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The incidence of adenocarcinoma of the esophagus
has been increasing in developing countries over the
last three decades and probably reflects a genuine
increase in the incidence of its recognized precursor
lesion, Barrett’s metaplasia. Despite advances in mul-
timodality therapy, the prognosis for invasive esoph-
ageal adenocarcinoma is poor. An improved under-
standing of the molecular biology of this disease may
allow improved diagnosis, therapy, and prognosis.
We focus on recent developments in the molecular
and cell biology of Barrett’s metaplasia, a heteroge-
neous lesion affecting the transitional zone of the
gastro-esophageal junction whose associated molecu-
lar alterations may vary both in nature and tempo-
rally. Early premalignant clones produce biological
and genetic heterogeneity as seen by multiple p53
mutations, p16 mutations, aneuploidy, and abnormal
methylation resulting in stepwise changes in differ-
entiation, proliferation, and apoptosis, allowing dis-
ease progression under selective pressure. Abnormal-
ities in expression of growth factors of the epidermal
growth factor family and cell adhesion molecules,
especially cadherin/catenin complexes, may occur
early in invasion. Exploitation of these molecular
events may lead to a more appropriate diagnosis and
understanding of these lesions in the future. (Am J
Pathol 1999, 154:965–973)

Gastroesophageal reflux disease is arguably the most
common medical condition in Western countries; 30% of
adults complain of heartburn at least once per month.1

Chronic esophagitis has been shown to limit physical and
social activity, resulting in quality of life scores as poor as
those provided by angina patients awaiting coronary by-
pass surgery. Forty percent of patients with esophagitis
will improve spontaneously, 50% will have persistent
esophagitis, and up to 10% will progress to Barrett’s
esophagus (BE).2–4 Evidence indicates that the preva-
lence of BE3 and its sequelae are both increasing, espe-
cially in the sixth decade of life in males.2 There is com-
pelling etiological evidence that acid refluxate is the
major factor in progression from benign esophagitis to
BE.1 The association between pathological acid expo-
sure and esophagitis, especially in short segment Bar-
rett’s metaplasia, is, however, only 60%, which suggests
that in up to 40% of cases other factors like nocturnal
bile,4 nonsteroidal anti-inflammatory drugs, radiotherapy,
chemotherapy,1 caustic agents, nitrosamines, Helico-
bacter colonization, or familial predisposition may be
causative.5

The classic endoscopic feature of BE is the presence
of salmon pink mucosa. Histologically, the presence of
specialized intestinal metaplasia containing goblet cells
is characteristic (Figure 1). Short-segment Barrett’s
esophagus (SSBE), ie, Barrett’s metaplasia less than 3
cm in length, is found in 8–20% of adult individuals,
making it more prevalent than long-segment Barrett’s
esophagus (LSBE) (1% adult prevalence)6–10 (Table 1).
Despite this fact, only 35% of esophageal adenocarcino-
mas arise in SSBE; therefore, the true cancer risk in SSBE
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is presently unclear but probably lies between 0.03–1%10

(Table 1). SSBE and, less commonly, LSBE have also
been reported in at least one study to be associated with
the occurrence of esophago-gastric adenocarcinomas
and specialized intestinal metaplasia of the gastric car-

dia.10 Esophageal and gastric cardia adenocarcinomas
also share many features including increasing inci-
dence,11,12 male gender bias, tumor histology,13 and
common antigens such as bile duct mucins and large
intestinal antigens.14 Conversely, the risk factors, inci-
dence, histopathology, and molecular biology of esoph-
ageal adenocarcinoma differ dramatically from those of
squamous cell carcinoma. In particular, squamous cell
carcinoma is associated with a poor diet,15 cigarette
smoking, and low socioeconomic status,16 whereas ad-
enocarcinoma is associated with obesity17 and white
race and is more prevalent in Caucasians in the richer
North American and European countries.18

To date no treatments have been shown to reverse the
progression of Barrett’s esophagus completely and con-
vincingly or to alter its natural history once it has devel-
oped.19 Moreover, developed photodynamic therapy has
recently been associated with the subsequent occur-
rence of unusual neoplastic lesions lying deep in the
submucosa.19 Even after prolonged high-dose proton
pump inhibition or successful antireflux surgery, fewer
than 10% of Barrett’s cases regress and progression to
cancer may occur over a short span of 3 years.3,20 Can-
cers detected in endoscopic surveillance programs have
a better prognosis, characterized by 5-year survival rates
of 35–45% compared with 5–15% rates in cancers
occurring outside surveillance populations, even when
allowing for lead bias and earlier staging of detected
lesions.21,22

Genetic and Epigenetic Events Leading to Loss
of Genomic Stability

Although the colorectal adenoma-carcinoma sequence
(ACS) model has become the paradigm for researchers
in molecular oncology,23 a similar mechanistic represen-
tation is only now becoming accepted for the develop-
ment of Barrett’s adenocarcinoma. Barrett’s is a hetero-
geneous metaplasia in which 2–5% of cases will have a
lifetime risk of Barrett’s adenocarcinoma, the metaplasia-
dysplasia-adenocarcinoma sequence (MCS).3 MCS dif-
fers from ACS in several important regards. First, Barrett’s

Figure 1. Photomicrograph of intestinal metaplasia in Barrett’s esophagus
stained with Alcian blue/periodic acid-Schiff (mucins). Barrett’s esophagus is
composed of columnar lined mucus-secreting cells and a proportion of the
glands will be composed of goblet cells (small arrowhead). Alcian blue
diastase periodic acid-Schiff staining indicates the heterogeneity of mucin
phenotypes in esophageal cells: blue (basic), red (neutral), and purple
(mixed) mucins (large arrowhead). Original magnification, 3250.

Table 1. Comparison of Long Segment BE, Short Segment BE, and Specialized Intestinal Metaplasia (SIM) at the Esophago-gastric
Junction

Long segment BE Short segment BE
SIM at the gastro-

esophageal junction Reference

Prevalence 1.3% 8–17% 18–36% 6, 7
GERD 111 11 2 6
Helicobacter 1 11 111 6, 7
Racial bias Caucasian Caucasian None 18
Age bias 111 111 111 6, 18
Gender bias Male Male 2 8, 9, 10
Esophageal cancer 11 1 1/2 6–10
Gastric cancer 1/2 1 2 10
Migration* 111 1 2 *
Glandular dysplasia 11 1 1/2 10

SIMEGJ is very common but has little association with gastro-esophageal reflux disease malignant potential.
GERD, gastro-esophageal reflux disease; 111, very common (.50% of cases); 11, moderately common (.10% of cases); 1, not common (,5%

of cases); 2, very uncommon (,1% of cases).
*Expanding dye fronts in Barrett’s tissue after 0.5 ml intraepithelial tattooing with India ink (J. Jankowski, MD thesis, Dundee University, Dundee, UK).
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metaplasia, even when dysplastic, is rarely polypoid like
colorectal adenoma. This has been attributed by some
researchers to the high frequency of Ki-ras and adeno-
matous polyposis coli gene (APC) mutations in the colon
and rectum, whereas these alterations are very uncom-
mon in Barrett’s dysplasia. However, it seems that these
latter genes, while permitting polypoid growth, may not
be sufficient on their own, as many tumors expressing
them are nonpolypoid. Second, colorectal adenomas
arise in de novo epithelium, whereas in Barrett’s esopha-
gus premalignant lesions arise in metaplastic tissue con-
taining goblet cells.24 Third, Barrett’s metaplasia arises in
a background of reflux-induced chronic inflammation and
ulceration,25 whereas this does not occur in the ACS. In
this regard, Barrett’s neoplastic progression does bear
some similarity to that seen in idiopathic inflammatory
bowel disease.

The progression of Barrett’s metaplasia to adenocar-
cinoma is associated with several changes in gene struc-
ture, gene expression, and protein structure.26–34 The
following sequence of events is not conclusive and is
presented merely to reflect the potential interplay of mul-
tiple molecular pathways in the progression to adenocar-
cinoma. Perhaps one of the earliest molecular events is
the selection and propagation of the metaplastic clones
with specialized intestinal metaplasia (Figure 2). Subse-
quently, loss of cell cycle check points and genomic
instability may contribute to slow clonal expansion per-
haps by increasing proliferation32,33 (Figure 3). Inhibition
of apoptosis in BE occurs late, and then only in a select
proportion of cells with high grade dysplasia. Invasive
cancer may be preceded by alteration of cell adhesion,34

whereas subsequent cumulative genetic errors may re-
sult in the generation of multiple clones of transformed
cells, thereby expanding the population of altered cells
with an angiogenic or metastatic potential.

Pathophysiology of Chronic Esophagitis:
Restitution and Replication

The development of esophagitis represents the failure of
many mucosal defenses of the esophagus to counteract
the refluxed acid or gastroduodenal contents.35 The buff-
ering activity of alkaline saliva and esophageal mucus
and the esophageal peristaltic clearance are, we believe,
usually sufficient to prevent mucosal damage from infre-
quent, transient lower esophageal sphincter relaxations.
If, however, reflux is frequent or prolonged, episodes of
gastro-esophageal reflux occur and tissue damage re-
sults, initially affecting the cells of the superficial compart-
ment (Figure 2). The regenerating inflamed epithelium
contains immature squamous cells that are sensitive to
acid or bile damage.36–39

The proliferative hierarchy of the normal squamous
cell-lined esophagus is relatively well understood. How-
ever, the mechanisms whereby focal areas of native
squamous mucosa are replaced by metaplastic tissue
are less certain; we present one favored current hypoth-
esis. One of the early adaptive responses to increased
cell loss in reflux esophagitis is an increase of the prolif-

erative zone height to maintain or increase epithelial
thickness by trophic stimulation of locally produced epi-
dermal growth factor40 (Figure 2A). In addition, there is
also an increased proliferative zone length as a result
of folding of the basal epithelium (papillae formation).3

The functional stem cells in the basal zone at the tip of the
papillae remain in a relatively superficial position30 in the
epithelium, making them far more accessible and sus-
ceptible to refluxed or ingested chemical mutagens per-
meating through the thin upper layers than their counter-
parts in the flat basal layer deeper in the mucosa (Figure
2B). Mucosal repair occurs more rapidly when reflux
disease is treated, especially with the combined actions
of epithelial migration and connective tissue contrac-
tion.34 In 10% of cases, when treatment is insufficient the
mucosal breach is more quickly and effectively replaced
by de novo Barrett’s metaplasia (Figure 2C).

Formation of Metaplasia: Replacement by
Metaplastic Epithelium

Although the origin of BE is a matter of conjecture, one
current theory holds that the stem cells of squamous
mucosa or associated glandular ducts undergo altered
differentiation, producing both microvilli and intercellular
ridges, and express unique glandular phenotypes dis-
tinct from adjacent mucosal gastric stem cells.41–44 This
Barrett’s metaplastic lineage may give rise to Paneth cells
and neuroendocrine cells in addition to gastric and intes-
tinal cells and is therefore pluripotent.42 Current theory
indicates that these cells give rise to intestinal-type meta-
plasia. However, skeptics argue that gastric-type and
fundic-type metaplasias are also discernible and that the
three metaplastic types may more accurately be referred
to as a mosaic, although a convincing paradigm is lack-
ing (Figure 1). The reason behind this heterogeneity of
metaplastic phenotypes is unclear but the proportion of
each has been attributed in part to the composition of the
refluxate (environment).40 The appearance of metaplasia
during esophageal regeneration may also theoretically
be selected for by several factors, including the degree
of local stem cell enrichment, clonality,34 number of DNA
adducts accrued and alterations of xenobiotic metab-
olizing enzymes (mutagenesis),45 and expression of
homeobox genes such as members of the cdx family
(differentiation pathways) (P. Traber, personal corre-
spondence). Phenotypic heterogeneity may also be
controlled genetically because clonal divergence in
chromosomes 5, 8, 9, 12, 17, and 18 in nondysplastic
Barrett’s cells can also be identified.46,47

The location and composition of the proliferative com-
partment in the crypts of the metaplastic epithelium are
not as well defined as in columnar lined epithelia of the
stomach.42 Interestingly, the degree to which differentia-
tion occurs varies considerably. BE that appears in child-
hood differs from the adult variety in that intestinal mucins
and cytokeratins are not present.48 The adult variety also
has an inflammatory cell infiltrate and may have Helico-
bacter-like organisms, both of which are less common in
juvenile metaplasia.49 Barrett’s intestinal phenotype has
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higher proliferative indices; this is associated with altered
expression of multiple growth factors and inducible
nitric oxide synthase (iNOS; NOS-2) and cyclooxy-
genase-2.21,50

The replacement by LSBE has been reported in one
study to be very rapid, with the maximal proximal coloni-
zation of the esophagus occurring within 3 years of initi-
ation. Furthermore, once formed, the rate of surface area
remains constant in most individuals. Only 5–10% of
cases progress in surface area and 0–2% may partially
regress in surface area.10,35 More data are required

about the natural history of benign Barrett’s metaplasia
before these observations can be confirmed.

Dysplasia and Aneuploidy: Clonal Expansion by
Increased Cell Cycle Abnormalities and
Migration

Although the true prevalence of high grade dysplasia and
aneuploidy are unknown because of referral bias, they
have been reported in 2–24% of individuals with Barrett’s

Figure 2. (Legend on next page)

968 Jankowski et al
AJP April 1999, Vol. 154, No. 4



metaplasia and have a fourfold to eightfold greater risk of
developing cancer10 compared with the more common
low grade dysplasia.51–53 These high grade dysplastic
lesions may already have irreversibly progressed; at least
50% have immediately adjacent adenocarcinoma and a
variable proportion of the rest may remain static for at
least 1 to 3 years regardless of the presence or absence
of refluxed gastric or duodenal contents.53,54

Dysplastic cells may have proliferative controls that are
relaxed or uncoupled from the appropriate regulatory
cues. In part this may be a result of altered expression of
cytokines and growth factors,40 although the acquisition
of genomic alterations of cell cycle-associated genes
also occurs. These cell cycle genes include increased
cyclin D1 expression (chromosome 11q13),55 hyper-
methylated or mutated p16 (chromosome 9p21), and
mobilization of cells from G0 to G1 with subsequent ac-
cumulation in the G2 phase33 (Figure 3). Identification of
increased telomerase RNA in early dysplastic lesions
including Barrett’s metaplasia has been reported.56 p53
mutations occur in only 1–5% of metaplastic diploid cell
populations but are present in most aneuploid cells, sug-
gesting they are usually not early events.29,57–59 Further-
more, p53 is mutated increasingly in exons 5–8 during
MCS: in 5–10% of cases with indeterminate dysplasia, in
65% of those with low grade dysplasia, in 75% of cases
with high grade dysplasia, and in 50–90% of esophageal
adenocarcinomas, suggesting that p53 mutations occur
more often later in progression.60–62 Epigenetic alter-
ations in the expression of growth factors and their re-
ceptors, especially of the epidermal growth factor family,
are also associated with these cell cycle changes in

dysplastic Barrett’s mucosa. In particular, we believe
increased expression of TGFa and its precursor, prepro
TGFa (uncleaved TGFa, which is membrane-bound),
may stimulate epidermal growth factor receptors in dys-
plastic cells by autocrine and paracrine mechanisms,
respectively.27

Apoptosis may also be inhibited late in a proportion of
dysplastic cells that give rise to invasive or metastatic
cells.63 The bcl-2 gene is not overexpressed, as is rec-
ognized in colorectal adenomas, although p53 mutations
may affect the proliferation/apoptosis ratio in the esoph-
agus.64 In addition, up-regulation of immunological death
factors such as Fas ligand in the epithelium may not only
protect Barrett’s dysplastic cells but also may selectively
destroy cytotoxic T cells by crosslinking Fas.65

In established Barrett’s mucosa, identical clonal cyto-
genetic abnormalities, aneuploidy, and gene amplifica-
tion66 are identifiable in diverse locations. If this is indeed
the result of the lateral migration or clonal expansion of
transformed clones and not of coincidental oligoclonal or
field genetic changes, then catenin-regulated transcrip-
tion may be partly responsible. Interestingly, recent evi-
dence has shown that this process in Barrett’s metaplasia
may partly involve down-regulation,67 mutation, or phos-
phorylation of cadherin/catenin adhesion complexes,
thereby increasing free cytosolic catenin.7,68,69 In addi-
tion, the APC gene product (chromosome 5q), which has
increasing loss of heterozygosity in the dysplastic pro-
gression of Barrett’s clones,16,47 may lead to reduced
b-catenin degradation. Increased b-catenin levels have
been shown to subsequently aggregate with transcription

Figure 2. Schematic representation of adaptation during Barrett’s mucosa formation. The three compartments of the esophageal epithelium are represented on
the diagrams. The bottom of each diagram shows basal compartment containing both stem cells (speckled nucleus) and proliferating cells; the middle, parabasal
compartment containing proliferating cells; and the top, superficial compartment containing only mature differentiated cells. The uninflamed mucosa (right) is
flat, whereas the inflamed mucosa (left) has invaginations of the basal layer, termed papillae. A: Damage to the esophageal differentiated cells in the superficial
and parabasal compartments of the esophagus. B: Damage to a deeper compartment involving the squamous epithelial stem cells in the basal compartment of
the papillae. C: Generation of clones with a mucin-secreting lineage resistant to acid/bile.
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factors in the nucleus, facilitating epithelio-mesenchymal
transition and increased c-myc expression.70–73

Development of Invasive Adenocarcinoma:
Generation of Tumor Heterogeneity and
Invasion

The identity of the cell from which esophageal adenocar-
cinoma originates is speculative because there are con-

flicting data as to whether invasive carcinomas arise from
the interactions of multiple oligoclonal lesions (field can-
cerization) of malignant cells or from a single distinct
clone of malignant cells.74 In this regard, early neoplasia
may be histologically distinct but can be multifocal or
immediately juxtaposed with dysplastic tissue. Close but
discontinuous dysplastic areas may, however, have dif-
ferent mutations of the p53 gene (chromosome 17p),
whereas dysplastic regions contiguous with cancers usu-

Figure 3. Schematic representation of the key molecular events in Barrett’s dysplasia, the metaplasia-dysplasia-adenocarcinoma sequence (MCS). Acid and bile
cause acute damage to the esophagus, which is rapidly healed by restitution or cellular replication (stages 1 and 2). In 10% of cases chronic damage to the
epithelial stem cells allows rapid clonal replacement by lineages with a growth advantage containing p53 mutations (stage 2). The formation of each type of
Barrett’s metaplasia is dependent on the stem cell from which it arises as well as the nature of the mucosal microenvironment. Appearance of dysplasia is
associated in part with loss of heterozygosity of APC or alterations in the catenins (stage 3). In 1 in 100 cases, aneuploidy and errors in DNA repair represent final
pathways which disrupt invasion suppressor genes (stages 4 and 5). The transition from high grade dysplasia to invasive cancer is rapid in all cases.
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ally express identical p53 mutations.62,64 Although most
research in Barrett’s esophagus has focused on muta-
tions occurring in the mutation cluster region in exons
5–8 of the p53 gene, it is conceivable that mutations in
other exons or in related proteins could also affect bio-
logical function. Interpretation is further complicated by
the lack of data concerning the normal clonal colonization
patterns of Barrett’s crypts such as have recently been
noted in the colon and termed patch size.75 Available
data may suggest that one type of p53 mutation early in
the disease is not sufficient to cause adenocarcinoma,74

although it seems that p53 mutations accumulate in can-
cer cells because transformed cells select for specific
p53 alterations according to their biological effects. Re-
cently, Barrett’s tumors with synchronous high grade dys-
plasia and invasive cancer were analyzed and showed
genetic alterations that were found to be conserved in the
synchronous invasive cancers.59 These data supported
the paradigm of clonal derivation of the invasive cancer
from the high grade dysplasia or early invasive cancer.
Although these invasive tumors may or may not possess
new mutations, a proportion of high grade lesions have
genetic abnormalities that may develop but are not
present in the synchronous invasive cancer. This heter-
ogeneity indicates genetic divergence during the clonal
evolution of cancer, particularly at the time when high
grade dysplasia progresses to invasive cancer76 (Figure
3). Eight other tumor suppressor gene loci have loss of
heterozygosity in Barrett’s adenocarcinoma, including
VHL (chromosome 3p) in 64%, APC (chromosome 5q) in
45%, CDKN2 (chromosome 9p) in 52%, the retinoblas-
toma gene (Rb) (chromosome 13q) in 50%, the deleted in
colorectal cancer gene (chromosome 18q) in 70%,77 and
the cgene in 20% of esophageal cancers.78 Uncharac-
terized candidate oncosuppressor gene loci also include
9q (60%), 11p (61%), and 17q (46%).76,79 Some gene
loss-of-heterozygosity patterns are significantly associ-
ated, such as 5q and 9p. Interestingly, the Y chromo-
some is lost in 9% of Barrett’s metaplasia, in 38% of
cases indefinite for dysplasia, and in 100% of high grade
dysplasia cases, but the significance of this is uncertain
because Y chromosomal loss increases with age and in
highly proliferating cells.80

In a proportion of esophageal adenocarcinomas (5–
15%) the phenomenon of ubiquitous microsatellite insta-
bility occurs in both diploid and aneuploid Barrett’s cell
populations, suggesting either that it is an early muta-
tion27 or that these lesions have accelerated the progres-
sion to invasive cancer. The genes involved in random
error of replication tumors (microsatellite-positive) are
similar to colorectal cancer MLH-1 and MSH-2.81,82 In
addition, these changes may also rarely be associated
with transforming growth factor b type II receptor and
insulin growth factor type II receptor mutations.83,84

Unifying Molecular Framework and Outstanding
Issues Requiring Further Research

In summary, it is postulated that esophageal squamous
epithelium adapts to increased chemical damage and

cell loss by acute and chronic responses. In the former,
the esophagus increases the growth fraction (number of
cells dividing) by hyperplasia and elongation of the pro-
liferative compartment (Figure 2). The chronic response
occurs when the initial increase in cell proliferation fails to
compensate for the cell loss. There is subsequently se-
lection of specialized lineages of columnar mucosa
brought about, in part, by changes in the genotype of the
relatively exposed squamous or glandular stem cells.
These novel lineages have specific functions including
protection against acid, protection against bile (special-
ized intestinal metaplasia), and repair of ulceration (the
ulcer-associated cell lineage). Subsequent mutagenesis
and cell cycling abnormalities followed by epithelio-mes-
enchymal transition may allow invasive Barrett’s cancers
to develop. The range of esophageal adaptive responses
to environmental stimuli is diverse.74,77

This analysis of the molecular biology of BE explains
the long latency period of cancer development as multi-
ple genetic events are required, some gene-environment
interactions as well as gene-gene interactions, particu-
larly during regeneration. Genetic differences with the
ACS such as infrequent APC and Ki-ras mutations may
explain the lack of exophytic growth.

Several issues are incompletely elucidated at present.
First, the origin of stem cells that give rise to Barrett’s
metaplasia are unknown. Second, it is not known whether
acid or indeed bile reflux is frequently necessary to initi-
ate metaplastic formation. Third, the clonality of meta-
plastic glands and the tissue patch size (mucosal surface
area of contiguous cells arising from the same clone) are
unclear. Fourth, the nature of the mechanism governing
the expansion of metaplastic glands into the proximal
esophagus is ambiguous. Fifth, the natural history of
dysplastic glands, especially the more common low
grade dysplasia, is a matter of contention. Sixth, we do
not know which biological processes are essential deter-
minants of early invasion.

In conclusion, there is a need for improved under-
standing of the molecular biology of BE, particularly be-
cause the premalignant areas are often not visible endo-
scopically and may occur over a wider surface area
compared with colorectal adenomatous polyps. Although
no common and simple molecular pathway of progres-
sion is evident, we can correlate the pathophysiology with
specific molecular alterations (Figure 3). The corollary is
that molecular genetics, when applied to histological ma-
terial, will also increase accurately our knowledge of the
natural history of specific lesions found in the metaplasia-
dysplasia-adenocarcinoma sequence.
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