
ORIGINAL RESEARCH
published: 15 February 2018

doi: 10.3389/fphar.2018.00106

Edited by:

Kenneth A. Jacobson,

National Institutes of Health (NIH),

United States

Reviewed by:

Oscar J. Cordero,

Universidade de Santiago

de Compostela, Spain

Claudia Martini,

University of Pisa, Italy

Paul Proost,

Rega Institute for Medical Research,

KU Leuven, Belgium

*Correspondence:

Vicent Casadó

vcasado@ub.edu

Specialty section:

This article was submitted to

Experimental Pharmacology and

Drug Discovery,

a section of the journal

Frontiers in Pharmacology

Received: 09 November 2017

Accepted: 30 January 2018

Published: 15 February 2018

Citation:

Moreno E, Canet J, Gracia E,

Lluís C, Mallol J, Canela EI, Cortés A

and Casadó V (2018) Molecular

Evidence of Adenosine Deaminase

Linking Adenosine A2A Receptor

and CD26 Proteins.

Front. Pharmacol. 9:106.

doi: 10.3389/fphar.2018.00106

Molecular Evidence of Adenosine
Deaminase Linking Adenosine A2A
Receptor and CD26 Proteins
Estefanía Moreno1,2,3, Júlia Canet1,2,3, Eduard Gracia1,2,3, Carme Lluís1,2,3,

Josefa Mallol1,2,3, Enric I. Canela1,2,3, Antoni Cortés1,2,3 and Vicent Casadó1,2,3*

1 Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain,
2 Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain, 3 Centro de Investigación Biomédica en

Red sobre Enfermedades Neurodegenerativas, Madrid, Spain

Adenosine is an endogenous purine nucleoside that acts in all living systems as

a homeostatic network regulator through many pathways, which are adenosine

receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine

deaminase (ADA) is an essential protein in the regulation of the total intracellular

and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA

is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl

peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA

in humans. Since CD26 and ARs interact with ADA at opposite sites, we have

investigated if ADA can function as a cell-to-cell communication molecule by bridging

the anchoring molecules CD26 and A2AR present on the surfaces of the interacting

cells. By combining site-directed mutagenesis of ADA amino acids involved in binding

to A2AR and a modification of the bioluminescence resonance energy transfer (BRET)

technique that allows detection of interactions between two proteins expressed in

different cell populations with low steric hindrance (NanoBRET), we show direct

evidence of the specific formation of trimeric complexes CD26-ADA-A2AR involving

two cells. By dynamic mass redistribution assays and ligand binding experiments, we

also demonstrate that A2AR-NanoLuc fusion proteins are functional. The existence of

this ternary complex is in good agreement with the hypothesis that ADA could bridge

T-cells (expressing CD26) and dendritic cells (expressing A2AR). This is a new metabolic

function for ecto-ADA that, being a single chain protein, it has been considered as an

example of moonlighting protein, because it performs more than one functional role (as

a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without

partitioning these functions in different subunits.

Keywords: adenosine deaminase, adenosine A2A receptor, bioluminescence resonance energy transfer, CD26,

dipeptidyl peptidase IV, moonlighting protein, protein–protein interaction

INTRODUCTION

Many proteins interact with other proteins or are organized into macromolecular complexes, in
whichmultiple components work together to perform different cellular processes (Petschnigg et al.,
2012). Transient protein-protein interactions are composed of relatively weak interactions and
they perform essential functional roles in biological systems, notably in regulating the dynamic
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of biological networks (Maleki et al., 2013; Tsuji et al., 2015; Cigler
et al., 2017). Investigation of protein–protein interactions of the
membrane proteins is of special interest, as they have pivotal roles
in cellular processes, they are major targets for the development
of new therapeutics and they are often directly linked to human
diseases (Petschnigg et al., 2012; Bourgaux and Couvreur, 2014;
Jazayeri et al., 2015; Yin and Flynn, 2016; Saraon et al., 2017;
Shrivastava et al., 2017). An example of these interactions is that
established by the enzyme adenosine deaminase with different
proteins (Cortés et al., 2015). Fluorescence resonance energy
transfer (FRET) and bioluminescence resonance energy transfer
(BRET) are biophysical techniques widely used to analyze direct
protein–protein interactions that take place in living cells as
well as conformational changes within proteins or molecular
complexes (Ciruela, 2008; Kimura et al., 2010; Kim et al., 2011;
Lohse et al., 2012; Deriziotis et al., 2014; Brown et al., 2015; Mo
and Fu, 2016; Corbel et al., 2017).

Adenosine deaminase (ADA, EC 3.5.4.4) catalyzes the
irreversible deamination of adenosine or 2′-deoxyadenosine to
inosine or 2-deoxyinosine, respectively. In humans, there are two
different enzymes, which are designated ADA1, from here ADA,
and ADA2. ADA is a monomeric enzyme that plays a central
role in purine metabolism (He et al., 2015; Kutryb-Zajac et al.,
2016). Interest in ADA function increased after the discovery
that about 15% of inherited immunodeficiencies are caused by
mutations in the ADA gene that lead to a loss of function of
this protein (Buckley, 2004). This set of disorders is known
as severe combined immunodeficiency (SCID), characterized
by dysfunction of the T, B, and natural killers (NK) cells and
severe lymphopenia. The absence of ADA activity causes lymph-
toxic deoxyadenosine triphosphate accumulation that results in
apoptosis in immature thymocytes (Buckley, 2004; Shaw et al.,
2017; Turel et al., 2017). Different crystal structures of ADA have
been obtained, containing a tightly bound Zn2+ that is essential
for the stability and the catalytic function of the native protein
(Wilson et al., 1991; Cooper et al., 1997; Wang and Quiocho,
1998; Kinoshita et al., 2005; Niu et al., 2010; Khare et al., 2012;
Bottari et al., 2014; Grosskopf et al., 2017). ADA is a cytosolic
enzyme localized in many human tissues, being the lymphoid
system (lymph nodes, spleen and thymus) where the highest
levels are found (Beyazit et al., 2012; Maiuolo et al., 2016). In
the case of ADA2, Zavialov and Engström (2005) showed that
the abundance of this enzyme in human tissues is low and that
the gene encoding ADA2 is part of a new family of adenosine
deaminase growth factors. Likewise, the same authors reported
the structure of ADA2, revealing striking differences with ADA
both in their global structures and in the arrangement of their
catalytic centers (Zavialov et al., 2010).

It has been demonstrated that ADA can also be expressed
as an ecto-enzyme on the surface of several cell types, such us
lymphocytes (Martín et al., 1995; Blackburn and Kellems, 2005),
erythrocytes (Da Silva et al., 2013), dendritic cells (Pacheco et al.,
2005; Desrosiers et al., 2007; Casanova et al., 2012), endothelial
and epithelial cells (Ginés et al., 2002; Eltzschig et al., 2006),
fibroblasts (Torvinen et al., 2002), platelets (Souza Vdo et al.,
2012) and neurons (Ruiz et al., 2000; Hawryluk et al., 2012).
Up to now, dipeptidyl peptidase IV (DPPIV, EC3.4.14.5, also

known as CD26) and some adenosine receptors (ARs), as A1R,
A2AR, and A2BR, serve as binding proteins for extracellular
ADA in humans (Beckenkamp et al., 2016; Arin et al., 2017).
The cluster differentiation antigen CD26, is a ubiquitously
expressed multifunctional cell surface serine protease that cleaves
dipeptides from the N-terminal end of oligopeptides and smaller
peptides with either L-Ala or L-Pro in the penultimate position
(Gorrell, 2005; Zhong et al., 2015a; Klemann et al., 2016; Mortier
et al., 2016).

Human CD26 is a homodimeric integral membrane type
II glycoprotein which is anchored through its signal peptide.
The large C-terminal of the extracellular component of CD26
contains an α/β-hydrolase domain and an eight-blade β-propeller
domain, that is open and consists of two subdomains responsible
for the glycosylation-rich and cysteine-rich regions, respectively.
ADA, caveolin-1 and many monoclonal anti-CD26 antibodies
bind to the glycosylation-rich domain, while plasminogen,
fibronectin, collagen and streptokinase bind to the cysteine-
rich region (Klemann et al., 2016). The catalytic region of
CD26 is responsible for the enzymatic activity on its natural
substrates, including incretins, such as glucagon-like peptide-
1 and glucose-dependent insulinotropic peptide, neuropeptides,
chemokines, and a few growth factors and cytokines leading
to their inactivation and/or degradation (Larrinaga et al., 2015;
Zhong et al., 2015b; Mortier et al., 2016). Moreover, a soluble
monomeric form of CD26 has been reported in plasma and other
body fluids, which enhances the effect of stimulant agents on
T-cell proliferation independently of both the enzymatic activity
and the ADA-binding ability of CD26 (Yu et al., 2011; Zhong
et al., 2015a).

CD26 has been implicated in a variety of pathologies,
including rheumatoid arthritis, autoimmune diseases, HIV
infection and different types of cancers and CNS tumors (Yu
et al., 2006; Songok et al., 2010; Havre et al., 2013; Cordero
et al., 2015; Larrinaga et al., 2015; Klemann et al., 2016; Mortier
et al., 2016; Beckers et al., 2017; Lee et al., 2017). CD26 has a
number of non-enzymatic functions via interactions with several
proteins, for instance, ADA, caveolin-1, streptokinase, tyrosine
phosphatase, collagen, fibronectin, CD45, chemokine receptor
CXCR4, plasminogen type 2, the HIV gp120 protein and the
human coronavirus MERS-CoV spike protein (Lambeir et al.,
2003; Havre et al., 2008; Fan et al., 2012; Lu et al., 2013;
Zhong et al., 2015a; Baerts et al., 2015; Kanno et al., 2016; Xin
et al., 2017). As an adhesion molecule, CD26 could facilitate
adhesion, migration and metastasis of tumor cells by binding
to the extracellular matrix proteins fibronectin and collagen (see
Mortier et al., 2016).

The second type of ADA anchoring proteins on the cell surface
are the A1R (Ciruela et al., 1996; Saura et al., 1996; Sun et al.,
2005; Gracia et al., 2008, 2013b), the A2AR (Gracia et al., 2011,
2013a) and the A2BR (Herrera et al., 2001; Antonioli et al., 2014;
Arin et al., 2015, 2017), which are members of the family A of
G-protein coupled receptors (GPCRs) (Fredholm et al., 2011).
A1R is coupled to Gi/o proteins, while A2AR and A2BR are
coupled to Gs/olf proteins. A1Rs inhibit adenylyl cyclase activity
through the activation of a G-protein that is sensitive to pertussis
toxin, therefore reducing the intracellular levels of cyclic AMP.
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In contrast, A2AR and A2BR have a stimulatory effect on adenylyl
cyclase activity increasing cyclic AMP levels, with the consequent
PKA activation and CREB phosphorylation. The activation of
A2AR can also activate protein kinase C (PKC), through cyclic
AMP-dependent and -independent mechanisms (Jacobson and
Gao, 2006; Sheth et al., 2014; Cortés et al., 2015; Leiva et al., 2017).
A1R and A2AR are high affinity receptors with activity in the
low to middle nanomolar range whereas A2BR has a substantially
lower affinity for adenosine (micromolar) (Borea et al., 2015). All
ARs are widely expressed and are involved in multiple biological
functions, both in physiological and pathological conditions
(Chen et al., 2013), including sleep regulation (Lazarus et al.,
2017), cardioprotection (Gile and Eckle, 2016), renal function
(Welch, 2015), lipolysis (Leiva et al., 2017), immune function
(Cekic and Linden, 2016), angiogenesis (Du et al., 2015), as well as
ischemia-reperfusion injury (Sharma et al., 2016), inflammation
(Cronstein and Sitkovsky, 2017) and neurodegenerative disorders
(Huang et al., 2017; Stockwell et al., 2017).

Since CD26 and ARs interact with ADA at opposite sites
(Weihofen et al., 2004; Fan et al., 2012; Gracia et al., 2013a), in
the present paper we have investigated if ADA could function as
a cell-to-cell communication molecule by bridging the anchoring
molecules CD26 and A2AR present on the surfaces of the
interacting cells. We have used a modification of the BRET
technique that allows detection of interactions between two
proteins expressed in different cell populations with low steric
hindrance (NanoBRET) (Machleidt et al., 2015; Mo and Fu,
2016). The results obtained confirm that the cloned A2AR-
NanoLuc and CD26-YFP constructs express correctly in HEK
cells and can form with ecto-ADA oligomeric complexes which
can be of metabolic relevance in vivo.

MATERIALS AND METHODS

Expression Vectors and Fusion Proteins
Human cDNAs for A2AR, NMDAR1A or CD26 protein, cloned
into pcDNA3.1, were amplified without their stop codons using
sense and antisense primers harboring: EcoRI and KpnI sites
to clone A2AR in pRluc-N1 vector (pRluc-N1; PerkinElmer,
Wellesley, MA, United States), KpnI and BamHI sites to clone
A2AR or EcoRI and NotI to clone NMDAR1A in Nluc vector
(NanoLuc Promega, Madison, WI, United States) and EcoRI and
KpnI to clone CD26 or HindIII and BamHI to clone NMDAR1A
in pEYFP-N1 vector (enhanced yellow variant of GFP; Clontech,
Heidelberg, Germany). Amplified fragments were subcloned to
be in-frame with restriction sites of pRluc-N1, Nluc or pEYFP-
N1 vectors to provide plasmids that express proteins fused to YFP
on the C-terminal end (CD26-YFP) or on the N-terminal end
(NMDAR1A-YFP) or protein fused to Rluc on the C-terminal
end (A2AR-Rluc) or Nluc on the N-terminal end (NMDAR1A-
Nluc, A2AR-Nluc) with and without spacer (GTAGTGCCA). It
was observed that all fusion proteins showed a similar membrane
distribution as naïve receptors, and fusion of bioluminescent
protein to receptor did not modify receptor function as
determined by ERK assays. Plasmid pZC11-containing TAC-
promoted wild-type human ADA or Leu58Ala or Leu62Ala ADA

mutants cDNA were used as previously indicated (Gracia et al.,
2013a).

Antibodies and Purified Proteins
Human-specific monoclonal antibody (mAb) against CD26,
TA5.9-CC1-4C8 directed against the ADA-binding epitope on
CD26 was previously characterized (Blanco et al., 2000; Pacheco
et al., 2005; Martinez-Navio et al., 2009; Casanova et al., 2012).
Albumin was purchased from Sigma–Aldrich (St. Louis, MI,
United States). Bovine ADA was purchased from Roche (Basel,
Switzerland).

Bacterial Strains and Vector
Escherichia coli S83834, a multiple auxotroph (rpsL, Dadduid-
man, metB, guaA, uraA: Tn 10) with a deletion of add
(bacterial ADA gene), and plasmid pZC11-containing TAC-
promoted wild-type human ADA cDNA (Chang et al., 1991) and
Leu58Ala and Leu62Ala ADA mutants cDNA were used (Gracia
et al., 2013a). Overnight cultures of pZC11-hADA transformants
of S83834 were inoculated into the appropriate volume of
Luria-Bertani (LB) medium supplemented with carbenicillin
(200 µg/ml) and tetracycline (18.75 µg/ml) (Sigma–Aldrich).
Cells were grown with shaking at 37◦C until an A600 nm = 1.0 and
then were harvested and frozen at −80◦C (Richard et al., 2002;
Gracia et al., 2008).

Partial Purification of ADA
Recombinant wild-type and ADAmutants were partially purified
from 500 ml cultures of E. coli S83834 cells, and transformed
with the plasmid pZC11 containing the cDNA of ADA, according
to Gracia et al. (2013a). Briefly, cell pellets were resuspended at
4◦C in 5 ml of lysis buffer. The suspensión was cooled on ice, and
sonicated for 24 s × 20 s at 15% intensity in a sonifier (Branson
Ultrasonics Corp., Danbury, CT, United States). The homogenate
was centrifuged at 105,000 × g for 60 min, and protamine sulfate
(Sigma–Aldrich) was slowly added up to a final concentration
of 2 mg/ml. After 60 min of constant stirring, the suspension
was again centrifuged, and the supernatant was desalted with a
PD10 (GE Healthcare) gel filtration column, preequilibrated with
50 mM, pH 7.4, Tris-HCl buffer, and stored at 4◦C for their
immediate use.

Enzyme Activity and Kinetic Parameters
of ADA
Adenosine deaminase activity was determined at 25◦C with
0.1 mM adenosine as substrate in 50 mMTris-HCl buffer, pH 7.4,
as previously reported (Gracia et al., 2013a). The decrease in the
absorbance at 265 nm (1ε = 7800 M−1 cm−1) was monitored
in an Ultrospec 3300 pro spectrophotometer (Biochrom Ltd.,
Cambridge, United Kingdom) with 1-ml cuvettes. One unit (U)
of ADA activity is defined as the amount of enzyme required
to hydrolyze 1 µmol of adenosine per minute in the assay
conditions. Steady-state kinetic measurements were performed
in 50 mM Tris-HCl buffer (pH 7.4) using a concentration range
of adenosine from 10 µM to 1 mM and a constant enzyme
concentration. Inhibition studies were carried out by monitoring
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the hydrolysis rates of adenosine in the presence of constant
concentrations of purine riboside (from 5 µM to 0.5 mM;
Sigma–Aldrich) (Gracia et al., 2013a). In all cases, a minimum
of four replicates for each single experimental point were
performed. Kinetic parameters were obtained by fitting the data
to the appropriate rate equations, using a non-linear regression
software (Grafit, Erithacus Software, Surrey, United Kingdom).

Cell Culture and Transient Transfection
Human embryonic kidney (HEK-293T) cells obtained from
ATCC were grown in Dulbecco’s modified Eagle’s medium
(DMEM) (Gibco) supplemented with 100 µg/ml sodium
pyruvate, 2 mM L-glutamine, 100 U/ml penicillin/streptomycin,
essential medium non-essential amino acids solution (1/100) and
5% (v/v) heat inactivated fetal bovine serum (all from Invitrogen,
Paisley, United Kingdom) and were maintained at 37◦C in
an atmosphere with 5% CO2. Cells growing in 6-well dishes
were transiently transfected with the corresponding protein
cDNA by the polyethylenimine method (Sigma–Aldrich). Cells
were incubated with the corresponding cDNA together with
polyethylenimine (5.47 mM in nitrogen residues) and 150 mM
NaCl in a serum-starved medium. After 4 h, the medium
was renewed and 48 h after transfection, cells were washed
twice in quick succession in HBSS [containing 137 NaCl, 5
KCl, 1.26 CaCl2, 0.4 MgSO4, 0.5 MgCl2, 0.34 Na2HPO4, 0.44
KH2PO4, 10 HEPES, pH 7.4, in mM], supplemented with 10 mM
glucose, detached, and resuspended in the same buffer. Protein
concentration was determined using the Bradford assay (Bio-
Rad, Munich, Germany), in order to control cell number.

Immunodetection Assays
Cells were fixed in 4% paraformaldehyde for 15 min and
washed with PBS containing 20 mM glycine (buffer A) to
quench the aldehyde groups. Then, cells were permeabilized
with buffer A containing 0.2% Triton X-100 for 5 min,
and treated with 1% of BSA in PBS. After 1 h at room
temperature, cells were labeled with the primary mouse anti-
A2AR antibody (1:200; Millipore, Darmstadt, Germany; cat #05-
717) for 1 h to detect A2AR–Nluc, washed, and stained with the
secondary goat anti-mouse Alexa Fluor 488 (1:300; Invitrogen,
Paisley, United Kingdom; cat #A-11001). The specificity of
this antibody for immunocytofluorescence studies has been
previously reported by Moreno et al. (2017a). CD26-YFP fused
to YFP protein was detected by its fluorescence properties. The
samples were rinsed several times andmounted with 30%Mowiol
(Calbiochem) as reported byMoreno et al. (2017b). Samples were
observed in a Leica SP2 confocal microscope.

ERK Phosphorylation Assay
HEK-293T cells expressing A2AR were cultured in serum-free
medium for 16 h before the addition of any agent. Cells were
treated at 25◦C with 100 nM CGS 21680 (Sigma–Aldrich) for
10 min and rinsed with ice-cold PBS. Cells were lysed by ice-cold
lysis buffer (1% Triton X-100, 150 mM NaCl, 50 mM Tris-
HCl pH 7.4, 50 mM NaF, 45 mM β-glycerophosphate, 20 mM
phenyl-arsine oxide, 0.4 mM NaVO4 and protease inhibitor
cocktail). The cellular debris was removed by centrifugation

at 13,000 × g for 5 min at 4◦C and the protein was
quantified by the bicinchoninic acid method using bovine serum
albumin as standard. The level of ERK 1/2 phosphorylation
was determined in equivalent amounts of protein (10 µg)
separated by electrophoresis on 7.5% SDS polyacrylamide gel
and transferred onto PVDF-FL membranes, according to Gracia
et al. (2013b). Odyssey blocking buffer (LI-COR Biosciences,
Lincoln, NE, United States) was used for 90 min. Membranes
were then probed with a mixture of a mouse anti-phospho-ERK
1/2 antibody (1:2500, Sigma) and rabbit anti-ERK 1/2 antibody
(1:40,000, Sigma) for 2–3 h. Bands were visualized after 1 h
incubation with a mixture of IRDye 800 (anti-mouse) antibody
(1:10,000, Sigma) and IRDye 680 (anti-rabbit) antibody (1:10,000,
Sigma) and scanned by the Odyssey infrared scanner (LICOR
Biosciences, Lincoln, NE, United States). Bands densities were
quantified and the level of phosphorylated ERK 1/2 isoforms was
normalized according to the total ERK 1/2 protein bands (Gracia
et al., 2013b).

Dynamic Mass Redistribution (DMR)
Assays
The cell signaling signature was determined using an EnSpire R©

Multimode Plate Reader (PerkinElmer, Waltham, MA,
United States) by a label-free technology. Refractive waveguide
grating optical biosensors, integrated into 384-well microplates,
allow the measurement of changes in local optical density
in a detecting zone up to 150 nm above the surface of the
sensor. Cellular mass movements induced after activation of
the receptors are detected by illuminating the lower part of the
biosensor with polychromatic light, determining changes in
wavelength of the reflected monochromatic light, which are a
sensitive function of the refractive index. The magnitude of this
wavelength shift (in picometers) is directly proportional to the
amount of DMR (Viñals et al., 2015). The assay was carried out
according to Viñals et al. (2015); briefly, 24 h before the assay,
cells were seeded in 384-well sensor microplates at a density of
10,000–12,000 cells per well, with 30 µl growth medium and
were cultured for 24 h (37◦C, 5% CO2) until reaching 70–80%
confluent monolayers. For the assay, cells were washed twice
with assay buffer (HBSS with 20 mM HEPES, pH 7.15) and
incubated for 2 h in 30 µl per well of assay-buffer with 0.1%
DMSO in the reader at 24◦C. Then, the sensor plate was scanned
and a baseline optical signature was recorded before adding
10 µl of receptor agonist dissolved in assay buffer containing
0.1% DMSO. DMR responses were monitored for at least 5,000 s
and kinetic results were analyzed using the EnSpire Workstation
software v 4.10.

Determination of cAMP Concentration
cAMP production was determined according to Viñals et al.
(2015), using a homogeneous time-resolved fluorescence energy
transfer (HTRF) assay with the Lance Ultra cAMP kit
(PerkinElmer, Waltham). We first established the optimal cell
density to obtain an appropriate TR-FRET signal within the
dynamic range of a standard cAMP curve. This was done by
measuring the basal and activated TR-FRET signal using different

Frontiers in Pharmacology | www.frontiersin.org 4 February 2018 | Volume 9 | Article 106

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Moreno et al. ADA Linking A2AR and CD26

cell densities. Cells (1,000 cells/well) growing at 25◦C in white
ProxiPlate 384-well microplates (PerkinElmer) with a medium
containing 50 µM zardaverine were stimulated with 100 nM
CGS 21680 (Sigma–Aldrich) for 10 min or treated with vehicle.
Fluorescence at 665 nm was analyzed on a PHERAstar Flagship
microplate reader equipped with an HTRF optical module (BMG
Lab technologies, Offenburg, Germany).

Nano Bioluminescence Resonance
Energy Transfer (NanoBRET) between
Two Proteins Expressed in Two Different
Cell Populations
HEK-293T cells were transiently transfected with the
corresponding donor o acceptor, 48 h after transfection,
cells expressing the donor were mixed with HEK-293 cells
expressing the acceptor. Cells were incubated 10 min with
HBSS without shaking in the presence or in the absence of
wild-type ADA, albumin, TA5.9-CC1-4C8 antibody or Leu58Ala
and Leu62Ala ADA mutants. Protein-YFP expression was
quantified by distributing cells (20 µg protein, around 4000
cells/well) in 96-well microplates (black plates with a transparent
bottom) and fluorescence was read at 400 nm in a Fluo Star
Optima Fluorimeter (BMG Labtechnologies), equipped with
a high-energy xenon flash lamp, using a 10 nm bandwidth
excitation filter. Protein fluorescence expression was determined
as fluorescence of the sample minus the fluorescence of cells
expressing Nluc alone. For NanoBRET measurements, the
equivalent of 20 µg of mixed cells were distributed in 96-well
microplates (Corning 3600, white plates; Sigma) and 5 µM of
coelenterazine H (Molecular Probes, Eugene, OR) was added.
After 1 min, readings were collected using a Mithras LB 940 late
reader (Berthold Technologies) that allows the integration of
the signals detected in the short-wavelength filter at 440–500 nm
and the long-wavelength filter at 510–590 nm. To quantify
receptor-Nluc expression, bioluminescence readings were also
performed after 10 min of adding 5 µM of coelenterazine
H. Fluorescence and bioluminescence of each sample were
measured before every experiment to confirm similar donor
expressions (approximately 120,000 bioluminescence units per
20 µg of protein) while acceptor expression (25,000 fluorescence
units per 20 µg of protein). The net BRET was defined as
[(long-wavelength emission)/(short-wavelength emission)]-Cf
where Cf corresponds to [(long-wavelength emission)/(short-
wavelength emission)] for the receptor-Nluc expressed alone
in the same experiment. BRET is expressed as milliBRET
units (mBU).

Cell Membranes Preparation and
Radioligand Binding Experiments
Human embryonic kidney cells transfected with A2AR non-
fused or fused to Nluc-spacer were disrupted with a Polytron
homogenizer (PTA 20 TS rotor, setting 3; Kinematica, Basel,
Switzerland) for three 5 s-periods in 10 volumes of 50 mM Tris–
HCl buffer, pH 7.4 containing a proteinase inhibitor cocktail. Cell
debris was removed by centrifugation at 1,000 × g (5 min, 4◦C)
and membranes were obtained by centrifugation at 105,000 × g

(40 min, 4◦C). The pellet was resuspended and re-centrifuged
under the same conditions and was stored at−80◦C. Membranes
were washed once more as described above and resuspended
in 50 mM Tris–HCl buffer, pH 7.4 containing 10 mM MgCl2.
Membrane protein was quantified by the bicinchoninic acid
method (Pierce Chemical Co., Rockford, IL, United States)
using bovine serum albumin dilutions as standard. For A2AR
competition-binding assays, membrane suspensions (0.2 mg of
protein/ml) were incubated for 2 h at 25◦C with a constant
free concentration of 2.2 nM of the A2AR antagonist [3H]ZM
241385 (50 Ci/mmol; American Radiolabeled Chemicals, St.
Louis, MO, United States) and increasing concentrations of
unlabelled ZM 241385 (Tocris, Ellisville, MO, United States),
in the absence or in the presence of bovine ADA. In dose-
response curves of ADA, membranes were also incubated with
2.2 nM [3H]ZM 241385 and with increasing concentrations of
bovine ADA. In all cases, non-specific binding was determined
in the presence of 10 µM of unlabelled ZM 241385. Free and
membrane-bound ligands were separated by rapid filtration
of 500 µl aliquots in a cell harvester (Brandel, Gaithersburg,
MD, United States) through Whatman GF/C filters embedded
in 0.3% polyethylenimine that were subsequently washed for
5 s with 5 ml of ice-cold 50 mM Tris-HCl buffer. The filters
were incubated overnight with 10 ml of Ultima Gold MV
scintillation cocktail (PerkinElmer) at room temperature and
radioactivity counts were determined using a Tri-Carb 2800
TR scintillation counter (PerkinElmer) with a mean efficiency
of 62%.

Data were analyzed according to the ‘two-state dimer model.’
This model assumes GPCR dimers as a main functional unit and
provides a more robust analysis of parameters obtained from
saturation and competition experiments with orthosteric ligands,
as compared with the commonly used ‘two-independent-site
model’ (Casadó et al., 2007, 2009a,b). In competition experiments
the model analyzes the interactions of the radioligand with a
competing ligand and it provides the affinity of the competing
ligand for the first protomer in the unoccupied dimer (KDB1)
and the affinity of the competing ligand for the second
protomer when the first protomer is already occupied by the
competing ligand (KDB2). Radioligand competition curves were
analyzed by non-linear regression using the commercial Grafit
software (Erithacus Software, Surrey, United Kingdom). To
calculate the macroscopic equilibrium dissociation constants
from competition experiments, the following general equation 1
must be applied:

Abound =

(KDA2 A + 2A2 +
KDA2A B
KDAB

) RT

KDA1 KDA2 + KDA2 A + A2 +
KDA2 A B
KDAB

+
KDA1 KDA2 B

KDB1
+

KDA1 KDA2 B2

KDB1 KDB2

(1)

where A represents the radioligand concentration, B the assayed
competing compound concentration, KDn the equilibrium
dissociation constant of the first or second binding of A or B to
the dimer, and KDAB the hybrid allosteric modulation between A
and B. For A and B being the same non-cooperative ligand, the
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equation 1 can be simplified to equation 2 (Gracia et al., 2013b):

Abound =

(4KDA1 A + 2A2 + AB)RT

4K2
DA1 + 4KDA1 A + A2 + AB + 4KDA1 B + B2

(2)

RESULTS

Expression and Characterization of A2AR
and CD26 Fusion Proteins
The aim of this paper is to investigate the ADA-mediated
molecular interaction between A2AR expressed in the membrane
of one cell and CD26 expressed in the membrane of
another cell by the NanoBioluminiscence Resonance Energy
Transfer (NanoBRET) technique. This biophysical technique
has been extensively validated to analyze direct protein–protein
interactions occurring in living cells. For any approximation
based in transfer of energy it is necessary a donor, a protein fused
to the enzyme NanoLuc (Nluc) and an acceptor, a protein fused
to the fluorescent protein YFP. Here we used A2AR fused to Nluc
(A2AR-Nluc) or to Nluc with a spacer (A2AR-Nluc-spacer) and
CD26 fused to YFP (CD26-YFP). To detect NanoBRET with a
donor in one cell and an acceptor in another cell is necessary
that fusion proteins are placed at the extracellular space. One
of the main drawbacks in this case is that the bioluminescent
protein fused at the N-terminus of A2AR could disturb the
expression and/or the ligand binding to the receptor giving a non-
functional receptor or block the unknown ADA binding site of
the receptor. We have used the enzyme Nluc to improve protein
translocation of fused complexes and to reduce the volume
of the bioluminescent enzyme fused to A2AR. Moreover, the
“combination of greater light intensity with improved spectral
resolution results in substantially increased detection sensitivity
and dynamic range over current BRET technologies” (Machleidt
et al., 2015). In the case of CD26, the binding domain of
ADA has been described previously (Weihofen et al., 2004), and
given that it is located in a middle area of the extracellular
domain, the binding of ADA to CD26 should not be hindered
by the binding of the YFP protein at the C-terminal end of
CD26. Taken this into account, we first characterized the fusion
proteins.

HEK-293T cells were transfected with increasing
concentrations of cDNA for A2AR-Nluc or A2AR-Nluc-spacer or
with increasing concentrations of cDNA for non-fused A2AR as
negative control or A2AR-Rluc fused at the C-terminal domain as
positive control and bioluminescence was measured (Figure 1A).
All fusion proteins were expressed and A2AR-Nluc-spacer was
significantly better expressed compared to A2AR-Nluc, reaching
expression values similar to the ones obtained for common Rluc
fused at the C-terminus domain of A2AR (Figure 1A). HEK-293T
cells were also transfected with increasing concentrations of
cDNA for CD26-YFP or non-fused CD26 as negative control
and fluorescence was measured (Figure 1B). We observed that
the fusion protein was expressed. Next we tested by confocal
microscopy that A2AR-Nluc-spacer (Figure 1C) and CD26-YFP

(Figure 1D) showed a plasma membrane distribution as
expected.

To evaluate the functional characteristics of the A2AR
constructs we measured the global cellular response using
the DMR label-free assay. This technique detects agonist-
induced changes in light diffraction in the bottom 150 nm
of a cell monolayer (see section “Materials and Methods”).
HEK-293T cells were transfected with cDNA corresponding
to A2AR-Nluc (Figure 2A), A2AR-Nluc-spacer (Figure 2B), or
A2AR-Rluc (Figure 2C). Cells were stimulated with increasing
concentrations of the A2AR agonist CGS 21680, and DMR signal
was obtained against time. From DMR curves (Figures 2A–C)
it is observed that A2AR-Nluc-spacer gives higher signaling than
A2AR-Nluc and the signal was similar to the one obtained for
common A2AR-Rluc construction (Figures 2A–C). The lost of
functionality of A2AR-Nluc respect to the A2AR-Rluc indicates
that the fused Nluc probably disturbs the agonist binding; thus,
introducing the spacer between A2AR N-terminal and Nluc,
that allows Nluc moving away from the membrane surface, not
only favors the fusion protein expression (see Figure 1A) but
also ligand binding and the corresponding signaling. Moreover,
we checked if agonist activation of A2AR-Nluc-spacer was able
to induce second messengers as naïve receptors. To do this,
HEK-293T cells were transfected with cDNA corresponding to
A2AR-Nluc-spacer or A2AR-Rluc or A2AR as controls. Cells were
stimulated with A2AR agonist CGS 21680 (100 nM) and ERK
1/2 phosphorylation and cAMP production were determined.We
detected similar extend of ERK 1/2 phosphorylation (Figure 2D)
and similar cAMP accumulation (Figure 2E) in all cells, showing
that A2AR-Nluc-spacer is fully functional. According to this, the
A2AR-Nluc-spacer was selected for further studies.

ADA Binding to A2AR Fusion Protein
One characteristic of A2AR is their ability to bound extracellular
ADA. It has been described that ADA increases the receptor
ligand binding affinity and potentiates the receptor functionality
(Gracia et al., 2011). Here we analyzed the ability of ADA
to bind and modulate A2AR-Nluc-spacer fusion protein. We
first determined if ADA increases the affinity parameters of
antagonist binding to A2AR-Nluc-spacer. Ligand binding was
analyzed using membranes from HEK-293T cells transfected
with cDNA corresponding to A2AR-Nluc-spacer. Competition
experiments with the A2AR antagonist [3H]ZM 241385 were
performed with increasing concentrations of unlabelled ZM
241385 from 0.001 nM to 10 µM in the absence or in the
presence of 1 µg/ml bovine ADA. All curves (Figure 3A)
are monophasic (DC = 0), according to the non-cooperative
behavior expected for a A2AR ligand binding (Gracia et al., 2011).
Moreover, in the presence of ADA, the competition curve of
A2AR antagonist shifts to the left, indicating an increase in the
affinity. The equilibrium binding parameters obtained according
to equation (2) (see section “Materials and Methods”) from
curves in Figure 3A are shown in Table 1. When membranes
of HEK-293T cells, transfected with cDNA from A2AR fused
or not to NanoLuc-spacer, were incubated with increasing
concentrations of ADA (from 0.1 ng/ml to 10 µg/ml) and
with the radiolabeled A2AR antagonist, ADA enhanced in a
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FIGURE 1 | Expression of A2AR and CD26 fusion proteins. (A) Bioluminescence assays were performed in HEK-293T cells transfected with increasing

concentrations of fusion protein cDNA corresponding to A2AR (red), A2AR-Rluc fused on the C-terminal end (blue), A2AR-Nluc fused on the N-terminal (green) or

A2AR-Nluc-spacer fused on the N-terminal end (black) on the N-terminal end. Results are given in relative bioluminescence units by subtracting the value of

non-transfected cells and represent mean ± SEM (n = 6). Statistical significance was calculated by one-way ANOVA followed by a Bonferroni multiple comparison

post hoc test; ∗∗∗p < 0.001 against A2AR-Nluc. (B) Fluorescence assays were performed in HEK-293T cells transfected with increasing concentrations of CD26

(red) or CD26-YFP fused on the C-terminal end (black). Results are given in relative fluorescence units by subtracting the value of non-transfected cells and represent

mean ± SEM (n = 10). (C,D) Confocal microscopy images from immunofluorescence experiments using HEK-293T cells transfected with 0.75 µg of

A2AR-Nluc-spacer fused on the N-terminal end (C) or 1 µg of CD26-YFP fused on the C-terminal end (D) are shown. Immunocytofluorescence experiments were

carried out with anti-A2AR primary antibody (1:100; Millipore) and goat anti-mouse Alexa Fluor 488 (1:300; Invitrogen) as secondary antibody. YFP-fused proteins

were identified by their own fluorescence. A2AR-Nluc-spacer and CD26-YFP are labeled in green. Nuclei are colored in blue by DAPI staining. Scale bar: 20 µM.

dose-dependent manner the antagonist binding to both A2AR
non-fused and fused to NanoLuc-spacer (Figure 3B). The EC50

values obtained with the two proteins are not significantly
different (see Table 1). These results indicate that ADA can also
bind to A2AR-Nluc-spacer and significantly increases antagonist
affinity. It point out that ADA exerts positive modulation on
the antagonist binding to A2AR-Nluc-spacer similar to the one
obtained for the naïve A2AR (Figure 3B; and see Gracia et al.,
2011, 2013a).

To investigate if ADA binding to A2AR-Nluc-spacer also
increases the receptor functionality, DMR label-free assays
were performed in HEK-293T cells transfected with cDNA
corresponding to A2AR-Nluc-spacer. Cells were not treated
or treated with ADA and were stimulated with increasing
concentrations of A2AR agonist CGS 21680. DMR signal was
measured against time. From DMR curves, the response at
3000 s was calculated and plotted as a function of CGS
21680 concentrations used (Figure 3C). As in ligand binding
experiments, it is observed a significantly increase in the
response in the presence of ADA. This indicates that ADA
exerts positive modulation on the A2AR-Nluc-spacer signaling

similar to the one reported for the naïve receptor (Gracia et al.,
2011).

ADA Mediates Cell to Cell Contact by
Simultaneous Binding to A2AR and CD26
To investigate if ADA can induce cell to cell contacts by
simultaneous binding to A2AR in one and to CD26 in
another cell, NanoBRET experiments between cells expressing
the NanoBRET donor and cells expressing the NanoBRET
acceptor were performed. A2AR-Nluc-spacer and CD26-YFP
cDNA were transfected separately into different cells. Both
cell populations were mixed in the presence and absence
of ADA and were allowed to sediment rapidly to facilitate
their proximity. If the interaction occurs, the energy transfer
between A2AR-Nluc-spacer and CD26-YFP could subsequently
take place and it could be detected as NanoBRET signal. HEK-
293T cells were transfected with increasing concentrations of
cDNA corresponding to A2AR-Nluc-spacer or CD26-YFP and
those samples showing approximately 120.000 bioluminescence
units and 25.000 fluorescence units were chosen to perform
NanoBRET experiments. Equal number of transfected cells from
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FIGURE 2 | Functional characterization of A2AR fusion proteins. (A–C) DMR assays were performed in HEK-293T cells transfected with cDNA (1.5 µg)

corresponding to A2AR-Nluc (A) or A2AR-Nluc-spacer (B) both fused on the N-terminal end or A2AR-Rluc fused on the C-terminal end (C). Cells were stimulated

with vehicle (basal) or with increasing concentrations of the A2AR agonist CGS 21680. The resulting shifts of reflected light wavelength (pm) were monitored over

time. Each panel is a representative experiment of n = 3 different experiments. Each curve is the mean of a representative optical trace experiment carried out in

quadruplicates. (D,E) ERK1/2 phosphorylation (D) and cAMP production (E) were determined in cells transfected with the cDNA (1.5 µg) corresponding to A2AR,

A2AR-Rluc fused on the C-terminal end or A2AR-Nluc-spacer fused on the N-terminal end. Cells were stimulated with 100 nM CGS 21680 for 10 min. Results are

given as percentage respect cells expressing only A2AR. Values are expressed as means ± SEM (n = 4). (D) A representative western blot is shown at the top of the

panel and in (E) 100% represents 80–100 pmols of cAMP/106 cells.

both types was mixed as well as A2AR-Nluc-spacer expressing
cells and non-transfected cell or CD26-YFP expressing cells
and non-transfected cell as controls and cells were incubated
with increasing bovine ADA concentrations, before NanoBRET
detection. As shown in Figure 4A, we only obtained positive
NanoBRET signal in the presence of 1 and 3 µg/ml of ADA,
which points out that CD26 and A2AR are in close proximity.
It is interesting to note that at higher concentrations of ADA
(10 µg/ml) the energy transfer decreased. This could be due to
the fact that an excess of ADA could saturate the A2AR on cells
expressing them as well as saturating CD26 protein on the other
cells, thereby when both cell types approach, ADA cannot act

as a bridge between A2AR and CD26, avoiding energy transfer
(see schemes in Figure 4A, top panels). The results shown in
Figure 4A show that ADA bridges CD26 and A2AR in a narrow
range of concentrations, and the optimal ADA concentration
required to observe the ternary complex is around 1–3 µg/ml.
This is in agreement with the affinity constants of ADA to bind
to these two proteins. It has been reported that the affinity of
125I-ADA by CD26 is around 18 nM (Gonzalez-Gronow et al.,
2004) (equivalent to 0.7 µg/ml), and its affinity by A1R is around
230 nM (Saura et al., 1996) (equivalent to 9 µg/ml). These values
indicate that first ADA binds to CD26 and then to AR, so that
a balance of ADA concentrations occurs between the bars of

Frontiers in Pharmacology | www.frontiersin.org 8 February 2018 | Volume 9 | Article 106

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Moreno et al. ADA Linking A2AR and CD26

FIGURE 3 | Effect of bovine ADA binding on A2AR. (A) Competition experiments of 2.2 nM [3H]ZM 241385 binding in the presence of increasing concentrations of

unlabeled ZM 241385, in the absence (#) or in the presence ( ) of 1 µg/ml of ADA were performed using membranes from HEK-293T cells transfected with

A2AR-Nluc-spacer cDNA (1.5 µg). (B) Dose-response effect of ADA on 2.2 nM [3H]ZM 241385 binding to membranes from HEK-293T cells transfected with cDNA

(1.5 µg) corresponding to A2AR-Nluc-spacer (�) or A2AR (�). Data are mean ± SD from a representative experiment (n = 3) performed in triplicate. (C) DMR assays

were performed in HEK-293T cells transfected with A2AR-Nluc-spacer cDNA (1.5 µg). Cells were stimulated with increasing CGS 21680 concentrations in the

presence (white columns) or in the absence (black columns) of ADA (1 µg/ml). Values are mean ± SEM (n = 4) and are expressed as shift at 3000 s of reflected light

wavelength (pm) over basal obtained from the corresponding DMR curves. Statistical significance was calculated by one-way ANOVA followed by a Bonferroni

multiple comparison post hoc test; ∗∗p < 0.01 against samples without ADA.

TABLE 1 | Effect of adenosine deaminase (ADA) on binding of A2AR antagonist [3H]ZM 241385.

Binding experiment ADA Parametersa

Assay type Increasing effector Transfected AR 1 µg/ml KDA1
b DC

c EC50
d

Competition ZM 241385 A2AR-Nluc-spacer − 90 ± 20 0

A2AR-Nluc-spacer + 30 ± 10∗∗ 0

Dose-response Bovine ADA A2AR-Nluc-spacer 14 ± 8

A2AR 4 ± 2

Competition curves with ZM 241385 in the absence (−) or the presence (+) of bovine ADA and dose-response curves with bovine ADA were carried out as described

in section “Materials and Methods,” using membranes of transfected HEK-293T cells. aValues are mean ± SD of three independent experiments performed in triplicate.
bKDA1 (nM) is the equilibrium dissociation constant of the binding of the radioligand to the first protomer in the dimer. cDC is the dimer cooperativity index for the binding of

the radioligand. Note that when DC = 0 the radioligand is non-cooperative and KDA2 = 4KDA1. dEC50 (ng/ml) is the concentration of ADA providing half-maximal increase

in radioligand binding. ∗∗P < 0.01 against control without ADA; statistical differences were evaluated using Student’s t-test.

0.1 and 10 µg/ml in Figure 4A to form a trimeric complex,
where ADA has enough concentration to bridge CD26 and AR,
but higher concentrations shift the equilibrium toward dimeric
ADA-CD26 and ADA-AR complexes.

To determine the specificity of this interaction, equal
number of HEK-293T cells transfected with A2AR-Nluc-spacer
(expressing 120.000 bioluminescence units) were mixed with
HEK-293T cells transfected with CD26-YFP (expressing 25.000
fluorescence units) and were incubated with medium (0), with
1 µg/ml bovine ADA, with 1 µg/ml albumin as non-specific

protein or with bovine ADA plus 0.3µg/ml of the human-specific
mAb against CD26, TA5.9-CC1-4C8, which is directed against
the ADA-binding epitope on CD26 and blocks ADA binding
to CD26 (Blanco et al., 2000; Pacheco et al., 2005; Martinez-
Navio et al., 2009; Casanova et al., 2012). In these cells, positive
NanoBRET signal was only significantly detected in the presence
of ADA but not in the presence of albumin or ADA plus TA5.9-
CC1-4C8 (Figure 4B), showing that ADA specifically mediates
A2AR-CD26 interaction between different cells. Moreover, when
HEK-293T cells transfected with A2AR-Nluc-spacer or with
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FIGURE 4 | NanoBRET between A2AR-Nluc and CD26-YFP expressed in different cells. HEK-293T cells transfected with 1.5 µg of A2AR-Nluc-spacer cDNA

(A–D) or NMDAR1A-Nluc (C) were mixed with HEK-293T cells transfected with 2 µg of CD26-YFP cDNA (A–D) or 2 µg of NMDAR1A-YFP cDNA (C). Cells were

incubated 10 min without shaking with HBSS in the absence or in the presence of increasing concentrations of ADA (from 0.01 to 10 µg/ml) (A), in the presence or

in the absence of 1 µg/ml of bovine ADA (B,C), bovine albumin (1 µg/ml) (B), human-specific mAb against CD26, TA5.9-CC1-4C8 (0.3 µg/ml) (B) or in the presence

or in the absence of human wild-type ADA, Leu58Ala mutant ADA or Leu62Ala mutant ADA, all at 1 µg/ml (D), previously to BRET detection. Both fluorescence and

luminescence of each sample were measured before every experiment to confirm similar donor expressions (approximately 120.000 bioluminescence units) and

similar acceptor expression (25.000 fluorescence units). BRET is expressed as milliBRET units (mBU = net BRET × 1000) and is means ± SEM of 3–4 different

experiments grouped as a function of the amount of BRET acceptor. Statistical significance was calculated by one way ANOVA followed by a Dunnett’s multiple

comparison post hoc test; ∗∗∗p < 0.001 compared with the corresponding untreated cells. At the top of the (A), a schematic representation of the effect of different

ADA concentrations on the interaction between A2AR-Nluc-spacer and CD26-YFP is shown.

NMDAR1A-Nluc (both expressing 120.000 bioluminescence
units) were mixed with HEK-293T cells transfected with the
metabotropic glutamate receptor subunit NMDAR1A-YFP or
with CD26-YFP (both expressing 25.000 fluorescence units),
respectively, as negative controls, none NanoBRET signal was
detected in the absence or in the presence of ADA (Figure 4C)
again demonstrating the specificity of the interaction.

We previously reported that ADA mutations nearly to the
catalytic site that reduce the enzymatic activity, as Leu58Ala and
Leu62Ala ADA mutants, also reduce the capacity of ADA to
interact with A2AR. For these mutants, “changes detected on
both kcat and KM values indicate that both the substrate affinity
and the maximum velocity were decreased, suggesting that these
mutations alter the structure of the catalytic pocket” (Gracia et al.,
2013a). This was corroborated by much greater value obtained
for these mutants in the affinity of the competitive structural
analog purine riboside, compared to the wild type (Table 2).
The specific enzyme activity of Leu58Ala and Leu62Ala ADA
mutants is highly reduced respect to the wild-type enzyme and
both mutants are unable to significantly affect agonist binding
to A2AR (Table 2 and Gracia et al., 2013a). Here we tested
if these ADA mutants are able to induce NanoBRET signal

between A2AR-Nluc-spacer expressing cells and CD26-YFP
expressing cells. HEK-293T cells transfected with A2AR-Nluc-
spacer (expressing 120.000 bioluminescence units) were mixed
with HEK-293T cells transfected with CD26-YFP (expressing
25.000 fluorescence units) and were incubated with medium
(0), with human wild-type ADA or with Leu58Ala or Leu62Ala
ADAmutants previously to detect the NanoBRET signal. Positive
NanoBRET signal was not detected with Leu58Ala or Leu62Ala
ADA mutants, whilst NanoBRET was significantly detected with
wild-type ADA (Figure 4D). All these results show that ADA
could act as a bridge simultaneously interacting with A2AR and
CD26 expressed in different cells, and allowing cell-cell contacts
as schematized in Figure 5.

DISCUSSION

Intracellular adenosine is an important intermediary metabolite,
which acts as a piece in the assembly of nucleic acids and
as a component of the molecule that provides the biological
energy ATP (Chen et al., 2013). On the other hand, extracellular
adenosine plays an important role in intercellular signaling
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TABLE 2 | Comparison of steady-state kinetic and agonist binding parameters of wild-type and representative ADA mutants.

Enzyme Specific activity (µmol min−1 mg−1)# kcat/KM (M−1 s−1)& Ki (PR) (µM)& 1 [3H]CGS 21680 binding (%)& EC50 (ng/ml)&$

WT 3 ± 1 7.3 × 106 13 ± 2 88 ± 10 7 ± 3

L58A ND 0.051 × 106 >1000∗∗ 0∗∗ >1500∗∗

L62A ND 0.074 × 106 >1000∗∗ 0∗∗ >1500∗∗

Wild-type and mutant enzymes were partially purified as indicated in Materials and Methods. WT, control wild-type ADA; PR, purine riboside; ND, not detected. #Specific

activity was determined using the substrate concentration that gives Vmax, and protein concentration was measured by the bicinchoninic acid method. &Data adapted

from Gracia et al. (2013a). $EC50 value is the amount of wild-type or mutant ADA that is able to produce the 50% of the maximum increase in [3H]CGS 21680 binding

to A2AR. Values are mean ± SEM of three separate experiments. ∗∗P < 0.01 against WT; statistical differences were evaluated using one-way ANOVA followed by a

Dunnett’s multiple comparison post hoc test.

FIGURE 5 | Adenosine deaminase linking A2AR and CD26 expressed in different cells. Schematic representation of the effect of ADA on the NanoBRET between

A2AR-Nluc-spacer (on the N-terminal end) acting as a donor and CD26-YFP (on the C-terminal domain) acting as an acceptor. A2AR adenosine receptor (blue), in

the absence (left) or in the presence (right) of ADA (red) and CD26 protein (orange), are represented as complexes between cell membranes of different cell types. In

the NanoBRET process between A2AR-Nluc-spacer expressing cells and CD26-YFP expressing cells, the catalysis of the substrate coelenterazine H emits at

460 nm, allowing YFP excitation and concomitant emission at 530 nm. For simplicity, A2AR and CD26 are not represented as homodimeric proteins.

by binding to ARs on the cell surface. This affects various
physiological functions, such as cardiovascular, neurological, and
immunological systems (Ohta, 2016). Most of the extracellular
adenosine comes from the release and metabolism of adenine
nucleotides such as ATP after several stimuli, which include
inflammation, mechanical stress, tissue injury and osmotic
challenge (Sun and Huang, 2016). This extracellular adenosine
is degraded by ecto-ADA, which requires cell-surface anchoring
proteins to stay joined to the plasma membrane. To date, four
ADA-binding proteins have been described: the multifunctional
CD26 protein, and the subtypes A1R, A2AR and A2BR of ARs.

Weihofen et al. (2004) crystallized the complex constituted
by bovine ADA and human CD26 ectodomain and showed
that each CD26 dimer binds two ADA molecules. In this
structure two different interactions contribute to stabilize the

CD26/ADA complex. In one, the Ile287-Asp297 loop A of CD26
and the Arg76-Ala91 helix α1 of ADA interact; in the other,
the Asp331-Gln344 loop B of CD26 interacts with the Pro126-
Asp143 helix α2 of ADA (see Figure 6 and Cortés et al., 2015).
Moreover, the crystal structure shows the intermolecular links in
a highly amphiphilic interface that contributes to the CD26/ADA
complex formation and also stabilizes the binding interface,
where two hydrophobic loops protruding from the β-propeller
domain of CD26 interact with two hydrophilic and strongly
charged α-helices of ADA. This results in a very high percentage
of charged residues that are involved in this protein–protein
interaction (Weihofen et al., 2004). On the other hand, in this
complex, ADA does not block the active site of CD26 and
conversely, binding of CD26 does not block the active site of
ADA; this indicates that CD26 and ADA remain catalytically
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FIGURE 6 | Representation of ADA regions involved in the interaction with

A2AR and CD26. ADA in red (MMDBID:75950) was drawn with Cn3D4.1

program (http://www.ncbi.nlm.nih.gov). Helix α-1 (portion P55-I72) and loop

(G184-P189) of A2AR binding site are in blue; helix α-2 (CD26 binding site,

P126-D143) is in white.

active upon the complex formation (Weihofen et al., 2004;
Fan et al., 2012). It has been reported that the CD26/ADA
complex is selectively expressed on Hodgkin’s and ALK-positive
anaplastic large cell lymphomas (Kameoka et al., 2006). Likewise,
Mandapathil et al. (2012) showed ADA activity and CD26
expression in Treg cells and CD4+ Teff cells in patients with
neck and head squamous cell carcinoma. All these results put
these proteins in the focus of immunological regulation and point
out that the costimulatory activity of ADA could be relevant
in a variety of immunological diseases (Martinez-Navio et al.,
2011; Casanova et al., 2012; Anz et al., 2014; Cortés et al., 2015;
Klemann et al., 2016; Naval-Macabuhay et al., 2016;Wagner et al.,
2016; Aliyari Serej et al., 2017).

It has been also reported that the binding of ADA to
CD26 can be relevant in the regulation of lymphocyte and
epithelia cell adhesion (Ginés et al., 2002). The ability of cells
to adhere to one another is a fundamental property in the
evolution of multicellularity. Adhesion between two different
cell types is “a complex phenomenon that requires a variety
of extracellular matrix (ECM) components and proteins on the
surface of the interacting cells” (Ginés et al., 2002). In this
mechanism, apart from cell adhesion molecules, many other
soluble cell mediators such as cytokines and components of the
tissue matrix such as collagen, fibronectin, etc. play a crucial
role (Akiyama, 1996; Golias et al., 2011; Horwitz, 2012; Loeser,
2014). Cell adhesion links one cell to another and to the ECM,
and also allows extracellular information to be integrated with

the main intracellular signaling pathways. Cell adhesion is also
essential in cell communication and regulation and “becomes of
fundamental importance in the development and maintenance
of tissues” (Khalili and Ahmad, 2015). Ginés et al. (2002)
hypothesized that the ADA-CD26 module would be important
for the interaction of lymphocytes with epithelial and other
cell types expressing ecto-ADA in the first steps of cell to cell
recognition, and it would subsequently contribute, by signaling,
to the engagement of themechanism required to change integrins
over to their active conformations in T cells (Baker et al.,
2009; Zhang and Wang, 2012; Moretti et al., 2013; Meli et al.,
2016).

Adenosine receptors A1R, A2AR, and A2BR are the second
type of ecto-ADA binding proteins (see section “Introduction”).
Among these receptors, A2ARs are highly expressed in spleen,
thymus, blood platelets, striatum, olfactory tubercle and
expressed to a lesser extent in the heart, lung, blood vessels and
other brain regions including cortex and hippocampus (Cunha
et al., 1997; Chen et al., 2013; Cortés et al., 2015; Stockwell et al.,
2017). A2ARs are expressed on most immune cells, including T
cells, NK and invariant natural killer T cells, DCs, macrophages,
monocytes, mast cells, eosinophils and B cells (Cekic and Linden,
2016). The A2AR is recognized as mediating major adenosine
anti-inflammatory activity (Welihinda and Amento, 2014) and is
involved in various metabolic and pathological states including
sleep regulation, ischemia-reperfusion injury, inflammation and
autoimmune diseases and neurodegenerative disorders (Borea
et al., 2016; Sharma et al., 2016; Lazarus et al., 2017; Stockwell
et al., 2017). Likewise, A2AR is responsible for most of the known
immunoregulatory effects of adenosine in the immune system
and is a molecule crucially involved in CNS autoimmunity
(Ingwersen et al., 2016).

Bioluminescence resonance energy transfer has provided
much of the evidence supporting GPCRs oligomerization.
Angers et al. (2000) used this technique in HEK-293 cells
to demonstrate that human beta-2 adrenergic receptors form
constitutive homodimers. We and others demonstrated that
A1R and A2AR are expressed as homodimers or higher-order
oligomers, which are the functional species ex vivo or in
transfected cells (Ciruela et al., 1995; Canals et al., 2004; Briddon
et al., 2008; Gandia et al., 2008; Vidi et al., 2008; Namba
et al., 2010; Gracia et al., 2011, 2013b; Casadó-Anguera et al.,
2016; Navarro et al., 2016). For both receptors, enzymatically
active or Hg2+-inactivated ADA increases the signaling and
the receptor affinity by a protein–protein interaction. ADA acts
as an allosteric modulator of A1R and A2AR, altering their
quaternary structure and, consequently, their pharmacological
and functional characteristics (Ciruela et al., 1996; Saura et al.,
1996; Sarrió et al., 2000; Sun et al., 2005; Gracia et al., 2008,
2011, 2013b). The ADA-induced molecular rearrangement in
the corresponding receptor structure, demonstrated by BRET
experiments, is in good agreement with the ADA-promoted
increase in agonist-induced signaling and ligand affinity for both
A1R and A2AR. These results suggest that ADA can exert “a finely
tuned modulation of adenosine neuroregulation that may have
important implications for the function of neuronal ARs” (Cortés
et al., 2015).
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In the last decade, the only high-resolution information
available for the ARs comes from structures of A2ARs complexes
with several agonists, antagonists, an inverse agonist and an
engineered G protein (Jaakola et al., 2008; Doré et al., 2011;
Lebon et al., 2011, 2015; Xu et al., 2011; Congreve et al., 2012;
Liu et al., 2012; Hino et al., 2012; Carpenter et al., 2016; Segala
et al., 2016; Cheng et al., 2017; Sun et al., 2017). These structures
can facilitate the discovery of more effective and selective A2AR
ligands and have provide a detailed molecular understanding
of the receptor function and the conformational landscape
between the agonist and the antagonist states of this receptor
(Bertheleme et al., 2014; Cheng et al., 2017). By a combination
of computational docking simulations and molecular dynamics
simulations between the crystal structures of human ADA and
human A2AR, we demonstrated that the putative molecular
regions of ADA involved in the interaction with the A2AR were
opposed to the ADA domains interacting with CD26 (see above)
(Gracia et al., 2013a). We now demonstrate a direct molecular
interaction between ARs, specifically A2AR, and CD26 bound
by ADA, using biophysical techniques. To achieve this goal it
is necessary an energy transfer at the extracellular level between
two transmembrane proteins that only happens when they are
linked by ADA. We have taken advantage of a variant of the
BRET assay in which, using fusion proteins of the Nluc enzyme,
both the translocation of the N-terminal fusion protein and the
steric hindrance are improved (Machleidt et al., 2015; Mo and
Fu, 2016). This is compatible with a macromolecular complex
in which A2AR and CD26 are bridged by ADA (see Figure 5),
in a narrow range of ADA concentrations around the binding
affinity values (Saura et al., 1996; Gonzalez-Gronow et al., 2004),
and showing a peak pattern, instead of a saturable pattern. Lower
concentrations are insufficient to bridge the trimer and higher
ADA concentrations favor the dimeric ADA-CD26 and ADA-
A2AR complexes (see Figure 4A, top panels). Soluble CD26
could interfere with this role of ADA in many pathological
conditions, such as obesity and several viral infections, where its
concentration is highly increased, but not in healthy physiological
conditions, where its concentration (up to 4 nM) is much lower
than its affinity for ADA (see Yu et al., 2011). Because A2AR and
CD26 are homodimers (see above), their protein arrangement is
probablymore complex, with twoADAmolecules linking the two
homodimers.

Gracia et al. (2013a) highlighted the contribution of the 55–65,
114–118, 155–158, and 184–189 amino acidic segments of ADA
to the A2AR/ADA interface. The 55–65 stretch interacts with
the extracellular loop 2 of the receptor whereas the 184–189
stretch interacts with the N-terminus of the A2AR (see Figure 6).
Moreover, these two stretches constitute the structural gate to
the catalytic site of ADA in the tertiary structure of this enzyme,
which can take different conformations: the closed and the open
forms (Wilson et al., 1991; Kinoshita et al., 2005). In the absence
of the substrate adenosine, ADA adopts the open form, whereas
in complexes with adenine-based substrate analogs it adopts the
closed form, which indicates that it is obtained after the binding
of the substrate (Cortés et al., 2015; Maiuolo et al., 2016). Since
ADA can increase the binding of the ligand to ARs in the absence
of adenosine, it was suggested that the open form, and not

the closed one, is able to bind to A2AR (Gracia et al., 2013a;
Cortés et al., 2015). In fact, using alanine scanning mutagenesis
we showed that the two amino acid regions that participate in
the structural gate of the active site pocket (the α-1 helix 55–
65 and the 184–189 loop) play a central role in ADA catalysis
and/or ADA-induced modulation of agonist binding to A2AR
(Gracia et al., 2013a). In particular, we showed that mutations
of the hydrophobic residues Leu58 and Leu62 produce a 100-
fold decrease of the catalytic efficiency (see Table 2), because they
decrease both the maximum velocity and the substrate affinity.
This suggests that hydrophobicity may help to maintain the
control of the catalysis and the affinity for adenosine (Gracia
et al., 2013a). Moreover, when we performed experiments with
increasing concentrations of these ADA mutants to determine
the amount of enzyme able to produce an increase of the 50% of
the maximum agonist (CGS) binding (EC50 values), we obtained
a very big increase (>200-fold) in the EC50 values of Leu58
and Leu62 with respect to the ADA wild type (see Table 2).
These results point out that the α-1 helix is an important ADA
domain involved in the allosteric modulation of the A2AR. For
this reason, in our results, NanoBRET is abolished when these
mutants are used to link cell populations with A2AR and with
CD26.

Besides the existence of the binary complexes between ADA-
ARs and ADA-CD26, higher order protein aggregates containing
both ARs and ADA have been postulated. In that sense, Franco
et al. (1997, 1998) suggested that ecto-ADA may participate in
cell to cell contacts (CD26/ADA/CD26; CD26/ADA/A1R and
A1R/ADA/A1R) which can be of relevance in neural functionality
and development. Later, Torvinen et al. (2002) proposed the
existence of functional trimeric complexes formed by ADA and
A1R and dopamine D1 receptors in cortical neurons and that
their aggregation can be modulated by both adenosine and
dopamine. Likewise, by acting as a bridge between A2BR on
DCs and CD26 on T cells, by forming an “immunological
synapse” (Pacheco et al., 2005; Franco et al., 2007), ADA acts
as a costimulatory molecule in T-cell-DC co-cultures enhancing
Th-1/pro-inflammatory cytokine secretion, T-cell proliferation,
and T-CD4+ cell activation, memory, and Foxp3+ generation
in healthy subjects, but also in subjects infected with HIV
(Martinez-Navio et al., 2011; Casanova et al., 2012). Our
results with NanoBRET assays reinforce these hypotheses and
extend them to the formation of CD26/ADA/A2AR complexes,
where ecto-ADA anchored to CD26 could direct the interaction
between T cells and ARs-containing cells, such as neurons,
DCs, and so on. Future studies demonstrating adhesion
between cells promoted by ADA (e.g., DCs and T-cells) under
physiological conditions, and analyzing how this ternary complex
affects the function of the three proteins involved, will be
necessary.

CONCLUSION

In this study, using biophysical techniques we demonstrate
the possibility of formation of the ternary complex
CD26/ADA/A2AR. This molecular interaction is specific, as
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it is abolished by a human-specific mAb against CD26, TA5.9-
CC1-4C8, or by ADA mutants (Leu58Ala and Leu62Ala) with
highly reduced capacity to interact with A2AR. The bridge
in the ternary complex is neither produced by a non-specific
protein as albumin or between A2AR and another membrane
protein different of CD26, as NMDA receptor, newly showing the
specificity of the ADA-linked proteins. In that ternary complex,
ADA can act as a bridge that interacts simultaneously with A2AR
and CD26 expressed in different cells. This fact could allow a
physiological cell-cell adhesion between, for example, DCs or
neurons that express A2AR (Fredholm et al., 2005; Cekic and
Linden, 2016) and T cells that express CD26 (Klemann et al.,
2016). This would add a new metabolic function for ecto-ADA,
that being a single chain protein it has been considered as an
example of moonlighting protein (Cortés et al., 2015). This is
because it performs more than one functional role (Copley, 2012,
2014; Jeffery, 2014, 2015, 2016; Chapple and Brun, 2015): (1) as a
catalyst that degrades adenosine; (2) as a costimulatory molecule
promoting T-cell differentiation and proliferation by interacting
with CD26; (3) as an allosteric modulator of A1R and A2AR,

without portioning these functions in different subunits; and (4),
as a bridge, forming cell-to-cell contacts, as described in the
present study.
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