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Abstract

Francisella tularensis is a potent mammalian pathogen well adapted to intracellular habitats, whereas F. novicida and F.
philomiragia are less virulent in mammals and appear to have less specialized lifecycles. We explored adaptations within the
genus that may be linked to increased host association, as follows. First, we determined the genome sequence of F.
tularensis subsp. mediasiatica, the only subspecies that had not been previously sequenced. This genome, and those of 12
other F. tularensis isolates, were then compared to the genomes of F. novicida (three isolates) and F. philomiragia (one
isolate). Signs of homologous recombination were found in ,19.2% of F. novicida and F. philomiragia genes, but none
among F. tularensis genomes. In addition, random insertions of insertion sequence elements appear to have provided raw
materials for secondary adaptive mutations in F. tularensis, e.g. for duplication of the Francisella Pathogenicity Island and
multiplication of a putative glycosyl transferase gene. Further, the five major genetic branches of F. tularensis seem to have
converged along independent routes towards a common gene set via independent losses of gene functions. Our
observations suggest that despite an average nucleotide identity of .97%, F. tularensis and F. novicida have evolved as two
distinct population lineages, the former characterized by clonal structure with weak purifying selection, the latter by more
frequent recombination and strong purifying selection. F. tularensis and F. novicida could be considered the same bacterial
species, given their high similarity, but based on the evolutionary analyses described in this work we propose retaining
separate species names.
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Introduction

Francisella tularensis is probably best known, and most feared, for

its potential as a bacterial biological weapon [1]. As such this

pathogen was grown and stockpiled in large quantities during the

Cold War by both the U.S. and the former Soviet Union. Today,

the most virulent Francisella strains are among the six biological

agents considered to pose the greatest potential public health

threats if used by terrorists [2]. Strains of F. tularensis subsp.

tularensis can be lethal to humans, doses as low as 10–25 bacteria

can be infective, and transmission can occur via skin inoculation or

aerosols [1].

However, in addition to its potentially destructive applications,

the genus Francisella provides interesting models for studying

processes whereby quite harmless environmental bacteria may

become transformed into host-restricted and highly virulent

human pathogens. In this respect Francisella bacteria appear to

be in a state previously attributed to several other human

pathogens (e.g. Shigella flexneri, Salmonella enterica serovar Typhi

and Yersinia pestis [3]) that are in intermediate stages of a genome-

erosion process associated with early stages of host-restriction.

Francisella strains are attractive (as model organisms) since they

span a broad range of functional diversity, from strains with high

metabolic capacity that are easily grown on artificial media and

exhibit low disease potential in humans, to specialized, highly

pathogenic bacteria with reduced metabolic capacities that (hence)

require very rich culture media [4].

Besides F. tularensis, the genus Francisella includes two accepted

species, F. philomiragia and F. novicida, both of which are isolated

from environmental samples [5,6]. In contrast to F. tularensis, F.

philomiragia and F. novicida are metabolically competent and thus

much less fastidious in their growth requirements. They are only

rarely human pathogens, the only diseased individuals they have

been isolated from were nearly drowned or suffered from a

weakened immune system [4].

F. tularensis is the cause of tularemia and is characterized as a

facultative intracellular pathogen. Tularemia is a typical zoonosis;

it is frequently arthropod vector-borne, transmissible to humans,
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and its usual host is a non-human animal [7]. However, the term

‘‘usual host’’ is somewhat arbitrary for F. tularensis; according to a

recent review known susceptible species include 190 mammals, 88

invertebrates, 23 birds, and three amphibians [8].

At present, three F. tularensis subspecies are accepted and known

to cause infections in humans [9]. Two of these are clinically

important: subsp. tularensis (type A) is found exclusively in North

America and may cause severe and life-threatening infections,

while subsp. holarctica (type B) occurs throughout the Northern

Hemisphere and is associated with milder clinical symptoms [10].

Both subspp. have been implicated in the production of biological

weapons, although the use of subsp. tularensis as a weapon would be

more serious. Two major subpopulations among type A strains are

designated A1 and A2, respectively [11]. The third F. tularensis

subspecies, subsp. mediasiatica, has only been isolated in areas of

central Asia and is reported to exhibit comparable virulence to

that of the holarctica subspecies [12,13]. In a rabbit model, strains of

F. tularensis subspp. holarctica and mediasiatica kill at a dose of .106

microbial cells, while a lethal dose of subsp. tularensis, is 1–10 cells

[14]. However, previous studies indicate that subsp. mediasiatica is,

in evolutionary terms, the closest neighbor to subsp. tularensis [15–

17]. We hypothesized, therefore, that comparing the genome of

subsp. tularensis to that of subsp. mediasiatica, which exhibits lower

disease potential for humans, would be valuable for determining

factors that cause high pathogenicity in subsp. tularensis. Sequenc-

ing a genome of a subsp. mediasiatica strain would additionally

allow for multiple genome comparisons to understand the

evolution of human pathogenic strains of genus Francisella.

Results

The genome of F. tularensis subsp. mediasiatica
Previously, genome sequences have been reported for two of

three recognized F. tularensis subspecies. The third subspecies, F.

tularensis subsp. mediasiatica, has been isolated only in dry areas of

Central Asia. We describe here the genome of strain FSC147,

isolated in the Alma-Ata region of Kazakhstan in 1965, from the

rodent species Meriones meridianus (Midday gerbil). The genome is

composed of a single circular 1,893,886 bp chromosome with an

average G+C content of 32.25% (Table 1). It contains 1,470

predicted protein-coding genes and 263 pseudogenes. As in

previously characterized representatives of subspp. tularensis and

holarctica [18–21], we found three rRNA operons, 38 tRNA genes

with 30 anticodons for 20 amino acids, and seven types of insertion

sequence (IS) elements. ISFtu1 and ISFtu2 were the most

abundant elements, with 59 and 17 copies, respectively (Table 1).

All predicted genes in F. tularensis subsp. mediasiatica strain

FSC147 were found either in the tularensis subspecies (SCHU S4)

or F. novicida (strain U112). Rhomer et al. suggested that six genes

predicted to be functional in an 11.1 kb region (loci FTT1066-

FTT1073), together with three other genes (loci FTT1308c,

FTT1580c, FTT1791), may promote the high virulence of subsp.

tularensis since these genes appeared to be specific to strain SCHU

S4 when compared with F. novicida strain U112 and two strains of

F. tularensis subsp. holarctica [22]. However, all open reading frames

in the 11.1 kb region appear to be present and intact in the

Author Summary

The intracellular bacterium Francisella tularensis causes the
disease tularemia in various mammals, including humans,
and is highly infectious (so infectious that highly virulent
forms of the pathogen were developed as biological
aerosol weapons during the Cold War). Little is known
about where F. tularensis resides in nature and how it
evolved but, intriguingly, closely related Francisella bacte-
ria are less dangerous. Therefore, we have explored the
evolutionary events that shaped F. tularensis by analyzing
17 Francisella genome sequences. Its evolution appears to
have involved many losses of metabolic functions and
random mutations, with little exchange of genetic material
among F. tularensis strains. Furthermore, increased host
association appears to have irreversibly separated F.
tularensis populations from other populations of Franci-
sella bacteria. This study provides new information on the
processes whereby relatively harmless Francisella bacteria
evolved into aggressive invaders of mammalian cells. Our
findings support previous proposals that identification of
distinct population lineages provides meaningful species
boundaries among bacteria.

Table 1. General features of seven completed Francisella genomes.

Property Species and strain designation (major genetic group)

F. novicida
U112

F. tularensis
subsp. tularensis
(A1) SCHUS4

F. tularensis
subsp. tularensis
(A2) WY-96

F. tularensis
subsp.
mediasiatica
FSC147

F. tularensis
subsp.
holarctica LVS

F. tularensis
subsp.
holarctica
OSU18

F. tularensis
subsp.
holarctica FTA

Chromosome size (bp) 1,910,036 1,892,819 1,898,476 1,893,886 1,895,998 1,895,727 1,890,909

G+C content (%) 32,47 32,25 32,26 32,25 32,15 32,15 32,16

ISFtu1a 1 53 53 59 61 63 61

ISFtu2 17 16 18 17 44 42 44

ISFtu3 4 4 4 4 4 4 4

ISFtu4 1 1 1 1 1 1 1

ISFtu5 0 1 1 1 1 1 1

ISFtu6 2 2 2 2 2 2 2

ISSod13 0 1 1 1 1 1 1

aAbbreviation for Insertion Sequence element, F. tularensis 1.
bAbbreviation for Insertion Sequence element, Shewanella oneidensis 13.
doi:10.1371/journal.ppat.1000472.t001
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mediasiatica genome of strain FSC147, indicating that these genes

by themselves cannot explain the different degrees of virulence. In

addition, FTT1308c is inactivated by a frameshift mutation in

mediasiatica and is not present in F. tularensis subsp. holarctica, but the

intact gene is present in the F. novicida isolate 3548, suggesting that

this gene is probably not responsible for the high virulence of

subsp. tularensis SCHU S4 either. Furthermore, FTT1580c

encodes a protein of unknown function and contains a frameshift

mutation close to the N-terminal part in F. tularensis subsp.

mediasiatica FSC147 that could disrupt the function of the encoded

protein. A role for FTT1580c in enhancing virulence is also

disputed since the ortholog is intact in F. tularensis subsp. holarctica

FSC022, which exhibits low virulence. Finally, the hypothetical

protein referred to as FTT1791 has a nonsense mutation in

mediasiatica. This gene is also missing in the isolate WY-96 of the

type A2 clade of subspecies tularensis. Thus, if the isolate WY-96

possesses the high level of virulence ascribed to other strains of

subsp. tularensis this would exclude FTT1791 as a likely cause.

Evolutionary relationships and average nucleotide
identities of multiple Francisella genomes

Using 1,104,129 aligned genomic nucleotide sites, we estimated

a whole-genome phylogeny (Figure 1) for one F. philomiragia, three

F. novicida or ‘‘novicida-like’’, and 13 F. tularensis strains (Table S1).

Both the neighbor-joining and maximum likelihood methods

identified an identical topology, with maximal support for all

nodes in bootstrap analyses. The tree was consistent with the

previous assumption that F. tularensis and F. novicida constitute sister

groups, and confirmed that F. tularensis subspp. mediasiatica,

holarctica, and tularensis form a monophyletic group [7,16]. The

data extend previous findings by demonstrating the monophyly of

F. novicida and the novicida-like isolates that were included.

Substantial differences in branch lengths were found in the

phylogenetic reconstructions (Figure 1), indicating that historic

mutation rates have differed among F. tularensis genetic lineages.

Exemplifying the extremes, mutations in the F. tularensis subsp.

tularensis A2 lineage have occurred much less frequently than in the

subsp. holarctica lineage (Figure 1). Increased rates of mutation may

occur because some DNA repair functions are lost; therefore we

scrutinized corresponding genes in the F. philomiragia, F. novicida

and F. tularensis genomes. Among 37 potential DNA repair genes

we found only one possible candidate, a deoxyribodipyrimidine

photolyase gene, phrB, that appears to be functional in WY-96, but

disrupted in other strains (Table S2). The Phr protein enhances

repair of UV-light induced DNA damage and is lacking in many

bacterial species because they live in environments where they are

not exposed to UV light [23].

The F. novicida, novicida-like isolates, and F. tularensis isolates were

found to display considerable overall genetic relatedness. Pairwise

analyses of average nucleotide identities (ANI) [24] demonstrated

that all combinations had ANI values $97.7%. If only isolates of

F. tularensis were considered, ANI values $99.2% (Table S3) were

obtained, thus demonstrating a striking level of genetic mono-

morphism within this monophyletic group of strains, which

includes three separate subspecies: tularensis, mediasiatica, and

holarctica. In contrast, comparisons that included the F. philomiragia

isolate ATCC 25017 provided significantly lower ANI estimates,

ranging between 80.6% and 81.2%.

Recombination in F. philomiragia and F. novicida, and its
absence in F. tularensis

The presence and extent of recombination in Francisella was

rigorously investigated using several strategies: visual exploration

of genomic data, estimation of recombination and mutation

parameters using the ClonalFrame [25] and Rm [26] methods, and

estimation of the proportions of genes potentially affected by

recombination using a combination of the MaxChi2 [27] and Phi

[28] tests. To assess the possibility that recombination has

occurred among the highly similar F. tularensis lineages, we also

used the Maynard Smith and Smith [29] homoplasy test.

Visual exploration of colour-coded nucleotide plots revealed

indications of numerous past recombination events among

metabolically independent Francisella lineages (the F. philomiragia,

F. novicida, and ancestral F. tularensis lineages; Figure 2). Abundant

tracts containing incongruent sites were found, and loci with

increased numbers of informative sites, suggestive of recombina-

tion between sister lineages. However, we found no evidence to

support the occurrence of past recombination between the

metabolically independent Francisella and any modern lineage of

F. tularensis. The few genomic regions potentially indicative of such

events could be dismissed after close examination as being due to

other evolutionary events, such as gene conversion (recombination

within the genome) or incomplete lineage sorting (differential loss

of previously duplicated genes).

The impact of recombination on F. philomiragia, F. novicida, and

the ancestral branch of F. tularensis was further quantified by

applying the Clonalframe algorithm to whole genomes and, for

comparison, by analyzing five collinear genomic regions to

estimate minimum numbers of recombination events and

segregating sites. Clonalframe analysis of 1,527,362 sites estimated

the 95% credibility region of rho/theta, the ratio of absolute

numbers of recombination and mutation events, to be 0.079–

0.089. This indicates that mutation, despite an abundance of

recombination footprints, has clearly been the predominant

evolutionary process. The 95% credibility region of r/m,

indicating the probability of recombination versus mutation per

individual nucleotide site, was 0.78–0.89, illustrating that the

impact of recombination on genetic diversity has been significant.

Furthermore, minimum numbers of recombination events (Rm)

were estimated, as described by Hudson and Kaplan [26], for

segregating sites in five 75-kb locally collinear sequence blocks.

This analysis suggested a rate of recombination an order of

magnitude lower than that of mutation (Table 2). However, since

Rm represents a lower bound and ClonalFrame models only

recombination ‘‘imports’’, both methods likely underestimate the

true number of recombination events

We also assessed the proportions of genes affected by

recombination in the environmental lineages by a combined

analysis in which individual gene alignments were tested by the

maximum chi-squared method [27] and the Phi method [28]. This

combination of methods was used to increase sensitivity, since they

detect different, complementary recombination signals. The

maximum chi-squared method and the phi method indicated

223/1251 and 101/1251 genes to have been affected by

recombination, respectively (**p,0.01). Using either method,

significant indications of recombination were obtained for19.2%

of the genes (240/1251) tested.

Because of the limited diversity of F. tularensis, few tests can be used

to assess recombination within this species. However, in nucleotide

alignments representing 13 F. tularensis genomes 21 apparent

homoplasies were recorded. Therefore we applied Maynard Smith

and Smith’s homoplasy test [29], which assesses whether there is an

excess of homoplasies, compared to expected numbers derived by

mutation in the absence of recombination. The null hypothesis of

clonality was not rejected using any reasonable estimate of Se. Thus,

we found no evidence to support the hypothesis that recombination

has occurred among F. tularensis lineages.

Evolution Directed by Niche Restriction
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Figure 1. Whole genome phylogeny among 17 Francisella strains based on 1,104,129 aligned nucleotide positions. Panel (A) depicts
relationships among major clades within the Francisella genus and panel (B) relationships within the species F. tularensis. The evolutionary tree was
inferred using the Neighbor-Joining method. Bootstrap support values (500 replicates) are shown next to branches. Scale bars indicate the number of
base substitutions per site.
doi:10.1371/journal.ppat.1000472.g001
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Different action of natural selection in different
Francisella populations

Measuring dN/dS might provide some information on how

ecology constrained the evolution of Francisella at population levels.

We calculated by maximum likelihood methodology [30] lineage-

specific dN/dS estimates of selection pressures across the Francisella

phylogeny (Figure 3), taking care to avoid overfitting by using

information-rich genome-wide datasets of aligned codons, and

employing a genetic algorithm that optimizes model complexity

[30]. To increase the accuracy of our calculations, we focused on

F. tularensis representatives in one analysis, and on F. novicida and F.

philomiragia in a separate analysis. Overall, our results revealed

distinct differences between the environmental lineages (F. novicida,

F. philomiragia) and F. tularensis, since we found high dN/dS ratios

for all F. tularensis branches, and considerably lower ratios for the

environmental lineages (Figure 3). Thus, the data indicates that

Figure 2. Illustration of one of many recombination events detected in basal parts of the Francisella phylogeny. (A) shows that an
accumulation of phylogenetically informative SNPs is correlated with homoplastic SNPs. (B) is a magnification illustrating that the SNP patterns are
incongruent with the overall whole genome SNP tree. (C) shows that the patterns indicate multiple recombination events in the region, as seen from
several conflicting tree topologies.
doi:10.1371/journal.ppat.1000472.g002
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Table 2. Minimal number of recombination events in basal parts of the Francisella phylogeny.

Genomic alignmentsa Position in LVSb Minimal number of recombination, Rm Segregating sites, S

Region 1 1,693,555–1,770,700 98 1551

Region 2 1,477,613–1,556,588 149 2018

Region 3 732,862–822,030 135 1760

Region 4 822031–904616 137 3019

Region 5 904,617–991,393 107 1889

aFive local collinear blocks with a total length of 75 kb were analyzed.
bThe intervals refer to GenBank accession no. AM233362.1.
doi:10.1371/journal.ppat.1000472.t002

Figure 3. Likelihood estimates of dN/dS ratios across the Francisella phylogeny obtained using the software package Hyphy. The
analysis indicates statistically significant differences in dN/dS values for different tree branches. Different colors represent the maximum number of
rate classes estimated from the data using the Akaike information criterion (AIC) with a genetic algorithm. Values on the branches represent local
optima, with confidence intervals in brackets. To optimize the evolutionary models comparisons were separately optimized for the phylogeny of (A)
F. tularensis strains, and (B) the Francisella genus, including F. philomiragia and F. novicida.
doi:10.1371/journal.ppat.1000472.g003
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slightly deleterious mutations have been inefficiently removed

following the formation of the F. tularensis species. This lends

support to the hypotheses that effective population sizes of these

strains have been low, and successful recombination events among

them have been rare or non-existent, consistent with evolution in a

favorable intracellular environment. However, there were statis-

tically significant dN/dS differences among F. tularensis lineages,

which might reflect ecological differences within the species,

notably estimates of dN/dS ratios in the F. tularensis subsp. holarctica

clade were consistently higher than in the clade consisting of

subspp. tularensis and mediasiatica.

It has been found that among closely related strains or species

dN/dS ratios can be elevated in a time-dependent fashion [31,32],

and thus not reflect longer term selection pressures. This is because

such comparisons are akin to the study of de novo mutations that have

not yet been eliminated at the population level. Since all F. tularensis

isolates are highly similar, we anticipated that there was a high

likelihood that such effects would be observed. By plotting

intergenic distances against dN/dS ratios determined in pairwise

comparisons of 13 F. tularensis isolates, a negative correlation was

indeed found between intergenic distance and dN/dS for the most

closely related genomes, in support of non-stationarity (Figure 4).

The correlation disappeared, however, at intergenic distances

.0.15%, beyond which dN/dS ratios asymptotically approached

a value of ,0.5, suggesting that stationarity of dN/dS was reached.

These findings indicate that, because of time dependence, dN/dS

ratios will be inflated for branches between very closely related

genomes (e.g. OSU18, FTA, LVS). The lineage-specific analyses of

dN/dS ratios, however, were performed using less closely related

genomes, a precaution taken to limit effects of time dependence. In

analyses of genome-wide mutational biases, we noted a correspon-

dence between a relative surplus of G+CRA+T mutations and a

reduced level of purifying selection (Table S4 and Figure 3).

Analysis of gene-inactivating mutations across multiple
Francisella genomes

Among seven complete Francisella genome sequences (U112,

FSC147, SCHUS4, WY-96, LVS, FTA, OSU18) there is an

overall evolutionary pattern of step-by-step degradation of genes,

which are ultimately deleted. The majority of gene disruptions

found in modern F. tularensis strains occurred independently along

the five major genetic branches of F. tularensis (Table S5, S6). That

is, we see a converging evolutionary scenario among the F.

tularensis lineages towards a common functional gene set. The

strain F. novicida U112 has the least degraded, and largest, of all the

analyzed genomes, containing 1,731 protein-coding genes and

only 14 pseudogenes, according to recent annotation by Rhomer

at al. [22]. A common set of 1,162 genes was identified that

appeared to be functional in all seven genomes. This set of genes

represents functions that have been preserved amongst F. novicida

strain U112 and the six F. tularensis strains.

Next, we identified gene function losses across the reconstructed

phylogeny using a parsimony criterion. The absence of a full-

length gene in two terminal branches was taken to indicate an

absence in the nodes connecting the branches. We identified 798

gene function losses, in total, across the phylogeny depicted in

Figure 5, of which only ca. 62% (495/798) show inactivation

patterns that are congruent with the inferred SNP phylogeny. In

reality this is an overestimate of the proportion of congruent

events, since in some cases there are likely to have been several

independent disruptions of the same gene, which will remain

undetected along internal branches including the branch from F.

Figure 4. Illustrative plot of pairwise dN/dS values versus sequence divergence in intergenic regions among 13 F. tularensis strains.
The high overall dN/dS values are indicative of inefficient purifying selection, and time-dependence at intergenic distances ,0.15% is apparent.
doi:10.1371/journal.ppat.1000472.g004
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novicida to the last common ancestor of F. tularensis (279 congruent

gene losses are indicated in Figure 5).We counted 166 gene losses

and 109 predicted pseudogenes, in comparison with the F. novicida

U112 genome. An additional four genes were either absent or are

pseudogenes in the six F. tularensis strains, making the total of 279

gene function losses. The function of these genes was presumably

lost after the divergence of F. novicida and F. tularensis from a

common ancestor. An alternative scenario, of gene acquisition in

the F. novicida branch, can easily be dismissed by inspecting intact

and disrupted genes in the genomes, since we identified only 11

genes that are absent in F. novicida compared with the common F.

tularensis-F. novicida gene set. Mapping of gene function losses on

the SNP tree shows additional distinct losses along each of the

major genetic branches of F. tularensis. The virtual absence of

recombination among the F. tularensis lineages makes further

analysis fruitful. It is clear that the majority of gene function losses

have occurred independently along the branches (Figure 5).

We explored further by simulation possible characteristics of a

putative dispensable gene set. A simplistic model was used with

genes randomly sampled for inactivation under a uniform

distribution model along branches according to frequencies

previously identified by parsimony-mapping. Using this method,

expected numbers of apparently homoplastic gene disruptions

were inferred for different effective gene set sizes. The number of

homoplasies in the real data was found to greatly exceed the

numbers expected for any gene sample size, with a maximum of

,80 homoplasies at an optimal gene sample size of 400 (Figure

S1). An additional simulation was performed with increased

numbers of homoplasies to account for the possibility that the true

number of homoplasies may be greater than apparent numbers,

but again similar results were obtained (data not shown).

Analysis of IS element expansions and genomic
rearrangements

In agreement with previous suggestions, we found strong

indications that rearrangements in F. tularensis have been mediated

by IS elements after divergence from a common F. tularensis

ancestor [21,22]. Mapping of flanking sequences of ISFtu1 and

ISFtu2 in three completed F. novicida and eight F. tularensis

genomes identified a most parsimonious scenario for the pattern

and order in which the IS elements have been inserted during the

course of evolution (Figure 6). The ISFtu2 distribution in the

genomes was consistent with largely independent past increases in

ISFtu2 numbers in F. novicida and F. tularensis. We counted 17

ISFtu2 elements in F. novicida U112, but found that only a single

element had a corresponding flanking nucleotide sequence in a F.

tularensis genome (at 246,100 bp in F. novicida U112). Thirteen

ISFtu2 elements were likely inserted into ancestral F. tularensis taxa

before the formation of the major genetic lineages of F. tularensis,

since they share one or both flanking sequences in all F. tularensis

genomes. The rate of expansion of ISFtu2 was reduced before the

formation of the tularensis-mediasiatica genetic clade, seen as an

extensive positional conservation of sequences flanking 16–18

ISFtu2 elements in both branches (Figure 6). During formation of

the holarctica clade, ISFtu2 continued to be inserted at novel

positions, resulting in a total of 42–44 occurrences in this

subspecies. The ISFtu1 element appears to have a different

evolutionary history. Mapping the flanking sequences of ISFtu1

shows that nearly all ISFtu1 elements found in F. tularensis strains

(N = 44) were inserted before formation of subsp. holarctica, but

later than the divergence of F. novicida (Figure 6). The patterns of

IS elements also indicates that there were no individual expansions

of ISFtu1 in the A1 or A2 clades of F. tularensis subsp. tularensis. No

ISFtu1 border was unique comparing strain SCHU S4 with strain

WY-96. Six unique ISFtu1 element insertions occurred along the

F. tularensis subsp. mediasiatica lineage.

Using Multiple Genome Rearrangements, an inversion metric

software package [33], to analyze the order of 53 local collinear

sequence blocks (LCBs) in seven completed and aligned sequences,

we observed large rearrangement distances despite close genetic

relationships at the SNP level among strains (Figure 7). No less

than 78 inversions were required to explain the gene order data. In

reconstructions without imposing topological constraints, the

algorithm was unable to recover the SNP-based tree. Assuming

Figure 5. The distribution of gene function losses projected for the Francisella phylogeny. Total numbers of gene function losses are
indicated on branches, and values in brackets indicate numbers of homoplastic gene function losses. Homoplastic loss means that these genes have
been inactivated independently in different branches.
doi:10.1371/journal.ppat.1000472.g005
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an ancestral gene order close to that of the species with the lowest

number of IS elements (F. novicida U112) or a reconstructed order

at its closest internal node, strain WY-96 displayed the lowest

rearrangement distance (in accordance with the shortest SNP

distance; Figure 7). The LVS lineage was inferred to have a shorter

inversion distance than both SCHU S4 and FSC147. The gene

orders of WY-96, SCHU S4 and FSC147 are highly divergent,

resulting in large rearrangement distances despite their intimate

Figure 6. Gene order alterations in F. tularensis have mainly occurred with breakpoints at IS-elements. Results of BLASTN analyses of
sequences flanking each ISFtu1 and ISFtu2 element in eight completed Francisella genomes, showing ‘‘hits’’ mapped along a linear depiction of the F.
novicida U112 chromosome, with 53 local collinear sequence blocks within the 1,910 kb sequence. A black line in the upper panel corresponds to a
flanking sequence of an ISFtu2 and a black line in the lower panel to a flank of an ISFtu1 element. The positions of rRNA genes and the FPI in the F.
novicida U112 sequence are indicated.
doi:10.1371/journal.ppat.1000472.g006

Figure 7. Phylogeny based on gene orders in six completed F. tularensis genomes (SCHU S4, WY-96, FSC147 and the identical orders
of OSU18, LVS and FTA) and one F. novicida genome (U112). Inversion distances are indicated on the branches. Reconstructions were
generated both without a constraining topology (A), and with the ‘‘true’’ topology, as determined by SNP analysis (B).
doi:10.1371/journal.ppat.1000472.g007
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relationships as determined by SNP analysis. Increased rates of

rearrangements are therefore apparent in the mediasiatica FSC147

and tularensis A1 SCHU S4 lineages.

Gene amplification in F. tularensis and the origin of the
Francisella Pathogenicity Island

A set of 16–19 genes denoted the Francisella pathogenicity island

(FPI) is critical for phagosomal escape, and is present in duplicate

in F. tularensis strains, but in a single copy in the less virulent F.

novicida [34,35]. Given the importance of the FPI for intracellular

replication, it is likely that the duplication represents an adaptation

to a more restricted niche. Our analysis confirmed that the FPI

exists in duplicate in all analyzed F. tularensis genomes (F. tularensis

subspp. holarctica, mediasiatica and tularensis) and showed there were

single copies of homologous genes in all the analyzed environ-

mental Francisella genomes, i.e. Francisella philomiragia ATCC

25017, F. novicida U112, and the two novicida-like strains GA 99-

3548 and GA 99-3549 (Figure S2). Its ubiquitous presence among

strains of genus Francisella challenges the description of the FPI as a

classic pathogenicity island, i.e., a mobile locus promoting

pathogenicity with specific presence in pathogens but absence in

benign relatives [36]. However, in agreement with its designation

as a pathogenicity island we reaffirm that the region likely has a

lateral origin and was inserted into an ancestor of Francisella.

Further, in Francisella, FPI genes appear to be part of the core

genome.

Analysis of proteins encoded within and outside the FPI

demonstrated that the most over-represented amino acids within

the FPI correspond to those encoded by the most GC-rich codon

families, i.e. alanine, glycine, proline, arginine, tryptophan and

cysteine. Accordingly, the most underrepresented amino acids are

encoded by the most GC-poor codon families, i.e. isoleucine,

tyrosine, aspargine, lycine and phenylalanine. Since the compo-

sition of encoded amino acids has been found to be strongly

influenced by G+C content [37], this finding indicates that the FPI

was originally acquired from an organism with a higher G+C

content. In agreement with long presence of the FPI in Francisella

we found no significant differences at third codon positions in

G+C composition between the FPI and other parts of the genome

(17% for non-ribosomal proteins encoded outside the FPI, and

16% for those encoded within the FPI).

The presence of an ISFtu1 insertion sequence element at one

flank of the FPI has previously been assumed to have mediated its

lateral transfer. However, irreconcilably with such a role, this

ISFtu1 copy appears to have a more recent origin than the FPI

itself, since it is present exclusively in members of F. tularensis. We

infer that the flanking ISFtu1 instead likely played a role in the

duplication of the FPI. As outlined in Figure 8, the most

parsimonious evolutionary scenario appears to be that insertions

of an ISFtu1 element adjacent to FPI genes and a set of rRNA

genes occurred in a common F. tularensis ancestor, followed by

duplication of FPI genes by unequal recombination. An ancestral

FPI unit position can also be inferred from the observed

conservation of surrounding genes in F. novicida U112, F. tularensis

subsp. tularensis WY-96 and subsp. holarctica sequences. From its

unique position among LCBs in different strains, it is also evident

that the second copy has subsequently acted as an independent

rearrangement unit in all F. tularensis lineages (data not shown).

The putative glycosyl transferase may represent a second

example of gene multiplication in Francisella coinciding with a

function that is central to the ecology of the bacterium. A gene

which encodes a putative glycosyl transferase (FTT0354,

FTT0378, FTT1263) is found in two to four copies in all F.

tularensis genomes, but not among environmental Francisella

genomes (F. novicida and F. philomiragia). This gene, unlike the

FPI, may therefore have arisen in the F. tularensis lineage via a

lateral gene transfer event. Again, flanking ISFtu1 elements seem

to have subsequently mediated homologous recombination and

gene multiplication events (not shown). Under the hypothesis that

the gene acquisition and amplification reflect adaptive processes,

we analyzed non-synonymous/synonymous mutation ratios, and

found significant evidence of positive selection according to

codeml estimates [38]. The M2a model indicated a dN/dS ratio

of 2.344, and that 2.38% of the nucleotide sites have been

positively selected. Likelihood ratio tests using both codeml model

pairs M1a/M2a and M7/M8 indicated that the null hypothesis of

neutral evolution should be rejected (p = 0.0242 and p = 0.0282,

respectively).

Discussion

We have performed a broad comparison of 17 Francisella

genomes to infer past evolutionary events and possible ecological

Figure 8. A proposed model for duplication of the FPI. (A) In an ancestral genome similar to F. novicida U112, the FPI was present as a single
copy. (B) Insertion of copies of the ISFtu1 element adjacent to the present FPI, and adjacent to a second rRNA operon, enabled (C) duplication of the
FPI by non-reciprocal recombination. (D) The two copies of the region have been inherited by all accepted F. tularensis subspecies.
doi:10.1371/journal.ppat.1000472.g008
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adaptations that distinguish the primarily human pathogenic F.

tularensis from its less virulent opportunistic neighbors, F. novicida

and F. philomiragia. Our analysis provides support for a proposed

evolutionary scenario of events that formed F. tularensis. The

analysis also offers important clarifications of several uncertainties

and ambiguities regarding F. tularensis, more specifically concern-

ing: (i) the phylogenetic origin of F. tularensis subsp mediasiatica, (ii)

the suggested dependence of virulence on the mere occurrence of

specific genes, (iii) the occurrence of genetic recombination in F.

tularensis, and (iv) the previously suggested lateral mobility of the

FPI in F. tularensis. In addition, the results provide evolutionary

data indicating that strains of F. novicida should continue to be

regarded as a separate species.

Based on our results, we propose the following sequence of

events. F. tularensis emerged from a recombining Francisella

population that was relatively unrestricted or free-living, then an

ancestral F. tularensis variant invaded a novel and more host-

restricted niche. This event led to clonal evolution under a reduced

purifying selection pressure with ensuing genome degradation and

proliferation of insertion sequence elements. We further propose

that this series of events provided important prerequisites for

further alterations of genomic architecture, and possibly increased

adaptability of F. tularensis. In support of this scenario, we found

apparent differences in the evolutionary mode of basal Francisella

lineages (including F. philomiragia, F. novicida and an ancestral F.

tularensis lineage), and F. tularensis lineages. These apparent

differences include frequent genetic exchanges among basal

Francisella lineages, but not among F. tularensis lineages, strong

purifying selection pressure in basal lineages but weak levels in F.

tularensis, and increasing frequencies of adenine and thymine

nucleotides in F. tularensis but not in F. novicida genomes (Table S3).

The pronounced increase in G+CRA+T mutations in F. tularensis

supports a link to weak purifying selection, allowing for the fixation

of slightly deleterious mutations. In agreement with this interpre-

tation, Balbi et al. recently found inefficient purifying selection to

be intimately connected with adenine and thymine enrichment in

Shigella spp. [39].

Differences in genomic architecture were also apparent. While

genome erosion appears to have occurred in all F. tularensis

genomes, the representatives of basal lineages have maintained

genomes tightly packed with genes. Corroborating a previous

genomic analysis of F. novicida strain U112, the unfinished genomic

sequences of F. novicida strain GA99-3548 and strain GA99-3549,

as well as the completed F. philomiragia strain ATCC 25017, were

found to contain few IS elements and pseudogenes. The overall

gene synteny was extensive among the three available F. novicida

genomes (data not shown). In contrast, all F. tularensis genomes are

crowded with IS elements and pseudogenes, and display highly

rearranged gene orders, each corresponding to a subspecies or a

major genetic lineage. The findings in this study thus indicate that

F. novicida has remained relatively unchanged over a long period

with respect to gene content, presence of IS elements, and gene

order. If so, the genomic architecture of the ancestor of F. tularensis

must have more closely resembled F. novicida than any current F.

tularensis isolate. Genomic data therefore indicate that the deviating

evolutionary patterns in F. tularensis represent a derived state.

The greater metabolic competence of F. novicida compared to F.

tularensis, and the abundance of IS elements in F. tularensis (but not

F. novicida), provide additional indirect support for a change of

living habitat. The genomic erosion identified in F. tularensis is

consistent with its occupation of a habitat that supplies nutrients,

making some metabolic functions superfluous. Host-pathogen or

recent symbiotic restrictions appear to have been similarly

associated with genome erosion and proliferation of IS elements

in several other organisms, e.g. Yersinia pestis [40], Bordetella pertussis

[41], and bacterial endosymbionts of insects [42]. Generally, IS

element expansions in host-restricted bacteria are considered to be

consequences of reductions in effective population size and relaxed

purifying selection, which provide opportunities for insertions [3].

Supporting this hypothesis in F. tularensis is the bacterium’s

exceptionally high infectiousness, 10–25 cfu being sufficient to

cause disease in humans, a trait consistent with repeated

population contractions during infection of hosts.

Assuming that IS elements proliferate as a result of reduced

selection pressure, it follows that this is a neutral process that in

itself provides no advantage for the bacterium [43]. A neutral

random insertion of IS elements likely provided the necessary raw

materials for secondary pathoadaptive mutations in F. tularensis.

Out of the two genetic loci that were found to be multiplied in all

F. tularensis genomes by an IS element-mediated process, both were

found to represent functions of central importance to the

pathogen. The first locus corresponds to the FPI, a critical

virulence determinant recognized for its importance for phagoso-

mal escape [44]. The other locus contains a hypothetical

glycosyltransferase gene, which we here demonstrate has been

under strong adaptive selection. F. tularensis may therefore provide

an example of an organism for which random genetic drift, with

consequent fixation of many neutral or slightly deleterious

mutations, provided novel evolutionary opportunities. Although

not providing definitive proof, we propose that secondary gene

multiplications enabled by past random IS element insertions

represent examples of adaptively selected traits of the bacterium.

In line with arguments recently advanced by Lynch [45], our data

suggest that an accumulation of mutations that were originally

neutral or slightly deleterious to the organism in the short term

proved to be fruitful in the long term when exploited by natural

selection.

As mentioned above, the data presented here also offer possible

clarifications of several uncertain aspects and ambiguities regard-

ing F. tularensis.

(i) One such ambiguity concerns the phylogenetic origin of F.

tularensis subsp mediasiatica. We here identified F. tularensis

subsp. mediasiatica strain FSC147 as a monophyletic F.

tularensis taxon. This conflicts with observations by Nübel et

al. [46], who found (using multi locus sequence typing) that

F. tularensis subsp. mediasiatica strain FSC147 (denoted F68 in

their study) is not a member of the F. tularensis clade, but

instead is associated with environmental Francisella isolates.

The finding that the subspecies mediasiatica is ‘‘phylogenet-

ically incoherent’’ was a central conclusion in their work.

However, we found that several gene fragment sequences for

FSC147 deposited in GenBank by Nübel et al. differ from

the genomic sequence of this strain, but coincide with F.

novicida sequences. Thus, their conclusion of a polyphyletic

origin of the subspecies mediasiatica requires re-appraisal.

(ii) Another uncertainty concerns the suggested dependence of

virulence on the mere presence of specific virulence genes

[22]. Given the high genetic similarity between the members

of subspp. tularensis and mediasiatica, there is an intriguing

difference in virulence between the two subspecies [14]. In a

recent genome comparison, Rhomer et al. suggested a set of

nine genes to be candidate mediators of the high virulence of

subsp. tularensis [22]. Our observations of gene content in the

various subspecies of F. tularensis, including F. tularensis subsp.

mediasiatica, provide little support for the hypothesis that any

of these genes explain the higher degree of virulence of the

tularensis subspecies. Our analyses indicate instead that these
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particular gene differences exemplify a superfluous gene set

that is common to all F. tularensis lineages and is not yet

completely inactivated in subspp. tularensis and mediasiatica

(Figure 5 and Figure S1). Further, we found evidence for

substantially reduced purifying selection in F. tularensis,

implying that its evolution has been strongly affected by

random genetic drift. These findings do not exclude

pathoadaptation of individual lineages. Possibly, gene

silencing in subsp. tularensis may have promoted virulence,

as has been suggested for the host adaptation of Shigella and

Salmonella, in which deletion mutants of specific genes have

produced phenotypes of increased virulence [47,48]. In F.

novicida, there is a parallel example, since silencing the pepO

gene promoted virulence in a mouse model [49]. Moreover,

it is possible that virulence alterations may have resulted

from genomic rearrangements during the formation of

subspecies, affecting transcriptional networks.

(iii) A third uncertainty regards the suggested occurrence of

genetic recombination in F. tularensis [46]. Among lineages

within F. tularensis, we found no evidence of past recombi-

nation events. Our recombination analyses suggest that the

few homoplasies detected in F. tularensis instead likely arose

as a consequence of mutational biases in F. tularensis (Table 3,

Table S3). In contrast, our comparative genome sequence

data show that recombination events have been common

features of the evolution of all environmental lineages, here

represented by F. novicida U112, novicida-like strains GA99-

3548, GA99-3549 and the F. philomiragia strain ATCC

25017. Visual sequence analysis, inferred recombination

rates by Clonalframe, and Hudson’s Rm all indicate

substantial recombination rates. Since Rm represents a

lower bound and ClonalFrame only models recombination

‘‘imports’’, both methods likely underestimate the true

number of recombinations.

(iv) A fourth uncertainty concerns the suggested lateral mobility

of the FPI in F. tularensis [35]. We found that the FPI is

ubiquitous across all investigated genomes, implying that it

was incorporated at an early stage into a Francisella ancestor.

It is likely that acquisition of the FPI genes (which are now

permanently integrated in duplicate copies in the chromo-

some of all F. tularensis lineages) was an important event for

early host adaptation of Francisella. We found no genetic

traces of recent extra-chromosomal mobilization of the FPI

in F. tularensis, instead these genes seem to have evolved into

a duplicated part of the core genome.

Finally, the results provide compelling arguments in favour of

continuing to regard strains of F. novicida as belonging to a separate

species. In agreement with a previous proposal by Hollis et al.,

based on DNA-DNA re-association [50], our ANI analysis

indicates that strains belonging to F. novicida meet formal

requirements for classification as a F. tularensis subspecies. All

pairs of isolates classified as F. novicida, novicida-like, and F. tularensis

demonstrated ANI values well above 95% (Table S1), a limit

proposed as the threshold for classification into different bacterial

species [51]. According to the method-free species concept

recently outlined by Wagner and Achtman [52], however, species

should be regarded as ‘‘metapopulation lineages’’ where separate

designations are warranted if population lineages evolved

separately despite a close relatedness. Our comparisons of

environmental lineages (F. novicida, F. philomiragia) and F. tularensis

show a typical example of such evolutionary separation. In

addition to distinct population structures with regard to recom-

bination, we also found substantial differences in overall dN/dS

between environmental Francisella and F. tularensis (Figure 3),

lending support to smaller effective population sizes in the latter.

Other differences between environmental Francisella and F.

tularensis include differences in metabolic competence, which is

higher among environmental strains, and signs of ongoing genome

erosion, which is pronounced among F. tularensis strains but not

among the analyzed F. philomiragia and F. novicida strains.

It is also clear that tularemia caused by F. tularensis is a distinct

clinical disease entity with little similarity to the bacteraemia

caused by F. novicida [50,53]. Moreover, tularemia is a classical

vector-borne zoonosis while F. novicida is not known to be

transmitted among vertebrate species, and F. tularensis is

considered a biothreat agent while F. novicida is not. A fuzzy

distinction between these quite different organisms may therefore

complicate clinical decisions. Based on the evolutionary analyses

described in this work, their distinct epidemiological features, and

on clinical grounds: even though their average nucleotide identities

exceed 97%, we propose that the species boundary between F.

tularensis and F. novicida should be retained.

Materials and Methods

Genome sequencing
DNA for genomic sequencing of F. tularensis subsp. mediasiatica

FSC147 was prepared as described in Text S1. The genome was

sequenced at the Joint Genome Institute using small (2–3 kb) and

medium (6–8 kb) insert plasmid libraries. The Phred/Phrap/

Consed software package was used for sequence assembly and

quality assessment [54]. During the manual finishing process,

possible mis-assemblies were corrected by transposon bombing

(Epicentre Biotechnologies) of bridging clones. Gaps between

contigs were closed by editing in Consed, by custom primer walks,

or by PCR amplification.

Genome annotation
The nucleic acid sequence and annotation of F. tularensis subsp.

mediasiatica strain FSC147 was deposited in GenBank under

accession no. CP000915.1. Automatic annotation using TIGR’s

Table 3. Results of test for recombination among 13 F. tularensis genomes.

Sites at risk, N
Effective sites/sites
at risk, Se/S Homoplasies

Homoplasies expected
if clonal, hc (range)

Values inferred from real data 566,154 0.369 21

Simulations at different Se/S 566,154 0.37 32.3 (23–42)

566,154 0.50 24.1 (16–32)

566,154 0.70 16.7 (10–24)

doi:10.1371/journal.ppat.1000472.t003
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annotation engine for gene prediction, GO classification, EC

numbers, and protein functions was performed. The annotation

was then manually curated with the aid of previous annotations of

F. novicida strain U112 and F. tularensis subsp. tularensis strain

SCHUS4. Information on these and other genomes used in this

study is presented in Table S1.

Multiple alignments
All multiple alignments of genomic sequences were performed

using Mauve v. 2.2 [55] with the progressive alignment option

under default parameters. All alignments were visually inspected

and potentially incorrectly aligned regions were removed before

further analysis.

Phylogeny
Phylogenetic analyses were conducted using MEGA version 4

[56] and Phyml v.2.4.4 [57]. Using 1,104,129 aligned sites from all

17 taxa (Table S1), Mega was used for Neighbor-joining based

estimates of the Francisella phylogeny and 1,000 bootstrap pseudo-

replicates were performed. The evolutionary distances were

computed using Tamura’s three-parameter distance model. For

maximum likelihood-based analysis, a subset of 566,154 randomly

selected aligned nucleotide sites were used to avoid software

crashes using the Phyml package. The GTR model with a

proportion of invariant sites and six gamma-distributed discrete

rate categories was used, estimated from the data. Non-parametric

bootstrapping was performed using 100 pseudo-replicates in the

maximum likelihood analysis.

Estimation of evolutionary distances
Average nucleotide identity (ANI) estimates were obtained by

whole-genome sequence comparisons. Using the Perl script

language and the NCBI blastall package v. 2.2.17, we implement-

ed the algorithm and performed analyses as previously described

elsewhere [51].

Analysis of recombination
Analysis of recombination in basal parts of the phylogeny was

assessed using the ClonalFrame algorithm [25]. Default param-

eters were used except that the topology was fixed to that

estimated from phylogenetic analyses to increase the computa-

tional speed. Mauve-alignments for the analysis were based on

genomic sequences of the strains GA99-3548, GA99-3549, F.

novicida U112, and F. tularensis LVS (Table S1). After manual

curation to remove poorly aligned regions, 1,527,362 nucleic acid

sites in 128 local collinear blocks were retained for the analysis.

Markov chain Monte Carlo iterations were run for 500,000

generations

The proportion of genes affected by recombination was assessed

by the MaxChi2 method [27] and the Phi method, both

implemented in the Phi Package [28] (**p,0.01).

Recombination among F. tularensis lineages was analyzed using

the homoplasy test as proposed by Maynard Smith and Smith

[29], implementing the algorithm as a Perl script (available upon

request) on genomic information from 13 F. tularensis isolates

(Table S1). The effective number of mutable sites (Se), required by

the method, was calculated as previously described [58]:

Se~
1

pS

where pS is the probability that two independent substitutions in

the gene occur at the same site. Since F. tularensis lineages deviate

significantly from mutational equilibrium, we avoided using the

‘‘outgroup method’’ proposed by Maynard Smith and Smith [29].

This approach would have overestimated Se in our case because of

the strong deviation from stationary nucleotide frequencies

observed in F. tularensis (Table S3). Instead, we calculated pS using

the number of sites (nA, nC, nG, nT), by their probability of

mutation (pA, pC, pG, pT) as follows.

Given that two independent mutations occur. For all sites (i, j, k,

l):

pS~
X

i

p2
Aiz

X

j

p2
Cjz

X

k

p2
Gkz

X

l

p2
Tl

Where

X

i

pAiz
X

j

pCjz
X

k

pGkz
X

l

pTl~1

Estimates of numbers of sites and their probability of mutation

were obtained from inferred ancestral nucleotide frequencies and

mutations along the F. tularensis LVS branch from its division from

the F. tularensis subsp. tularensis lineage, represented by the subsp.

tularensis SCHU S4 strain. The reconstruction was performed

using a maximum parsimony method in which only two-fold

degenerate sites were used and the genomic sequence of F. novicida

U112 was included as an outgroup. Sites with variable amino

acids, changes at the first site of a codon, and sites coding for

tryptophan and methionine residues were excluded from analysis

to reduce the impact of selection.

Analysis of recombination was also performed by visual

examination along genomic alignments of segregating sites,

parsimony-informative sites and homoplasies. Genome-wide plots

to support the analysis were generated using in-house Perl scripts.

Analyses of selection
Assessment of positive selection for the multiplicated glycosyl

transferase gene (corresponding to locus tags FTT0354, FTT0378,

and FTT1263 in the F. tularensis SCHU S4 genomic annotation)

was performed using Codeml in the Paml 4b package [38]. The

probability of positive selection was assessed by likelihood ratio

tests (LRT) for the hierarchical model pairs M1a vs. M2a and M7

vs. M8.

The HYPHY package [30] was used to assess branch-specific

selectional regimes in Francisella. Two sets of analyses were

performed. In one, entirely local models were fitted to the data

and estimates of dN and dS were allowed to vary freely for each

branch. Confidence intervals were here determined using the

asymptotic normality of the maximum likelihood estimates. In the

other, branch estimates of dN/dS were obtained using a genetic

algorithm [30], ensuring that the data had not been overfitted. In

all analyses, the Muse-Gaut 94 (MG94) 364 model [59] crossed

with the general time-reversible (GTR) model was used, justified

by parametric bootstrapping (in comparison with the Goldman-

Yang 94, GY94, model [60]) and by likelihood ratio tests.

For analysis of time-dependence of dN/dS estimates, pairwise

estimates of synonymous, non-synonymous, and intergenic

evolutionary distances between isolates was estimated using

MEGA version 4 [56] using the Nei-Gojobori method [61].

Detection of pseudogenes and analysis of gene-
inactivating mutations

A modified version of the Psi-Phi package [62] was applied

using U112 as the reference genome to identify pseudogenes. The
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default settings for Psi-Phi were used except for the merging

distance, which was set to 1350 to allow for ISFtu1 insertion

events. A parsimony criterion was applied to determine the

functional status of genes in internal nodes of a whole genome

SNP phylogeny. The absence of a full length gene in two terminal

branches was taken to indicate an absence in the nodes connecting

the branches. The sum of gene deletions and pseudogenes

constituted the total amount of gene function loss. Both congruent

and homoplastic gene function losses were considered, using the

whole genome SNP tree as a reference.

Inference of genome level rearrangements
An alignment including 1,762,117 nucleotides in F. novicida

U112 was used to explore genome-level rearrangements. Dupli-

cated sequences including ribosomal RNA genes, the 30–34 kb

duplicated sequence, and all IS elements were masked prior to

rearrangement analysis. The LCB-weight was set to remove any

very short collinear blocks, since we reasoned that these LCBs may

be prone to duplication followed by random deletion events, which

could lead to incorrect reconstructions. For calculating rearrange-

ment scenarios based on inversions, the five gene orders

representing strains U112, SCHU S4, WY-96, and the common

gene orders for LVS, FTA and OSU18 were analyzed using MGR

software [33], run in the circular genomes mode both with and

without a fixed tree topology.

Accession numbers
Locus tags referred to in the text correspond to those used in the

annotation of the F. tularensis SCHU S4 genomic sequence

(AJ749949): FTT0354, FTT0378, FTT1066-FTT1073,

FTT1263, FTT1308c, FTT1580c, FTT1581-FTT1582 and

FTT1791.

Completed genomic sequences with accession numbers used in

this work are: U112 (CP000439), ATCC 25017 (CP000937),

WY96-3418(CP000608), FSC147 (CP000915), FTA/FTNF002-

00 (CP000803), OSU18 (CP000437), LVS (AM233362), SCHU

S4 (AJ749949).

Preliminary sequence data were obtained from the MIT Broad

Institute website at www.broad.mit.edu for the following Francisella

strains, GA99-3549, GA99-3548, FSC033, FSC022, and FSC257,

and from the Baylor College of Medicine Human Genome

Sequencing Center website at www.hgsc.bcm.tmc.edu for the

following Francisella strains: ATCC 6223, KO 97-1026, MI 00-

1730 and OR 96-0246.

Supporting Information

Figure S1 Monte Carlo simulation of numbers of homoplastic

gene function losses that can be expected from random sampling

of genes in completed F. tularensis genomes. The simulation

suggests an upper limit of 80 homoplastic events to occur via

stochastic mechanisms in a set of 400 sampled genes. Higher or

lower numbers of genes result in lower numbers of homoplastic

events.

Found at: doi:10.1371/journal.ppat.1000472.s001 (0.57 MB TIF)

Figure S2 The genes of the FPI are ubiquitous in the analyzed

Francisella genomes and cannot have been recently introduced into

the genus. Open reading frames and their orientation in different

genomes are indicated by arrows. Gene orders are given with F.

novicida (Fn), F. tularensis subsp. tularensis (Ftt) and F. tularensis subsp

mediasiatica (Ftm) as references. It can be seen that genomic

organization is similar in F. tularensis subsp. holarctica (Fth) and F.

philomiragia (Fp). For completeness we also show a second region of

Fn U112 that has partial homology with the gene cluster that has

been denoted the FPI.

Found at: doi:10.1371/journal.ppat.1000472.s002 (0.30 MB TIF)

Table S1 Seventeen Francisella genomes that were analyzed in

this study.

Found at: doi:10.1371/journal.ppat.1000472.s003 (0.05 MB

DOC)

Table S2 Presence and absence of putative DNA repair enzymes

in different Francisella isolates.

Found at: doi:10.1371/journal.ppat.1000472.s004 (0.09 MB

DOC)

Table S3 Cross-table with percent pair wise average nucleotide

identity values for 17 Francisella genomes.

Found at: doi:10.1371/journal.ppat.1000472.s005 (0.08 MB

DOC)

Table S4 Single nucleotide mutations along terminal branches

of Francisella taxa as inferred according to a parsimony criterion.

Found at: doi:10.1371/journal.ppat.1000472.s006 (0.04 MB

DOC)

Table S5 Presence and absence of pseudogenes in different F.

tularensis genomes as determined by Psi-Fi with F. novicda U112

(acc. CP000439) as reference.

Found at: doi:10.1371/journal.ppat.1000472.s007 (0.77 MB

DOC)

Table S6 Missing genes in different F. tularensis genomes as

compared to F. novicida U112 (GenBank acc. no. CP000439). Zero

denotes the absence and one the presence of a gene.

Found at: doi:10.1371/journal.ppat.1000472.s008 (0.31 MB

DOC)

Text S1 Preparation of genomic DNA.

Found at: doi:10.1371/journal.ppat.1000472.s009 (0.03 MB

DOC)
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