies were excluded because they only had MIC data (See Supplementary data 1).  All searches were 131 

undertaken independently by both authors in triplicates to ensure replication of the results. 132 

Data extracted from the articles included year of study, country, GPB species, clones, sample sources, 133 

sample size/number of isolates, number of resistant isolates, resistance genes and MGEs and antibiotics to 134 

which the strains were resistant (Tables 1-6; Supplementary data 2). The mean rate of ABR among GPB 135 

per country and in Africa was determined to identify countries with the highest or lowest levels of 136 

resistance in Africa (Table 5). As well, the antibiotics to which the isolates were most resistant were 137 

determined to evaluate their correlation with the detected/reported resistance mechanisms (Table 6). 138 

The resistance mechanisms, as well as MGEs involved in the transmission of resistance genes per species 139 

or clone, were determined to assess the means of resistance transfer i.e., horizontal or vertical (through 140 
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clonal expansion), per specimen sources (animal, human, and environment) (Figures 2a & 2b). The 141 

distribution of clones, resistance genes, and MGEs were considered to identify countries with most 142 

resistant clones, resistance genes, and their associated MGEs (Figure 3a). 143 

1.2 Statistical analysis. 144 

The data was analyzed using Microsoft Excel® 2017 and Graph pad prism™ 6 (GraphPad Software, San 145 

Diego, CA, USA) (Supplementary data 2). Calculation for the statistical significance of the data was 146 

determined using the kolmogorov-smirnov test (with Dallal - wilkinson-Lilliefors p-value) and/or column 147 

statistics or one sample t-test, and the confidence intervals determined at 95%. The p-values were two 148 

tailed with a Gaussian approximation. A p-value of <0.05 was considered as statistically significant. Only 149 

studies that provided the required information were used in the analysis. In all, 130 articles were used for 150 

the data analysis (Fig. 1). 151 

2. RESULTS AND DISCUSSION 152 

Of the 1,486 articles returned from the systematic literature search from PubMed, Web of Science and 153 

African Journals Online, 130 studies representing 20 out of 54 African countries were included in this 154 

review and data analysis (Fig. 1). A total of 249 papers were excluded because they only had MIC data. 155 

Tunisia (n=33 studies) recorded the highest number of studies followed by South Africa (n=21 studies), 156 

Egypt (n=21 studies), Nigeria (n=13 studies) and Algeria (n=7 studies), Angola (n=6 studies), Uganda 157 

(n=5 studies), Democratic Republic of the Congo (n=3 studies), Ghana (n=3 studies), Kenya (n=3 158 

studies), São Tomé and Príncipe (n=3 studies), Gabon (n=2 studies), Tanzania (n=2 studies), Cape Verde 159 

(n=1 study), Libya (n=1 study), Namibia (n=1 study), Senegal (n=1 study) and Sudan (n=1 study). 160 

Majority of the included studies were undertaken in Northern Africa (n=65 studies, 50%), Southern 161 

Africa (n=35 studies, 26.9%) and West Africa (n=18 studies, 13.9%). Different rates of resistance to 162 

antibiotics were reported in different countries in Africa (Tables 2-5; Supplementary data 1). 163 
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A meta-analysis of published literature confirmed the presence of a high mean rate of drug resistance in 164 

GPB isolated from humans (62.0%, 95% CI: 54.7 – 69.3%), animals (68.2%, 95% CI: 58.0 -78.4%) and 165 

the environment (84.6%, 95% CI: 69.9 – 99.3%) (P-value<0.0001) in Africa, albeit many studies that did 166 

not address the molecular mechanisms of resistance in GPB were excluded. Obviously, the mean rate of 167 

resistance would have been higher had all research articles using only phenotypic methods to describe 168 

ABR in GPB been included (Supplementary data 1). Interestingly, although a lesser number of GPB were 169 

isolated from environmental sources, they expressed higher ABR than those from humans and animals; 170 

hence, the higher mean resistance rate of 84.6%. This also underscores the fact that there is increasing 171 

ABR genes in the environment, obviously due to antibiotic pollution from human activity. Evidently, 172 

ABR is high among GPB in certain regions in Africa (Figures 3a & 3b) (Table 5) and underpins the need 173 

to up the ante against this menace through increased molecular surveillance research, education of clinical 174 

microbiologists on ABR, and antibiotic stewardship. 175 

Studies describing detailed molecular mechanisms of GPB resistance and molecular epidemiology in 176 

Africa are few, making it difficult to paint a vivid comprehensive picture of ABR in Africa. However, this 177 

review shows that S. aureus ST5, E. faecium ST18, ST80 and ST910, E. faecalis and S. agalactiae 178 

harbouring mecA, tet and erm genes, were commonly found in humans, animals and the environment, 179 

particularly in Northern, Western, and Southern Africa. Thus, careful use of β-lactams, tetracyclines, and 180 

macrolides is warranted to prevent further selection and dissemination of these resistance genes and 181 

resistant clones. Furthermore, it will be prudent for countries within these regions to review their 182 

recommended antibiotic regimens, guidelines/protocols for infections caused by these species. 183 

erm(B) and tet(M) were found in S. aureus, Enterococcus spp. and Streptococcus spp., with erm(B), 184 

tet(M) and vanA genes being mobilized by Tn916 and IS16, indicating horizontal transfer within same 185 

clones, different clones and species. The discovery of same clones and resistance genes in specimens 186 

from humans, animals and the environment suggest a possible transmission of these clones between 187 

humans, animals and the environment, corroborating the need for a One Health approach to infection 188 
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control and management of antibiotic-resistant infections. Further molecular epidemiological surveillance 189 

in the above-mentioned states is crucial to forestall further spread of these resistant pathogenic clones 190 

both within their borders and from their borders to other countries. 191 

Resistance rates per countries and MDR GPB species  192 

High mean resistance rates were reported in Sudan (98.5%), South Africa (82.7%) Nigeria (71.2%), 193 

Egypt (70.5%), Angola (66.2%), Tunisia (66.8%), Ghana (65.1%), Algeria (62.2%) etc. (Table 5). Cross-194 

contamination of multi-drug resistant bacteria between patients and the environment accounted for the 195 

high rate of resistance in Algeria 
45–49

. The high rate of ABR in Tunisia was attributed to cross 196 

contamination between hospital patients and hospital environment, immune deficiency 
50

, over-197 

consumption of antibiotics, heavy consumption of sheep meat, which is a reservoir of MRSA, and high 198 

consumptions of antibiotics in animal feed 
51,52

. In Egypt, inappropriate antibiotic prescription practices 
29

, 199 

inadequate hygienic handling and processing of food 
12

, and close contact with pet dogs accounted for the 200 

high resistance 
53

. The high rate of drug resistance in Nigeria has been attributed to the exchange of 201 

resistance genes between farm animals or their products and man 
54,55

, existence of MRSA in clinical and 202 

community settings 
56

, uncontrolled usage of antibiotics 
57

 and the presence of efflux pumps in coagulase-203 

negative staphylococcus strains 
58

. Expansion of resistant clones 
59

, variability of hospital acquired MRSA 204 

clones 
60

, consumption of unpasteurized milk or inefficient thermal processing of milk 
21

, shedding of 205 

resistant clones from animals to the environment and heavy consumption of antibiotics to treat TB due to 206 

high HIV burden 
61

, were incriminated for the high-level resistance in South Africa. 207 

Staphylococcus spp. (S. aureus, S. haemolyticus and S. saprophyticus); Streptococcus spp. (S. pyogenes 208 

and S. agalactiae), and Enterococcus spp. (E. faecium, E. faecalis, E. hirae, E. durans, and E. 209 

gallinarum) were the antibiotic-resistant GPB widely distributed in Northern, Southern, Western and 210 

Central Africa. The high number of tet(M/L/K), erm(A/B/C), aph(3’)-lll and vanA/B/C in Staphylococcus 211 

spp., Enterococcus spp., and Streptococcus spp. reported in Tunisia, South Africa, Nigeria, Algeria and 212 

Egypt accounted for the high rate of resistance to tetracycline, erythromycin, kanamycin  and vancomycin 213 
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(Figure 3a). Such resistant GPB are known to compromise the safety of invasive medical procedures such 214 

as organ transplants, orthopedic surgery, and cancer treatment. In addition, infections such as sepsis, 215 

endocarditis, deep wound infections, pneumonia, meningitis and urinary tract infections caused by these 216 

resistant pathogens are becoming increasingly fatal due to  limited treatment options 
62,63

. The abuse of 217 

antibiotics as growth promoters, prophylaxis, and metaphylaxis in food animals in these countries have 218 

been implicated in the selection of resistant bacteria that can pass on to humans through food 219 

consumption, direct contact with animals and the environment, as well as trade of animals and food 220 

products between countries 
64

. 221 

Approximately 26, 385 GPB were isolated from humans (n=83 studies), animals (n=32 studies) and the 222 

environment (n=14 studies) (Tables 1-4), with mean rates of ABR varying from 14.2% to 98.5% across 223 

the 20 included countries (Tables 2-5). The antibiotics to which the isolates were most resistant to were 224 

penicillin (n=4 224 isolates, 76.2%), erythromycin (n=3 552 isolates, 62.6%), ampicillin (n=1 507 225 

isolates, 53.9%), sulfamethoxazole/trimethoprim (n=2 261 isolates, 46.0%), tetracycline (n=3 054 226 

isolates, 42.1%), vancomycin (n=1 281 isolates, 41.2%), streptomycin (n=1 198 isolates, 37.0%),  227 

rifampicin (n=2 645 isolates, 33.1%), ciprofloxacin (n=1 394 isolates, 30.5%), clindamycin (n=1 256 228 

isolates, 29.9), and gentamicin (n=1 502 isolates, 27.3%) (p-value <0.0001) (Tables 2-4 & 6). Countries 229 

with high number of studies such as Tunisia, South Africa, Egypt and Nigeria recorded high number of 230 

ABR (Table 5) and high number of mecA, erm(B), tet(M), drfG and vanB resistance genes (Figure 3a).  231 

Vancomycin resistance was reported in seven studies each for animals and the environment, and 12 232 

studies in Humans. Vancomycin-resistant Enterococcus spp. (n=102 isolates) and vancomycin-resistant 233 

Staphylococcus spp. (n=258 isolates) were reported in humans, animals and the environment (Tables 2-4; 234 

Figures 2). Vancomycin-resistant Staphylococcus aureus (VRSA) was reported in animals (n=238 235 

isolates), the environment (n=15 isolates) and humans (n=5 isolates). A similar situation occurred with 236 

vancomycin-resistant E. faecium, which was isolated from the environment (n=306 isolates), animals (n= 237 

671 isolates) and humans (n=26 isolates) (Supplementary data 1). 238 
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Antibiotic-resistant S. aureus ST5, E. faecium (ST18, ST80 and ST910) and E. faecalis harbouring mecA, 239 

erm(B), erm(C), tet(M), tet(K), tet(L) and vanB were isolated from humans, animals and the environment, 240 

albeit in higher proportion in humans and animals than the environment (Tables 2-4). For instance, Farhat 241 

et al. (2014) 
46

,  van Rensburg et al. (2012) 
59

 and De Boeck et al. (2015) 
65

 in Algeria, South Africa and 242 

Democratic Republic of Congo respectively, reported on resistant S. aureus ST5 in humans whilst Fall et 243 

al. (2012) 
66

 reported on the same clone (S. aureus ST5) in pigs from Senegal. Further, Mariem et al. 244 

(2013) 
24

 isolated the same clone (S. aureus ST5) from the environment in Tunisia, suggesting that this 245 

clone is widely distributed in Africa in humans, animals and environment. It is currently not clear whether 246 

this clone first emerged from humans, animals or the environment, but its presence in all three spheres 247 

shows the possibility of resistant species and clones being disseminated between animals, humans and the 248 

environment. Notably, S. aureus ST5 is among the frequently reported clones in Asia 
67

 and recent 249 

evidence suggest that it has spread from hospitals into communities, resulting in community-acquired 250 

MRSA 
68

.  251 

Similarly, Lochan et al. (2016) 
30

 in South Africa, Dziri et al. (2016) 
20

 and Elhani et al. (2014) 
69

 in 252 

Tunisia isolated resistant E. faecium ST80 from humans. For the first time, E. faecium ST80 was isolated 253 

from  environmental samples in a hospital in Tunisia by Elhani et al. (2013) 
69

 and   Dziri et al. (2016) 
70

. 254 

Transmission of this resistant clone to animals is possible, although not yet reported. This implies that 255 

these resistant species and clones are circulating between humans and the environment, underpinning the 256 

broad host range and transmissibility of these strains between humans and the environment.  257 

mecA was the predominant resistance gene, which corresponded with the higher penicillin resistance 258 

recorded (Figure 2aii). MRSA strains were the most commonly isolated strains (≥ 2,350) 
71–74

. This is 259 

consistent with the global report of increasing prevalence of MRSA 
75,76

. MRSA harbours the mecA gene, 260 

which is carried by the SCCmec MGE, and mediates resistance to multiple β-lactam antibiotics 
77

. From 261 

this review, MRSA showed resistance to eleven different antibiotic classes: aminoglycosides (gentamicin, 262 

tobramycin), β-lactams (penicillin, ampicillin, oxacillin, cefoxitin), fluoroquinolones (ciprofloxacin, 263 
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levofloxacin, ofloxacin), glycopeptides (vancomycin), lincosamide (clindamycin), macrolides 264 

(erythromycin), phenicols (chloramphenicol), rifamycins (rifampicin), streptogramins (pristinamycin), 265 

sulfonamides (trimethoprim/sulfamethoxazole), and tetracyclines (tetracycline).  MRSA is thus a 266 

worrying public health threat as some strains have evolved resistance to almost all licensed drugs (26).  267 

Vancomycin-resistant Enterococci (VREs) (≥ 594), which were reported in Northern and South Africa, 268 

also pose a serious threat to public health as they are resistant to vancomycin, a glycopeptide that is 269 

reserved for fatal or life-threatening Gram-positive infections, and other important antibiotics such as 270 

ampicillin, erythromycin, fluoroquinolones (ciprofloxacin, levofloxacin), gentamicin, rifampicin, 271 

streptomycin, trimethoprim/sulfamethoxazole and tetracycline. In this study, enterococcus isolates had a 272 

resistance rate of 60.1% (95%, CI=32.2 -87.9) (p-value = 0.0005) to vancomycin (Table 6).  Multidrug 273 

resistance in VREs increases VRE-associated mortality rates, which is likely to increase to 75% compared 274 

with 45% from susceptible strains 
13,80

.  As well, evolution of macrolide resistance (42.0%, 95% CI: 12.02 275 

– 72.1) (p-value = 0.0129)  in drug-resistant streptococci is limiting treatment options and resulting in 276 

high mortalities 
81–83

.  In this study, MRSA, VRE and drug-resistant streptococci remain major public 277 

health threats, calling for measures to contain ABR. Novel antibiotics such as linezolid, synercid, and 278 

daptomycin should be used empirically whilst awaiting susceptibility results. The empirical therapy can 279 

be changed or maintained based on the susceptibility report 
84

.  280 

Resistance rates of species per animals, humans and the environment 281 

The rates of ABR in isolates recovered from the environment was highest, followed by isolates from 282 

animal sources. Among environmental isolates, 91.2% (95%, CI=78.8–103.6) were resistant to penicillin, 283 

82% (95%, CI=40.6–123.4) were resistant to sulfamethoxazole/trimethoprim, 68.5% (95%, CI=24.1–100) 284 

were resistant to ampicillin, 60.8% (95%, CI=25.0–96.6) were resistant to vancomycin, 56.9% (95%, 285 

CI=-40.7–73.2) were resistant to erythromycin, 54.5% (95%, CI=29.49–79.5) were resistant to 286 

ciprofloxacin, and 51.3% (95%, CI=21.3–100) were resistant to clindamycin (Table 6). Among animal 287 

isolates, 71.8% (95%, CI=54.9–88.73) were resistant to penicillin, 58.9% (95%, CI=36.1–81.7) were 288 

resistant to clindamycin, 58.5% (95%, CI=37.6 –79.4) were resistant to ampicillin, 49.6% (95%, 289 
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CI=30.1–69.1) were resistant to trimethoprim/sulfamethoxazole, 42.3% (95% CI=17.7–67.0) were 290 

resistant to vancomycin, 47.6% (95% CI=34.0–61.2) were resistant to erythromycin, and 38.8% (95% 291 

CI=21.3–56.3)(p-value = 0.15) were ciprofloxacin  resistant (Table 6; Supplementary file 1).  292 

The rates of resistance were much lower in humans for most of the antibiotics used (Tables 2-4). Among 293 

the various species, Enterococcus spp. and Staphylococcus spp. recorded high rates of resistance for most 294 

antibiotics (Figure 3b). Streptococcus spp. reported low rates of resistance except for tetracycline to 295 

which it recorded a high rate of 55.13% (95%, CI=20.63.18–89.64) (p-value = 0.006). Resistance to 296 

vancomycin was not reported in any Streptococcus spp. Isolate (Table 6). 297 

Enterococcus spp., mainly E. faecium and E. faecalis, recorded a resistance rate of  98.5% (95%, 298 

CI=94.5–102.6)(p-value = 0.0001) to clindamycin, 81.6% (95%, CI=52.1–110)(p-value = 0.0008) to 299 

trimethoprim/sulfamethoxazole, 64.0% (95%, CI=50.0–78.1)(p-value=0.0001) to erythromycin, 60.1% 300 

(95%, CI=32.2–87.9)(p-value = 0.0005) to vancomycin, 57.3% (95%, CI=24 -90.7)(p-value=0.0057) to 301 

penicillin, 51.7% (95%, CI=35.8–67.6)(p-value=0.0001) to tetracycline, 49.9% (95% CI=31.3–68.5)(p-302 

value = 0.0001) to ciprofloxacin, 48.9% (95% CI=20.6–77.2)(p-value=0.004) to kanamycin, 47.1% (95% 303 

CI=26.7–67.7)(p-value=0.0006) to ampicillin, 40.8% (95% CI=24.3–57.4)(p-value=0.0001) to 304 

streptomycin and 34.0% (95% CI=19.7–48.4)(p-value=0.0002) to gentamicin (Table 6). 305 

S. aureus showed high resistance (79.6%) to penicillin (95% CI=69.7–89.5)(p-value = 0.0001), 67.8% to 306 

erythromycin (95% CI=11.5–147.0)(p-value = 0.0917), 55.5% to ampicillin (95% CI=44.50–88.5)(p-307 

value = 0.0001), 39.3% to trimethoprim/sulfamethoxazole (95% CI=39.3–47.8)(p-value = 0.0001), 36.9% 308 

to tetracycline (95% CI=29.3–44.5(p-value = 0.0001), 35.8 to streptomycin (95% CI=14.7–57.0)(p-value 309 

= 0.004), 33.6% to rifampicin (95% CI=20.1–47.03)(p-value = 0.0001), 24.0% to clindamycin (95% 310 

CI=14.9–33.1)(p-value = 0.0001), 23.9% to ciprofloxacin (95% CI=17.6-30.2)(p-value= 0.0001), 22.7% 311 

to vancomycin (95% CI=4.3–41.2)(p-value = 0.0212) and 22.2% to vancomycin (95% CI=15.7–28.3)(p-312 

value = 0.0001) (Table 6). 313 
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Resistance mechanisms, clones, and MGEs  314 

Few studies identified the clones and MGEs in the resistant isolates. Of the 130 included studies, 32 315 

identified the clones whilst 22 described the MGEs, which were used in the statistical analysis. The most 316 

dominant gene detected in Africa, which was widespread and responsible for resistance in GPB, was 317 

mecA (n=3 547), followed by erm(B) (n=1 268), vanC1/2/3 (n=971), tet(M) (n=720), blaZ (≥565), dfrG 318 

(n=422), vanB (≥451), aph(3’)-IIIa (≥170) and aac(6’)-aph(2’)(≥ 268) (p-value = 0.0011) (Fig. 2a).  319 

Figure 2b represents MGEs per clone. S. aureus clones ST5, ST8, ST 80 and ST88 were highly associated 320 

with mecA. Resistant S. aureus, E. faecium and E. faecalis clones such as S. aureus ST5, and E. faecium 321 

clones ST18, ST80, and ST16 were widely distributed in humans, animals and the environment. 322 

Similarly, mecA, erm(B), erm(C), tet(M), tet(K), tet(L), vanB, vanA, vanC and tet(O) were reported in 323 

isolates from humans, animals and the environment (Table 1). 324 

IS16 and Tn916 were found with the resistance genes erm(B) and tet(M) in E. faecium (ST18, ST80 and 325 

ST910), S. agalactiae (ST612, ST616 and ST617), E. faecalis and S. pyogenes (emm18, emm42, emm76 326 

and emm118) isolated from humans, animals and the environment (Tables 2-4; Figure 2b). tet(M) was 327 

associated with Tn916 transposon in tetracycline-resistant S. agalactiae 
85

 and S. pyogenes 
81

 in humans in 328 

Tunisia. Fischer et al. (2013) also reported the association between Tn916 and tet(M) in tetracycline-329 

resistant S. agalactiae in camel in Kenya 
86

. Similarly, IS16 was found in vancomycin-resistant E. 330 

faecium (ST80, ST180 and ST910) in humans and the environment in Tunisia 
69,70

. Investigations into the 331 

association between MGEs and resistance genes were limited by few studies (n=22 studies) on MGEs. 332 

From Tables 2-4, majority of the resistance genes namely, mecA, erm(B), tet (M), vanA etc. were 333 

responsible for drug resistance to antibiotics such as aminoglycosides (gentamicin, streptomycin, 334 

kanamycin), β-lactams (penicillins, cephalosporins), fluoroquinolones (ciprofloxacin), macrolide 335 

(erythromycin), sulfamethoxazole/trimethoprim, tetracycline and glycopeptides (vancomycin). These 336 

resistance genes were widely distributed in Northern Africa (Tunisia, Algeria, Egypt, Morocco, and 337 
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Libya) and Southern Africa (South Africa and Namibia). All the three different MGEs (Tn916, SCCmec 338 

and IS16) were reported in Tunisia, with two being reported in Kenya (SCCmec and Tn916). IS16 was 339 

only reported in an E. faecium infection in Tunisia (Figure 3) whilst mecA was mostly associated with 340 

SCCmec. erm(B) and tet(M) were highly associated with Tn916 and IS16.  341 

In Africa, different studies have reported SCCmec-borne mecA in S. aureus in humans, animals and the 342 

environment 
23,47,60,66,87

 besides the discovery of IS16 and Tn916 in the environment of erm(B) and tet(M) 343 

genes in Enterococcus and Streptococcus.  These reports show that MGEs are mediating the 344 

dissemination of these (and possibly other) resistance genes across different GPB clones and species. 345 

MGEs-mediated mobilization of various resistance genes in different GPB clones and species in humans, 346 

animals and the environment (Tables 1-4; Figure 2b) calls for prompt measures to contain ABR as the 347 

situation may worsen if additional resistance genes are acquired by the MGEs. Resistance genes on MGEs 348 

can be horizontally transferred to susceptible cells or vertically transferred to daughter clones 
37,88,89

, 349 

which can easily spread these resistance genes to susceptible pathogens. The higher number of resistant 350 

Gram-positive cocci and mean resistance rate in Tunisia may be due to the presence of these three MGEs 351 

in this region 
69,70,81,90

 352 

Molecular epidemiology of antibiotic-resistant GPB 353 

Staphylococcus spp. (S. aureus, S. haemolyticus and S. saprophyticus) 354 

North Africa: Algeria, Egypt, Morocco, Tunisia, Libya 355 

Algeria. 356 

S. aureus was recovered from two different studies in Algeria. In assessing the nasal carriage of S. aureus 357 

in patients with medical conditions including pneumonia, urinary tract infections, osteoarthritis, heart 358 

diseases, diabetes and chronic kidney disease, Djoudi et al. (2014) isolated MRSA 
46

. They also found 359 

nasal carriage of S. aureus to be significantly associated with cancer and previous hospitalization of 360 

patients with kidney failure due to immunological suppression and hemodialysis. The nine MRSA 361 

isolates, i.e. ST80 (n=4), ST5 (n=2), ST22 (n=2) and ST535 (n=1), harboured mecA and were resistant to 362 
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tobramycin (n=6), gentamicin (n=1), trimethoprim/sulfamethoxazole (n=2), tetracycline (n=3) and 363 

erythromycin (n=1). MRSA ST80 is a well-known and frequent etiological agent of infections in North 364 

Africa and Middle-East countries
91,92

. Typing of 64 MRSA isolated from human pus (n=47), venous 365 

catheters (n=7), tracheal aspirates (n=4), punction fluids (n=3), blood (n=2) and urine (n=1) in 64 366 

Algerian patients revealed that 50 were hospital acquired (HA-MRSA) and 14 community acquired (CA-367 

MRSA), which were all resistant to cefoxitin and oxacillin 
47

. mecA, mobilized by SCCmec, was the only 368 

detected mechanism of resistance. 369 

Egypt 370 

MRSA have been respectively isolated in five animal-based and two human-based studies in Egypt 371 

between 2011 to 2017. Hashem et.al (2013) isolated 94 S. aureus strains from blood and wounds in which 372 

45 were MRSA while 25 were fluoroquinolone-resistant 
29

. Mutations such as C2402T, T2409C, 373 

T2460G, T1497C, and A1578G in gyrase enzymes, which leads to fluoroquinolones’ target-site 374 

alterations, were implicated in resistance to fluoroquinolones (ciprofloxacin, levofloxacin, ofloxacin). The 375 

high rate of fluoroquinolone resistance (55.56%) among MRSA infections is rather concerning as patients 376 

unable to tolerate vancomycin are treated with other antibiotics such as fluoroquinolones. Vancomycin is 377 

often reserved as a last-resort therapy for MRSA infections due to their high resistance to several 378 

antibiotics.  379 

Multidrug resistance to drugs such as gentamicin, ampicillin, amoxicillin, cefepime, tetracycline and 380 

chloramphenicol in MRSA is mediated by diverse resistance mechanisms including impermeability 381 

effects and efflux pumps. Unrestricted access to antibiotics and inappropriate prescriptions were 382 

responsible for the high rates of drug resistance in this study 
29

. In a similar study, MRSA was isolated 383 

from patients suffering from surgical wound infections, diabetic foot, abscess and burns. Although mecA 384 

was the only mechanism of resistance, the isolates were multiple-resistant to several antibiotics belonging 385 

to the β-lactams, aminoglycosides, fluoroquinolones, macrolides, lincosamides, tetracyclines and 386 
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glycopeptides, indicating other mechanisms of resistance 
93

. It therefore implies that administration of 387 

such antibiotics will not relieve patients from S. aureus infections. The high rate of S. aureus isolation 388 

confirms it to be the most prevalent Gram-positive pathogen isolated from soft tissue and wound 389 

infections. 390 

Al-Ashmawy et. al. detected a high rate of MRSA (53%) in milk and dairy products believed to originate 391 

from human contamination rather than contamination from animals. Besides being resistant to β-lactams 392 

and other antibiotics, thirty-six of the isolates were resistant to vancomycin known to be effective in 393 

treating MRSA infections 
12

, making milk and dairy products a significant source of multidrug-resistant 394 

and toxigenic S. aureus infections. The occurrence of MRSA in pets such as dogs admitted in a veterinary 395 

clinic 
53

 may confirm a possible route in the community transmission of this pathogen, which is emerging 396 

as a veterinary pathogen of public health importance.  397 

In 2017, Osman and colleagues detected Staphylococcus spp. in imported beef meat. Sixteen of these 398 

isolates were MDR and showed resistance to different groups of antibiotics due to resistance mechanisms 399 

such as mecA, and mutations in gyrA and gyrB. Indeed, MRSA has made methicillin and other β-lactams 400 

antibiotics clinically useless as a result of their high MDR 
94

. Imported meat acts as a transmission vector 401 

for MRSA and is worrisome as Staphylococcus spp.  are among the most common foodborne pathogens 402 

causing food poisoning outbreaks worldwide. Of 133 S. aureus recovered from animal origin, more than 403 

70% were MDR and 30 were MRSA, exhibiting high resistance to clindamycin, co-trimoxazole, 404 

tetracycline, oxacillin, cefoxitin, ceftriaxone and erythromycin; four of the isolates were resistant to 405 

vancomycin 
23

. The isolates showed the maximum sensitivity to imipenem, chloramphenicol and 406 

rifamycin, which is consistent with similar reports in China and Pakistan 
95,96

, indicating their 407 

effectiveness in treating S. aureus infections.  408 

MRSA was isolated from chicken products mainly due to poor hygienic handling processes, posing a risk 409 

to public health in 2016.  The mean S. aureus count in the chicken products were beyond the permissible 410 

limits of the Egyptian organization for Standardization and Quality Control (EOSQC 2005), coupled with 411 
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resistance to different antibiotics classes; thus, retail chicken products could constitute a high health risk 412 

to human consumers 
28

 413 

Morocco 414 

In a study to assess S. aureus carriage among end-stage renal diseases patients undergoing hemodialysis, 415 

42.9% were carriers, of which only one was MRSA. The methicillin-susceptible S. aureus (MSSA) was 416 

resistant to many of the local antibiotics, thus limiting the successful treatment of MSSA infections. 417 

Moreover 81.8% of the MSSA were penicillin-resistant. The male gender and age 30 or below were 418 

identified as risk factors of  S. aureus nasal carriage (P-value < 0.001) 
27

. Periodic monitoring of patients 419 

with hemodialysis is crucial as they are at increased risk of S. aureus infection due to periodic 420 

hospitalization, immunosuppression and high invasive vascular interventions. 421 

Tunisia 422 

Resistant S. aureus was isolated from the environment, animals and humans between 2011 to 2017. Ben 423 

Said, et al. recovered 12 MSSA from wastewater samples that were resistant to penicillin (n=12 isolates), 424 

erythromycin (n=7 isolates), tetracycline (n=1 isolate) and clindamycin (n=1 isolate) due to the presence 425 

of blaZ (n=7), msr(A) (n= 7) and tet(K)(n=1). These resistant strains were of ST3245(n=7) and  426 

ST15(n=1) 
18

, which have been also reported in animals and humans. In an investigation to evaluate the 427 

prevalence of coagulase-negative Staphylococcus (CoNS) in the hospital environment, MDR S. 428 

haemolyticus and S. saprophyticus were the most dominant. Methicillin resistance was detected in S. 429 

haemolyticus, S. epidermidis and S. saprophyticus. These isolates were resistant to erythromycin, 430 

tetracycline, gentamicin, kanamycin, tobramycin and streptomycin due to the presence of msrA (32), 431 

erm(C) (8), tet(K) and tet(M), aac(6´)-Ie-aph(2´´)-Ia (16), ), aph(3`)-IIIa(19), ant(4´)-Ia (n=14) and 432 

ant(6´)-Ia (3) 
97

. The high prevalence of MDR Staphyloccoci spp. isolates may result from transmission 433 

between the staff, patients and the environment. Strict infection controls are needed as infections caused 434 

by CoNS are common cause of death, particularly in low-birth-weight children, and are opportunistic 435 

infections in  immunocompromised patients 
98

. 436 
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Moreover, nasal swab from sheep detected five MRSA (mecA=5), which were all of ST153 and carried 437 

blaZ, ant(6)-Ia, aph(30)-IIIa, erm(C), tet(K), and fusB genes that respectively encoded resistance to 438 

penicillin, streptomycin, kanamycin, erythromycin, tetracycline and fusidic acid. This study shows that 439 

the nares of healthy sheep could act as reservoirs of MRSA 
99

.  440 

Between 2011 to 2012, 99 MRSA strains were detected from nasal swabs, blood, catheter, wounds, 441 

pleural puncture and abscess, among which 39 were tetracycline resistant. These isolates were resistant to 442 

aminoglycosides, fluoroquinolones, macrolides and lincosamide, with mechanisms of resistance including 443 

mecA (n=24), tet(K) (n=6), tet(L) (n=1) and/or tet(M) (n=18), erm(A)(n=14), aph(2’)-acc(6’) (n=13). 444 

Identified drug-resistant strains included ST247 (n=12), ST239 (n=6), ST728 (n=2), ST241 (n=1), ST398 445 

(n=1), ST5 (n=1) and ST641 (n=1) 
50

.  For the first time, clonal lineage ST398, which has been reported 446 

in pigs from several studies in USA, South America, Asia and Canada 
100–103

, was found in human MRSA 447 

isolates in Africa in a nasal swab of a 74-year old patient.  448 

Additionally, 69 MRSA strains were isolated from hospital-acquired and community-acquired infections. 449 

Although mecA (n=59) was the only mechanism of resistance identified, the isolates were resistant to 450 

aminoglycosides, tetracycline, fluoroquinolones, macrolides and rifampicin. The resistant clones were 451 

ST1 (n=2), ST5 (n=5), ST22 (n=1), ST80 (n=41), ST97 (n=2), ST153 (n=2), ST239 (n=4), ST241 (n=3), 452 

ST247 (n=3), ST256 (n=1), ST1819 (n=3) and ST1440 (n=1) 
24

.  453 

Mezghani Maalej and colleagues (2012) isolated five pristinamycin-resistant S. aureus strains from 454 

patients with skin infections. These isolates were MDR (Table 2), being the first detection of resistance to 455 

streptogramins due to vat(B) and vga(B) resistance genes 
104

, which emerged due to selective pressure 456 

from the use of pristinamycin.  Thirty-six methicillin-resistant S. haemolyticus (MRSHae) were isolated 457 

from neutropenic patients (suffering from febrile neutropenia) with hematological cancer between 2002 458 

and 2004. These MDR isolates carried SCCmec-borne mecA (Table 2) 
105

, which agrees with a report on 459 

S. haemolyticus’ MDR capacity, particularly in  immunocompromised patients 
106,107

 460 

Libya 461 
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Due to the high risk of MRSA colonization developing into infections in children, nasal samples were 462 

collected from children inpatients, their mothers, healthcare workers and outpatients’ workers, which 463 

yielded a MRSA nasal carriage rate of 8.3%, 11% ,12.3% and 2.2% respectively in Libya 
108

. Thus, nasal 464 

carriage of MRSA is common in inpatients children, their mothers and health workers in Libya and could 465 

be a source of MRSA infections. 466 

West Africa: Ghana, Nigeria, Senegal 467 

Ghana 468 

Among 308 staphylococcus isolates collected across Northern, Central and Southern Ghana in 2013, low 469 

prevalence of antibiotic resistance was reported except for penicillin (97%), tetracycline (42%) and 470 

erythromycin (6%) 
109

. Moreover, mecA was detected in only nine isolates, implying the presence of other 471 

β-lactam resistance mechanisms. The MRSA clones included ST8 (n=1), ST72 (n=1), ST88 (n=2), ST239 472 

(n=1), ST250 (n=2), ST789 (n=1), and ST2021 (n=1). In a similar study that characterized 30 MRSA 473 

isolates resistant to tetracycline, fluoroquinolones and macrolides, tet(M) (n=13), tet(K) (n=10), aphA3 474 

(n=7), aacA–aphD (n=5) and erm(C) (n=4) were detected. Similar and different resistant clones, viz. 475 

ST88 (n=8), ST8 (n=5), and ST247 (n=4) were detected 
110

, indicating high MRSA clonal diversity in 476 

Ghana. These studies show a high rate of resistance to non-β lactams that further complicate MRSA 477 

treatment. Furthermore, the isolation of USA300 and other epidemic multidrug-resistant MRSA clones 478 

calls for MRSA surveillance and adequate control measures. 479 

Nigeria 480 

Five different studies reported drug-resistant S. aureus from several human anatomical sites such as throat 481 

swabs, soft skin and tissue infection, urinary tract and respiratory infections, wound, vagina, otitis, 482 

conjunctivitis, septicemia and bronchitis. Of a total ≥602 isolates, ≥433 were resistant to several antibiotic 483 

classes (Table 1). Of note, 429 of the ≥433 drug-resistant isolates were all resistant to cotrimoxazole or 484 

trimethoprim/sulfamethoxazole (SXT). Mechanisms of resistance included mecA (≥54), blaZ (n=284), 485 
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dfrA (≥5) and dfrG (≥152). S. aureus-resistant clones ST8, ST14, ST37, ST39, ST88, ST152, ST241, and 486 

ST772 were present. Colonized persons, including immune-compromised individuals, facilitated the 487 

spread of S. aureus and MRSA ST8 identified as ubiquitous in various geographic areas of Nigeria. High 488 

utilization of  co-trimoxazole or SXT because of low cost and easy obtainability through lenient 489 

medication regulations were implicated for the high resistance 
56

. Besides S. aureus, S. haemolyticus was 490 

the major species isolated, and is considered as the second most detected and clinically important 491 

Staphylococci spp., particularly in immunocompromised patients 
111

. All the S. haemolyticus isolates 492 

detected  were resistant to at least three antibiotics classes (Tables 2-4) 
112

.  493 

Moreover, O. Ayepola et al. (2015) reported a higher rate of 20.8%  S. aureus from UTIs than the 494 

reported ranges in Africa (6.3-13.9%), and far exceed the rate reported from Europe and Brazil (1.1%) 
113

. 495 

None of the isolates exhibited resistance to vancomycin, linezolid, daptomycin and mupirocin; indicating 496 

their usefulness in treating S. aureus infections. Co-trimoxazole, which was previously clinically valuable 497 

in treating MRSA infections, demonstrated the highest level of resistance, hence it’s not recommendable 498 

56,57,90,112
. In a study to examine the genetic mechanism(s) of resistance in CoNS in faecal samples, all the 499 

53 islolated CoNS were Penicillin V-resistant and between three to 19 exhibited multidrug resistance 500 

(Table 2); mecA (n=15), erm(C), tet(M) (n=4) and tet(K) (n=6) were identified 
112

. CoNS isolates from 501 

faeces carrying tetracycline, macrolides and aminoglycosides resistance genes may transfer them inter- 502 

and intra-species, disseminating MDR in Staphylococcus. 503 

Senegal  504 

A low prevalence of MRSA (10.5%) was reported in Senegalese pigs compared to those reported in 505 

developed countries. This might be due to a lesser veterinary antibiotic use as growth promoters and/or 506 

for therapy. However, all the isolates were resistant to penicillin, 27 were resistant to co-trimoxazole and 507 

16 were resistant to tetracycline 
66

. Five of the MRSA were of ST5 
66

, evincing the spread of this clone in 508 
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animals, humans 
46,59

, and the environment 
24

 ; the importance of this clone as a cause of human infections 509 

is well-established 
68

. 510 

Cape verde 511 

In Cape Verde, a low prevalence of 5.6% (6/107) MRSA nasal carriage was documented in 2015. The 512 

predominant MRSA clones was ST5 (n=3), ST8 (n=1) and ST88 (n=2). These isolates showed significant 513 

level of resistance to erythromycin (ERY), sulphamethoxazole-trimethoprim (SXT) and penicillin G 514 

(PEN) 
114

 . 515 

Central Africa: Gabon, D.R. Congo 516 

Gabon 517 

In Gabon, S. aureus isolated from colonized persons, blood, as well as soft and skin tissue infections 518 

resulted in 49% (104/212) resistance to trimethoprim: dfrA (n=1), dfrG (n=100), dfrK+G (n=1), dfrB 519 

(n=2), and mecA (n=1) were detected in the isolates 
55

. Thus, dfrG  is obviously the most abundant and 520 

common trimethoprim resistance mechanism in Africa, refuting dfrB mutation as the main mechanism of 521 

resistance to trimethoprim 
115–117

. 522 

D.R. Congo (DRC) 523 

A total of 215 (79.3%) drug-resistant S. aureus isolates were collected between 2015 to 2017 from nasal 524 

swab and bloodstream infections in the D. R. Congo; 70 isolates were MRSA. Other major resistance 525 

genes mediating resistance to trimethoprim/sulfamethoxazole, aminoglycoside, macrolides, tetracycline, 526 

penicillin, and chloramphenicol were dfrG (≥120), tet(K) (≥98), and femA (≥98). MRSA showed high-527 

level resistance to β-lactams, aminoglycoside, macrolides and tetracycline. The pathogen caused severe 528 

infections such as pneumonia, meningitis, complicated urinary tract infections, gynaecological infections 529 

and peritonitis. S. aureus ST8 (≥47) was the dominant clone, followed by ST152 (≥17), ST5 (≥2) and 530 

ST88 (≥2). In DRC, MRSA ST8 outnumbers the African MRSA clone ST88, which is dominant in 531 

Africa. The high-level oxacillin resistance in DRC was associated with a mutation in femA (Y195F) whist 532 
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high-level trimethoprim resistance was due to the detection of dfrG, which is consistent with 533 

trimethoprim resistance in Africa and Asia. In Africa, SXT or cotrimoxazole  is frequently administered 534 

as prophylactic to immuno-suppressed patients such as HIV/AIDS patients to prevent opportunistic 535 

infections such as Pneumocystis carinii pneumonia, toxoplasmosis and bacterial pneumonia 
118

 Hence, 536 

prophylactic use of SXT in HIV patients may impact resistance. Additionally, there was high-level MDR 537 

among MRSA, which is a great concern as microbiological laboratories/facilities and second-line 538 

antibiotics are rare in DRC. Moreover, the detection of nasal carriage among healthcare workers’ 539 

demands strict infection controls and surveillance  
65,119,120

.  540 

East Africa: Kenya, Tanzania 541 

Kenya 542 

In contrast to earlier studies done in Kenya, Omuse and colleagues (2016) detected a wide genetic 543 

diversity of MRSA and well-established epidemic MRSA clones among clinical isolates.  MRSA clonal 544 

complexes 5, 22 and 30, implicated in several outbreaks were described. These clones included ST5 (n=1 545 

isolates), ST8 (n=2 isolates), ST22 (n=4 isolates), ST88 (n=1 isolates), ST241 (n=12 isolates), ST239 546 

(n=2 isolates) and ST789 (n=1 isolates). Approximately 41% of the MRSA in the study were MDR 547 

(Table 2), showing resistance to clindamycin, erythromycin and SXT 
87

. Detection of these clones in 548 

referral hospitals in Kenya calls for implementation of strict infection control measures to reduce the high 549 

morbidities and mortalities associated with HA-MRSA infections. 550 

Tanzania 551 

In a study to investigate the molecular epidemiology of trimethoprim resistance in MSSA causing skin 552 

and soft tissues infections, dfrG was detected in all 32-trimethoprim resistant isolates. Other reported 553 

trimethoprim resistance mechanisms such as dfrA, dfrB and dfrK were missing, confirming dfrG as the 554 

main trimethoprim resistance mechanism in Sub-Sahara Africa 
55

. 555 

Uganda 556 
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A MRSA carriage of 56.1% (23/41) was detected in milk from pastoral communities in Uganda, exactly 557 

70% of which were tetracycline-resistant. MRSA clones ST97 and ST1 were identified. Furthermore, 558 

over 90% of the isolates carried genes encoding enterotoxin that causes food-borne diseases. The weak 559 

veterinary delivery system and the high dependency on animals and animal products for food in Uganda 560 

was implicated for the high prevalence of MRSA 
121

.  561 

S. aureus isolates, including 24 MRSA and 40 MSSA, were isolated from patients with surgical site 562 

infections (SSI). The MRSA isolates were MDR (including resistance to oxacillin, gentamicin, 563 

ciprofloxacin and chloramphenicol) compared to the MSSA. Inducible clindamycin resistance was found 564 

in 17.2% of the isolates, mostly in MRSA. In a multivariate analysis, inducible clindamycin resistance 565 

and cancer were identified as independent predictors of MRSA-SSI 
122

. 566 

Southern Africa: Angola, Malawi, Mozambique, Namibia, South Africa 567 

Angola 568 

Conceica˜o et al (2014) reported a nasal S. aureus carriage of 23.7% (n=128 isolates), out of which 58.1% 569 

(n=77 isolates) were MRSA. Fifty-seven of the MRSA clones were of ST5, followed by ST88 (n=9), ST8 570 

(n=5) and ST72 (n=3). This study represents the first description of the spread of MRSA ST5 in Africa. 571 

All the 77 MRSA strains were resistant to SXT, cefoxitin (FOX) and PEN 
123

 .  In a study to identify 572 

oxacillin-susceptible mecA-positive S. aureus (OS-MRSA) for the first time in Africa, a prevalence of 573 

17.7% was detected among healthy healthcare workers in Angola and Sa˜o Tome´ & Principe, making 574 

them potential OS-MRSA reservoirs 
124

. OS-MRSA have been reported worldwide in humans, animals 575 

and food animals 
125–128

. The OS-MRSA isolates expressed MDR (Table 2) and belonged to ST88 (n=15 576 

isolates) and ST8 (n=9 isolates). In sub-Saharan Africa, the identification of clinically important S. aureus 577 

is heavily based on phenotypic agar-screening and oxacillin disc-diffusion methods.  578 

Mozambique 579 
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The prevalence of HA-MRSA and CA-MRSA in Mozambique was found to be 15.1% and 1%, 580 

respectively. MRSA showed high-level resistance to penicillin, cefoxitin, gentamicin, ciprofloxacin, 581 

erythromycin, SXT, chloramphenicol and tetracycline, compared to MSSA. Additionally, inducible 582 

macrolide–lincosamide–streptogramin B (MLSB) resistance was 41.7% and 10.7% in hospital-acquired S. 583 

aureus (HA-SA) and  community-acquired S. aureus (CA-SA) isolates respectively 
129

, further limiting 584 

therapeutic options for S. aureus infections. This study, which is the first to detect the emergence of HA-585 

MRSA within post-operative abdominal wounds and burn wounds in Mozambique, reported that patients 586 

with infected burn wounds had a significantly longer hospitalization than patients with post-operated 587 

abdominal wounds. Efforts to prevent the transmission of MDR HA-SA, such as education on proper 588 

hand-washing techniques, are urgently needed. 589 

Namibia 590 

The dominant resistance gene mediating trimethoprim resistance in MRSA and MSSA in Namibia was 591 

dfrG. This is similar to  reports in other Africa countries 
55

. Moreover, dfrG was frequently detected in S. 592 

aureus from SSTIs in travelers returning from other African countries, suggesting that dfrG can be 593 

transmitted into populations with low antifolate resistance such as North America and Europe 
130,131

. 594 

South Africa 595 

Thirty MDR S. aureus were recovered between April 2015 to April 2016 from ten beaches in the Eastern 596 

Cape Province, South Africa (Table 2). Notably, the isolates harbored mecA, femA, rpoB, blaZ, erm(B) 597 

and tet(M) 
11

, making marine environments and public beaches potential depositaries of MDR S. aureus 598 

that can be transmitted to animals and humans. Further, the 50% resistance to vancomycin recorded is 599 

concerning to global health due to its role as a last-resort antibiotic for treating MRSA infections. 600 

S. aureus was detected in raw and pasteurized milk at an isolation rate of 75% and 29% respectively, due 601 

to inefficient thermal processing and post-process contamination. A high proportion (60%-100%) of these 602 

isolates showed resistance to aminoglycosides, β-lactams, vancomycin, tetracycline and erythromycin, 603 

albeit only 19 mecA genes were present 
21

. Evidently, raw and pasteurized milk can harbour MDR S. 604 

aureus, exposing consumers to colonization and/or infections. Again, Staphylococcus spp., including S. 605 
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aureus, S. haemolyticus, S. xylosus and S. capitis were isolated from healthy pigs and cattle, of which 606 

between 75 to 100% were resistant to penicillin G, tetracycline, sulfamethoxazole and nalidixic acids, due 607 

to their use as growth promoters; mecA and mphC were identified. Additionally, 12% of the isolates were 608 

resistant to vancomycin and erythromycin, evincing the important role of animals in the dissemination of 609 

resistance determinants and the importance of commensals to public health 
61

.  610 

Van Rensburg et al. 
59

 detected 43.4% (1432/3298 isolates) and 3.1% (328/10448 isolates) rifampicin 611 

resistance rate among MRSA and MSSA respectively. Similar studies in South Africa have also reported 612 

of high rifampicin resistance in MRSA 
132,133

, obviously due to frequent use of rifampicin among 613 

tuberculosis patients, who are highly prevalent in South Africa. MRSA ST5 and ST612 were detected 614 

while H481Y/N and I527M mutations in rpoB  were associated with high-level rifampicin resistance, 615 

similar to reports in Italy 
134

. Additionally, novel H481N, I527M, K579R mutations were also detected.  616 

Three studies reported a prevalence of 29.1% 
135

, 45.44% 
60

 and 100% 
136

 MRSA recovered from humans, 617 

expressing resistance to macrolides, tetracycline, aminoglycoside, cotrimoxazole and rifampicin. MRSA 618 

ST612, ST239, ST36 and ST5 were the dominant strains similar to other findings in Australia and 619 

Europe
137

. The study showed that S. aureus bacteremia is common and account for high mortality in 620 

South Africa. For instance, in a study by Perovic et al., 
135

 202 patients died from S. aureus bacteremia 621 

infections, with HIV patients being more likely to acquire HA-MRSA. The isolates were however 622 

susceptible to glycopeptides, fluoroquinolones, linezoid, tigecycline, fosfomycin and fusidic acid, 623 

confirming their clinical usefulness in treating MRSA infections. In a recent study, a high prevalence and  624 

genetic diversity of multi-drug efflux (MDE) resistance genes were found in clinical S. aureus isolates, 625 

including 81 MRSA and 16 MSSA 
138

. norA, norB, mepA, tet(38), sepA, mdeA, imrs and sdrM were 626 

present in at least 86% of the isolates, predicting resistance to broad-spectrum biocides and 627 

fluoroquinolones, which is disturbing. Efforts to develop efflux pump inhibitors can mitigate such 628 

resistance mechanisms. 629 

Sao Tome & Principe  630 
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MRSA prevalence of 26.9% 
139

 and 25.5% 
114

 was reported in nasal swabs in 2014 and 2015, respectively, 631 

in Sao Tome & Principe. Additionally, a high prevalence of oxacillin-susceptible mecA-positive S. aureus 632 

was reported in the same study in Sao Tome & Principe  and Angola 
124

. The most dominant MRSA clone 633 

was ST8 (n=25 isolates), followed by ST5 (n=13 isolates) and ST80 (n=13 isolates). High genetic 634 

variability was found in the MSSA strains. Both MRSA and MSSA showed different levels of resistance 635 

to SXT, ERY, CIP and TET; however, all the MRSA isolates were resistant to cefoxitin. 636 

Streptococcus spp. (S. pyogenes, S. pneumoniae and S. agalactiae) 637 

Drug resistant Streptococcus spp. including S. agalactiae and S. pyogenes have been identified in 638 

Northern, Eastern and Southern Africa. S. pyogenes were reported in only humans whilst S. agalactiae 639 

was reported in both animals (camels) and humans with a high rate of resistance to tetracycline and 640 

erythromycin. 641 

North Africa: Algeria, Egypt, Morocco, Tunisia, Libya 642 

Algeria 643 

A sole study has so far detected 44 tetracycline (100%, 44/44 isolates)- and erythromycin-resistant 644 

(43.18%, 19/44 isolates) S. agalactiae from vaginal swabs; tet(M); and erm(B) respectively mediated this 645 

resistance. A high diversity of resistant clones viz., ST1, ST19, ST10, ST158, ST166, ST233, ST460, 646 

ST521 and ST677 were detected 
45

, which have been reported worldwide for causing life-threatening 647 

invasive diseases such a meningitis and sepsis 
140,141

. 648 

Egypt 649 

Similarly, Shabayek et al. (2014) detected 98% and between 14-17% S. agalactiae resistance to 650 

tetracycline and macrolides respectively. tet(M) was detected in all the 98 tetracycline-resistant isolates 651 

whilst erm(B) and erm(A) mediated erythromycin resistance. Efflux pump genes such as tet(K) (n=12 652 

isolates), tet(L) (n=1 isolates) and mefA/E (n=1 isolates) were also found 
32

, which reflects the increasing 653 

reports of S. agalactiae resistance to tetracycline and macrolides 
142

. This study also showed that 654 
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vancomycin and fluoroquinolones are effective replacement for erythromycin and clindamycin, and for 655 

patients allergic to penicillin. Although penicillin is the antibiotic of choice for treating S. agalactiae 656 

infections, reports of penicillin resistance in USA and China calls for increased surveillance in Africa 
142

. 657 

Tunisia 658 

S. agalactiae 659 

From January 2007 to December 2009, 226 S. agalactiae were isolated from female genitals and gastric 660 

fluid of infected newborns. Of these, 97.35% (220/226 isolates), 40% (90/226 isolates) and 19.1% 661 

(43/226 isolates) were resistant to tetracycline, erythromycin and rifampicin respectively. Additionally, 662 

seven isolates were resistant to aminoglycoside (gentamycin and streptomycin) and chloramphenicol. 663 

tet(M) (n=205 isolates), encoding a ribosomal protection protein, which protect the ribosome from the 664 

action of tetracycline, was the main tetracycline resistance mechanism, and was significantly associated 665 

with Tn916 (p-value = 0.0002). Other resistance genes including erm(B) (n=79 isolates) and tet(O) (n=50 666 

isolates) were detected. All isolates were however susceptible to β-lactams and quinupristin-dalfopristin 667 

85
. Between 2005 and 2007, 160 erythromycin-resistant S. agalactiae were isolated from humans, with a  668 

high resistance rate of 84.3% (135/160 isolates) to the constitutive macrolides-lincosamides, 669 

streptogramines B  (MLSB) 
143

.  670 

S. pyogenes 671 

Hraoui et al., (2011) reported a low macrolide resistance rate (5%, 5/103) and a high tetracycline 672 

resistance rate (70%, 72/103) among human isolates, with tet(M), associated with Tn916, being 673 

responsible for tetracycline resistance 
144

. Increase tetracycline use in food animals was implicated in this 674 

instance, leading to selection and dissemination of resistance genes from animals to human. Macrolide 675 

resistance was only detected in seven isolates, which is corroborated by the findings of Ksia et al. (2010), 676 

who detected low-level macrolides resistance among Children 
145

. 677 
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East Africa: Kenya, Tanzania 678 

Kenya 679 

S. agalactiae 680 

 In the horn of Africa, camel plays a significant role in the survival of humans by providing milk, meat 681 

and transportation. In 2013, Fischer et al. detected 36% (37/92) tetracycline resistance in S. agalactiae 682 

isolates from camels’ wound infections and mastitis that was mainly mediated by a Tn916-borne tet(M). 683 

ST616 (n=22) was the major resistant clone, followed by ST612 and ST617 
146

. Shifting from tetracycline 684 

to other antibiotics is evidently necessary for effective treatment outcomes in camel infections in Kenya.  685 

Southern Africa: Angola, Malawi, Mozambique, Namibia, South Africa 686 

South Africa 687 

S. agalactiae 688 

A S. agalactiae colonization rate of 30.9% was detected from vaginal and rectal swabs of pregnant 689 

women. Similar to other reports in Africa, a high rate of tetracycline (94.5%, 120/128 isolates) and 690 

macrolide (21.1%, 27/128) resistance was documented. All the isolates were however sensitive to 691 

penicillin, ampicillin, vancomycin and gentamicin. Macrolide and clindamycin resistance were associated 692 

with erm(B) and mefA genes 
147

. The study highlights the need for research on treatment options for 693 

patients allergic to penicillin due to high-level resistance in alternative drugs such as macrolides and 694 

lincosamides. 695 

Enterococcus spp. (E. faecium, E. faecalis, E. hirae, E. durans, E. gallinarum) 696 

North Africa: Algeria, Egypt, Morocco, Tunisia, Libya 697 

Algeria  698 

The first study to molecularly characterize Enterococcus spp. from urinary tract and wound infections in 699 

Algeria revealed a high rate of resistance to erythromycin (86.4%, 108/125 isolates), tetracycline (82.4, 700 

103/125 isolates), levofloxacin (71.2%, 89/125 isolates) and gentamicin (54.4, 68/125 isolates). Only 701 
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3.2% (4/125 isolates) were VRE, confirming glycopeptides as ideal antibiotics for treating Enterococcus 702 

infections. A mortality rate of 10% was reported due to infections caused by Enterococcus.  E. faecium, E. 703 

faecalis and E. gallinarum were the main Enterococcus isolated. Majority of these isolates were from 704 

females (53%). erm(B) (≥92) and vanC1(≥4) were the main mechanisms of resistance. A high genetic 705 

diversity among strains was seen in E. faecium and E. faecalis, with E. faecium ST78 being the dominant 706 

resistant strain 
148

, which is also prevalent in Asian (Japan, Taiwan, China and Korea) and European  707 

(Italy and Germany) countries 
149–151

. A novel ST317 (n=33) clone was predominant among the E. 708 

faecalis isolates. Rational use of antibiotics, as well as close monitoring of the epidemiology of the strains 709 

are crucial. 710 

Egypt 711 

In a similar study to characterize E. faecium and E. faecalis from patients, 82% of the isolates were MDR, 712 

showing high-level resistance to aminoglycosides, β-lactams and tetracycline. VanA was detected in two 713 

E. faecium isolates, all of which were resistant to all antibiotics tested. Bioinformatic (sequence) analysis 714 

revealed that vanA was transmitted horizontally to S. aureus, showing the importance of horizontal gene 715 

transfer in ABR and subsequent management of enterococci infections such as bacteremia, endocarditis 716 

and urinary tract infections 
152

. 717 

Tunisia 718 

Antimicrobial-resistant Enterococcus was found in faeces of pet and camel, irrigation water from farm 719 

environments, food vegetables, hospital environments, animal meat and patients in Tunisia 
19,22,31,51,52,69

. 720 

High-level resistance to vancomycin, macrolides, aminoglycosides, β-lactams and tetracycline was 721 

detected in the environment, animals and humans with majority of the isolates being E. faecium, followed 722 

by E. faecalis. tet(M), tet(L), erm(B), ant (6)-la, vanA and aph(3’)-llla were the major resistance 723 

mechanisms, with IS16 being the main MGE disseminating the resistance genes. E. faecium ST80, ST910 724 

and ST16 were the dominant resistant clones in Tunisia. The studies show that meat, animals, pets, 725 
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hospital environment and wastewater used for farm irrigation play a crucial role in the spread of antibiotic 726 

resistant Enterococcus. 727 

West Africa: Cape Verde, Ghana, Nigeria, Senegal 728 

Nigeria 729 

Enterococcus spp. isolated from poultry and cattle as well as their manure demonstrated high-level 730 

resistance to tetracycline, erythromycin, gentamicin, ampicillin and streptomycin. Sixty isolates were 731 

MDR, showing resistance to three or more antimicrobials 
153

. The rate of MDR is a reflection of the 732 

substantial use of broad-spectrum antibiotics in Nigeria, raising major public health concerns as practices 733 

such as the use of untreated poultry and cattle manure for fertilizing agricultural soils, particularly 734 

vegetables, are a common practice in Africa. This could transfer MDR Enterococci to humans, and cause 735 

serious nosocomial infections including endocarditis, bacteremia and urinary tract infections that can 736 

result in high morbidities and mortalities. 737 

Ngbede et al. (2017) recently characterized 63 ampicillin- and 37 gentamicin-resistant E. faecium from 738 

vegetables, soil, farms, animal and manure 
25

. Approximately 95% (35/37 isolates) and 8% (5/63 isolates) 739 

of the aminoglycoside- and ampicillin-resistant clones were recognized as high-level aminoglycosides- 740 

and ampicillin-resistant E. faecium respectively. Modifying enzymes’ genes such as aac(6')-Ie-aph(2")-741 

Ia), aph(2')-1c,aph(3')-llla,, and ant(4')-la accounted for the aminoglycoside resistance. 742 

East Africa: Kenya and Tanzania 743 

Tanzania 744 

In a study to determine if cattle co-grazing with wild life influence ABR, ABR in wild animals such as 745 

buffalo, zebra and wildebeest was higher than in cattle, although wildlife is periodically treated with 746 

antibiotics. Ten VRE and ampicillin-resistant Enterococcus were found in the wild animals but not cattle. 747 

Additionally, Enterococcus isolates from wildlife were highly resistant to tetracycline, rifampicin, 748 

macrolides, aminoglycosides  and cotrimoxazole 
14

. tet(W) and sul1 were the resistance genes identified 749 

in the isolates. The practice of co-grazing possibly resulted in transmission of ABR genes from livestock 750 
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to wildlife. The high presence of ABR bacteria in wildlife was likely due to contact with more 751 

environmental surfaces that have been contaminated with human, birds or animal excreta. Result from 752 

this study demonstrates the presence of ABR Enterococci in wild animals without antibiotic pressure. 753 

Southern Africa: Angola, Malawi, Mozambique, Namibia, South Africa 754 

South Africa 755 

Multiple antibiotic-resistant Enterococci were isolated from borehole water, waste water, pigs and 756 

humans in South Africa. Notably, a very high-level vancomycin, aminoglycoside, β-lactam, macrolides 757 

and fluoroquinolones resistance was detected among the Enterococci isolates compared to other countries. 758 

erm(B) (≥300 isolates), vanC 2/3(162 isolates), vanB (≥138 isolates), vanC (≥120 isolates), strA (≥120 759 

isolates) were the major resistance genes. The vancomycin-resistant isolates were from patients with 760 

haematological malignancies, bacteremia, pigs, wastewater and underground water 
9,10,26,30

. Inefficient 761 

chlorination to kill bacteria accounted for the high resistance rates in the final effluents’ discharge into the 762 

environment. Hospital wastewater is therefore a major source of MDR Enterococcus. Sub-therapeutic 763 

antibiotic usage in animal feed also accounted for the emergence of ABR in pigs whilst the construction 764 

of boreholes near pit toilets resulted in high enterococcal isolation and resistance rates in South Africa. 765 

Experimental procedures used in included studies 766 

The studies included in this review basically used the following experimental procedures. Transport 767 

media such as stuart agar, cary-blair medium, and gel transport swabs with charcoal were used to 768 

transport the samples to the laboratory 
53,65

. Cotton swabs were used to swab sample specimens, tissues, 769 

surfaces, fluids, etc. and cultured on nutrient agar, blood agar, tryptone soya agar, mannitol salt-phenol 770 

red agar, brain-heart infusion broth, Slanetz-Bartley mannitol salt agar, and Edwards agar media prior to 771 

identifying the 24-hour colonies using Gram-staining and different biochemical tests such as catalase and 772 

coagulase tests, latex coagulase test and DNase agar test. Subsequently, antimicrobial susceptibility 773 

testing (AST) using disc diffusion (Kirby-Bauer method or E-test) on Mueller Hinton agar plates and a 774 

0.5 McFarland bacterial inoculum was performed. Antibiotics such as ampicillin (AMP), amoxicillin 775 
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(AMX), amikacin (AMK), ampicillin-Sulbactam (SAM), amoxicillin-clavulanic acid (AMC), 776 

azithromycin (AZI), apramycin (APR),  chloramphenicol (CHL), cefoxitin (FOX),  ceftazidime (CFZ), 777 

clarithromycin (CLR), ciprofloxacin (CIP), cefuroxime (CXM), clindamycin (CLI), cephalexin(LEX), 778 

cefoperazone (CFP), cefepime (FEP), cefotaxime (CTX), ceftaroline (CPT), cephalothin (CET), 779 

cloxacillin (CLX), doxycycline (DOX), erythromycin (ERY), fusidic acid (FUS), fosfomycin (Fof), 780 

gatifloxacin (GAT), gentamicin (GEN), imipenem (IPM), kanamycin (KAN), levofloxacin (LVX), 781 

linezolid (LZD), lincomycin (LIN), meropenem (MER), mupirocin (MUP), minocycline (MIC), 782 

moxifloxacin (MXF), methicillin (MET), metronidazole (MTZ), nitrofurantoin (NIT), norfloxacin (Nor), 783 

nalidixic acid (NAL),  netilmicin (NEL), oxacillin (OXA), ofloxacin (OFX), perfloxacin (PF), penicillin 784 

(PEN), pristinamycin (PRI), rifampicin (RIF), streptomycin (STR), streptogramin B (SB),  785 

sulfamethoxazole (SMZ), tetracycline (TET), teicoplanin (TEC), telithromycin (TEL), tobramycin (TOB), 786 

trimethoprim-sulfamethoxazole (SXT), and vancomycin (VAN) were mostly used for the AST. 787 

Polymerase chain reaction (PCR) was used to detect the antimicrobial resistance genes and clones (i.e. 788 

molecular typing) of the isolates. 789 

3. CONCLUSION AND STUDY LIMITATIONS 790 

We report of high rate of ABR among GPB in several African countries, mediated largely by S. aureus 791 

ST5, ST8, and ST80, Enterococcus faecium and Enterococcus faecalis strains, SCCmec, Tn916 and IS16 792 

MGEs are a major threat to clinical medicine, the economy and socio-economic development. This calls 793 

for national as well as international rules and regulations to contain resistance. Heavy consumption of 794 

antibiotics in animal feed, exchange of resistance genes between animals and food animal products to 795 

man, uncontrolled and inappropriate antibiotics prescription practices, inadequate hygienic handling and 796 

processing of food, close contact with pet dogs, shedding of resistant clones from animals to humans and 797 

the environment, as well as high consumption of antibiotics in humans, particularly in HIV patients, 798 

account for the high rate of ABR in Africa. 799 
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Effective surveillance and monitoring of antimicrobial drug usage and licensing, banning or restricting the 800 

prescription of reserved, expired and substandard drugs, periodic monitoring of pharmacies and veterinary 801 

shops, and antibiotic stewardship are recommended measures to contain ABR. Improving animal health 802 

through hygienic practices on farms, avoiding prophylactic or growth-promoting antibiotic usage in 803 

veterinary medicine, integrative efforts between human and veterinary medicine as well as environmental 804 

health are urgently needed to contain ABR. Implementation of these policies will decrease the high rate of 805 

ABR in Africa, reduce longer hospital stays and the resort to expensive but toxic antibiotic alternatives, 806 

with a concomitant reduction in morbidity and mortality rates. Few studies reporting on the molecular 807 

determinants of ABR in GPB in Africa limited the study to 130 articles. Among these, only few studies 808 

reported on MGEs and resistant clones. 809 
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 1522 

 1523 

Table 1. Frequency distribution of Gram-positive bacterial species, resistance genes and MGEs 1524 

isolated from animals, humans and environmental specimens. 1525 

Bacteria species, ARGs and MGEs Human (n)1 Animal(n)2 Environment(n)3 

Species E. faecalis 225 129 66 

                                                           
1
 Total number of species or ARGs or MGEs in human isolates 
2
 Total number of species or ARGs or MGEs in animal isolates 
3
 Total number of species or ARGs or MGEs in environmental isolates 
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E. faecium 299 577 523 

S. agalactiae 658 92 0 

S. aureus 25559 1609 65 

S. haemolyticus 96 43 38 

S. pyogenes 296 0 0 

ARGs mecA 3057 462 28 

erm(B) 551 520 197 

erm(C) 102 23 8 

tet(M) 524 115 81 

tet(K) 179 80 22 

tet(L) 25 57 37 

vanB 4 387 60 

vanA 23 0 23 

vanC1/2/3 8 862 101 

dfrA/G 422 0 0 

aph(3’)-llla 50 5 115 

aac(6’)-aph(2’) 178 17 73 

ant(6)-la 5 24 38 

blaZ 403 127 35 

MGEs IS16 3 0 5 

SCCmec 2471 27 8 

Tn916 62 37 0 
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Table 2. Geographical distribution, species, clones, and resistance mechanisms of antibiotic-resistant Gram-positive bacteria isolated from 1526 

humans in Africa from 2007-2018 1527 

Country 
(n)4 

Year Organism/ 
Species (n)5 
 

Specimen Sources 
(n)6 
 

Sample size 
(Resistant 
isolates) 

Resistance 
rate (%) 

Clones (n)7 
 
 

Resistance genes/ 
mechanisms (n)8  

Antibiotics to which strains were 
resistant(n)9 

MGEs 
(n)10 

Refer
ence 

Algeria 
(6) 
 

2015 
 

S. agalactiae 
(44) 

Vaginal swab (44) (44) 100 ST1(9), ST19(14), 
ST10(4), ST158, 
ST166, ST233, 
ST460, ST521, 
ST677 

tet(M)(44), erm(B) 
(19), mefA/E (1), 
erm(A) (1) 

TET (44) ERY (13) 
 

ND 45 

2014 
 

 

S. aureus 
(159) Nasal swab (159) 

159 (9) 5.66 ST80 (4), ST5 (2), 
ST22 (2), ST535 
(1) 

mecA (9) GEN ((3), TET (3), TOB(6) 
SXT(2) 
 

SCCm
ec (9) 

46 

2013 S. 
aureus(85),E
.faecalis(7),C
ONs(31) 

Human(123) 

123(NS) NS NS mecA(73),aphA(70),
aacA-aphD 

Methicillin(73) ND 154 

2012 
 

E. faecium 
(80), E. 
faecalis (39) 
E. gallinarum 
(4), E. 
raffinosus 
(1), and E. 
durans(1). 
 

Urinary (85), 
cutaneous (24), 
blood (14), pus (2) 
 

125 (108) 87 ST 317 (33), 
ST51(20), 
ST52(11), ST175 
(8), ST78(25), 
ST578(4), 
ST81(2), ST16(2) 
 

erm(B) (92), 
vanC1(4) 
 

AMP (38), GEN (68), TET (103), 
ERY (106), CAM (18), LVX 
((89), NIT (24), VAN (4). 
 

ND 148 

2012 
 

S. aureus 
(64) 

Pus (47), venous 
catheters (7 

(64) 100 ND mecA (64) MET (64), OXA (64), FOX (64) 
 

SCCm
ec 

47 

                                                           
4
 Total number of studies per country 

5 Total number of isolates 
6 Total number of specimen source 
7 Total number of resistant clones 
8 Total number of resistant genes  
9 Total number of antibiotics to which strains were resistant to. 
10 Total number of MGEs 
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[63] 

 

tracheal aspirates 
(4), punction fluids 
(3), blood (2), urine 
(1)  

(46) 

2010 S. 
aureus(221) 

Skin and soft 
tissue(158),bone 
and joint 
(infection(25),bacte
raemia(20),pneum
onia(12),eye 
infection(7),mening
itis(3),UTI(2) 

221(41) 18.55 ST80(13),ST241(9
) 

mecA(97) KAN(29),TET(25),ERY(25),FUS 
(41) 

SCCm
ec(97) 

 

Angola 
(4) and 
Sao 
Tome 
principe 
(1) 
 

2015 
 

S. aureus 
(164) 

Nasal swab (164) 164 (29) 17.68 ST88(15), ST8(9) mecA (NS) FOX (29), SXT (26), TET (18), 
ERY (16), CIP (9) and CLI (8) 
 

SCCm
ec 
(NS) 

49 

 
 

2015  S. aureus 
(203) 

Nasal (203) 203(128) 63.05 ST8(16), ST5(83), 
(ST88(19), 
ST72(5), 
ST789(1), 
ST5/2629(2), 
ST30(2), ST22(1) 

mecA (127) SXT (136), FOX (128), 
TET (39), PEN (200), RIF (156), 
CLI (4), ERY (14), CIP (20), 
GEN (43), CHL (18) 

SCCm
ec 
(128) 

114 

2015 S. 
aureus(70) 

Nasal swab(70) 70(61) 87.14 ST5(13),ST88(6),S
T601(1) 

mecA(20) PEN(67),FOX(20),RIF(61),SXT(
15),CHL(6),GEN(3),TET(7),FUS
(1),CIP(1) 

ND 155 

2014 S. aureus Nasal swab (128) 128(124) 96.88 ST8(57), ST88(9), 
ST8(5), ST72(3), 
ST789(1) 
 

mecA (77) PEN (124), FOX (77), SXT (80), 
GEN (24), RIF (97), CHL (11), 
CIP (10), TET (16), ERY (8) 

SCCm
ec 
(128) 

123 

Cape 
verde (1) 

2015 S. aureus  Nasal swab (113) 113(16) 14.16 ST88(2), ST8(1), 
ST5(3) 

mecA (6) FOX (5), TET (5), PEN (109), 
CIP (2), CLI (3), SXT (12), ERY 
(16), (FUS (5), MUP (6) 

SCCm
ec (6) 

 

Democrat
ic 
Republic 
of Congo 
(3) 

2017 
 
 

S. aureus 

(108) 

blood(108) 108(27) 25 ST5(11) 
,ST8(30),ST88(1),
ST152(17) 

dfrG(24),aac(6')-
aph(2'')(25),tet(K)(2
3),erm(C)(20) 

TET(61),LIN(20),CIP(20),PEN(8
7),CHL(5),SXT(4), 

ND  
120 
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[64] 

 

 

 2016 
 

S. aureus 
(100) 

Nasal swab (100) 100 (97) 97 ST8 (9) dfrG,(72),tet(K) (44), 
femA (98), mecA 
(33) 

TMP(72), PEN (97), 
TET(45),GEN(25),OXA(24),ERY
(20),LUV(16),RIF(7),CHL(7),CLI(
4) 
 

ND 119 

2015 
 

S. aureus 
(63) 

Nasal swabs (63) 63(10) 15.87 ST8 (8), ST5 (1), 
ST88 (1) 

mecA (10) TET(21),ERY(12),CLI(8),PG(60)
,CHL(9),KAN(12),GEN(12),TOB(
12), SXT(6) 

SCCm
ec 
(10) 

65 

Egypt 
(10) 

2017 S. aureus 
(20),S. 
haemolyticus 
(9), S. 
schleifer(3),S
. warnei (2), 
S. 
lugdunensis 
(4) 

Urine(NS), 
Blood(NS) 

58(38) 65.52 ND mecA (19) FOX(25),CIP(21),CLI(21), 
SXT(21),ERY(38),GEN(32),RIF(
14),TET(27) 

SCCm
ec 

156 

2016 E. faecalis 
(57) 

Urine(57) 57(52) 91.23 ND acc(6)la-
aph(2)la(21), 
erm(B)(51),mef(A/E)
(1) 

AMX(14),VAN(2),FoF(36),GEN(
20),AMK(52) 

ND 157 

2016 Staphylococ
cus  spp 

Urine(3),blood(10),
pus(7),sputum(4),b
ronchoalveolar 
lavage(2) 

81(26)  
32.1 

ND fusB(8),fusC(9) GEN(14),RIF(5),AMP(17) ND 158 

2016 S. 
aureus(60) 

Human(60) 60(NS) NS ST22(1),ST239(1) mecA(14), 
erm(C)(14) 

CLI(NS),CIP(NS),GEN(NS),SXT
(NS),VAN(NS),OXA(NS),ERY(N
S). 

ND 159 

2016 S. 
aureus(64) 

Sputum(18),pus(35
),urine(10),CSF(1) 

64(45) 69.23 ND mecA(NS) CRO(45),ERY(38),OXA(38),SXT
(31),GEN(22),CIP(19),CLI(17),V
AN(3) 

ND 160 

 2015 
H 

E. faecium 
(26), E. 
faecalis (47) 

Urine (100) 
 

(73) 
 

100 ND vanA (2) 
 

PEN(17), AMP(38), CIP(22), 
GEN(41), STR(73), CHL(12), 
TET(50), VAN(2) 
 

 
ND 

 
80 
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[65] 

 

2014 
 

S. agalactiae 
(100)  

Vaginal swab (100) 100 (98) 98 ND erm(B)  (9), erm(A) 
(1) 
,mefA/E(1),tet(M) 
(99) ,tet(L)(12),  
tet(K)(1) , tet(O) (1) 

ERY(17), CLI(14), AZI(16), 
TET(98) and CHL(1) 
 

ND 32 

2014 
 

S. aureus 
(127) 

Diabetic foot ulcers 
(39), surgical site 
infection (48) and 
abscess infections  
(25), 
burn discharges 
(15). 
 

127 (111) 87.40 ND mecA (29) AMP(111), AMX(104), OXA(31), 
LEX(83), CXM(67), CFP(43), 
FEP(56), CTX(32), SAM(37), 
AMC(41), AMK(3) CIP(32), 
NOR(37), OFX(31), LVX(11), 
GAT(5), ERY(59), Cli(34), 
TET(66), VAN(2), CHL(44), 
RIF(35) 
 

ND 93 

2013 
 

S. aureus 
(94) 

Blood and wound 94 (45) 47.87 ND gyrA (C2402T, 
T2409C, T2460G) 
(60), gyrB(T1497C, 
A1578G) (5) 

CIP(26), LUX(26), AMC(26), 
FEP(24), GEN(11), 
TET(17),CHL(5) 
 

ND 29 
] 

2008 S. aureus 
(60) 

Sputum(13),throat 
swabs(11), nasal 
swabs(31), 
blood(9) 

60(31) 51.67 ND mecA(18) MET(31) ND 161 

Gabon 
(2) 

2016 S. aureus 
(103) 

Throat 
swab(79),skin 
lesions(24) 

103(61) 59.22 ND mecA(3),blaZ(90),m
rs(A)(8),aphA3(1),df
rA(2),tet(K)(56),tet(
M)(6),qacC(4) 

PEN(90),OXA(1), 
CXM(1),ERY(8),TET(61),SXT(5
1),CIP(3) 

ND 162 

2014 
 

S. aureus 
(212) 

Skin and soft tissue 
(100) and 
bloodstream (12) 

212 (104) 49.06 ND dfrA (1), dfrG (100), 
dfrK+G (1), dfrB (2) 
mecA(1) 

TMP;(104), SXT(100), SMZ(6) 
 

ND 55 

Ghana 
(3) 
 

2015 
 

S. aureus 
(30) 

Skin and Soft 
Tissue Infections 
(16) , bacteraemia 
(5), nasal swab (9) 
 

(30) 
 

 

100 ST88 (8),ST8 (5), 
ST247 (4) 

tet(M) (13) , tet(K) 
(10), aphA3 (7), 
aacA–aphD (5), 
erm(C) (4). 

TET(20), NOR(12), MXF(11), 
ERY(11), CLI(9), 
KAN(9),GEN(9) and CPT (6) 
 

ND 110 

2014 
 

S. aureus 
(308) 

Blood (112), 
SST1(173), others 
(23) 

308 (208) 67.53 ST88 (2), ST8 (1), 
ST789 (1), ST72 
(1), ST2021 (1), 
ST250 (2), ST239 
(1) 

mecA (9) PEN(208), TET(129), and 
ERY(18) 
 

ND 109 

.
C

C
-B

Y
-N

C
-N

D
 4

.0
 In

te
rn

a
tio

n
a
l lic

e
n
s
e

u
n
d
e
r a

n
o
t c

e
rtifie

d
 b

y
 p

e
e
r re

v
ie

w
) is

 th
e
 a

u
th

o
r/fu

n
d
e
r, w

h
o
 h

a
s
 g

ra
n
te

d
 b

io
R

x
iv

 a
 lic

e
n
s
e
 to

 d
is

p
la

y
 th

e
 p

re
p
rin

t in
 p

e
rp

e
tu

ity
. It is

 m
a
d
e
 a

v
a
ila

b
le

 
T

h
e
 c

o
p
y
rig

h
t h

o
ld

e
r fo

r th
is

 p
re

p
rin

t (w
h
ic

h
 w

a
s

th
is

 v
e
rs

io
n
 p

o
s
te

d
 S

e
p
te

m
b
e
r 2

5
, 2

0
1
8
. 

; 
h
ttp

s
://d

o
i.o

rg
/1

0
.1

1
0
1
/3

6
6
8
0
7

d
o
i: 

b
io

R
x
iv

 p
re

p
rin

t 

https://doi.org/10.1101/366807
http://creativecommons.org/licenses/by-nc-nd/4.0/


[66] 

 

 2013 S. aureus 
(105) 

Nasal swab(105) 105(29) 27.62 ST88(4),ST8(1),ST
172(1) 

mecA(6) PEN(98),FUS(13),TET(29),FOX(
6),SXT(3),ERY(5),CLI(3),NOR(2
),GEN(2),RIF(1),MUP(1) 

SCCm
ec(6) 

163 

Kenya (2) 
 

2016 
 

S. aureus 
(93) 

Blood(93) 93 (32) 34.41 ST22(4),ST88(1),S
T789(1),ST5(1),ST
8(2),ST241(12),ST
239(2) 

mecA (32) CLI(10), ERY(9) and 
SXT(9),MXF(1) ,RIF(3), 
TET(6),LUX(5) 
 

SCCm
ec 
(32) 

87 

2013 S. aureus 
(82) 

Boil(39),abscess(1
4),cellulitis(18),ulce
r(11), 

82(69) 84.12 ND mecA (52) ERY(56),CLI(31),CIP(55),OXA(6
9),FOX(69),SXT(51),GEN(69) 

SCCm
ec 

164 

Libya (1) 2014 
 

S. aureus 
(208) 

Nasal swab (44) 208(70) 33.69 ND mecA (35) CIP(22), GEN(24), FUS(49) 
 

ND 165 

Morocco 
(2) 

2013 
 

S. aureus 
(30) 

Nasal swab (30) 30 (25) 83.33 ND mecA (1) PEN(25), GEN(1), TOB(1), 
KAN(1), PF(1), TET(1), ERY(1), 
SXT(1) 

 

ND 27 

2012 S. aureus 
(79) 

Human(79) 79(43) 54.43 ND mecA (28) PEN(74),KAN(29),TOB(27),GEN
(27),ERY(21),FUS(25),PF(30),T
ET(43),MIC(34),RIF(25),SXT(19
) 

ND 166 

Mozambi
que (1) 

2013 
 

S. aureus 
(24) 

Wound (24) 24 (9) 19.15 ND mecA (9)  FOX(9), OXA(8) 
 

ND 129 

Namibia 
(1) 

2014 
 

S. aureus 
(116) 

skin and soft tissue 
(31), urinary 
tract(19),   
respiratory tract 
(37), ear (7), eye 
(4) and  
bloodstream (3) 
 

116 (34) 29.31 ND dfrA (14), dfrG (20) 
mecA (11) 

SXT(20), TMP(34) 
SMZ(20) 
 
 
 

ND 55 

Nigeria 
(9)            
 

 
2015 

 

S. aureus 
(38) 

 throat (40), nasal 
(23), wound (10) 

38 (32) 84.21 ST8 (5), ST152 
(1), ST772 (1), 
ST14(1)  

mecA (16) TET(32),LUX(7), GEN(5), 
ERY(5), 
PEN, SXT(29) 
 

ND 167 

2015 S. aureus Skin and nasal  72.76 ND mecA (7), blaZ PEN(284), SXT(233), SCCm 58 
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[67] 

 

 (290) swab (120), 
 wounds, blood 

290 (211) (284)) TET(51),OXA(7),GEN(11),TOB(
11),LUX(23),MXF(21),TGC(51), 
 

ec (7) 

2014 
 

S. 
epidermidis 
(20), S. 
haemolyticus 
(10), S. 
saprophyticu
s (5), S. 
capitis, (5), 
S. 
lugdunensis 
(2), S. 
warneri ( 4), 
S. xylosus 
(n4),S. cohnii 
(3). 

Stool (53) (53) 100 ND mecA (15), aac(6′)–
aph(2″) 
(3),erm(C)(4), 
msrA(1), tetK (6) 
,tet(M)(4) 

PEN(53), OXA(15), GEN(3), 
ERY(5), TET(7), SXT(19),  
CHL(4),AMC (31),CIP(1) 
 

SCCm
ec(15) 

58 

2014 
 

S. aureus 
(183) 

Skin and soft tissue 
(32), urinary tract 
(9), ear (7), 
unknown site (4), 
oropharynx (3), eye 
(3) and 
bloodstream 
(1) 
 

183 (154) 84.15 ND dfrA (2), dfrG (152), 
mecA(16) 

(TMP)(154), SXT(83),SMZ(85) 
 

ND 55 

2013 S. aureus 
(61) 

Human(61) 61(27) 44.26 ST39(1),ST5(2),ST
241(1),ST250(1),S
T88(2) 

mecA(7) PEN(45),TET(26),CLI(2),GEN(1
0),LVX(6), SXT(27) 

SCCm
ec(2) 

168 
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[68] 

 

2012 
 

S. aureus 
(51) S. 
haemolyticus 
(21),S. sciuri 
(9), S. 
saprophyticu
s (5), S. 
warneri 
(3),S. 
epidermidis 
(1) and S. 
hominis (1), 
 

wounds, (11) skin 
and soft tissues 
(12), osteomyelitis 
(5), burns (1),   
urinary tract 
infection (6), 
septicaemia (17), 
urinary tract 
infection (10), otitis 
media (2), 
bronchitis (2) 

91 (36) 39.56 ST241 (1), ST8 
(1),ST152 
(1),ST37 
(37),ST39,ST88 
 
 

mecA (15), dfrA (3) SXT(13), PEN(15),OXA(15), 
GEN(6), CIP(7), 
MXF(1),ERY(5),CLI(4),TET(13),
SXT(13), RIF(2) 
 

SCCm
ec 
(15) 

112 
 
 

 2011 S. aureus 
 
 
 
 
 
 
 
 

Human(68) 68(49) 
 
 
 
 
 
 
 
 
 
 
 

72 ND mecA(11),erm(A)(6)
,msrA(2),aacA-
aphD(10),tet(M)(11)
, tet(K)(27) 

PEN(60),OXA(11),GEN(10),TET
(38),CIP(20),MXF(7),SXT(49),E
RY(8),CLI(6) 

SCCm
ec(11) 

169 

2009 S. aureus 
(96) 

Human(96) 96(12) 12.5 ST241(12) mecA(12) PEN(12),OXA(12), 
FOX(12),GEN(12),ERY(12),CLI(
9),SXT(12),CIP(12) 

ND 170 

2009 S. aureus 
(346) 

Human(346) 346(206) 59.54 ST5 (72), ST7 
(44), ST121 
(38),ST250(28), 
ST88 (33), 
ST30(26), 
ST8(18), ST1(20), 
ST15(8), ST80 (8), 
ST241 (7), ST25 
(5), ST72 (3) 

mecA(70) PEN(316),SXT(206),TET(182),C
IP(58),ER7(26),GEN(42) 

SCCm
ec(70) 

171 
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[69] 

 

Sa˜o 
Tome´ 
Prı´ncipe  
(3) 

2015 S. aureus 
(114) 

Nasal swab (114) 114(29) 25.5 ST5(2),ST88(11), 
ST8(13),ST1(2),ST
105(1) 

mecA(29) FOX(29),PEN(114),TET(30),CIP
(28),RIF(6),GEN(20) 
,CLIN(20),SXT(58),ERY(25),CH 

SCCm
ec 
(29) 

 
114 

Sao 
Tome 
principe 
and 
Angola  
 

2015 
 

S. aureus 
(164) 

Nasal swab (164) 164 (29) 17.68 ST88(15),ST8(9) mecA (NS) FOX(29), SXT(26), TET(18), 
ERY(16), CIP (9) and CLI(8) 
 

SCCm
ec 
(NS) 

49 

  S. aureus 
(52) 

Nasal swab (52) 52(27) 51.92 ST8(3), 
ST88(2),ST5(1),S 
T105(1) 

mecA (14) SXT(27),ERY(11), 
CIP(11),TET(12),FOX(14),RIF(2
) 

SCCm
ec 

139 

South  
Africa 
(11) 

2017 
 

S. aureus 
(1914) 

Blood (1914) 1914(557) 29.10 ST239(8),ST612(8
),ST4121(1),ST36(
4),ST5(4),ST33(3) 

mecA(483) β-
lactams(557),TET(NS),aminogly
coside(NS),SXT(NS) 

SCCm
ec 
(482) 

135 

 2017 
 

S. aureus 
(97) 

Human 97(96) 99 ND norA(96), norB (96), 
mepA(95),tet(38)(96
),sepA(94), 
mdeA(93), imrs(86), 
sdrM(83),norC(77),q
acA/B(34),smr(42) 

NS ND 138 

2017 E. faecalis 
(1) 

Urine (1) 1 100 ST6(1) aph(3’)-lll(1), ant(6)-
la (1), aac(6’)-
aph(2”) (1), 
isa(A)(1),mphd(1), 
tet(M)(1) 

GEN(1),STR(1),ERY(1),CLI(1),T
ET(1),CLI(1),TET(1),CIP(1) 

ND 172 

2017   E.faecium 
(1) 

Urine (1) 1 100 ST18(1) aph(3’)-lll(1), ant(6)-
la 
(1),tet(M)(1),erm(B)(
1),msr(C)(1), tet(L) 

GEN(1),STR(1),ERY(1),CLI(1),T
ET(1),CLI(1),TET(1),CIP(1) 

ND 173 
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[70] 

 

 
 
 
 

2016 
 

S. aureus 
(27) 

Blood (5), nasal 
(2), CVP(2), 
Endotracheal tube 
(2), pus (2), 
sputum (1), wound 
(20), Eye 
(1),humerus (1), 
bone (1), cheek 
(1), buttock (1), 
head (1) 

(27) 100 ND mecA (27) and blaZ 
(27),aac (6')–aph 
(2'') (25),erm(C) 
(13) 

CIP(23), GEN(20), RIF(19), 
TET(18), ERY(17), CLI(3) 
 

ND 174 

2016 
 

E. faecium 
(120) E. 
faecalis (40) 
 

Blood (4) 
 

(4) 
 

100 ST80 (1),ST203 
(1),ST18 
(1),ST817(1 
 

vanA (3),vanB (1) 
 

VAN (4) 
 

ND 147 

2015 
 

S. agalactiae 
(128) 

vaginal and rectal 
swabs (128) 

128 (121) 94.53 ND erm(B), 
(28),linB(48) mefA 
(48) 

ERY(27), CLI(32), 
CHL(32),TET(111),CIP(24) 

ND 60 

2015 
 

S. aureus 
(2709) 

Blood (2709) 2709 (1231) 45.44 ND mecA (1160) TET(NS), RIF (NS),MUP(NS), 
CIP(NS) and SXT(NS) 
MET(1231) 
 

SCCm
ec 
(1160) 

59 

2012 S. aureus 
(13746) 

Human (13746) 13746(3298
) 

24 ST5 (1), ST612 
(44), 

RpoB (H481Y, 
H481N, I527M) 
(NS) 

RIF(1760) 
 

ND 59 

2009 S. aureus 
(17) 

Human(17) 17(13) 76.47 ND mupA(3) ERY(12),CIP(10),RIF(4),CHL(4) ND 175 

2007 S. 
aureus(3),S. 
.lugdunensis
(2) 

Wound(4),blood(1) 5(5) 100 ND mecA(5) PEN(5), 
OXA(5),GEN(5),ERY(4),TET(5),
SXT(5),RIF(5) 

SCCm
ec(5) 

176 

Sudan(1) 2015 S. 
aureus(200) 

Wound(49),ear 
swab(57),urine(47),
nasal swab(47) 

200(197) 98.5 ND mecA(111) PEN(197), 
AMP(197),GEN(122),KAN(136),I
PM(89),AMO(87),CIP(123),CLI(
113),SXT(105) 

ND 177 
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[71] 

 

Tanzania 
(1) 
 

2014 
 

S. aureus 
(87) 

Skin and soft tissue 
(39) and 
bloodstream (2) 

87 (32) 
 

36.78 ND dfrG (32) SMZ(5), TMP (32) ND  
50 

 

Tunisia 
(18) 
 

2015 
 

  
S. aureus 
(99) 

Human (99)  
(99) 

100  
ST247 (12), ST239 
(6), ST728 (2), 
ST241 (1), ST398 
(1), ST5 (1) and 
ST641 (1) 

mecA (24), tet(K) 
(6), tet(L) (1), 
tet(M)(18), erm(A), 
aph(2’)-acc(6’) (13) 

TET(24), GEN(18), ERY(15), 
FOF(1), CLI(14), OFX(16), 
TOB(20), FUS(5) 
 

ND 
 

69 

 2014 
 

E. faeciun 
(13),E. 
gallinarum 
(3) 

blood (8), pus (3), 
urine (2) and rectal 
swabs (3). 
 

(16) 100 ST18 (1)and ST80  
(2) 

vanA (13),vanC1(3), 
erm(B) (16), 
tet(M)(15),tet(L)(1), 
aac(6’)-aph(2”)(13) 
aph(3’)-IIIa  
(16),ant(6)(3) 

VAN(16),TEC(13), 
AMP(16),CIP(16), ERY, 
TET(16), KAN(13), STR(13), 
SXT(16), GEN(8),  
 

IS16  
(3) 

178 

2013 
 

S. aureus 
(69) 

Human (69) (69) 100 ST80 (41), ST1440 
(1), ST1 (2), ST5 
(5), ST22 (1), 
ST97 (2), ST239 
(4), ST241 (3), 
ST247 (3), ST1819 
(3),ST153 
(2),ST256 (1) 

mecA (59) KAN(62), AMK(62(18), 
TETs(61), OFX(20) , CIP(31), 
ERY(38) , CLI(12), RIF(22) 
 

SCCm
ec 
(59) 

85 

 
 
2013 

S. aureus 
(64) 

Pus(53)pus,  blood 
culture (6), articular 
Puncture (4),  
venous catheter 
r(1). 

(64) 100 ST80(64) mecA(64) PEN(64),OXA(64),FOX(64),AMK
(64),KAN(63),ERY(13),TET(3),LI
N(3) 

SCCm
ec(64) 

179 

2012 
 

S. agalactiae 
(226) 

Female genital 
(120), gastric fluid 
(106) 

226 (220) 97.34 ND erm(B) (79), mef(A) 
(2), tet(M) (205), 
tet(L)(10), tet(O) (5), 
tet(T)(1) 

CHL(7), RIF(43), ERY(90) and 
TET(220), STR(7),GEN(7) 
 

Tn916 105 
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[72] 

 

2012 
 
 

S. 
haemolyticus 
(46) 

Blood (19), 
intravascular 
catheters (14), 
others (13) 

46 (36) 78.26 ND mecA (28) 
 

PEN(36), OXA(36), GEN(34), 
kAN(34), and TOB(34), 
ERY(33), SXT(32), OFX(32), 
CIP(32), STR(25), fusidic 
acid(14), 
TET(11),RIF(9),LIN(6(,CHL(1),F
OF(1) 
 

 
SCC 
mec 
(28) 

104 

2011 
 

S. aureus 
(1463) 

Skin (1463) 160 (5) 3.13 ND erm(C)(3), erm(A) 
(1), vat(B) (5), 
vga(B) (5) 

PEN(5),OXA(4), GEN(4), 
KAN(5), TOB(4(5) and 
RIF(5),LIN(5) 
 

ND 144 

2011 
 

S. pyogenes 
(103) 

skin (43), 
respiratory tract 
(41), blood (12), 
fluids (4), 
endometrium (1), 
vagina (1), and 
urine (1). 

103 (72) 
 

70 emm18 (4), 
emm42 (9), 
emm76 (6), 
emm118(10) 
 

erm(B) (5), tet(M) 
(63), tet(O)(3) 

ERY(5), CLI (5), and TET(72),   
Tn916 
(62) 

145 

 2011 S. 
epidermidis 
(34),S. 
haemolyticus
(10),S. 
hominis(1) 

Blood(45) 45(42) 93.33 ND mecA(43),mrsA(13),
erm(C)(7),erm(B)(2)
,erm(A)(6),aac(6’)-
le-
aph(2’’)(35),ant(4’)-
la(18),aph(3’)-
IIIa(4),tet(K)(6),tet(
M)(1) 

PEN(45),OVA(43),GEN(35),KAN
(42),TOB(40),ERY(25),CLI(11),T
ET(5),CHL(3),RIF(15),SXT(31),
CIP(25),FUS(27),FOF(18) 

SCCm
ec(43) 

180 

2010 
 

S. pyogenes 
(193) 

throat (63), pus 
(89), punctures 
(30), blood (4), 
other sources (7)  
 

193 (13) 6.74 ND ermB (6), mefA (2)  ERY(7) and TET(6) 
 

ND 143 

2010 S. aureus 
(55) 

Nasal swab(55) 55(19) 35.55 ST80(1) mecA(1), ant(6)-
la(3),tet(K)(7),aph(3’
)-
llla(4),dfrA(1),tet(M)(
1),tet(L)(1) 

PEN(54),OXA(19),FOX(1),TET(
11),STR(5),KAN(3)CIP(8) 

SCCm
ec(1) 

181 

2010 
 

S. agalactiae 
(160)  
 

Urinary tract (160) (160) 100 ND erm(B) (132), 
erm(TR) (13), mef 
(A) (3) 

ERY(160), LIN(135) and SB 
(135) 
 

ND 182 
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[73] 

 

2010 S. aureus 
(13) 

Pus(32),blood(16),
catheter(12) 

72(42) 58.33 ND mecA(13) PEN(65),STR(11),GEN(4),KAN(
11),OXA(13),TOB(4),LIN(3),TET
(42)ERY(11),RIF(6),CHL(2),CIP(
5),FUS(8),FOF(1) 

ND 183 

2009 
 

S. epidermis 
(77), S. mitis 
(50), E. 
faecium (45) 
 

blood cultures (55), 
central venous 
catheters, ( 
22),stool cultures 
(40), respiratory 
tract (2) and 
different sites ( 3), 
systematic 
nasopharyngeal 
specimens (42), 
upper respiratory 
tract(5)  

172(95) 
 

55.23 ND erm (C) (18), erm(B) 
(6), 
erm(A)(11),msrA (5) 
 

OXA(39), AMP( 
28),PEN(90),ERY(119),LIN(97),
PRI (3),GEN(71),RIF(78), 
TEC(50),  

ND 82 

2007 
 

E. 
faecalis(34), 
E. 
faecium(12) 

Blood(10), 
pus(26),catheter(7)
,plural aspirate(2) 

46(46) 100 ND aac(6’)-aph(2”)(46) GEN(46),KAN(46),PEN(12),ERY
(45),CHL(25),TET(32),STR(26) 

ND 184 

 2007 E.faecium(2) Urine(2) 2 - ND vanA(2) STR(2), ERY(2),CIP(2),VAN(2) ND 156 

2007 S.epidermidi
s (346) 

Human(346) 346(7) 2.02 ND erm(A)(6),erm(C)(1)
,vga(7) 

PRI(7),OXA(7),GEN(7),ERY(7),L
IN(7),RIF(7),SXT(7)TEC(1) 

ND 185 

2007 S.epidermidi
s (34) 

Blood(55), 
urine(22) 

(34) 100 ND icaA(26), 
erm(C)(18),erm(A)(
11),mrsA(5),vga(3), 

ERY(34),OXA(28),GEN(34),LIN(
33),OFX(33),RIF(28) 

ND 186 

Uganda 
(4) 
 

2013 
 

S. aureus 
(64) 

Nasal swab (64) 64(24) 37.5 ND mecA (24) OXA(22), GEN(8), CIP(12), 
CHL(9) 
 

SCCm
ec 
(24) 
 

187 

 2012 S.epidermidi
s(50) 

Nasal 
swab(20),catheter(
14),blood(9),wound
(3) 

50(26) 52 ND aph(‘)-
lla(28),blaZ(2),mecA
(3),vanA(3),vanB1(3
), 

ERY(20),GEN(26),PEN(32),TET
(15),SXT(17),OXA(6) 

IS256(
33) 

188 

2011 S. 
aureus(122) 

pus 122(48) 39.34 ND mecA(2) AMP(48),CHL(42),CIP(1),ERY(5
),TET(29),SXT(320 

ND 189 

 2009 S. aureus 
(54) 

Human(54) 54(15) 27.78 ND mecA(17) CIP(12),GEN(10),SXT(15),CHL(
15),ERY(15) 

NG 190 

 1528 
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[74] 

 

Table 3. Geographical distribution, species, clones, and resistance mechanisms of antibiotic-resistant Gram-positive bacteria isolated from 1529 

animals in Africa from 2007-2018. 1530 

Country 
(n)11 

Year Organism/ 
Species (n)12 
 

Specimen 
Sources (n)13 

Sample 
size 
(Resista
nt 
isolates) 

Resis
tance 
rate 
(%) 

Clones 
(n)14 
 

 
Resistance genes/ 
 mechanisms (n)15 

Antibiotics to which strains 
  
were resistant (n)16 
 

MGEs 
(n)17 

Refere
nce 

Angola(
1) 

2015 E. faecium (3) Pig faecies(1), 
Chicken 
faeces(2) 

3 - ST971, 
ST245(2) 

tet(L)(1), tet(M)(2), 
erm(B)(2) 

CIP(1),TET(3),ERY(2),STR(2),NIT(2),Q/D(2

) 
ND 191 

Egypt 
(10) 

2017 S. aureus(3),S. 
hycus(6), 
S. intermedius(3) 
,S. epidermis(1) 
,S. hemolyticus(1), 
S. hominis(1), 
S.l ugdunensis(3), 
S. simulans(1),S. 
scuri(4) 

imported beef 
meat (23) 

23(16) 69.57 ND mecA(5), gyrA(12), 
grlA(10),gyrB(6), 

AMP((6),CHL(1),CIP(8),CLI(15), 
ERY(6),GEN(14),MET(8),OXA(13) 
,PEN(22), TET(6) 

ND 94 

2017 S. aureus (84) Milk(84) 84(80) 95.23 ND mecA(42),blaZ(67) AMX(54), 
SXT(66),GEN(20),CIP(12),CHL(58),PEN(70
),RIF(32),AMK(14), 
VAN(64),STR(50),TET(44),ERY(40), 
AMP(80),OXA(42) 

ND 192 

2016 S. aureus (73) Animal(73) 73(NS) NS ST113(1), 
ST80(1) 

mecA(14), 
erm(C)(14) 

CLI(NS),CIP(NS),GEN(NS),SXT(NS),OXA(
NS),ERY(NS) 

ND 159 

                                                           
11

 Total number of studies per country 
12

 Total number of bacteria isolated 
13

 Total number of Specimen source 
14

 Total number of resistant clones 
15

 Total number of resistant genes  
16

 Total number of isolates resistant to antibiotics 
17

 Total number of mobile genetic elements: plasmids, transposons, integrons 
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[75] 

 

2016 S. aureus (30) 
 

raw chicken 
breast fillet (40), 
sliced luncheon 
meat (20), and 
chicken nuggets 
(20),Human (18) 

40 (21) 33.33 ND mecA (10) DOX(31), AMX(29), OFX(10), CFP(23), 
CLI(21), GEN(20), APR(16), ERY(21), 
SXT(23), LUX(18), NAL(20), OFX(10),  
CIP(16). 
 

ND 28 

2016 S. aureus (70) Bovine(70) 70(41) 58.57 ND mecA(NS) CRO(41),ERY(35),OXA(41),SXT(14),GEN(
14),CIP(11),CLI(8),VAN(1) 

ND 160 

2016 S. aureus (40) Milk(30),meat(10) 40(22) 55 ND erm(A)(18),mrs(A)(
4),mphC(6),erm(B)
(3) 

ERY(22),CLI(4),TET(24),CIP(4),CHL(5),AM
X(26),FOX(22),SXT(1),RIF(5),GEN(4),CRO
(14) 

ND 193 

2016 S. aureus (200) Raw milk (40), 
Damietta 
Cheese (40), 
Kareish cheese 
(40), ice cream 
(40), and yogurt 
(40) 

200 
(106) 
 

53 ND mecA(106) TET(270), NEL(78), AMX(230), 
CLX(314),STR(186),SXT(58), GEN(114), 
PEN(364), RIF(152), CHL(128), AMK(146), 
VAN(36) 
 

ND 12 

2015 S. aureus (133) 
 

cow milk samples 
(61), various 
origins (14), 
minced meat (6), 
sausage (4) and 
burger (7), pus 
(22), sputum 
(17), urine (1), 
cerebrospinal 
fluid (1) 
 

133 (96) 72.18 ND mecA (30) 
 

CRO(96), TET(90), OXA(70), FOX(65), 
ERY(81),VAN(4),IPM(7),CRO(96),CHL(12) 
,GEN(36),CLI(29), CIP(31),RIF (18) 
 

SCCm
ec 
(25) 

23 

 2015 S. aureus (288) Chicken(288) 288(256) 88.89 ND mecA(76) PEN(269),AMP(256),CLX(240),AMX(224),E
RY(212), 
TET(197),STR(150),RIF(113),AMK(99),CH

ND 194 
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[76] 

 

L(91),GEN(70),CIP(39),NEL(48),SXT(39),V
AN(17) 

2011 S. aureus (4) dogs swab (70), 
cats swab (48), 
human nasal and 
oral swabs (50). 
 

(4) 100 ND mecA (4) OXA(4), FOX(4), 
AMP(3),FOX(4),RIF(3),GEN(2),CLI(2),RIF(
2),CIP(2),TET(1) 
 

ND 53 

Kenya 
(1) 

2013 S. agalactiae (92) Camel(92) 92 (37) 36 ST617 (8), 
ST-612 
(1),ST-616 
(22) 

tet(M) (37) TET(37) Tn916 
(37) 

195 

Nigeria(
3) 

2017 S. aureus (30), S. 
epidermidis(16),S. 
saprophyticus(2), S. 
sciuri(1),S. 
xylosus(1) 

Pork(26),beef(14)
,chicken(10) 

50(48) 96 ND mecA(49) PEN(48),CLI(48),CHL(46),SXT(46),KAN(46
),AMX(460 

ND 156 

 2016 E. faecium (108), E. 
gallinarum, (30), E.  
faecalis (5), E. hirae. 
(5) 
E. mundtii (12) 
 

Cattle (130), 
chickens 
(130),manure 
(130) 
 

167 
(102) 
 

61.0 ND tet(K) (NS), tet(L) 
(NS), tet(M) (NS), 
tet(O) (NS) and 
erm(B) (NS) 
 

TET (102), ERY (102), CHL (13), GEN(55), 
STR(47),AMP(75) 
 

ND 
 
 
 

196 

2014 Coagulase negative 
staphylococcus(16) 

Groin swab of 
dogs(16) 

(16) 100 ND mecA(16),blaZ(1),t
etK(12),tet(M)(8),e
rm(B)(3),aacA-
aphD(11) 

PEN(16),OXA(16),FOX(16),TET(13),ERY(9
),CLI(9),GEN(5),KAN(12),TOB(1),SXT(10),
CHL(7) 

ND 197 

South 
Africa 
(6) 

2017 E. faecium (180),E. 
durans(80), E. 
hirae(29),E. 
casseliflavus(20) 

Cattle (241) 100 100 ND vanB(67),vanC1(8
5),vanC2/3(137),er
m(B)(137) 

ERY(338),CLI(330),VAN(341),PEN(310),C
ET(300),STR(320),CLX(100),AMK(252),CIP
(41) 

ND 198 

 2017 S. aureus (104) Chicken(104) (104) 100 ND mecA(45),blaZ(12)
, tet(K)(32) 

AMP(46),GEN(29),ERY(64),FOX(71),KAN(
52),STR(57),TET(82),VAN(43) 

 156 

2015 S. aureus (211) Milk (211) 211 
(124) 

58.77 ND mecA (19) PEN (124), AMP(99), OXA (93), VAN(47), 
TEC(116), 
TET(56),ERY(56),STR(89),KAN(55),GEN(4
7),SXT (37) 
 

ND 21 
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[77] 

 

2015 E. faecalis (40), E. 
hirae (100), E. 
durans (60), E. 
faecium (120) 
 

Pigs (320) (320) 100 ND vanB,(320), vanC1 
(320), vanC2/3 
(320), erm(B)(300)  
 

VAN(320), STR(320) and 
CLX(320),STR(320),CET(286),PEN(292),CI
P(248),AMO(64), AMK(272),CLI(316),ERY 
(280),IPM (52), 
 

ND 13 

2014 Staphylococcus 
spp(120) 

Pigs(30),cattle(30
),cows(30),goats(
30) 

120(53) 44.17 ND mecA(12) VAN(12),CRO(12),CFZ(37),CTX(19),SAM(1
3),PEN(53),MER(4) 

ND 199 

2013 S. xylosus (18), S. 
aureus (28), S. 
haemolyticus (42), S. 
capitis (18), and 
other 
Staphylococcus spp. 
(14) 

Animals (120) (120) 
 

100 ND mecA (NS), 
mphC(NS) 

PEN (90), MER(3), VAN(14), CTX(14), 
CFZ(48), OXA(46),  
MIC(19), TET(100), ERY(14), CLI(19), 
NAL(120), CIP(5),  
OFX(6), LUX(2) 
 

SCCm
ec 
(NS) 

61 

Senegal 
(1) 

2012 S. aureus (57) 
 

Swabs from pigs 
(300) and 
farmers 

57(35) 61.40 ST5 (5) mecA(6) PEN(57), SXT(35), TET(20) 
 

SCCm
ec (6) 
 

66 

Tanzani
a 
(1) 

2014 E. faecium (95) E. 
faecalis(9) E. 
gallinarum (7) E. 
Hirae (9)  
 

Faecal samples 
of buffalo (35), 
wildebeest (40), 
zebra (40) and 
cattle (20) 
 

120 (42) 
 

35 ND tet(W) (NS), sulII 
(NS) 
 

VAN(10),AMP(10),TET(40),SXT(32),RIF(53
),ERY(42),GEN(35),AMP(31) 
 

ND 14 

Tunisia 
(8) 

2017 E. faecium (31),E. f 
aecalis (14),E. 
durans(6),E. 
casseliflavus (2),E 
.gallinarum (2) 

Faecal sample of 
cats(20), 
dogs(50) 

58(31) 53.45 ND erm(B 
)(22),tet(M)(5),tet(
M), tet(L)(16) 
,tet(L)(4),ant(6')-
la(11) 
,aac(6')-le-aph(2'')-
la(16),aph(3')-
llla(11),catA(1) 
 

AMP(1),ERY(26),CIP(30), 
PRI(9), STR(12), KAN(12) 
,GEN(9),TET(21),CHL(7) 

ND 22 

 2017 E. faecalis (2), E. 
faecium (NS), 
Enterococcus spp 
(NS) 

Urban 
wastewater (5) 

5(2) 40 ST86(2) optrA(2), erm 
(A),erm(B),tet(M)(1
),tet(L)(1), aac(6’)-
aph(2”), 

CHL(2),CIP(2),ERY(2),TET(1),GEN(1),STR
(2) 

ND 200 
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[78] 

 

2015 S. aureus (43) Chicken(19),Veal
(9),sheep(14),hor
se(1) 

43(13) 30.23 ST30(1), 
ST398(1) 

tet(M)(2),erm(C)(4)
,erm(A)(2),erm(T)(
1),tet(K)(6),tet(L)(3
),tet(M)(2),aph(3’)-
llla(4),ant(4)-
la(1),mrsA(4) 

PEN(41),OXA(2),FOX(2),KAN(4),TOB(1) SCCm
ec(2) 

201 

2015 S. aureus (17) Goat, cats 
dogs(17) 

17(7) 41.18 ST45(1),S
T15(1),ST
6(1),ST21
21(1),ST1
88(1) 

blaZ(7),tet(M)(1),er
m(A)(1),ant(6)-
la(1) 

PEN(6),TET(1),ERY(1),STR(1),CIP(1) ND 202 

2013 E. faecalis (49), E. 
faecium (30), E. 
gallinarum (12), E. 
hirae(12),E. 
casseliflavus (2),E. 
durans (2) 
 

Meat (199) 
 

(119) 78.5 ST260(1),
ST454(1),
ST452(1),
ST22(1),S
T300(1),S
T455(1),S
T453(1),S
T456(1) 

tet(M) (36), tet(L) 
(32), erm(B) (33), 
aac(6′)-aph(2″) 
(1),ant(6) (7) 
 

TET(57), ERY(43), STR(17), CHLl(4),GEN 
(1) 
 

ND 51 

2013 E. mundtii, (23) E.  
casseliflavus (20), E. 
hirae (19), E. faecalis 
(10), E. faecium (10), 
E.  durans (7), E. 
gallinarumd (7), E.  
dispar (2) 
 

Cattle (92) 92 (72) 78 ND erm(B) (7), tet(M) 
(4),tet(L)(4) 
 

ERY(10), TET(4) and SXT(72) ND 52 

2012 S. aureus (73) nasal swab from 
sheep (73) 

73 (5) 6.85  
ST153(5) 

mecA (5),blaZ 
(28), ant(6)-Ia (5), 
erm(C) (5), tet(K) 
(30) 

PEN(5), STR(5), KAN(5), ERY(5), TET (5), 
FUS(5) 
 

 
ND 

99 

 2012 S. aureus (50) Nasal swab of 
donkey(50) 

50(30) 60 ST133(15)
,ST1738(4
),ST1(2),S
T6(4),ST2
057(4),ST
2110(1),S
T2181(1),
ST1660(1) 

baZ(12),erm(A)(8),
erm(C)(2),tet(M)(1)
,fusC(1) 

PEN(12),ERY(8),TET(1),Fusic acid(12), ND 203 

.
C

C
-B

Y
-N

C
-N

D
 4

.0
 In

te
rn

a
tio

n
a
l lic

e
n
s
e

u
n
d
e
r a

n
o
t c

e
rtifie

d
 b

y
 p

e
e
r re

v
ie

w
) is

 th
e
 a

u
th

o
r/fu

n
d
e
r, w

h
o
 h

a
s
 g

ra
n
te

d
 b

io
R

x
iv

 a
 lic

e
n
s
e
 to

 d
is

p
la

y
 th

e
 p

re
p
rin

t in
 p

e
rp

e
tu

ity
. It is

 m
a
d
e
 a

v
a
ila

b
le

 
T

h
e
 c

o
p
y
rig

h
t h

o
ld

e
r fo

r th
is

 p
re

p
rin

t (w
h
ic

h
 w

a
s

th
is

 v
e
rs

io
n
 p

o
s
te

d
 S

e
p
te

m
b
e
r 2

5
, 2

0
1
8
. 

; 
h
ttp

s
://d

o
i.o

rg
/1

0
.1

1
0
1
/3

6
6
8
0
7

d
o
i: 

b
io

R
x
iv

 p
re

p
rin

t 

https://doi.org/10.1101/366807
http://creativecommons.org/licenses/by-nc-nd/4.0/


[79] 

 

Uganda 
(1) 

2017 S. aureus (41) milk(30),sour milk 
sample(11) 

41(30) 73.17 ST97(1),S
T1(2) 

mecA(23) TET(30),RIF(1),SXT(2),ERY(1), 
GEN((1),CLI(1) 
 

ND 121 

  1531 

Table 4. Geographical distribution, species, clones, and resistance mechanisms of antibiotic-resistant Gram-positive bacteria isolated from 1532 

the environment in Africa from 2007-2017. 1533 

Country 
(n)18 

Year Organism/ 
Species (n)19 

 

Specimen 
Sources (n)20 

 

Sample size 
(Resistant 
isolates) 

Resistanc
e rate (%) 

Clones (n)21 
 

Resistance genes/ 
mechanisms (n)22 

Antibiotics to which strains 
were resistant(n)23 

 

MGEs
(n)24 

Refer
ence 

Angola 2015 E. faecium(5) Chicken farm 
facility(4), water 

from hospital 
and 

community(1) 

5(4) 80 ST245(1), 
ST650(2) 

tet(M)(4),erm(B)(4),tetL
(2) 

TET(4),ERY(4),STR(4),NIT
(2),Q/D 

ND 191 

Egypt 2016 S. aureus(23) Food sample(23) 23(NS) NS ST689(1) mecA(3), van 
A(1),vanB(1) 

VAN(NS), 
CIP(NS),GEN(NS),SXT(N

S),OXA(NS),ERY(NS) 

ND 159 

Nigeria 
(1) 

2017 
 

E. faecium (100) Vegetables soil, 
farm, Cloacal 
swabs (25), 
Manure (8), 

Rectal swabs(2) 

(100) 100 ND aac(6')-Ie-aph(2")-
Ia(35),aph(2')-1c(31) 

,aph(3')-llla(32), 
ant(4')-la(14) 

AMP (63), GEN(37) ND  
25 
 

South 
Africa 

(4) 

2017 S. aureus Recreational 
waters and 

beach sand (30) 

(30) 100 ND mecA(5),femA(16). 
rpoB(11),blaZ(16),erm

B(15),tet(M)(8) 

AMP (29),PEN 
(29),RIF(24), 
CLI(24),OXA 

ND  
204 

                                                           
18

 Total number of studies per country 
19

 Total number of isolates 
20

 Total number of specimen source 
21

 Total number of resistant clones 
22

 Total number of resistant clones 
23

 Total number of isolates resistant to antibiotics 
24

 Total number of mobile genetic elements : plasmids,transposons, integrons 
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[80] 

 

 (22),ERY(21),VAN(15), 
TET(13),SXT(13),CIP(10),

GEN(1) 

 2016 E. faecium (30), 
E. faecalis (37) 

E. mundtii(36),E. 
casseliflavus 
(14), E. 
gallinarum(5), E. 
hirae(1), E. 
sulfureus(1) 

Surface 
water(124) 

124(86) 69.35 ND tet(L)(17), msrC(9) AMP(59),AMX(53),PEN(87
),STR(8) 

,VAN(86),CHL(23),CIP(47)
, 

ERY(68),TET(59) 

ND 205 

 2015 E. faecium (30), 
E. durans. (15) 

 

waste water (32) 
and effluent (32) 

 

(45) 100 ND erm(B) (40), vanB, 
(42), vanC1 (42), van 

C2/3(42) 
 

PEN(38), ERY(40), 
CTX(43), 

GEN(28),IPM(43), 
TET(45), KAN(43), 

CIP(43), VAN(42),CLI(45) 
 

ND 10 

2013 E. faecium (179) 
 

Borehole Water 
(179) 

179 (172) 
 

96.09 ND vanA (17) and vanB 
(17) 

 

AMP(158), VAN (166)and 
PEN(172),CHL(11),KAN(1

2),GEN(3),AMX (155), 
ERY(86) 

 

ND 9 

Tunisia 
(7) 

2017 S. aureus (12) Wastewater 12 100 ST3245(7),
ST15(1) 

blaZ(7),msrA(7),tet(K)(
1) 

PEN(12),ERY(7),TET(1),C
LI(1) 

ND 18 
 

 2016 E. faecium (86), 
E. faecalis(8), E. 
casseliflavus (6) 

Hands (50), 
inanimate such 

as beds, 
treatment tables, 
toilets, faucets, 

wrists, sinks 
(250) 

(100) 100 ST910 (13), 
ST80 (1) 

 

erm(B) (71), tet(M) 
(18), aph(3’)-IIIa (27), 
ant(6)-Ia (15),cat(A) 

(4), vanC2(6) 
 

ERY(73), TET(20),STR(27) 
and KAN(28), 

VAN(14),CHL(10),SXT(100
), CIP(48),PRI(18) 

 

IS16 
(14) 

 

20 

2016 S. saprophyticus 
(30), S. 

haemolyticus 
(38), S. 

epidermidis 
(NS), S. cohnii 

(NS), S. warneri 
(NS), S. sciuri 

(NS), S. simulant 

Inanimate 
surfaces (83 

83 (32) 
 

38.55 ND mecA(20), msr(A)(32), 
erm(C)(8), tet(K)and/or 
tet(M)(21), aac(6´)-Ie-

aph(2´´)-Ia 
(16),(aph(3`)-IIIa(19), 

ant(4´)-Ia (n=14), 
ant(6´)-Ia (3) 

 

ERY(32), TET(21), 
GEN(16), KAN(19), 
TOB(14), STR(3), 

ND 97 
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[81] 

 

(NS)s, S. 
pasteuri (NS), S. 
arlettae (NS) and 

S. xilosus(NS) 

 2015 E. faecium (34), 
E. hirae (23), E. 
faecalis (4), and 
E. casseliflavus 

(4) 
 

Vegetable food 
(34), soil and 

irrigation water 
(27) 

 

65 (40) 
 

61.54 ST2 (5), 
ST16 (2), , 
ST528 (2), 
ST56 (1), 

ST885 (1), 
ST886 (1) 

 

erm(B) (12), tet(M)-
tet(L)(10), aph(3′)-III, 

(10) ant(6) 
(2),vanC2(4) 

CIP(42), ERY(12), 
TET(10), KAN(10), CHL(5), 

STR(2),  and GEN(5), 
VAN(4) 

 

ND 19 

 2015 E. faecium (54), 
E. faecalis(17),E. 

hirae (8) 
E. casseliflavus 

(4), E. durans (2) 
 

waste and 
surface water 

(114) 
 

(85) 
 

100 ST480 (1), 
ST531 

(1),ST55 
(1),ST532(1

),ST202 
(1),ST314(1

), 
ST985(1),S

T30 
(1),ST986 
(1),ST12 
(1),ST296 

(1),ST327(1
) 
 

aph(3')-llla (22), ant(6)-
la (4),erm(B) (34), 

tet(M) (13),      
tet(L)(8),aac(6’)-le-

aph(2’)(15) 

GEN(22), KAN(22), 
STR(7), ERY(36), TET(13), 

SXT(79), CIP(6), 

ND 31 

2015 S. aureus (12) Hospital 
environment(12) 

12(6) 50 ST247(2) blaZ(12),erm(A),tet(M)(
2),aac(6’)-aph(2’)(2), 

STR(2),KAN(2),ERY(2),CL
I(2),TET(2),FUS(2),TOB(2)
,GEN(2),AMK(2),OXA(6),P

EN(12),FOX(2) 

SCCm
ec(2) 

206 

2014 E.faecium(5),E. 
casseliflavus(7) 

Hospital 
environment((be

ds, treatment 
table, toilet, 

faucet, wrist and 
sink) (100) 

(12) 100 ST80(1) vanA(5),vanC2(7) 
,ermB(12),tetM(5),aph(

3’)-lla(5),aac(6’)-
aph(2’’)(5) 

VAN,(12),AMP(5),CIP(12),
ERY(12),TET(8), 

STR(6),KAN(80,SXT(11),G
EN(3),TEC(5) 

IS16(1
) 

69 

 1534 

Table 5. Mean antibiotic resistance rates per country in Africa 1535 
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[82] 

 

Country No. of studies 

N=130 

Mean rate of 

ABR (%) 

95% CI P-value 

Algeria 7 62.24 4.76 - 119.7 0.03 

Angola 6 66.19 9.98 – 122.4 0.03 

Cape Verde 1 14.16 - - 

Democratic Republic of the Congo 3 45.96 - - 

Egypt 21 70.49 59.30 – 81.68 0.0001 

Gabon 2 54.14 - - 

Ghana 3 65.05 - - 

Kenya 3 51.51 - - 

Libya 1 33.69 - - 

Morocco 2 68.88 - - 

Mozambique 1 19.15 - - 

Namibia 1 29.31 - - 

Nigeria 13 71.23 54.81 – 87.65 0.0001 

Sa˜o Tome´ Prı´ncipe   3 31.70 12.87 – 76.27 0.092 

South Africa 21 82.72 70.73 – 94.69 0.0001 

Sudan 1 98.5 - - 

Tanzania 2 35.89  24.58 – 47.00 0.016 

Tunisia 33 66.82 54.73 – 78.91 0.0001 

Uganda 5 45.96 24.25 – 67.66 0.0042 

Senegal 1 61.40 - - 
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[83] 

 

Table 6: Antibiotic resistance rates of various Gram-positive bacterial species isolated from humans, animals and the environment in Africa between 1536 

2007 and 2018. 1537 

Species Total isolates Antibiotic resistance rate (%) 

AMP25 CIP26 CLI27 ERY28 GEN29 KAN30 PEN31 RIF32 STR33 TET34 SXT35 VAN36 

Human 

E. faecalis 179 30.4 26.3 - 91.35 77.2 100 26.0 - 56.5 76.0 19.30 52.6 

E. faecium 205 56.1 19.0 - 88.0 61.4 90.6 21.5 - 70.3 75.5 100 51.3 

S. agalactiae 658 - 18.8 19.5 50.6 3.1   19.0 3.1 68.8 - - 

S. aureus 24160 64.7 24.1 16.3 82.4 20.3 32.9 81.5 31.2 12.2 35.4 40.5 3.13 

S. haemolyticus 91 - 62.6 24.4 63.7 75.9 73.9 78.3 31.2 12.2 35.4 69.2 - 

S. pyogenes 148 - - 4.9 5.8 - - - - - 36.5 - - 

Animal 

E. faecalis 129 24.2 64.6 98.8 43.5 19.5 20.7 16.6 44.17 16.7 32.7 52.5 50.1 

E. faecium 577 31.4 43.7 97.8 57.5 23.0 20.7 53.7 44.2 37.9 43.9 52.5 66.7 

S. aureus 1601 62.8 23.1 39.3 32.7 28.9 36.8 69.5 33.5 45.3 42.2 37.6 24.4 

S. haemolyticus 43 - - - - - - 59.6 - - - 83.3 - 

Environment 

E. faecalis 66 47.6 47.6 - 45.7 20.5 23.1 70.2 - 17.0 23.6 96.5 29.8 

E. faecium 523 59.2 69.2 100 64.6 26.1 39.7 83.6 - 29.1 49.3 94.9 62.7 

S. aureus 77 96.7 25 35 48.2 10.0 16.67 98.9 80.0 16.7 25.8 43.0 50.0 

 1538 

 1539 

                                                           
25 Ampicillin 
26 Ciprofloxacin 
27 Clindamycin 
28 Erythromycin 
29 Gentamicin 
30 kanamycin 
31 Penicillin  
32 Rifampicin  
33 Streptomycin 
34 Tetracycline  
35 Sulphamethoxazole-trimethoprim 
36 Vancomycin  
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[84] 

 

Figure 1. PRISMA-adapted flow chart showing included and excluded articles. All search were conducted on PubMed, Web of Science and African Journals 1540 

Online, and a final number of 130 articles were used for the quantitative analysis.  1541 

Figure 2. Frequency and distribution of resistance genes, antibiotics, and mobile genetic elements (MGEs) with recorded resistance in Gram-positive bacteria in 1542 

Africa. 2ai) Shows the frequency of the various resistance genes found in the drug-resistant Gram-Positive bacterial strains. mecA and erm(B) were the most 1543 

dominant resistance genes detected, followed by tet(M), dfrG, vanB, vanC1 etc. 2aii) Shows the antibiotics to which the isolates were most resistant: 1544 

erythromycin (ERY) was the least effective drug, followed by rifampicin (RIF), tetracycline (TET), penicillin (PEN), sulphamethoxazole/trimethoprim (SXT), 1545 

ciprofloxacin (CIP), gentamicin (GEN), vancomycin (VAN), ampicillin (AMP), clindamycin (CLI), streptomycin (STR), chloramphenicol (CHL), and 1546 

kanamycin (KAN). 2b) Shows the MGEs per resistant Gram-positive bacterial clones in Africa. The figure represents resistant clones and the different MGEs 1547 

they carry. Each colour represent a particular resistant clone. S. agalactiae (ST612, ST616, ST617) and S. pyogenes (emm18, emm42, emm76, emm118), E. 1548 

faecium (ST18, ST80, ST910) and S. aureus (ST5, ST22, ST35) were associated with Tn916, IS16 and SCCmec respectively. 1549 

Figure 3. Frequency distribution of resistant Gram-positive bacterial species, clones and mobile genetic elements (MGEs) per country in Africa. 3a) Shows the 1550 

distribution frequencies of the resistant species, clones and MGEs per country in Africa whilst 3b) shows the total frequency per clone in Africa. It is obvious that 1551 

S. aureus ST5 is predominant in Tunisia, the DRC and Senegal whilst ST22 is highly prevalent in Algeria. SCCmec was the commonest MGE in most of the 1552 

countries except in Tunisia where IS16 and Tn916 were higher in prevalence. S. aureus ST8 and ST80 were the most common clones reported, followed by E. 1553 

faecium ST317. 1554 

Supplementary data 1. List of excluded articles on the basis of only phenotypic (antibiotic sensitivity) tests. 1555 

Supplementary data 2. Raw data and analysis of extracted information from included articles.  1556 
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Figure 2ai. Frequency of resistance genes conferring resistance to antibiotics in Gram-positive bacteria in Africa.  
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Figure 2aii. Frequency of antibiotics to which Gram-positive bacteria were resistant to in Africa. 
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Figure 2b. Frequency and distribution of mobile genetic elements (MGEs) and resistant clones in Gram-positive bacteria in Africa.  
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Figure 3a. Frequency distribution of resistant Gram-positive bacterial species, clones and mobile genetic elements (MGEs) per country in Africa.  
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Figure 3b. Frequency of resistant Gram-positive bacterial species, clones and mobile genetic elements (MGEs) per country in Africa.  
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