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Abstract

Multicellular animals match costly activities, such as growth and reproduction, to the environment through nutrient-sensing
pathways. The insulin/IGF signaling (IIS) pathway plays key roles in growth, metabolism, stress resistance, reproduction, and
longevity in diverse organisms including mammals. Invertebrate genomes often contain multiple genes encoding insulin-
like ligands, including seven Drosophila insulin-like peptides (DILPs). We investigated the evolution, diversification,
redundancy, and functions of the DILPs, combining evolutionary analysis, based on the completed genome sequences of 12
Drosophila species, and functional analysis, based on newly-generated knock-out mutations for all 7 dilp genes in D.
melanogaster. Diversification of the 7 DILPs preceded diversification of Drosophila species, with stable gene diversification
and family membership, suggesting stabilising selection for gene function. Gene knock-outs demonstrated both synergy
and compensation of expression between different DILPs, notably with DILP3 required for normal expression of DILPs 2 and
5 in brain neurosecretory cells and expression of DILP6 in the fat body compensating for loss of brain DILPs. Loss of DILP2
increased lifespan and loss of DILP6 reduced growth, while loss of DILP7 did not affect fertility, contrary to its proposed role
as a Drosophila relaxin. Importantly, loss of DILPs produced in the brain greatly extended lifespan but only in the presence
of the endosymbiontic bacterium Wolbachia, demonstrating a specific interaction between IIS and Wolbachia in lifespan
regulation. Furthermore, loss of brain DILPs blocked the responses of lifespan and fecundity to dietary restriction (DR) and
the DR response of these mutants suggests that IIS extends lifespan through mechanisms that both overlap with those of
DR and through additional mechanisms that are independent of those at work in DR. Evolutionary conservation has thus
been accompanied by synergy, redundancy, and functional differentiation between DILPs, and these features may
themselves be of evolutionary advantage.
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Introduction

The ability of organisms to respond appropriately to changes in

their environment is key to survival and reproductive success. An

essential environmental variable for all organisms is their food

supply and energetically demanding processes, such as growth,

metabolism and reproduction are matched to nutrition by

nutrient-sensing pathways, such as the insulin/IGF signalling

(IIS) and TOR pathways [1]. An important recent discovery has

been that reduced activity of IIS and TOR can slow aging and

increase stress resistance and lifespan in the yeast Saccharomyces

cerevisiae, the nematode worm Caenorhabditis elegans, the fruit fly

Drosophila melanogaster and mice [2]. The mechanisms by which

these pathways exert their diverse effects are hence of interest, as

are the ways in which these parallel biological roles are achieved in

evolutionarily diverse organisms.

The IIS pathway includes both peptide ligands, which can act at

a distance, and intracellular components. In mammals, the ligands

include insulin, the insulin-like growth factors (IGF) and relaxins.

IGFs are mainly involved in growth control during development,

whereas insulin secretion from pancreatic b-cells controls carbo-

hydrate and lipid metabolism. Relaxins are produced by the ovary

and are involved in reproduction. Insulin-like peptides (ILPs) have

also been identified across a broad range of invertebrates,

including molluscs, the nematode Caenorhabditis elegans and several

insect species [3]. Most invertebrate genomes contain multiple

ILPs, including 40 in C. elegans [4] and 7 in Drosophila melanogaster

(DILP1-7) [5]. In contrast, while mammals often have up to 4

isoforms of the cellular components of IIS, they are encoded by

single genes in Drosophila, including one Drosophila Insulin receptor

(DInR), one insulin receptor substrate (chico) and one downstream

forkhead box O transcription factor (dFOXO) [1]. The relative

simplicity of the cellular IIS pathway, together with the

diversification of DILPs, implies that the diverse functions of IIS

could be in part mediated by functional diversification of the

ligands.

Supporting functional differentiation between ligands, each dilp

gene shows a characteristic spatio-temporal expression pattern.

For instance, DILP4 is expressed in the embryonic midgut and

mesoderm [5], DILP6 predominantly in the larval and adult fat

body, with expression strongly up-regulated in the transition from

larva to pupa [6]. DILP7 is expressed in specific neurons that
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innervate the female reproductive tract [7,8], and inactivation of

them results in sterile flies with an ‘‘egg-jamming’’ phenotype,

suggesting that DILP7 could be a Drosophila relaxin [7]. DILP1, 2,

3 and 5 are expressed in brain median neurosecretory cells

(MNCs) of the larval brain [5,9,10], but only DILP2, 3 and 5

could be detected in MNCs of the adult fly [11]. DILP2 is also

expressed during development in imaginal discs, and in salivary

glands and DILP5 in follicle cells of the female ovary [5].

Targeted ablation of the MNCs during early larval development

results in developmental delay, growth defects and elevated

carbohydrate levels in the larval hemolymph [10], while later

ablation, during the final larval stage, results in lower female

fecundity, increased storage of lipids and carbohydrates, elevated

resistance to starvation and oxidative stress and increased lifespan

[11]. Notably, expression of ILPs in MNC is evolutionarily

conserved among insects, suggesting important evolutionarily

conserved functions for these cells and their ligands. Furthermore,

similar developmental programs are involved in the specification

of MNCs in Drosophila and pancreatic beta cells in mammals,

suggesting that insulin-producing cells of invertebrates and

vertebrates may be derived from a common ancestry [12]. It is

not yet clear if the phenotypes of MNC-ablated flies result from

loss of one or more of the DILPs, or whether MNCs have

functions independent of DILPs. Nor is it known if MNC-

expressed DILPs have specific functions or act redundantly.

All seven DILPs possess the ability to promote growth, with

DILP2 the most potent, and these ligands therefore probably all

act as DInR agonists [9]. Over-expression of DILP2 also

suppressed germ line stem cell loss in ageing females, probably

through action in the stem cell niche [13]. DILP2 may also

modulate lifespan, because its transcript is lowered in various

mutant, long-lived flies. Over-expression of dFOXO in the adult

fat body [14], over-expression of a dominant negative form of p53

in MNCs [15], increased JNK activity in MNCs [16] and

hypomorphic mutants of the Drosophila NPY like protein sNPF

[17], have all been reported to both extend lifespan and reduce the

level of DILP2 expression. However, direct reduction in the level

of DILP2 by in vivo double-stranded RNA interference (RNAi) did

not increase lifespan [18], leaving the role of DILP2 unclear.

Dietary restriction (DR), a reduction in food intake without

malnutrition, extends lifespan in diverse animals. In both C. elegans

and Drosophila extension of lifespan by DR has been suggested to

be independent of IIS, because lifespan increases in response to

DR in animals lacking the key IIS effector FOXO transcription

factor [19–21]. However, the finding could indicate instead that,

in the absence of a normal increase in FOXO activity during DR,

other pathways can act redundantly to increase lifespan. Indeed,

other evidence has suggested that reduced IIS and DR may extend

lifespan through overlapping mechanisms [19,22]. DILP3 and

DILP5 transcript levels are reduced in starved larvae [9] and

DILP5 in DR adult flies [20], potentially indicating a role of

DILPs in the fly’s response to DR.

Gene families generally expand by gene duplication, and the

duplicate copies are retained either if there is a requirement for

large amounts of the gene product or if the duplicate copies

undergo some sequence divergence and functional differentiation

[23]. Recent work has suggested that feedback between partially

redundant duplicate genes could itself be an important source of

information aiding signal transduction [24]. It is not known if, as

well as the functional differentiation implied by the findings

described above, there is functional redundancy between the

Drosophila ILPs. Nor is it known if there is stability of sequence

differentiation and of membership of this gene family over

evolutionary time or whether there is gene turnover. In addition,

assignment of specific functions to individual dilp genes requires

experimental manipulation. Although studies using RNAi have

been informative [17,18], RNAi can be prone to off-target effects

[25] and other forms of cellular toxicity, and often results only in

hypomorphic phenotypes.

We have used the completed genome sequences of 12 Drosophila

species [26] to examine the stability of the dilp gene family, and

found that the 7 DILPs have remained present and clearly

differentiated from each other in sequence over a period of 40–60

million years. Evolutionary conservation of different regions of the

peptides suggests that 6 of the 7 DILPs are cleaved like mammalian

insulins, while the seventh may remain uncleaved, like mammalian

IGFs. We generated specific null mutants for all seven DILPs, by

homologous recombination or P-element mediated excision, and

also generated flies that lack two or more DILPs simultaneously.

Using these mutants we made a systematic analysis of DILP

function in development, metabolism, reproduction, stress resis-

tance, lifespan and response to DR of Drosophila. We show that

DILPs can act redundantly, which suggests that redundancy among

ILPs may be of evolutionarily advantage. We found both synergy

and compensation of expression between DILPs. In particular

DILP6 in the fat body compensated for the loss of MNC DILPs,

demonstrating that DILPs are part of a complex feedback system

between the central nervous system and peripheral tissues such as

the fat body, which controls development, metabolism and

reproduction. We further show that DILP2 is an important

determinant of lifespan, describe a novel role for the fat body

derived DILP6 peptide in growth control and demonstrate that dilp7

null mutants have normal fecundity, contrary to the suggestion

DILP7 could be a Drosophila relaxin. Finally, we describe a specific

interaction between the endosymbiont Wolbachia and IIS in the

regulation of lifespan and show that DILPs mediate the responses of

lifespan and fecundity to DR in Drosophila.

Results

Phylogenetic analysis of ILPs in the genus Drosophila
Taking advantage of the 12 sequenced Drosophila genomes [26],

we investigated the evolution of ILPs across the Drosophila genus.

Author Summary

The insulin/IGF signalling (IIS) pathway plays key roles in
growth, metabolism, reproduction, and longevity in animals
as diverse as flies and mammals. Most multicellular animals
contain multiple IIS ligands, including 7 in the fruit fly
Drosophila melanogaster (DILP1-7), implying that the diverse
functions of IIS could in part be mediated by the functional
diversification of the ligands. Although Drosophila is a prime
model organism to study IIS, knowledge about the function
of individual DILPs is still very limited due to the lack of gene-
specific mutants. Therefore, we generated mutants for all 7
dilp genes and systematically analyzed their phenotypes. We
show that loss of DILP2 extends lifespan and describe a
novel role for DILP6 in growth control. Furthermore, we
show that DILPs are evolutionary conserved and can act
redundantly, supporting the hypothesis that functional
redundancy itself can be of evolutionary advantage. We
also describe a specific interaction between IIS and the
endosymbiontic bacteriumWolbachia in lifespan regulation.
This finding has implications for all longevity studies using IIS
mutants in flies and offers the opportunity to study IIS as a
mechanism involved in host/symbiont interactions. Finally,
we show that DILPs mediate the response of lifespan and
fecundity to dietary restriction.

Functional Analysis of Drosophila dilp Genes
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As in D. melanogaster, seven dilp genes were identified in all 12

Drosophila species, with the exception of D. simulans and D. grimshawi

(Figure 1). Using the Jones-Thornton-Taylor (JTT) matrix to

calculate average amino acid distances, we found that the

distances between the seven DILPs within each species is much

greater than the distances among the putative orthologues in the

different Drosophila species (Figure 1) We did not identify a dilp6

gene in D. simulans, probably because of sequencing gaps in the

corresponding genomic region. Thus the seven dilp genes were

present before the divergence of the 12 Drosophila species more

than 40 million years ago, and none has been turned over during

that period. Interestingly, the D. grimshawi genome contains eight

dilp genes, as a result of a duplication of dilp2 (Figure 1). D.

grimshawi is a member of the endemic Hawaiian Drosophila species,

which are characterized by their large body size. The finding that

DILP2 is an important regulator of growth in D. melanogaster ([9]

and see below) suggests that evolutionary changes in dilp2 gene

expression may have contributed to the evolution of body size in

the Hawaiian Drosophila species.

In mammals, IIS ligands are synthesized as pre-propeptides,

consisting of a signal peptide and contiguous B-C-A peptides. In

insulin and relaxin the C-peptide is clipped out by a convertase

enzyme targeting basic amino acid cleavage sites, to produce a

bioactive peptide consisting of A- and B-chain linked by 2–3

disulfide bridges. In contrast, IGFs contain a shortened C-peptide,

which is not removed, resulting in a single chain peptide hormone.

We therefore examined evolutionary conservation of different

regions of the DILPs across the 12 Drosophila species to determine if

the proteins are likely to be cleaved. Amino acid alignments of

DILP pre-propeptides from the different Drosophila species shows

that the bioactive peptides, i.e. the A and B chains are more

conserved than the signal peptides and the C-peptides (Figure S1).

The only exception is the shortened C-peptide in DILP6, which

shows a similar degree of conservation to the A and B chains. This

finding may indicate that although it contains a basic cleavage site

the C-peptide is not removed and is part of a single chain bioactive

DILP6 peptide, as has been recently suggested for the DILP6-like

BIGFLP protein in the silkworm Bombyx mori [6]. Thus, DILP6

may resemble IGF rather than insulin. Despite the low amino acid

conservation, functional signal peptides were found to be present

in all DILP pre-propeptides using the Signal P prediction software

[27], which indicates that all seven DILPs act as secreted peptide

hormones in all 12 Drosophila species. Furthermore, cysteine

residues involved in disulfide bridge formation as well as basic

cleavage sites are highly conserved (Figure S1A), further

supporting the view that DILPs, except for DILP6, resemble

insulin and consist of heterodimeric peptides of A and B-chain

linked by disulfide bridges.

Although the seven DILPs have been stably differentiated and

retained in the 12 Drosophila genomes, they show different degrees

of amino acid conservation (Figure S1B), suggesting different

degrees either of functional constraint or of directional selection.

DILP7 is by far the most highly conserved DILP peptide, with an

overall amino acid identity of 76% between the pre-propeptides of

D. melanogaster and the most distantly related Drosophila species D.

grimshawi, increasing to 83% and 94%, respectively, when only the

A and B chains are considered (Figure S1B). Indeed, only DILP7

has bona fide orthologues outside the Drosophila family, with 64–

66% amino acid identity (A and B chain, 48% overall) with ILP5

from the mosquitoes Anopheles gambiae and Aedes aegypti and 63%

and 55% (A and B chain, 48% overall) with ILP7 from the red

flour beetle Tribolium castaneum [28,29]. DILP4 is next most

conserved, with only 52% overall amino acid identity and 75%

and 70% identity in the A and B chain, respectively (D. melanogaster

vs. D. grimshawi). DILPs 1, 2, 3, 5 and 6 evolved faster than DILP4

and DILP7 and at about the same rate as each other (ca. 40%

overall amino acid identities, 50–55% identities within the A and

B chain, D. melanogaster vs. D. grimshawi, Figure S1B). The higher

amino acid sequence conservation of DILPs 7 and 4 suggests that

these two DILPs might carry essential functions that are different

from the other DILPs and can therefore not be compensated by

the other DILPs.

Generation of Drosophila insulin-like peptide mutants
In order to analyse the in vivo function of individual dilp genes,

we generated dilp-specific mutants by ends-out homologous

recombination [30] for dilp1, 2, 3, 4, 5 and 7 (Figure 2A–2C)

and by P-element mediated imprecise excision for dilp6
(Figure 2D). In addition, to address redundancy and synergy

among individual dilp genes, we used homologous recombination

to generate mutant flies with a combined knock out of two or

several DILPs, including 2, 3 (dilp2–3), 2, 3, 5 (dilp2–3,5), 1, 2, 3, 4
(dilp1-4) and 1, 2, 3, 4, 5 (dilp1–4,5).

Ends out homologous recombination donor constructs were

designed to delete the complete coding sequence of the targeted

dilp gene, by replacing it with a white marker gene without affecting

the genomic sequence of adjacent genes (Figure 2A–2C). Putative

homologous recombination events were tested by PCR on

genomic DNA with gene-specific primer combinations for the

insertion of the white marker gene into the target gene location

(Figure 2E). Several independent targeting events were recovered

per dilp gene. Long-range PCR analysis on genomic DNA showed

that most targeting events were precise homologous recombina-

tions (Figure S2 and data not shown) and only these were used for

subsequent experiments. Reverse Transcription (RT) PCR

analysis showed that the dilp mutants are transcript-null alleles

(Figure 2F). Lack of DILP expression in the mutants was

confirmed by immunohistochemistry on adult fly brains (Figure

S3) and by Western blot analysis (Figure 3D). The single mutants

were specific for individual dilp genes. For instance, dilp2 mutants

lacked expression only of DILP2, not of DILP3 or DILP5 (Figure

S3D, S3E, S3F).

dilp6 mutant flies were generated by imprecise P-element

excision of KG04972 integrated in the 59upstream region of the

dilp6 gene (Figure 2D). Two different dilp6 alleles were isolated, the

small deletion dilp641 covering the dilp6 59upstream region

including the first exon and the large deletion dilp668 covering

the complete dilp6 gene as well as at least 4 other genes. RT PCR

analysis confirmed dilp668 to be a transcript null allele (Figure 2F).

dilp6 expression was still detectable in dilp641 mutants. However, 59

RACE analysis revealed that these transcripts lacked the first exon

of the dilp6 gene and instead contained ectopic sequence including

additional ORFs immediately upstream of the dilp6 ORF, which

might interfere with the translation of the DILP6 peptide (for

details see Text S1). Consistently, whenever tested both dilp6
mutant alleles were phenotypically indistinguishable from each

other. In addition, dilp641 mutant flies showed the same

developmental growth defects as flies in which dilp6 is knocked

down by RNAi [31], suggesting dilp641 to be a strong hypomorph

or even a functional null allele.

Compensatory regulation
Reduced expression of DILPs has been associated with changes

in IIS pathway activation [15]. We therefore evaluated IIS

activity in body tissues of adult dilp mutants by measuring

transcript levels of the translational regulator 4E-BP (encoded by

Thor), a direct target of dFOXO, which is induced when IIS is

repressed and dFOXO is activated (Figure 3A and 3B). As

Functional Analysis of Drosophila dilp Genes
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Figure 1. Phylogeny of Drosophila insulin-like peptides. The evolutionary history of the seven DILP families from 12 fully sequenced
Drosophila species inferred using the Neighbour-Joining method. Bootstrap replicate support percentages are shown next to the branches. The tree
is drawn to scale, with branch lengths proportional to evolutionary distance computed using the JTT matrix-based method. 7 DILPs have remained
present and clearly differentiated from each other during the more than 40 million years of evolution of Drosophilidae flies. D. grimshawi contains two
DILP2 peptides (shaded in red).
doi:10.1371/journal.pgen.1000857.g001
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expected, 4E-BP transcript levels were up-regulated in dilp2–3,5

mutants (Figure 3B), consistent with peripheral activation of

dFOXO and reduced IIS. However, we did not observe

significant up-regulation of 4E-BP transcript levels in dilp single

mutants, except for dilp3 mutants, which showed slight up-

regulation of 4E-BP levels in bodies but not in heads (Figure 3A).

Thus, the knock out of most individual DILPs did not result in

systemic down-regulation of IIS that was detectable by measuring

4E-BP transcript levels. A possible explanation for this finding

could be that DILPs act redundantly as part of a negative

feedback system in which knock-out of one DILP is compensated

by the up-regulation of others.

To address the possibility of compensatory regulation we

measured dilp transcript levels in dilp mutant flies (Figure 3B and

3C). We did not detect any up-regulation of dilp2 or dilp3 transcript

levels in dilp1, 4, 6 or 7 mutants, however, dilp5 was up-regulated in

dilp2 and dilp2–3 mutants and dilp3 was up-regulated in dilp2 and

dilp5 mutants (Figure 3C), demonstrating compensatory transcrip-

Figure 2. Gene locus organization and generation of dilpmutants. (A–C) Null mutations for dilp1, 2, 3, 4, 5, 7, 2–3, and 1–4 were generated by
ends-out homologous recombination and by imprecise P-element excision for dilp6 (D). (A) The dilp1–4 genes cluster at cytological position 67C8 is
separated from dilp5 by two intervening genes of unknown function (Flybase: CG32052 and CG33205). (B) dilp5 is located within an intron of the
CG33205 gene. (C) dilp7 is located on the X-chromosome at 3E2 immediately downstream of the essential Poly(ADP-ribose) glycohydrolase (Parg) gene.
Donor constructs (dilp ko) for ends-out homologous recombination are indicated by grey bars. Gap between grey bars indicates the genomic region
replaced by a whitehs marker gene. Coding parts of exons are marked in black, non-coding parts by white boxes. (D) Transposon integration line
KG004972 was used to generate dilp6 deletion mutants dilp641 and dilp668. Note: both dilp6 deletion alleles contain remaining P-element sequence,
hatched line: region of breakpoint in dilp641. (E) PCR on genomic DNA of dilp mutants with dilp specific primer combinations shows homologous
recombination mediated replacement of dilp genes by the whitehs marker gene and deletion of dilp6 in dilp668 mutants (M: mutant, C: control). (F) RT–
PCR analysis confirms that dilp mutants are transcript null alleles. dilp641 mutants express ectopic dilp6 transcripts that lack the first exon but contain
the full ORF. dilp668 mutants are dilp6 transcript null alleles.
doi:10.1371/journal.pgen.1000857.g002
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tional regulation among MNC-expressed DILPs. Intriguingly, dilp2

and dilp5 expression was down-regulated in dilp3mutants (Figure 3C

and 3D), suggesting synergy in expression, with dilp3 acting as a

positive regulator of dilp2 and dilp5 expression. Remarkably, while

expression of dilp4 and dilp7 was not significantly changed in dilp2–

3,5 mutants, the fat-body-expressed dilp6 gene was strongly up-

regulated (Figure 3B), suggesting the existence of a negative

feedback system that acts to coordinate DILP expression between

the MNCs in the central nervous system and peripheral tissues like

the fat body (Figure 3E). Interestingly, expression of the DILP

binding protein ImpL2, a negative regulator of IIS [32], was down-

regulated in dilp2–3,5 mutants (Figure 3B), demonstrating that the

negative feedback system is not restricted to the regulation of dilp

transcription.

Systematic analysis of DILP function
The compensatory regulation among dilp genes may indicate

that they act at least in part redundantly. However, each dilp gene

is expressed in a tissue- and stage specific manner, suggesting that

there is also diversification of their functions. In order to examine

the in vivo function of individual dilp genes and to address whether

and to what extent they act redundantly and synergistically to

execute these functions, we initiated a systematic analysis of

the dilp mutants, addressing phenotypes associated with MNC-

ablation and reduced IIS, including egg-to-adult survival,

development time, organismal growth, stress resistance, energy

storage, lifespan and fecundity (summarized in Table 1).

Egg-to-adult survival
All seven dilp single mutants as well as dilp2–3 and dilp1–4

mutants were homozygous viable (Table 1). In contrast, dilp2–3,5

mutants showed sex-specific lethality; whereas homozygous

mutant females showed normal viability, only 50–60% of dilp2–

3,5 homozygous males developed into adult flies (Table 1).

Survival was not further negatively affected in dilp7;2–3,5 mutant

flies, but was reduced in dilp1–4,5 mutants. Intriguingly, animals

that lacked all DILPs except for DILP6 (dilp7;1–4,5 mutants) still

developed into adult flies. In contrast, combined knock-out of

Figure 3. Compensatory regulation of gene expression in dilpmutants. (A) Q-RT-PCR analysis of 4E-BP expression on fly bodies and fly heads
of dilp single mutants. Expression of the IIS downstream target gene 4E-BP is not changed in dilp single mutants. (B) Q-RT-PCR analysis demonstrates
up-regulation of 4E-BP and dilp6 and down-regulation of ImpL2 in dilp2–3,5 mutants independent of Wolbachia infection status (wDahT: Wolbachia-,
wDah: Wolbachia+). (C) Compensatory regulation among MNC-expressed DILPs. Expression levels of DILP2, 3, and 5 were measured by QRT-PCR on
RNA extracted from heads of dilp mutants. (D) Western blot analysis of DILP2 expression in total head protein confirms lack of DILP2 expression in
dilp2 and dilp2–3 mutants and downregulation of DILP2 levels in dilp3 mutants. M: homozygous mutant, C: w1118 control. An anti-Tubulin antibody
was used as loading control. (E) Diagram summarizing the feedback system involved in the control of DILP expression levels. DILP3 is part of a
feedback system that acts in an autocrine/paracrine manner to regulate DILP expression in the MNC. DILP expression between MNC in the central
nervous system and the peripheral fat body tissue is regulated by a negative feedback system that involves DILP6. See text for further details. Arrows
denote activation, blunted lines denote repression. All experiments in (A–D) were done using 8–10 day old females reared on 1x SY-A food.
Expression level of mutants were normalised to the corresponding wild type control, which by default was set to 1. * p,0.05, ** p,0.01.
doi:10.1371/journal.pgen.1000857.g003
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DILPs 2, 3, 5 and 6 caused complete lethality in males and

females. This result indicates that DILP6 acts redundantly to

MNC-expressed DILPs, consistent with the compensatory up-

regulation of DILP6 transcript in dilp2–3,5 mutants (Figure 2B).

Lethality in combination with dilp2–3,5 mutants was observed for

both dilp6 alleles, further evidence that dilp641 is a dilp6 loss-of

function allele.

Development time
dilp2 and dilp6 were the only single mutants that showed a delay

in egg-to-adult development (Figure 4A, Table 1). Development

time was only slightly further delayed in dilp1–4mutants compared

to dilp2 single mutants. In contrast, dilp2–3,5 mutants had a severe

developmental delay (Figure 4A), comparable to flies with ablated

MNCs or DInR mutants [10]. The developmental delay was

caused by delays in larval or pupal development, because dilp2–3,5

homozygous mutant embryos developed into first instar larvae at

the same rate as wild type controls (data not shown). dilp2–3,5

mutants also eclosed over a much longer period; all control flies

eclosed within a day while dilp2–3,5 mutant flies continued to

hatch over a period of almost ten days (Figure 4A). dilp1–4,5

mutants, dilp7;2–3,5 mutants and dilp7,1–4,5 mutants had similar

development times to dilp2–3,5 mutants (Table 1), suggesting that

DILPs1, 4 and 7 are not involved in the regulation of

developmental timing.

Organismal growth
Organismal growth was analysed by measuring the body weight

of adult flies (Figure 4B and 4C, Table 1). dilp 3, 4, 5 and 7 single

mutants showed normal body weight. dilp1 and dilp2 mutants

showed a slight reduction in weight (Figure 4B), consistent with the

shorter adult body length seen upon RNAi-mediated knockdown

of DILP1 and DILP2 [17]. Although dilp1 mutants weighed less,

they developed at the same rate as control flies, demonstrating that

growth defects are not necessarily coupled with a delay in

development. Intriguingly, dilp6 mutants showed the biggest

reduction in body weight of all dilp single mutants (Figure 4B).

DILP6 resembles IGFs and is expressed at high levels in the fat

body but not in the MNCs [6], suggesting DILP6 to be an IGF-

like peptide secreted by the fat body that promotes growth during

larval-pupal development.

dilp2–3 mutants weighed as much as dilp2 mutants and only a

minor additional decrease in body weight was seen in dilp1–4

mutants (Figure 4B), likely to be the result of the combined lack of

DILP1 and DILP2. In contrast, body weight of dilp2–3,5 mutants

was severely reduced (Figure 4C), and an even further reduction

was observed in dilp1–4, 5 mutants, which were approximately

50% smaller than controls (Figure 4C). Lack of DILP7 did not

result in a further decrease in body weight of either dilp2–3,5 or

dilp1–4,5 mutants (Figure 4C), suggesting that DILP7 does not

contribute to the regulation of organismal growth.

Table 1. Systematic analysis of DILP function.

Mutant Viability Dev. time

Body

weight

Median

lifespan

Lifetime

fecundity

Paraquat

resistance

Starvation

resistance Lipid Glycogen Trehalose

dilp1 100% NC m: 27%**
f: 27%**

NC NC NC NC NC NC ND

dilp2 100% m: +8h f: +17h m: 25%**
f: 211%**

m: +9%**
f: +8–13%**

225%** NC NC NC NC + 64%*

dilp3 100% NC NC NC 222%* NC NC NC NC NC

dilp4 100% NC NC NC NC NC NC NC NC ND

dilp5 100% NC NC NC 218% (P,0,07) NC NC NC NC NC

dilp641 100% m: +4h m: 210%**
f: 220%**

NC 246%** m: NC m: NC +21% * NC ND

dilp668 100% m: +4h m: 213%**
f: 220%**

ND ND m: NC m: NC ND ND ND

dilp7 100% NC NC NC NC NC NC NC NC ND

dilp2–3 100% ND m: 27%**
f: 27%**

f: +12% ** 227%** NC NC ND ND ND

dilp1–4 100% f: +25h m: 213%**
f: 211%**

NC 214%* +21%* +18%* ND ND ND

dilp2–3,5 100% f 60% m m: +10217d f:
+8217d

f: 242%** NC 269%** +25%** NC +19% ** +72%** ND

dilp1–4, 5 ,100% m: +10217d f:
+8217d

f: 253%** ND ND ND ND ND ND ND

dilp641; 2–3, 5 0% – – – – – – – – –

dilp641; 1–4, 5 0% – – – – – – – – –

dilp668; 2–3, 5 0% – – – – – – – – –

dilp668; 1–4, 5 0% – – – – – – – – –

dilp7; 2–3, 5 100% f 60% m m: +10217d f:
+8217d

f: 241%** ND ND ND ND ND ND ND

dilp7; 1–4,5 ,100% m: +10217d f:
+8217d

f: 252%** ND ND ND ND ND ND ND

ND, not determined; NC, not changed; f, females; m, males. If not indicated otherwise, all data are for Wolbachia-free females. * p,0.05, ** p,0.01.
doi:10.1371/journal.pgen.1000857.t001
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Stress resistance and energy storage
Oxidative stress and starvation resistance of dilp mutants was

analysed by monitoring the survival of females on 20 mM

paraquat and 1% agar, respectively. None of the dilp single

mutants or the dilp2–3 mutants was more resistant to paraquat or

starvation treatment (Table 1, Figure S4, Figure S5A). Addition-

ally, dilp single mutants did not show increased glycogen or lipid

storage, with the exception of dilp6 mutants, which had slightly

increased lipid levels (Figure S5B, S5E). Whole body trehalose

levels were increased in dilp2 mutants, but not changed in dilp3 or

dilp5 mutants (Figure S5D), consistent with the previous suggestion

that stored trehalose levels are specifically regulated by DILP2

[18].

dilp1–4 mutants were slightly more resistant to paraquat and

starvation treatment than controls, and dilp2–3,5 mutants were

highly resistant to oxidative stress, as demonstrated by their

increased survival under both paraquat and hydrogen peroxide

treatment (Figure S4). However, and in contrast to MNC ablated

flies, they were not resistant to starvation (Figure S5), even though

they stored more energy in the form of glycogen (Figure S5C) and

lipids (Figure S5F). This finding suggests either that lack of DILPs

other than DILP2, 3 or 5 is causal for the increased starvation

Figure 4. Development time and body weight of dilp mutants. (A) Egg-to-adult development time of dilp mutants. Only the hatching period
of the adult flies is shown. Rectangle: males (m), circle: females (f). (Note: number of heterozygous flies was halved to adjust to the number of
homozygous and w control flies.) (B) Body weight of dilp mutant (red) males (m) and females (f) compared to controls (black). (n = 20 flies). (C) Body
weight of female flies that lack multiple dilp genes. (n = 40 f; dilp1–4,5 n= 20 f; dilp7,1–4,5 n= 18 f). Wolbachia+ flies (wDah) weigh more than
Wolbachia- flies (wDahT). Body weight in (B,C): wDahT background, except for dilp1–4 mutants: w1118. ** p,0.01, t-test.
doi:10.1371/journal.pgen.1000857.g004
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resistance of MNC-ablated flies, or that MNCs mediate starvation

resistance independent of DILP function. The latter is consistent

with the proposed function of the dARC1 protein in MNCs, which

has been suggested to control the behavioural response to

starvation, the lack of which might induce starvation resistance [33].

Adult lifespan
MNC-ablation experiments have suggested a role for DILPs in

the determination of lifespan [11,34]. In particular DILP2 has

been proposed by a number of studies to play an important role,

because of its transcriptional down-regulation in mutant, long-

lived flies [14–17]. However, this view has been challenged

recently by the finding that RNAi-mediated knock-down of DILP2

is not sufficient to extend lifespan in flies [18].

We measured the lifespans of all seven dilp null mutants using

female flies kept on standard food. We did not observe lifespan-

extension in dilp1, 3, 4, 5, 6 or 7 mutants (Figure S6A). However,

in contrast to dilp2 RNAi hypomorphs, dilp2 null mutants were

significantly longer-lived than controls (Figure 5). An increase

between 8% and 13% in median lifespan was observed in four

independent trials, two genetic backgrounds and in dilp2 mutants

originating from independent homologous recombination events

tested individually or as transheterozygotes (Figure 5 and data not

shown). Furthermore, a 9% extension of median lifespan was also

observed for dilp2 mutant males, demonstrating that DILP2 is

limiting for lifespan in both sexes. dilp2–3 mutants were also long-

lived, although no more so than dilp2 mutants (Figure 5).

Interestingly, while heterozygous dilp2–3,5 mutants were slightly

long-lived, neither homozygous dilp2–3,5 mutants nor dilp1–4

mutants showed an increased median lifespan under standard food

conditions (Figure 5, Figure S6A). However, maximum lifespan of

homozygous dilp2–3,5 mutants was increased by 14%, as reported

Figure 5. dilp2 mutant flies are long-lived. Survival curves of dilp mutant flies on standard food. Lack-of DILP2 extends median lifespan in two
independent genetic backgrounds (w1118 and wDahT) and in both sexes. Combined knock out of DILP2 and 3 results in increased lifespan. In contrast
to MNC-ablated flies, homozygous w1118; dilp2–3,5 mutants do not show increased median lifespan. However, median lifespan is slightly increased in
dilp2–3,5 heterozygous flies. ** p,0.001, log-rank test.
doi:10.1371/journal.pgen.1000857.g005
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for the demographic aging of flies in which MNC were ablated

early during development [35]. These findings might suggest that

the strong reduction in insulin signalling in these mutants

produced a general decrease in adult viability as well as a slowing

down of the increase in death rates with age.

The intracellular symbiont Wolbachia pipientis, a maternally

transmitted bacterium, has been shown to modulate longevity in

wild type and mutant stocks of Drosophila [36,37] and has recently

been suggested to reduce the severity of IIS mutants by increasing

IIS downstream of the DInR [38]. Therefore, we decided to test

the influence of Wolbachia on lifespan and other fitness-related

traits of dilp2–3,5 mutants (Figure 6A–6E). Intriguingly, Wolbachia-

positive wDah;dilp2–3,5 mutants were extremely long-lived, showing

an increase on standard food in both median and maximum

lifespan of 29% and 22%, respectively, compared to wDah controls

(Figure 6A). Lifespan extension was even more pronounced on a

high yeast diet with an increase of up to 55% and 27% in medium

and maximum lifespan, respectively (Figure 7G). In contrast,

Wolbachia had no effect on the lifespan of wild type flies (Figure 6A),

confirming that lifespan extension of dilp2–3,5 mutants is the result

of a specific interaction between Wolbachia and the IIS pathway.

However, Wolbachia did not affect IIS pathway activity as

Figure 6. Wolbachia-dependent lifespan extension of dilp2–3,5 mutants is correlated with xenobiotic resistance. Wolbachia affects
longevity (A) and xenobiotic resistance (E) of dilp2–3,5 mutants, but not fecundity (B), starvation (C) or oxidative stress resistance (D). (A) Median and
maximum lifespan of wDah;dilp2–3,5 females (83/92,5 days) compared to wDah (64,5/76 days) control females is increased by 29% and 22%,
respectively. ** p,0.001, log rank test. In contrast, wDahT;dilp2–3,5 (62,5/81 days) only show a small increase in maximum, but not in median lifespan
compared to wDahT (64,5/74 days) females. (B) Index of lifetime fecundity of dilp2–3,5 females is reduced to 30% but not affected by Wolbachia
infection. Shown is the cumulative number of eggs laid by an average female. ** p,0.01, Wilcoxon rank sum test. (C–E) Survival of dilp2–3,5 females
with and without Wolbachia on (C) 1,5% agarose, (D) 5% hydrogen peroxide and (E) DDT (275 mg/l). ** p,0.01, log rank test. (F) PCR analysis
confirms the presence of Wolbachia in wDah flies and the absence in Tetracycline-treated wDahT flies. (G) Q-RT-PCR analysis shows that 4E-BP
expression is not affected by Wolbachia-infection status. 4E-BP transcript level in Wolbachia- flies was normalised to the corresponding Wolbachia+
sample, which by default was set to 1.
doi:10.1371/journal.pgen.1000857.g006
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Figure 7. Dietary restriction in Drosophila is mediated by DILPs. (A–C) dilp 2, 3 or 5 single mutants exhibit a normal response to DR compared
to wild type controls. (D) Compensatory regulation among MNC-expressed DILPs on a high yeast diet. Expression levels of DILP2, 3 and 5 were
measured by Q-RT-PCR on RNA extracted from heads of 10 day old dilp mutant females kept on 2.0x food. * p,0.05. (E–H) In two independent trials
dilp2–3,5 mutants failed to show a normal response to DR. (E,F) wDahT; dilp2–3,5 mutants (Wolbachia-). (G,H) wDah; dilp2–3,5 mutants (Wolbachia+)
Bars: index of lifetime fecundity6standard error of mean; connected points: median lifespan in days. dilp2–3,5mutants in red, wDahT controls in black/
blue.
doi:10.1371/journal.pgen.1000857.g007
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measured by 4E-BP expression. Although 4E-BP was up-regulated

in dilp2–3,5 mutants (Figure 3B), there was no significant

difference in 4E-BP expression between dilp2–3,5 mutants or wild

type flies, respectively, with and without Wolbachia (Figure 6G).

Some other consequence of insulin signaling must therefore

mediate the effects of Wolbachia.

Intriguingly, althoughWolbachia is well known to manipulate the

reproductive system of its host, we did not detect significant

differences in fecundity between mutants or controls with or

without bacterial infection (Figure 6B), and nor did it have an

effect on development time (data not shown) or energy storage

(Figure S5C, S5F). Wolbachia did affect growth, but not by

increasing IIS; flies without Wolbachia infection had significantly

lower body weights than flies carrying the bacterium (Figure 4C),

but this effect was seen in wild type and dilp2–3,5 mutants.

Wolbachia infection status did not change survival of dilp2–3,5

mutants under starvation or hydrogen peroxide treatment

(Figure 6C and 6D), suggesting that oxidative stress resistance of

wDah;dilp2–3,5 mutants is not causal for their increased lifespan. In

contrast, Wolbachia-positive dilp2–3,5 mutants were more resis-

tant to DDT treatment than Wolbachia-free dilp2–3,5 mutants

(Figure 6E), which suggests that xenobiotic resistance may

contribute to their increased longevity.

Fecundity
IIS has been implicated in the maintenance of germ-line stem

cells (GSC) in Drosophila and over-expression of DILP2 suppressed

GSC loss in adult females [13]. Consistently, dilp2 mutant females

exhibited a significantly reduced lifetime egg-production (225%)

compared to control flies (Figure S6B). However, fecundity was

already reduced in young 3 day old dilp2 mutant females (data not

shown), suggesting that at least part of the phenotype is caused by

developmental defects, consistent with results from flies with

ablated MNCs [34]. A small decrease in fecundity was also

observed in dilp3 (222%), dilp5 (218%), dilp2–3 (227%) and

dilp1–4 (214%) mutants (Figure S6B). In contrast, egg-production

of dilp2–3,5 mutants was more severely reduced (269%,

Figure 6B), suggesting that DILP2, 3 and 5 can act redundantly

in the control of egg-production. Notably, dilp2–3,5 females are

not completely sterile like other strong IIS pathway mutants e.g.

homozygous chico females [39]. Thus, the finding that dilp6
mutants exhibited the strongest reduction in fecundity of all dilp

single mutant females (246%, Figure S6B) suggests that egg-

production is under the combined control of DILPs expressed in

MNCs and the fat body. In contrast, fecundity was not

significantly reduced in dilp1, 4 and 7 mutants, the latter contrary

to the suggestion that DILP7 may be a Drosophila relaxin [7].

Increased lifespan and reduced fecundity in response to
dietary restriction are mediated by DILPs
DR and IIS have been suggested to act via overlapping

mechanisms to extend lifespan in flies [19,22], and the abundance

of dilp5 mRNA is reduced in DR flies [20], suggesting a possible

role for DILP5 in the flies’ responses to DR. To determine

whether DILPs contribute to the DR response, we measured the

lifespan of dilp2, 3 and 5 mutant females (Figure 7A–7C) under

DR. The dilp single mutants showed a normal DR response, with a

peak in lifespan on 1.0x food and the shortest lifespan on 2.0x food

observed for both mutants and controls. Except for starvation

conditions (0.1x), dilp2 mutants were long-lived on all food types,

suggesting that the lack of DILP2 causes lifespan-extension

independent of yeast concentration (Figure 7A). dilp5 mutants

showed a normal DR response, demonstrating that DILP5 is not

essential for DR mediated lifespan extension. However, lack of

DILP5 may be compensated for by up-regulation of other DILPs

on the higher yeast concentrations. We therefore measured DILP

transcript levels in the dilp mutants on 2.0x food (Figure 7D).

Whereas the transcriptional regulation of DILP transcripts in dilp2

and dilp3 mutants was similar on low (1.0x) and high (2.0x) yeast

concentrations (compare Figure 7D to Figure 3C), in dilp5 mutants

expression of DILP2 was up-regulated on 2.0x food (Figure 7D),

suggesting that the lack of diet-dependent DILP5 expression was

compensated for by up-regulation of DILP2. Thus, DILPs in the

MNC can act redundantly to mediate the organismal response

to DR.

To test for redundancy, we measured the DR response of dilp2–

3,5 mutant females in two independent trials using flies with

(Figure 7G and 7H) and without Wolbachia (Figure 7E and 7F).

Wolbachia-free dilp2–3,5 mutants failed to show a normal response

to DR. Instead, similar to chico1 mutants, their response was right

shifted [22], with the flies shorter-lived compared to controls on

low but longer-lived on high yeast concentrations (Figure 7E and

7F). The maximum lifespan of dilp2–3,5 mutants did not exceed

the maximum that was achieved by DR alone, consistent with

reduced IIS and DR extending lifespan through the same

mechanisms. In addition, whereas wild-type flies showed a strong

increase in egg-production between 1x and 2x food (62–81%),

Wolbachia-free dilp2–3,5 mutants only laid 26% more eggs on the

higher yeast concentration (Figure 7E and 7F). Absence of these

three DILPs therefore strongly attenuated the response of

fecundity to DR. As in wild type flies only DILP5 expression

was nutritionally regulated, these results suggest that the normal

response to DR is mainly mediated by DILP5.

Interestingly, infection withWolbachia modified the DR response

of dilp2–3,5 mutants. In contrast to Wolbachia-free dilp2–3,5

mutants, these mutants showed extended lifespan at all food

concentrations except for starvation, and their maximum lifespan

far exceeded that achieved by DR treatment alone (Figure 7G and

7H). In addition, the DR response of the Wolbachia-positive dilp2–

3,5 mutant flies was greatly attenuated but not right shifted.

Whereas control flies exhibited a DR-induced lifespan extension of

14–20% and an increase in egg production of 108–123% between

1x and 2x food, dilp2–3,5 mutants showed lifespan extension of

only 2–6% and an increased egg production of 7–48%. Wolbachia

infection status had no effect on the lifespan response to DR of

wild type control flies, consistent with previous findings [40]. In

conclusion, the DR response of Wolbachia-containing dilp2–3,5

mutants revealed both that these ligands mediate the responses to

DR and that reduced IIS extends lifespan through mechanisms

that both overlap with those of DR and through additional

mechanisms that are independent of those at work in DR.

Discussion

We conducted a systematic mutational analysis of the 7 dilp

genes of Drosophila melanogaster. Our results show that, while most

dilp single mutants had only very mild or no obvious phenotypes,

combinatorial lack of several DILPs resulted in more severe

phenotypes, dependent upon the identity and number of DILPs

knocked out, demonstrating that DILPs can act redundantly.

Population-genetic theory suggests that newly duplicated gene

copies can be evolutionarily unstable due to their functional

overlap and that one copy may hence be rapidly lost. However,

sufficiently rapid divergence in sequence and function can result in

retention of partially redundant genes [23]. We have shown that

the 7 dilp genes have been evolutionary conserved during the more

than 40 million years of evolution of the genus Drosophila. Although

this time span may seem to be small on a geological timescale,

Functional Analysis of Drosophila dilp Genes

PLoS Genetics | www.plosgenetics.org 12 February 2010 | Volume 6 | Issue 2 | e1000857



when generation time is taken into account the evolutionary

divergence spanned by the genus Drosophila exceeds that of the

entire mammalian radiation [26].

One hallmark of evolutionarily conserved redundancies is

differential expression of redundant genes either spatially or

temporally [24,41]. Consistently, although dilp genes have

overlapping expression domains, e.g. DILP1, 2, 3 and 5 are co-

expressed in MNC during larval development [5,10], each dilp

gene also has its own spatio-temporal expression pattern [9] and

thereby different DILPs may regulate the same process during

different stages of the fly’s lifecycle. This is supported by the

consecutive activation of DILP2 (first instar), DILP5 (second

instar) and DILP3 (mid-late third instar) expression in MNC

during development, likely to reflect the requirement for higher

DILP levels to support the extensive growth happening especially

in later larval stages. Remarkably, only dilp2 single mutants

showed developmental delay and reduced growth, suggesting that

DILP3 and DILP5 cannot compensate fully for the lack of DILP2

expression. dilp2–3,5 triple mutants showed a much more severe

delay in larval development and larval growth, suggesting that

DILP2, 3, and 5 are the main DILPs controlling growth during

larval stages, while the fat body expressed dilp6 gene has been

shown to control growth specifically during pupal development

[31]. Thus, individual dilp genes use specific enhancer elements

resulting in specific spatio-temporal expression, which may

explains why the redundant dilp genes are stable during the

evolution of Drosophila flies.

A related explanation for the evolutionary stability of the dilp

gene family could be that, while DILPs act in part redundantly,

they are evolutionarily conserved due to diversification of some of

their functions. In support, RNAi-mediated knock-down of DILP2

reduced stored trehalose levels to the same extent as in flies with

ablated MNC [18]. We confirmed this finding using the dilp2

mutants and further showed that dilp5 and dilp3 single mutants

have normal trehalose levels, suggesting that stored trehalose levels

are specifically regulated by DILP2. However, we found no

evidence for other specific functions of individual dilp genes, which

was especially surprising for the evolutionarily more highly

conserved DILP4 and DILP7 peptides. DILP7 is the only DILP

with bona fide orthologues outside the Drosophila genus and does not

seem to act redundantly with the other DILPs, suggesting that it

has a specific and important function. Nevertheless, dilp7 mutants

are viable, have a normal lifespan and are fertile, with no

reduction in fecundity. DILP7 has been suggested to be a

Drosophila relaxin based on the observation that DILP7 neurons

project to the female reproductive tract and that silencing of these

neurons results in sterile females that exhibit an egg-jamming

phenotype [7]. However, our results demonstrate that the sterility

of these flies is not due to the lack of DILP7 secretion. Thus, the

function of DILP7 and its relatively high evolutionary conserva-

tion is currently unclear.

dilp4 null mutants showed no obvious phenotypes and we found

no evidence that DILP4 acts redundantly to the other DILPs.

Interestingly, however, by using a DILP4-specific antibody we

detected expression of DILP4 in neurons within the brain. The

DInR has been shown to be required for axon guidance of

photoreceptor-cells during development of the visual system [42],

however the ligands mediating this guidance are not known. The

neuronal expression may indicate a possible function for DILP4 in

axon guidance, which could be experimentally tested in future

studies by using the dilp4 null mutants.

A hallmark of redundant genes is that they are typically cross-

regulated by negative feedback [24]. Accordingly, we found up-

regulation of DILP3 and DILP5 transcript levels in dilp2 mutants,

consistent with results obtained upon RNAi-mediated knock-down

of DILP2 [18]. We also found up-regulation of DILP2 and DILP3

transcript in dilp5 mutants. While expression of DILP4 and DILP7

was not significantly changed in dilp2–3,5 mutants (Figure 3B),

which suggest that these two DILPs are not part of the MNC

negative feedback system, the fat body expressed dilp6 gene was

strongly up-regulated in the triple mutant flies (Figure 3B).

Furthermore, the combined lack of DILP2, 3, 5 and 6 resulted

in lethality, indicating that DILP6 can act redundantly to DILP 2,

3 and 5 and suggesting the existence of a negative feedback system

that acts to coordinate DILP expression between MNC in the

central nervous system and the peripheral fat body tissue

(Figure 3E). The negative feedback system is not restricted to the

compensatory regulation of DILP transcript levels, but also

involves down-regulation of ImpL2 (Figure 3B), a negative

regulator of IIS that directly binds to DILPs and inhibits their

function [32].

Interestingly, we found evidence for synergy between the DILPs

in the MNCs. DILP2 and DILP5 were both down-regulated in

dilp3 mutants (Figure 3C and 3D), which is consistent with the

decreased expression of DILP2 and DILP5 upon RNAi-mediated

knock down of DILP3 [34]. In their study Buch et al. interpreted

the combined down-regulation as an experimental artefact of the

DILP3 RNAi construct due to high sequence homology among

the three dilp genes [34]. However, the DILP3 RNAi-construct

does not contain any off-targets for DILP2 or DILP5 (data not

shown) suggesting that the down-regulation of DILP2 and DILP5

is not an experimental artefact but rather that the transcription of

these two DILPs is positively regulated by DILP3. Thus, DILP3

might be part of a positive feedback system that acts in an

autocrine/paracrine manner to regulate expression of DILPs in

MNCs (Figure 3E).

Previous work has shown that the transcript levels of DILP3, but

not of DILPs 2 and 5, are reduced in dFOXO null mutants [18]. In

addition, putative FOXO bindings sites were found to be enriched

in the DILP3 promotor region, suggesting that DILP3 levels are

regulated by the IIS pathway itself [18]. Interestingly, a similar

feed back system has been described for the mammalian analogue

of MNC, the pancreatic beta cells, in which insulin regulates its

own production [43,44], suggesting that this feedback system has

been evolutionary conserved from insects to mammals.

These findings suggest that autoregulation of DILP3 maintains

a necessary minimal level of IIS pathway activity in MNC. In case

IIS activity drops below a certain threshold, dFOXO is activated,

which in turn upregulates DILP3 expression. The increase in

DILP3 levels then causes an additional increase in transcript levels

of DILPs 2 and/or 5 (Figure 3E).

Head fat body-specific over-expression of dFOXO has been

shown to cause increased lifespan, systemic effects on lipid storage

and reduced expression of DILP2 in MNCs [14]. However,

molecules mediating the systemic effects of the tissue-specific

dFOXO expression have not yet been identified. The findings that

DILP6 is both part of a negative feedback system between the fat

body and MNCs, which are involved in lifespan and lipid storage

regulation, and a direct dFOXO target gene [31] makes DILP6 a

good candidate to mediate systemic effects of dFOXO expression.

dilp6 mutant flies were not long-lived, but they will allow testing of

whether lifespan extension upon dFOXO over-expression is

dependent on DILP6.

In conclusion, DILPs expressed in the MNC and the fat body

act redundantly to regulate development, metabolism, reproduc-

tion and lifespan and their expression is tightly controlled by both

negative and positive feedback mechanisms (Figure 3E). The fly

may utilize the presence of redundant DILP copies to downplay
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stochastic variations in DILP expression or secretion in response to

varying external conditions [24]. Synergy of expression, based

upon autoregulation through IIS pathway activity, may enable

rapid detection of and a systemic response to conditions that lower

pathway activity. Because DILPs respond to nutritional changes

this may also have helped Drosophila flies to adapt to new

environments and food sources and thereby facilitated their

evolution, generating flies with different feeding habits ranging

from generalists like D. ananassae to specialists like D. sechellia.

Although, except for DILP7, bona fide orthologues for the other

DILPs could not be identified outside the Drosophilidae, most

animals contain several ILPs, suggesting that, as in Drosophila,

redundant ILPs may be of evolutionary advantage.

Specific interaction of Wolbachia and IIS in lifespan
regulation
Wolbachia pipientis are maternally-inherited, obligate intracellular

bacteria that are extremely widespread among wild and laboratory

Drosophila populations [45] and their presence has been associated

with parasitic and/or endosymbiontic modification of host fitness-

related traits including lifespan [36,37]. Interestingly, specific

interaction between Wolbachia strain and host genotype have been

demonstrated, e.g. Wolbachia can suppress the sterility phenotype

of sex-lethal mutants or modify the longevity of a long-lived

Drosophila strain [37,46]. Here we show that longevity of dilp2–3,5
mutant flies is dependent on the presence of a maternally derived

factor that can be removed by treatment with Tetracycline, most

likely Wolbachia. The Tetracycline treatment itself is unlikely to

have caused any negative effects because wild type flies with and

without Wolbachia were phenotypically indistinguishable, except

for their different body weight. Furthermore, dilp2–3,5 mutants

had the same median lifespan as control flies in two Wolbachia-free

genetic backgrounds, which demonstrates that the lack of lifespan

extension is not specific to the outbred wDahT strain. Wolbachia-

positive dilp2–3,5 mutants were extremely long-lived and had a

prolonged survival under DDT treatment. Increased resistance to

xenobiotic compounds has previously been associated with

increased longevity [47]. For example, long-lived Little mice,

mutant for the GH-releasing hormone receptor gene have been

shown to be resistant to xenobiotic toxicity and show concerted

up-regulation of xenobiotic detoxification genes [48,49]. Further-

more, long-lived IIS mutant C. elegans and Drosophila also show

increased expression of genes involved in xenobiotic metabolism

[50], suggesting that xenobiotic resistance may contributes to the

lifespan extension of wDah,dilp2–3,5 mutant flies. However,

compared to control flies Wolbachia-free dilp2–3,5 mutants also

showed increased survival under DDT treatment (Figure 6E),

demonstrating that increased xenobiotic resistance alone was not

sufficient to increase lifespan, suggesting that in addition other

mechanisms contribute to the Wolbachia-dependent lifespan

extension of dilp2–3,5 mutants. However, the molecular mecha-

nisms by which Wolbachia influences its host are currently

unknown.

Notably, lifespan extension of dilp2 and dilp2–3 double mutants

was not dependent on the presence of Wolbachia (Figure 5),

demonstrating that Wolbachia is not in general essential for lifespan

extension due to reduced IIS in Drosophila. However, this finding

raises the question why Wolbachia is essential for lifespan extension

in one IIS mutant but not in another. There may exist an optimal

range of down-regulation of IIS pathway activity in order to

extend lifespan. In contrast to the relative mild phenotypes of dilp2

or dilp2–3 mutants, the combined loss of DILP2, 3 and 5 causes

severe developmental and metabolic phenotypes, which may be

detrimental to the flies, and Wolbachia may attenuate the

expressivity of the dilp2–3,5 mutant phenotype. Recently, it has

been suggested that Wolbachia acts to increase insulin signaling

downstream of the DInR and thereby attenuates the phenotype of

flies overexpressing a dominant negative DInR [38]. In contrast to

these results we did not observe changes in IIS pathway activity

when comparing expression of the IIS target 4E-BP in flies with or

without Wolbachia. In addition, we found no difference in egg-to-

adult survival, development time, energy storage, stress resistance

or fecundity between dilp2–3,5 mutants with or without Wolbachia.

This observation suggests either that lifespan, in contrast to the

other traits, is very sensitive to even small changes in IIS activity or

that Wolbachia mediates lifespan extension of dilp2–3,5 mutants by

another mechanism.

The interaction between Wolbachia and its Drosophila host are

complex and dependent both on the Wolbachia strain as well as the

genetic background of the fly line. In addition, rapid co-evolution

between Wolbachia and its host has been demonstrated [51]. In our

study we analysed the interaction between IIS and one Wolbachia

strain in the context of its natural host, the outbred wDahomey line.

For future studies it will be interesting to determine whether this

interaction is specific for Dahomey flies and its co-evolved Wolbachia

strain, or whether other Wolbachia strains and/or other Drosophila
wild type lines have the same effect on IIS.

DILPs mediate the response to dietary restriction in
Drosophila
Dietary restriction, the reduced availability of nutrients without

malnutrition, extends lifespan in a wide variety of organisms

including worms, flies and mammals. However, the underlying

molecular pathways mediating the effect of DR on lifespan are still

elusive. In Drosophila, IIS and DR have been suggested to act

through overlapping mechanisms, based on the DR response of

chicomutants, which are short-lived on low food concentrations but

long-lived on high food concentrations [22]. However recently the

relevance of IIS for the response to DR in Drosophila has been

challenged by the finding that flies mutant for the downstream

target of IIS the transcription factor dFOXO are short-lived, but

respond equally well to DR as control flies [19,20]. Here we

present evidence that DR in Drosophila is mediated by the up-

stream ligands of IIS, DILPs, expressed in the MNCs. Although

dilp single mutants responded as strongly to DR as did control flies,

the DR response of dilp2–3,5 mutants was either severely

attenuated or completely blocked, depending on the presence of

Wolbachia, suggesting that DILPs can act redundantly in mediating

the response to DR. Additionally, transcript levels of DILP5 were

found to be regulated in a diet-dependent manner. Whereas

DILP2 and DILP3 transcript levels remained constant across diets,

the abundance of DILP5 mRNA was reduced in dietary restricted

flies [20], suggesting that, under normal conditions, the response

to DR is mediated by DILP5. However, when DILP5 is missing

other DILPs may compensate the lack of diet-induced DILP5

expression, consistent with the up-regulation of DILP2 transcript

in dilp5 mutants on high yeast food only. RNAi-mediated knock-

down of DILP3 has been shown to reduce DILP5 transcript levels

and to block diet-dependent changes in DILP5 transcription and

these flies respond normally to DR treatment [20], which we could

confirm using the dilp3 null mutant flies. However, this finding

does not exclude a function for DILP5 in the response to DR, as

DILP5 peptide is still present and could be regulated on the level

of protein stability or secretion.

Thus, ligands of IIS mediate the changes in longevity seen

under DR conditions in Drosophila, which raises the question why

do mutants of the IIS downstream effector dFOXO show a

normal response to DR. One explanation could be that dFOXO is
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involved in the response to DR under normal conditions but in its

absence another pathway mediates the life span extension seen

upon DR treatment. Fat body specific over-expression of dFOXO

extends lifespan in a nutrient dependent manner, which would be

consistent with a role of dFOXO in DR [19]. In C. elegans, the

forkhead transcription factor pha-4, a Foxa orthologue, was shown

to be required for lifespan extension under DR [52] and its fly

orthologue would therefore be a candidate to mediate DR in the

fly, redundant to IIS. The Target of Rapamycin (TOR) pathway

has been linked to the determination of lifespan in flies and worms

and lifespan-extension by decreased TOR signalling is dependent

on nutritional conditions, suggesting a possible link between the

TOR pathway and DR [53,54]. The IIS pathway regulates TOR

activity through the protein kinase AKT(PKB), an IIS component

downstream of DILPs and Chico but upstream of dFOXO [1].

Thus, in Drosophila upstream IIS components such as DILPs and

Chico may mediate the response to DR via the TOR pathway but

not through the IIS downstream effector dFOXO.

Strong evolutionary conservation of dilp gene family membership

and sequence differentiation has thus been accompanied by

functional differentiation, redundancy and synergy between DILPs,

and these features may themselves be of evolutionary advantage.

Materials and Methods

Ends-out homologous recombination
dilp mutants were generated by ends-out homologous recombi-

nation according to the methods described in [30,55]. All fly stocks

are summarized in Table S1. Donor constructs used for targeting

dilp genes are summarized in Table S2. DNA fragments

homologous to approximately 4 kb of dilp gene flanking sequences

were amplified by PCR and subsequently cloned into the pW25

vector [55]. pw25 was obtained from the Drosophila Genomics

Resource Center, (Bloomington, Indiana, USA). Long-range PCR

was done using Takara LA Taq polymerase (Lonza, UK) on BAC

clone DNA as template. BAC clones RP98-7A5 for dilp1–5 and

RP98-32E2 for dilp7 were obtained from the BACPAC Resource

Center (Oakland, California, USA). Primer sequences and

restriction sites used for subcloning into pw25 are summarized

in Table S3. DILP donor constructs were full-length sequenced

and checked for base pair substitutions in gene coding sequences

before used to generate transgenic flies. DNA constructs were

transformed into the germline of Drosophila melanogaster by P-

element-mediated germ line transformation using the Best Gene

Drosophila Embryo Injection Services, (Chino Hills, California,

USA). Crosses for ends-out homologous recombination were

carried out according to the rapid targeting scheme [56].

Subsequently, the whitehs marker gene was genetically mapped

and homologous recombination events were identified by PCR.

In order to generate dilp2–3,5 and dilp1–4,5 mutants, homol-

ogous recombination was done using flies carrying the dilp5 donor

construct and hs-FLP, hs-SceI in the dilp2–31 and dilp1–41 mutant

background, respectively.

Generation of dilp6 mutants
y1 P{y[+mDint2] w[BR.E.BR]=SUPor-P}KG04972 [57] flies

that carry an KG-element transposon-construct integration in the

59upstream region of the dilp6 gene at chromosome X position

2,229,002, corresponding to position -2831 relative to the putative

start ATG in dilp6 exon 2, were obtained from the Bloomington

Drosophila stock center, Indiana, USA. dilp6 deletion mutants were

generated by conventional P-element imprecise excision resulting

in the small dilp641 deletion and the large dilp668 deletion. Both

dilp6 alleles contain residual P-element sequence, which impeded

the exact mapping of the 39 breakpoints at the sequence level. By

PCR analysis the 39 breakpoint in dilp641 could be mapped to the

first dilp6 intron, i.e. dilp641 mutant flies lack the first dilp6 exon but

contain the full dilp6 ORF. dilp668 mutants carry a deletion that

covers at least 14 kb of genomic sequence including 5 annotated

genes: dilp6, CG33218, CG2854, CG14050, CG34052.

Backcrossing and Wolbachia
dilp mutants were backcrossed for at least ten generations into

two different wild-type stocks, the inbred lab strain w1118 and the

outbred strain white DahomeyT (wDahT). dilp6 mutants were only

backcrossed into the wDahT background. Naturally, Dahomey flies

carry the intracellular bacterium Wolbachia. wDahT flies were

generated by treating white Dahomey (wDah) flies with Tetracycline

to remove Wolbachia. The presence of Wolbachia was checked by

PCR using a Wolbachia specific primer combination (wsp-81F/

wsp-691R, Table S3 and Figure 6F). w1118 flies do not contain

Wolbachia and were therefore not treated with Tetracycline. Unless

stated otherwise all experiments were done using Wolbachia-free

flies. Flies carrying Wolbachia were generated by backcrossing dilp

mutants into the original wDah background. All backcrossed stocks

were maintained in large numbers in culture bottles on 1,0 SY-A

medium at 25uC on a 12L:12D cycle.

Generation of experimental flies
Experimental flies were generated by crossing age-matched

heterozygous mutants and wild type, heterozygous and homozy-

gous mutant progeny were collected from the same bottle based on

eye colour. (Note: as homozygous dilp5 mutant males could not

unambiguously be identified by their eye colour they were not

used for experiments.) Eggs were collected during a six-hour time

window and the same volume of embryos was transferred to each

rearing bottles (1,0 SY-A) ensuring standard larval density. Flies

eclosed during a 12 h time window were transferred to new bottles

(1,0 SY-A) and left for 48 h to mate (once mated). Subsequently,

flies were sorted under brief CO2 anaesthesia and transferred to

vials. All experiments were conducted at 25uC on a 12 h:12 h

light:dark cycle at constant humidity (65%).

Lifespan, dietary restriction, and fecundity
For lifespan experiments, flies were maintained in vials at a

density of 10 flies per vial on 1.0x SYA medium. Flies were

transferred to new vials every two to three days and the number of

dead flies was counted. DR experiments were done according to

the optimised DR protocol described in [58]. Fly media used for

DR experiments are summarized in Table S4. For fecundity assays

mated females were kept at a density of 5 females per vial. Eggs

were collected during 16–20 hour periods during the first 3–4

weeks. The number of eggs laid per vial at each time point was

counted. Data are reported as the cumulative number of eggs laid

per average female 6 SEM over the whole period. For DR

experiments egg numbers were collected from the lifespan vials.

Development time and body weight
Development time was analyzed by crossing heterozygous

mutant flies and collecting eggs over a period of 3 h. Embryos

were allowed to hatch and first instar larvae were hand picked and

transferred 50 per vial on standard food. When adult flies started

to hatch the number of eclosed homozygous, heterozygous and w

control flies was counted in regular intervals.

For body weight determination flies were briefly anaesthetized

on ice and weighted individually or in pairs on a ME235S analysis

balance (Sartorius Mechantronics).
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Stress test and energy storage
For stress tests 20 once mated females per vial were kept on 1x

SY-A food for 8–10 days before the assay and transferred every

other day. Media used for oxidative stress, starvation and DDT

assays are summarized in Table S4. For DDT treatment time to

knock-down was measured. Organismal lipid, glycogen and

trehalose content of 8–10 day old females was quantified as

described [18,59].

Western blot and immunohistochemistry
DILP2 Western blots were done as described [18]. Immuno-

histochemistry on fly brains of 8–10 day old females was done

according to the procedures described in [11]. The following

primary antibodies were used: anti-DILP2 (rabbit), anti-DILP3

(rabbit), anti-DILP4 (rabbit) and anti-DILP5 (rat). Pictures were

taken using an LSM 510 confocal microscope (Zeiss).

Quantitative RT–PCR
Total RNA was extracted from 25 fly heads or 25 bodies using

Trizol (Gibco) according to the protocol of the manufacturer.

cDNA was prepared using the Superscript II RT system

(Invitrogen) and oligo(dT) primer. Quantitative RT-PCR was

performed on a PRISM 7000 sequence detection system using

SYBR green master mix (Applied Biosystems) and four indepen-

dent RNA extractions per genotype. Results were calculated

according to the standard curve method and normalized using

act primers. Primers used for Q-RT-PCR are summarized in

Table S3.

Data analyses
Lifespan and stress assays were recorded using Excel and were

subjected to survival analysis (log rank test) and presented as

survival curves. Fecundity data were analysed using the Wilcoxon

rank test. Q-RT-PCR, glycogen, trehalose and lipid data were

recorded in Excel and analysed using Student’s t-test.

Supporting Information

Figure S1 Amino acid sequence comparison of Drosophila DILPs.

(A) Amino acid alignments of the 7 DILP pre-propeptides from the

12 sequenced Drosophila species. Amino acids identical to the

Drosophila melanogaster sequence are shaded in yellow. A red cross

indicates putative basic cleavage sites; an asterisk marks conserved

cysteine residues putatively involved in disulfide bridge formation.

(B) Comparison of amino acid sequence identity between the seven

DILPs of Drosophila melanogaster and Drosophila grimshawi. (SP: signal

peptide).

Found at: doi:10.1371/journal.pgen.1000857.s001 (1.10 MB TIF)

Figure S2 Long-range PCR analysis of DILP homologous

recombination events. DILP homologous recombination events

were tested by long-range PCR on genomic DNA using one

primer specific for the whitehs marker gene in combination with one

primer specific for the targeted gene region but located outside the

respective genomic sequence used in the knock out donor

constructs (for details see Text S1). Most targeting events identified

by PCR were precise homologous recombinations (see example for

DILP3). Arrow marks shorter PCR product in fly line dilp39,

indicative for an imprecise homologous recombination event.

Only DILP knock-out lines with precise homologous recombina-

tion events were used for subsequent experiments. C: control, wild

type for tested genomic region. M: DNA Marker (HyperLadder I,

Biogene). 59, 39: amplification of gene region 59 or 39 adjacent to

the whitehs marker gene integration site, respectively. (Note: In the

absence of a bona fide PCR template the long range PCR

polymerase often produced unspecific PCR products in the wild

type controls indicated by an asterisk.

Found at: doi:10.1371/journal.pgen.1000857.s002 (1.11 MB TIF)

Figure S3 dilp mutants generated by homologous recombination

are specific DILP protein null alleles. Specific lack of DILP protein

expression in dilp2 mutants (D-F), dilp3 mutants (G-I), dilp5

mutants (J-L), dilp2–3 mutants (M) and dilp4 mutants (O) is

confirmed by immunohistochemistry on adult fly brains using

antibodies directed against DILP2 (A, D, G, J, M), DILP3 (B, E,

H, K), DILP5 (C, F, I, L) and DILP4 (N-O). (A-M) Magnification

of MNCs, (N-O) whole fly brain. Antibody staining on wild type

(wt) brains confirms expression of DILP2 (A), 3 (B) and 5 (C) in

MNCs. dilp2 mutants specifically lack expression of DILP2 (D) but

not of DILP3 (E) or DILP5 (F). Accordingly, dilp3 mutants

specifically lack expression of DILP3 (H) but not of DILP2 (G) and

DILP5 (I) and dilp5 mutants lack expression of DILP5 (L) but not

of DILP2 (J) or DILP3 (K). Note: D/F, G/I and J/L show the

same fly brain stained with aDILP2 and aDILP5, respectively. (M)

Lack of DILP2 expression in dilp2-3 double mutants. (N) Using an

antibody targeted against DILP4 we found DILP4 to be expressed

in neurons throughout the brain. The neuronal antibody staining

is specific, as it was absent from dilp4 mutant brains (O) (Note: a

few cells are stained in the dilp4 null mutant brains, probably a

result of unspecific activity of the DILP4 antibody). Scale bar:

20 mm.

Found at: doi:10.1371/journal.pgen.1000857.s003 (9.79 MB EPS)

Figure S4 Redundant function for DILPs in oxidative stress

resistance. Survival of 10-day-old dilp mutant female flies on

standard food containing 20mM paraquat. Significant paraquat

resistance was only observed for dilp1-4 and dilp2-3,5 mutants.

dilp2-3,5 mutants also showed increased tolerance against

hydrogen peroxide (5% H2O2). (Note: the same w1118 control

was used for dilp1 and dilp7). * p,0.05, ** p,0.01, log rank test.

Found at: doi:10.1371/journal.pgen.1000857.s004 (0.27 MB TIF)

Figure S5 Starvation survival and energy storage of dilpmutants.

(A) Survival of dilp mutant flies on 1% agarose (starvation). (B)

Glycogen content is not changed in dilp single mutants. (C)

Increased glycogen content of dilp2-3,5 mutants is independent of

their Wolbachia infection status. (D) Specific increase of whole fly

trehalose content in dilp2 mutants. (E) Triacylglyceride (TAG)

content of dilp single mutant flies (dilp1, 2, 3, 4, 5: w1118, dilp6, 7:

wDahT background). (F) Increased TAG storage of dilp2-3,5

mutants is not affected by Wolbachia. All experiments in (A-F)

were done using once mated 8-10 day old female flies. * p,0.05,

** p,0.01, t-test.

Found at: doi:10.1371/journal.pgen.1000857.s005 (0.45 MB TIF)

Figure S6 Lifespan and fecundity of dilp mutant flies. (A)

Survival curves and (B) index of lifetime fecundity of dilp mutant

female flies (grey) on standard food compared to controls (black)

(dilp1, 2, 3, 4, 5 in w1118 background; dilp6, 7, 2-3, 1-4 in wDahT

background). (Note: p,0.07 for dilp5 mutants) Shown are

cumulative eggs laid by an average female. * p,0.05, ** p,0.01,

Wilcoxon rank sum test.

Found at: doi:10.1371/journal.pgen.1000857.s006 (0.31 MB TIF)

Table S1 The fly strains used in this study.

Found at: doi:10.1371/journal.pgen.1000857.s007 (0.11 MB

DOC)

Table S2 Plasmids.

Found at: doi:10.1371/journal.pgen.1000857.s008 (0.05 MB

DOC)
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Table S3 PCR oligonucleotide primer.

Found at: doi:10.1371/journal.pgen.1000857.s009 (0.14 MB

DOC)

Table S4 Fly media.

Found at: doi:10.1371/journal.pgen.1000857.s010 (0.05 MB

DOC)

Text S1 Phylogenetic analysis; long-range PCR analysis of dilp

homologous recombination events; dilp6 59 RACE.

Found at: doi:10.1371/journal.pgen.1000857.s011 (0.06 MB

DOC)
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