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Abstract

The performance of various exchange-correlation functionals is evaluated in the calculation of molecular excitation energies
from time-dependent density functional theory. Excitation energies of N2 and CO are reported, using either the local density
approximation (LDA) for exchange and correlation or an orbital functional in the approximation of Krieger, Li and Iafrate. The
latter is based on exact exchange plus a correlation contribution in the form suggested by Colle and Salvetti. While the LDA
proves to work remarkably well for the lower excited states due to error cancellations, self-interaction-free potentials are
essential for a good description of higher lying states.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction and dedication

It is a great pleasure for us to contribute to this
scientific celebration of Professor Rezso Ga´spár.
With his suggestion of a local exchange potential,
Gáspár was among the pioneers of a theory which,
since the work of Hohenberg, Kohn and Sham [1,2],
has been termed density-functional theory (DFT).
Over the years, the available approximations for the
local exchange potential have steadily improved [3–
5]. Thevariationally bestlocal exchange potential is
obtained if the Hartree–Fock total energy is varied
under the subsidiary condition that the orbitals come
from a local potential. The resulting so-calledopti-
mized effective potential, when complemented with
a suitable correlation contribution, was recently
shown to yield atomic ground-state properties in
close agreement with results based on configuration

interaction calculations [6]. In the present paper, we
will investigate the performance or this optimized
effective potential in the calculation of molecular
excitation energies.

As far as the determination of excitation spectra is
concerned, several extensions of ground-state DFT
have been proposed. They are based either on the
Rayleigh–Ritz principle for the lowest eigenstate of
a given symmetry class [7–9] or on a variational prin-
ciple for ensembles [10–23]. A major difficulty lies in
the fact that the exchange-correlation (xc) functionals
associated with these approaches are not identical
with the ordinary ground-state xc energy functional,
although the latter sometimes gives rather accurate
results [23]. In principle, the xc functional in these
approaches should depend either on the symmetry
labels of the prescribed symmetry class or on the
particular ensemble considered, and very little is
known about the nature of this dependence. To
circumvent this problem, we recently proposed
[24–28] a different approach for the calculation of
excitation energies, which is based on time-dependent
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density-functional theory (TDDFT) [29]. This method
makes use of the fact that excitation energies may be
obtained from the poles of the linear density response
function which can be expressed, in principle exactly,
in terms of the response function of a noninteracting
Kohn–Sham (KS) system and a frequency-dependent
exchange-correlation kernel. In this way, corrections
to the KS orbital energy differences (which are the
poles of the KS response function) are obtained,
which shift them towards the true excitation energies
of the fully interacting system. As input, the resulting
computational scheme only requiresground state
properties, i.e. occupied and virtual orbitals of the
KS potential corresponding to theground-stateof a
given physical system. Recent applications to atoms
[27,28,30–32], molecules [33–38] and clusters [39–
41] are highly promising. In particular, the successful
calculation of the excited-state potential energy
surfaces of formaldehyde [38] has shown that
TDDFT is also capable of describing the strong
mixing with Rydberg transitions and the correspond-
ing avoided crossings. In view of these successes, one
can expect that this scheme will become a standard
method for the calculation of excitation energies of
finite many-particle systems.

The accuracy of any density functional method,
however, crucially depends on the quality of the
functional approximations involved. The purpose of
this work is to investigate the role of the static KS
potential from which the orbitals and orbital energies
entering the scheme are calculated. Furthermore,
we address the influence of the necessary truncation
of the matrix equation from which the corrections
to the KS orbital energy differences have to be
determined.

This article is organized as follows: In Section 2, a
brief review of the underlying theory is given. In
Section 3, the employed approximate functionals are
described. Section 4 discusses the numerical results
obtained for diatomic molecules, followed by a
summary in Section 5.

2. Basic formalism

The calculation of excitation energies from time-
dependent DFT makes use of the fact that the full
linear density responser1s of a system of interacting

electrons with spins subject to a frequency-depen-
dent perturbationV1s 0 �r 0;v� has poles at the exact
excitation energies (see Ref. [42]). In terms of the
density–density response functionxs;s 0 of interacting
electrons, the frequency-dependent density response
r1s(r ,v ) is given by

r1s�r ;v� �
X
s 0

Z
d3r 0xs;s 0 �r ; r 0;v�V1s 0 �r 0;v�: �1�

Alternatively, the time-dependent generalization of
DFT allows one to express the exact density response
r1s via the response functionxss;s 0 of the noninteract-
ing KS system [27]:

r1s�r ;v� �
X
s 0

Z
d3r 0xsss 0 �r ; r 0;v�Vs1s 0 �r 0;v�: �2�

In the above equation,Vs1s 0 is the linearized time-
dependent KS potential given by

Vs1s 0 �r 0;v��V1s 0 �r 0;v�

1
X
s 00

Z
d3r 00

1
ur 0 2 r 00u

1 fxcs 0s 00 �r 0; r 00;v�
� �

� r1s 00 �r 00;v�: �3�

The spin-dependent xc kernelfxc is defined as the
Fourier transform of

fxcss 0 �r ; t; r 0; t 0� :� dVxcs�r"; r#��r ; t�
drs 0 �r 0; t 0�

����
rGS" ;rGS#

�4�

evaluated at the ground-state spin densitiesrGS" ; rGS#
of the unperturbed system. The response function of
the KS system can be expressed in terms of the
stationary KS-orbitals

xsss 0 �r ; r 0;v�

� dss 0
X
j;k

� fks 2 fjs�
wjs�r �wp

ks�r �wp
js�r 0�wks�r 0�

v 2 �ejs 2 eks�1 ih
;

�5�

wherefis denote the Fermi-occupation factors (1 or 0).
With these definitions, Eq. (2) may be rewritten as
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an integral equation for the linear density response:

X
s 00

Z
d3r 00

"
dss 00d�r 2 r 00�2

X
s 0

Z
d3r 0xsss 0 �r ; r 0;v�

�
 

1
ur 0 2 r 00u

1 fxcs 0s 00 �r 0; r 00;v�
!#

r1s 00 �r 00;v�

�
X
s 0

Z
d3r 0xsss 0 �r ; r 0;v�V1s 0 �r 0;v�: (6)

In general, the true excitation energiesV are not iden-
tical with the Kohn–Sham excitation energiesejs 2
eks: Therefore, the right-hand side of Eq. (6) remains
finite for v! V:. Since, on the other hand, the exact
spin-density responser1s , has poles at the true excita-
tion energiesV , the integral operator acting onr1s on
the left-hand side of Eq. (6) cannot be invertible for
v! V: (Assuming the existence of the inverse opera-
tor, its action on both sides of Eq. (6) results in a finite
right-hand side forv! V: This leads to a contradic-
tion sincer1s , remaining on the left-hand side, has a
pole atv � V.)

Consequently, the true excitation energiesV are
characterized as those frequencies where the eigen-
values of the integral operator acting on the spin-
density vector in Eq. (6) vanish. Integrating out the
delta-function in Eq. (6), the true excitation energies
V are those frequencies, where the eigenvaluesl(v) ofX
s 0

Z
d3r 0xsss 0 �r ; r 0;v�

X
s 00

Z
d3r 00

×
 

1
ur 0 2 r 00u

1 fxcs 0s 00 �r 0; r 00;v�
!
gs 00 �r 00;v�

� l�v�gs�r ;v� (7)

satisfy

l�V� � 1: �8�
This condition rigorously determines the true excitation
spectrum of the interacting system at hand.

For a single-particle transition�k! j� we introduce
the notation

q ; � j; k�: �9�

The corresponding transition energies are

vqs � ejs 2 eks: �10�
Moreover, we define

Fqs�r � U fks�r �pfjs�r �; �11�

aqs :� fks 2 fjs; �12�
and set

jqs�v� :�
X
s 00

Z
d3r 0

Z
d3r 00Fqs�r 0�p

� 1
ur 0 2 r 00u

1 fxcss 00 �r 0; r 00;v�
� �

gs 00 �r 00;v�:
�13�

Using these definitions, Eq. (7) can be recast intoX
q

aqsFqs�r �
v 2 vqs 1 ih

jqs�v� � l�v�gs�r ;v�: �14�

Solving this equation forgs (r ,v ) and reinserting
the result on the right-hand side of Eq. (13) we
arrive atX
s 0

X
q0

Mqsq0s 0 �v�
v 2 vq0s 0 1 ih

jq0s 0 �v� � l�v�jqs�v�; �15�

where we have introduced the matrix elements

Mqsq0s 0 �v� � aq0s 0
Z

d3r
Z

d3r 0 Fp
qs�r �

� 1
ur 2 r 0u

1 fxcss 0 �r ; r 0;v�
� �

Fq0s 0 �r 0�:
�16�

Introducing the quantitybqs U jqs�V�=�V 2 vqs�
and using the condition (8), we can, at the corre-
lated excitation energiesv � V; rewrite Eq. (15)
in the following form:X
s 0

X
q 0
�Mqsq0s 0 �V�1 vqsdqq0dss 0 �bq0s 0 � Vbqs: �17�

Once again, this eigenvalue problem rigorously
determines the true excitation spectrum of the
interacting system.

In practice, the matrix equation (15) or, alter-
natively, the eigenvalue problem (17), has to be trun-
cated in one way or another. One possibility consists
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in expanding all quantities in Eq. (15) about one
particular KS-orbital energy difference1 vpt . For
non-degenerate poles one obtains [27] in lowest order

V � vpt 1 Mptpt�vpt�: �18�
If the polevpt is P-fold degenerate, i.e.

vp1t1
� vp2t2

�…� vpPtP ; v0; �19�
then, in lowest order, the corresponding excitation
energiesVn are given by [28]

Vn � v0 1 Re�An�v0�� �20�
where theAn(v0) are theP eigenvalues of the trun-
cated matrix equation

XP
k�1

Mpiti pktk
�v0�j �n�pktk

�v0� � An�v0�j �n�piti
;

i � 1;…;P

�21�

This lowest-order result amounts to approximating the
KS response functionx s by the single pole contri-
bution atv0 alone. It therefore will be referred to as
single-pole approximation (SPA). The resulting
excitation energies can be assigned to symmetry
labels according to the symmetry of the matrixM in
Eq. (21).

Alternatively, Eq. (17) may be truncated by only
considering the matrix elements corresponding to a
particular single-particle transition�k! j� and the
reverse transition�j ! k�; denoted byQ and �Q; respec-
tively. This leads to the following eigenvalue
problem:X
s 0

X
q0�Q; �Q

�Mqsq0s 0 �V�1 vqsdqq0dss 0 �bq0s 0 � Vbqs:

�22�
We will refer to this scheme as small matrix approx-
imation (SMA).

In the framework of traditional quantum chemistry,
Eq. (17) is usually solved by expanding the orbitals
and potentials in a basis set. This has the advantage
that a proper choice of the basis can lead to a good
representation of the continuum contributions (see,
for example Ref. [43]). However, even with very

large basis sets stability and convergence problems
have been reported [33]. Results from fully numerical
codes that solve the KS equations on a grid have the
advantage of being free of errors caused by the finite
size of the basis set. The disadvantage is that one can
consider only bound orbitals, as states with positive
energy are not represented accurately.

3. Approximate functionals

Apart from the truncation of the matrix equations
(15) or (17) described in Section 2, two further
approximations are necessary: (i) in the calculation
of the KS orbitalsf k(r ) and their eigenvaluese k,
one employs some approximation of the static xc
potentialVxc. (ii) The functional form of the dynamic
xc kernelfxc needs to be approximated.

In this work, two approximations of the exchange-
correlation potential are used: (i) the LDA in the para-
meterization of Vosko, Wilk and Nusair [44] and (ii)
orbital dependent xc functionals

Exc�{wis} � � Eexact
x �{wis} �1 Ec�{wis} � �23�

including the exact exchange energy expression

Eexact
x �{wis�r�} � � 2

1
2

X
s�";#

XNs

j;k�1

×
Z

d3r
Z

d3r 0
wp

js�r �wp
ks�r 0�wks�r �wjs�r 0�

ur 2 r 0u
:

�24�

The corresponding xc potential is evaluated using
the semi-analytical method of Krieger, Li and Iafrate
(KLI) [45–51] given by

Vxcs�r � <
1

rs�r �
XNs

i�1

uwis�r �u2�uxcis�r �1 � �VKLI
xcis 2 �uxcis��

�25�
with

uxcis�r � U 1
wp

is�r �
dExc�wjs�
dwis�r � : �26�

The constants� �VKLI
xcis 2 �uxcis� denote average values

taken over the density of theis orbital, i.e.

�uxcis �
Z

d3r uwis�r �u2uxcis�r � �27�
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and likewise for �VKLI
xcis: In the following, we refer to

this scheme as KLI if the exact exchange energy func-
tional (24) is used with correlation contributions
neglected. By KLICS we denote the same method
with the inclusion of correlation contributions in the
form given by Colle and Salvetti [6,52,53,54].

It is a well-known fact that the LDA xc potential
falls off exponentially. Consequently, the LDA
valence-orbitals are too weakly bound, with orbital
energies being in error by up to 100%. Contrary
to the LDA, both the KLI and KLICS potential
show the correct21=r tail for large r [55] (for a
recent review article see Ref. [56]). This leads to
orbital energies very close to the exact ones
[6,49,57].

Finally, the frequency-dependent quantityfxcss 0

has to be approximated. In the present work
we will restrict ourselves to the use of the adia-
batic LDA (ALDA) which can be expressed via the
quantities

f ALDA
xc �r ; r 0;v� � d�r 2 r 0� 2

2

2r2 �rehom
xc �r��

�����
rGS�r �

�28�

and

GALDA
xc �r ; r 0;v� � d�r 2 r 0� axc�r�

m2
0r

�����
rGS�r �

�29�

Here, axc�r� � �22
=2z2� �ehom

xc �r; z��uz�0 is the
exchange-correlation contribution to the spin stiffness
of the homogeneous electron gas with relative spin-
polarization z � 0; and m0 denotes the Bohr mag-
neton. In our calculations, the parameterizations of
Ref. [44] were used fore xc and a xc. The diagonal
elements of the spin dependent exchange-correlation
kernel are given by

fxc"" � fxc## � fxc 1 m2
0Gxc; �30�

and the off-diagonal elements read

fxc#" � fxc"# � fxc 2 m2
0Gxc: �31�

In the adiabatic approximation, the Fourier transforms
of the time-dependent kernels have no frequency
dependence at all. Their value corresponds to the
static (v � 0) limit of the linear response kernels
[58]. The frequency dependence however, still enters
the scheme via the pole-structure of the non-interact-
ing response-functionx s.

It is important to realize that, although the formal-
ism makes use of the time-dependent generalization
of DFT, only ground-state properties are required in
the actual calculation.

4. Numerical results for molecular systems

For calculations on diatomic molecular systems, we
used a fully numerical, basis-set free two-dimensional
code [54,57], developed from the Xa program written
by Laaksonen, Sundholm and Pyykko¨ [59–61]. The
code solves the one-particle Schro¨dinger equation for
diatomic molecules

2
72

2
2

Z1

uR1 2 r u
2

Z2

uR2 2 r u
1 VH�r �1 VKLI

xs �r �
 !

�wjs�r � � ejswjs�r �; (32)

where Ri denotes the location andZi the nuclear
charge of theith nucleus in the molecule. The partial
differential equation is solved in prolate spheroidal
coordinates on a two-dimensional mesh by a
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Table 1
Orbital energies for N

2
at R� 2:0744 a:u: from various DFT

approaches

xcLDA xcLDA a KLI KLICS

ETOT 2108.6999 2108.6957 2108.9852 2109.4629
Occupied orbitals
1sg 213.9666 213.9677 214.3728 214.4126
1su 213.9652 213.9662 214.3715 214.4113
2sg 21.0379 21.0411 21.3061 21.3384
2su 20.4938 20.4939 20.7457 20.7754
1pu 20.4370 20.4366 20.6809 20.7131
3sg 20.3826 20.3840 20.6303 20.6605
Unoccupied orbitals
1pg 20.0813 20.0816 20.3100 20.3412
4sg 20.0015 0.0000 20.1854 20.1988
2pu . 0 0.0235 20.1486 20.1582
3su . 0 0.0114 20.1300 20.1390
1dg . 0 – 20.1016 20.1081
5sg . 0 0.0305 20.0914 20.0986
6sg . 0 – 20.0855 20.0886
2pg . 0 0.0481 20.0799 20.0832
3pu . 0 – 20.0749 20.0777

a Results obtained with a code using a basis set of 106 contracted
Gaussian-type orbitals from Ref. [33].



relaxation method, while the third variable, the
azimuthal angle, is treated analytically. The Hartree
potential

VH�r � �
Z

d3r 0
r�r 0�

ur 2 r 0u
�33�

and the functionsuxis(r ) (cf. Eq. (26)) needed for the
calculation of the exchange potentialVKLI

xs �r � (cf. Eq.
(25)) are computed as solutions of a Poisson and
Poisson-like equation, respectively. In this step, the
same relaxation technique as for the solution of the
one-particle Schro¨dinger equation is employed. A
very detailed description of the code is given in Ref.
[62].

We have applied our method to the nitrogen and
carbon monoxide molecules. Both are well-studied
systems for which most of the lower excited states
have been observed and measured in detail.

In Table 1, we show the ground-state and orbital
energies of N2 obtained with the LDA, KLI and
KLICS potentials. Owing to the wrong behaviour of
the LDA potential in the asymptotic region, there are
only two bound unoccupied orbitals in this approxi-
mation. For the KLI and KLICS approaches, leading
to the correct21=r tail of the xc potential, we show
the lowest nine unoccupied orbitals, all of which have
negative energies. In the second column, the results

from Ref. [33] of an LDA calculation using an expan-
sion of the orbitals and potentials into a large
contracted Gaussian-type basis are displayed.
Comparison with our numerical results in the first
column shows that the basis-set-expansion error is
fairly small: the total energy is 4.2 mHartrees too
high and the orbital energies show an error of the
same magnitude. For the calculation of excitation
energies, the orbital-energydifferencesare important.
They show an error of about 1 mHartree on average.
Furthermore, the unbound orbitals with positive ener-
gies show a different energetic order as the corre-
sponding ones from the KLI and KLICS
calculations. Again, this indicates the poor quality of
the LDA potential in the asymptotic region. In
addition, this fact is also responsible for the poor qual-
ity of the value foreHOMO, which should be equal to
the first ionization potential in exact DFT. In LDA,
eHOMO � 2383 mHartrees; whereas the experimental
ionization potential is2573 mHartrees [33]. The KLI
value for eHOMO is 2630 mHartrees and thus signif-
icantly closer to the exact one. However, adding the
correlation contribution of Colle and Salvetti to the
KLI scheme results in a value which is further away
from the exact one than the one obtained within the
KLI approach. This indicates that the CS correlation
potential needs some improvement when calculating
molecular properties.
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Table 2
Excitation energies for N2 from an xcLDA-calculation atR� 2:0744 a:u: The LDA was employed forVxc and the ALDA for the xc kernels.
DvKS denotes the KS orbital energy difference. All numbers in mHartrees

State DvKS SPA SMA Fulla Fullb Expc

a 1Pg 3sg ! 1pg 301.4 344.3 341.6 339.4 334.4 342.1
B 3Pg 281.0 280.2 280.1 279.3 295.5
a0 1Su

2 1pu ! 1pg 355.8 355.8 355.8 355.8 355.0 364.6
B 0 3Su

2 355.8 355.8 355.8 355.0 355.4
A 3Su

1 301.6 296.7 296.7 289.6 284.5
w 1Du 378.3 377.6 377.6 375.6 377.4
W 3Du 328.7 327.6 327.6 324.5 326.3
a00 1Sg

1 3sg ! 4sg 381.1 385.3 385.3 385.3 – 448.3
E 3Sg

1 379.9 379.8 379.8 – 441.0
o 1Pu 2su ! 1pg 412.5 521.3 509.8 509.8 – 500.9
C 3Pu 384.9 383.9 383.7 380.7 411.2
c 1Pu 1pu ! 4sg 435.5 435.4 435.3 435.3 – 474.1
3Pu 434.8 434.8 434.9 – 470.3

a Neglecting continuum states.
b Basis-set calculation including continuum states from Ref. [33].
c From Ref. [43].



In Table 2 results are given for the vertical
excitation energies of N2, calculated from the
LDA xc-potential. Apart from the molecular
state, the orbital transition and the orbital-energy
difference, the excitation energies are shown for
different truncations of the exact matrix equation
(15) as discussed in Section 3. With our numerical
code, we have taken into account all occupied states
for the solution of the “full” matrix Eq. (17). For
comparison, we also show results which include
continuum contributions from a calculation using
the same basis set as the one used for the results
shown in Table 1, taken from Ref. [33]. The method
used in these calculations is identical to the one
outlined in Section 3. Finally, the last column displays
experimental values taken from [43]. It is evident
from the table, that the SPA (Eq. (21)) gives results
in good agreement with the ones from the solution of
the full matrix equation. The deviation is a few
mHartrees, being largest for the o1pu state with
11.5 mHartrees. As the KS orbital energy difference is
quite far from the experimental value for this

particular transition, it comes as no surprise that an
expansion of the exact equation (15) around a single
KS pole introduces a larger error than for states where
this difference is smaller. The SMA performs clearly
better, showing only deviations of a few tenths of a
mHartree from the solution of the full matrix equa-
tion. This is most drastic for the o1Pu excited state,
where the error of the SPA is strongly reduced by the
SMA. As far as the deviations between the “full”
solutions from the numerical code on one hand and
the basis-set code on the other hand are concerned,
there are two sources of error: the error introduced by
the basis-set expansion and, in the case of the grid
solution, the error resulting from the neglect of the
continuum orbitals. As the differences are fairly
small, being 6.1 mHartrees at the most (for the A
3S1

u state), and as the errors caused by the use of
basis set are of comparable magnitude, we conclude
that the effect of the continuum contributions is of
minor importance, at least for the lower excitation
energies studied here. Finally, we note that the agree-
ment of the calculated excitation energies with the
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Table 3
Excitation energies for N2 from a KLI-calculation at
R� 2:0744 a.u. The exact exchange functional was employed for
Vxc in KLI-approximation and the ALDA for the xc kernals.
DvKS denotes the KS orbital energy difference. All numbers in
mHartrees

State DvKS SPA SMA Fulla Expb

a 1Pg 3sg ! 1pg 320.2 364.1 361.4 358.7 342.1
B 3Pg 299.6 298.9 298.7 295.5
a0 1Su

2 1pu ! 1pg 370.9 370.9 370.9 370.9 364.6
B 0 3Su

2 370.9 370.9 370.9 355.4
A 3Su

1 317.9 313.4 312.8 284.5
w 1Du 392.7 392.1 392.0 377.4
W 3Du 344.4 343.4 343.2 326.3
o 1Pu 2su ! 1pg 435.7 545.3 534.2 526.2 500.9
C 3Pu 407.7 406.8 406.4 411.2
a00 1Sg

1 3sg ! 4sg 444.8 461.5 461.2 458.1 448.3
E 3Sg

1 440.0 440.0 439.7 441.0
c 1Pu 3sg ! 2pu 481.6 480.5 480.5 480.3 474.1
3Pu 479.9 479.9 479.6 470.3
b 1Pu 1pu ! 4sg 495.5 496.1 496.1 496.1 486.6
3Pu 491.8 491.8 492.1 497.8
c0 1Su

1 3sg ! 4su 500.3 500.8 500.8 498.8 477.0
3Su

1 496.9 496.9 496.8 466.9

a Using all occupied and the lowest 9 unoccupied orbitals.
b From Ref. [43].

Table 4
Excitation energies for N2 from a KLI-calculation at
R� 2:0744 a.u. The CS approximation for correlation added to
the exact exchange was employed forVxc in KLI-approximation
and the ALDA for the xc kernals.DvKS denotes the KS orbital
energy difference. All numbers in mHartrees

State DvKS SPA SMA Fulla Expb

a 1Pg 3sg ! 1pg 319.3 363.6 360.9 358.1 342.1
B 3Pg 298.5 297.7 297.6 295.5
a0 1Su

2 1pu ! 1pg 371.9 371.9 371.9 371.9 364.6
B 0 3Su

2 371.9 371.9 371.9 355.4
A 3Su

1 318.2 313.6 312.9 284.5
w 1Du 394.2 393.5 393.4 377.4
W 3Du 345.1 344.0 343.8 326.3
o 1Pu 2su ! 1pg 434.2 544.8 533.5 525.9 500.9
C 3Pu 406.0 405.0 404.7 411.2
a00 1Sg

1 3sg ! 4sg 461.7 479.8 479.5 476.3 448.3
E 3Sg

1 456.4 456.3 456.1 441.0
c 1Pu 3sg ! 2pu 502.3 501.3 501.3 500.8 474.1
3Pu 500.3 500.3 499.9 470.3
b 1Pu 1pu ! 4sg 514.3 515.3 515.3 515.3 486.6
3Pu 510.2 510.2 510.6 497.8
c0 1Su

1

3sg ! 3su 521.5 522.4 522.4 519.9 477.0
3Su

1 517.6 517.6 517.4 466.9

a Using all occupied and the lowest 9 unoccupied orbitals.
b From [43].



experimental values is very good for the lower states
involving transitions to the1Pg orbital. From Table 1
it is evident that the LDA-KS orbital-energy differ-
ences for these transitions are close to the (nearly
exact) ones from the KLI potential. This indicates
that a cancellation of the LDA self-interaction errors
occurs, leading to the excellent results for the lower
excitation energies. Values corresponding to transi-
tions to the 4sg orbital, however, underestimate the
experimental values considerably, reflecting the fact
that the error cancellation for the KS orbital energy
differences ceases to work so well.

In order to study the effect of the KS potential on
the excitation energies, we have also performed calcu-
lations with the KLI and KLICS potential, presented
in Tables 3 and 4, respectively. As before, the xc
kernels were approximated by the ALDA. Hence the
changes in the calculated excitation energies as
compared to the results of Table 2 are solely due to
the different KS potentials used. The columns headed
“full” display solutions of Eq. (17) taking into account

all 15 orbitals listed in Table 1. As far as the perfor-
mance of the SPA and SMA is concerned, a picture
similar to the LDA results is found: both approxim-
ations work very well, except that the SPA shows
larger errors when the KS orbital-energy difference
is further away from the experimental value, as is
the case for the o1Pu state. Comparison with the
experimental values shows that the agreement with
the calculated ones is very good. In contrast to the
LDA results, this is also true for the higher excitations
involving transitions to other than the 1pg orbital.
Generally, the calculated values are higher in energy
than the ones from the LDA approach. This is primar-
ily due to the larger KS orbital-energy differences and
clearly visible in Fig. 1. There we have plotted the
resulting excitation energies for the 2su ! 1pg trans-
ition in LDA and KLI approximation in order to
visualize the effect of the various truncation approx-
imations on the resulting excitation energies. Finally,
the KLICS scheme leads to slightly larger orbital-
energy differences and excitation energies than the
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Fig. 1. The singlet–triplet splitting of the 2su ! 1pg KS transition in N2 from the xcLDA and KLI calculations.



KLI approximation, thus shifting the calculated
results further away from the experimental ones in
most cases.

The excitation energies calculated using the three
DFT approaches are compared in Table 5 and Fig. 2
with results from a multi-reference coupled cluster
(MRCC) calculation from Ref. [43]. On an average,
the KLI potential leads to the best results of the three
DFT methods with a mean absolute deviation of
12.4 mHartrees from the experimental values. The
use of the LDA potential gives a deviation of
20.0 mHartrees whereas the KLICS results lie in
between, showing a deviation of 17.1 mHartrees.
For comparison, we have also listed excitation ener-
gies given in Ref. [36], which were obtained from the
model potential of van Leeuwen and Baerends [63]
(LB). The corresponding results deviate by
23.1 mHartrees from the experimental spectrum.
Clearly, the computationally much more expensive
MRCC calculations lead to considerably better results
with a deviation of 4.0 mHartrees. Furthermore, the
quality of the LDA results depends very sensitively on
the state under consideration: for the eight lowest
excited states, the mean absolute deviation from the
experimental values is only 8.6 mHartrees, whereas it

is 43.0 mHartrees for the four higher states shown in
Table 5 and Fig. 2. A similar picture is found for the
KLICS results. Here, the mean absolute errors are
13.8 and 23.7 mHartrees for the eight lowest and
four higher states, respectively. From the DFT
methods, only the use of the KLI potential leads to
results with comparable accuracy for all states. In this
approximation, the errors are 13.3 mHartrees for the
eight lowest and 10.7 mHartrees for the four higher
excited states. While the excitation energies tend to be
overestimated by the KLI and KLICS potentials, they
tend to be underestimated by the LB potential. This is
especially true for the lowest eight states, where the
errors of both potentials are of opposite sign and are at
the same time almost equal in magnitude. This is illu-
strated by column 6 of Table 5, where the arithmetic
mean of the KLI and the LB energies are displayed.
The values given in this column are close to the
experimental spectrum (with a mean absolute
deviation of 7.4 mHartrees). However, the KLI poten-
tial alone seems to give the best representation of the
higher Rydberg states. Of course, the MRCC results
show consistent accuracy for all states as well: For the
eight lowest states, the error is 4.2 mHartrees, for
the higher ones it is 3.6 mHartrees. Nevertheless, the
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Table 5
Excitation energies for N2 from various methods atR� 2:0744 a.u. The ALDA was employed for the xc kernels in the DFT calculations. Dev
denotes the mean absolute deviation from the experimental values for all 12 states. All numbers in mHartrees

State LDAa KLI b KLICSc LBd KLI 1 LB
2

MRCC-SDe Exptf

A 3Su
1 296.7 312.8 312.9 267.9 290.4 277.8 284.5

B 3Pg 280.1 298.7 297.6 262.4 280.6 296.0 295.5
W 3Du 327.6 343.2 343.8 305.8 324.5 328.1 326.3
a 1Pg 339.4 358.7 358.1 319.0 338.9 340.8 342.1
B 0 3Su

2 355.8 370.9 371.9 337.4 354.2 362.5 355.4
a0 1Su

2 355.8 370.9 371.9 337.4 354.2 370.7 364.6
w 1Du 377.6 392.0 393.4 360.9 376.5 387.4 377.4
C 3Pu 383.7 406.4 404.7 369.7 388.1 411.2 411.2
E 3Sg

1 379.8 439.7 456.1 452.7 446.2 431.9 441.0
a00 1Sg

1 385.3 458.1 476.3 – – 448.3 448.3
c 1Pu 435.3 480.3 500.8 – – 471.9 474.1
o 1Pu 509.8 526.2 525.9 – – 504.0 500.9
Dev 20.0 12.4 17.1 (23.1) (7.4) 4.0

a Full matrix neglecting continuum states.
b Full matrix using all occupied and the lowest 9 unoccupied orbitals.
c Full matrix using all occupied and the lowest 9 unoccupied orbitals.
d From Ref. [36].
e From Ref. [43].
f From Ref. [43].



quality of the DFT results is astounding, considering
the simplicity of the approach. Especially, the relatively
small deviation of the eight lowest states obtained with
the LDA potential is impressive. We note that a third-
order many-body perturbation theory calculation gives
an error of the same magnitude for these states [43].

A similar picture is found for CO. The orbital ener-
gies resulting from calculations using the LDA, KLI
and KLICS potentials are shown in Table 6. As for N2,
the LDA potential decreases too rapidly in the valence
region, leading to only two bound states and a value
for eHOMO of 2335 mHartrees. This is far above the
experimentally observed first ionization potential of
2515 mHartrees [64]. The KLI value of2553 mHar-
trees is much closer, whereas adding the CS correla-
tion potential moves the orbital energy further from
the exact one, yielding2581 mHartrees. Again, on
average, the results from using the KLI potential are
closest to the experimental values.

In Table 7 the excitation energies resulting from an
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Fig. 2. Difference of experimental and calculated excitation energies of N2 corresponding to Table 5. On thex-axis, the excited states are ordered
according to their experimental excitation energy with the energy increasing from left to right in arbitrary units.

Table 6
Orbital energies for CO atR� 2:1322 a.u. from various DFT
approaches

xcLDA KLI KLICS

ETOT 2112.4782 2112.7832 2113.2616
Occupied orbitals:
1s 218.7186 219.0959 219.1349
2s 29.9072 210.2983 210.3406
3s 21.0753 21.3280 21.3607
4s 20.5216 20.7599 20.7920
1p 20.4455 20.6738 20.7067
5s 20.3351 20.5526 20.5812
Unoccupied orbitals:
2p 20.0829 20.2853 20.3159
6s 20.0019 20.1631 20.1774
3p . 0 20.1208 20.1304
7s . 0 20.1203 20.1292
8s . 0 20.0772 20.0845
1d . 0 20.0771 20.0836
4p . 0 20.0684 20.0721
9s . 0 20.0639 20.0666
10s . 0 20.0530 20.0550



LDA calculation are shown. The SPA and SMA lead
to results close to the ones from the full solution of the
matrix Eq. (17) taking into account all nine bound
orbitals. Generally, the SMA shows the smaller
error. Again, the largest deviations arise for states
such as A1P where the corresponding KS orbital
energy difference is far away from the exact excitation

energy. On the whole, it is apparent that excitation
energies involving transitions to the 2p KS orbital
are reproduced very well, whereas transitions to the
6s orbital show a larger error. A glance at the orbital
energies given in Table 4 indicates that while the KS
orbital energy difference is of comparable magnitude
for the transitions to the 2p KS orbital in all approx-
imations, it is quite different for the transitions to the
6s orbital. For the latter, the LDA orbital-differences
are substantially smaller than the ones calculated from
the more accurate KLI potential, leading to excitation
energies which are too low.

Consequently, this should not be the case, if the
KLI or KLICS potentials are used instead of the
LDA. This is clearly visible from Tables 8 and 9.
Most notably, the energetic ordering of the orbital-
energy differences corresponding to the 1p! 2p
and the 5s! 6s transition is reversed compared to
the LDA calculation. Furthermore, in KLI and KLICS
calculations the c3P and E 1P excited states are
assigned to correspond to a 5s! 3p KS transition,
whereas they arise from the 4s! 2p and 1p! 6s
transitions, respectively, if the LDA potential is used.
Compared to the LDA, the quality of the results for
these higher lying excited states is increased
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Table 7
Excitation energies for CO from an xcLDA-calculation at
R� 2:1322 a.u. The LDA was employed forVxc and the ALDA
for the xc kernels.DvKS denotes the KS orbital energy difference.
All numbers in mHartrees

State DvKS SPA SMA Fulla Expb

A 1P 5s! 2p 252.3 326.8 318.2 310.2 312.7
a 3P 223.8 222.0 221.4 232.3
B 1S1 5s! 6s 333.2 338.9 338.6 338.0 396.2
b 3S1 331.5 331.5 331.6 382.2
I 1S2 1p! 2p 362.6 362.6 362.6 362.6 363.1
e 3S2 362.6 362.6 362.6 363.1
a0 3S1 318.1 315.0 314.9 312.7
D 1D 381.2 380.7 380.7 375.9
d 3D 340.4 339.6 339.6 344.0
c 3P 4s! 2p 438.8 420.4 420.0 420.2 424.5
E 1P 1p! 6s 443.6 443.5 443.5 443.5 423.7

a Neglecting continuum states.
b From Ref. [65].

Table 8
Excitation energies for CO from a KLI-calculation at
R� 2:1322 a.u. The exact exchange was employed forVxc in
KLI-approximation and the ALDA for the xc kernels.DvKS denotes
the KS orbital energy difference. All numbers in mHartrees

State DvKS SPA SMA Fulla Expb

A 1P 5s! 2p 267.4 345.8 336.8 327.2 312.7
a 3P 237.0 235.0 234.2 232.3
I 1S2 1p! 2p 388.6 388.6 388.6 388.6 363.1
e 3S2 388.6 388.6 388.6 363.1
a0 3S1 346.7 344.2 343.4 312.7
D 1D 405.6 405.2 405.2 375.9
d 3D 367.6 367.0 366.9 344.0
B 1S1 5s! 6s 389.6 409.4 408.9 402.4 396.2
b 3S1 383.8 383.7 383.5 382.2
E 1P 5s! 3p 431.8 430.8 430.8 431.1 423.7
c 3P 429.2 429.2 429.1 424.5
C 1S1 5s! 7s 432.3 437.7 437.7 436.4 418.9
j 3S1 427.0 427.0 427.0 415.3
F 1S1 5s! 8s 475.4 477.8 477.8 475.5 455.7

a Using all occupied and the lowest 9 unoccupied orbitals.
b From Ref. [65].

Table 9
Excitation energies for CO from a KLICS-calculation at
R� 2:1322 a.u. The CS approximation for correlation added to
the exact exchange was employed forVxc in KLI-approximation
and the ALDA for the xc kernels.DvKS denotes the KS orbital
energy difference. All numbers in mHartrees

State DvKS SPA SMA Fulla Expb

A 1P 5s! 2p 265.2 345.0 335.7 326.2 312.7
a 3P 234.3 232.3 231.4 232.3
I 1S2 1p! 2p 390.8 390.8 390.8 390.8 363.1
e 3S2 390.8 390.8 390.8 363.1
a0 3S1 348.2 345.6 344.8 312.7
D 1D 408.1 407.7 407.7 375.9
d 3D 369.5 368.8 368.7 344.0
B 1S1 5s! 6s 403.8 425.3 424.8 417.5 396.2
b 3S1 397.5 397.4 397.2 382.2
E 1P 5s! 3p 450.7 449.6 449.6 449.7 423.7
c 3P 447.9 447.9 447.5 424.5
C 1S1 5s! 7s 451.9 459.3 459.2 457.2 418.9
j 3S1 445.7 445.6 445.6 415.3
F 1S1 5s! 8s 496.7 499.8 499.8 497.0 455.7

a Using all occupied and the lowest 9 unoccupied orbitals.
b From Ref. [65].



significantly if the KLI potential is used. However, the
KLICS potential overestimates the resulting excita-
tion energies considerably, especially for the higher
lying states. For both approaches, the SPA and SMA
give results in close agreement with the ones from the
full solution of Eq. (15), except for the 5s! 2p sing-
let transition where the KS orbital difference is far
from the experimental value.

In Table 10 and Fig. 3 we compare our results for
the seven lowest excited states of CO with those
obtained from the MRCC method and the second
order polarization propagator approach (SOPPA)
[66]. Here, the LDA leads to the best results with an
average mean absolute deviation from the experimen-
tal values of 3.7 mHartrees, whereas the MRCC
approach leads to an error of 3.8 mHartrees. For
these lower states, both the KLI and KLICS again
overestimate the excitation energies with a deviation
of 21.5 and 22.6 mHartrees, respectively. The LB-
potential underestimates the transition energies, but
with a mean deviation of only 12 mHartrees for the
states shown.

However, for the higher states a different picture is
found, as may be seen from Table 11 and Fig. 3. For
these states, the KLI results are best with a mean
absolute deviation of 4.9 mHartrees, which is better
than the MRCC results, which do show an error of
5.4 mHartrees. The LDA performs poorly leading to
an average error of 33.2 mHartrees.

If all 11 states are taken into account, the conven-
tional quantum chemistry methods are superior on
average, with a mean absolute deviation well below
10 mHartrees for the eleven states listed. The DFT
approaches show a larger error, worst among them
the KLICS results with 22.2 mHartrees. The LDA
and KLI potentials lead to an almost equivalent
average deviation of 14.4 and 15.4 mHartrees,
respectively.

5. Summary and conclusion

The main purpose of this work was to study the
performance of various approximations involved in
the calculation of molecular excitation energies from
time-dependent DFT. Starting from the (unphysical)
KS spectrum, we obtained corrections towards the
physical excitation energies for the N2 and the CO
molecule.

First of all, the calculation of response properties,
which in principle involves an infinite number KS
orbitals, requires a truncation of the problem in one
way or another. For the excitation energies studied in
this work, the single-pole approximation (SPA), which,
in a nondegenerate situation, only requires one occupied
(initial) and one virtual (final) KS orbital, already gives
results which are quite close to more refined approxima-
tions (“full”) using more configurations. Since the SPA
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Table 10
Lower excitation energies for CO from various methods atR� 2:1322 a.u. The ALDA was employed for the xc kernels in the DFT calculations.
Dev denotes the mean absolute deviation for all 11 states. All numbers in mHartrees

State LDAa KLI b KLICSc LBd MR-CCSDe SOPPAf Exptg

a 3P 221.4 234.2 231.4 205.1 232.3 219.4 232.3
A 1P 310.2 327.2 326.2 293.3 321.2 310.9 312.7
a0 3S1 314.9 343.4 344.8 307.2 308.3 293.6 312.7
d 3D 339.6 366.9 368.7 337.0 343.2 328.5 344.0
I 1S2 362.6 388.6 390.8 – 371.5 356.5 363.1
e 3S2 362.6 388.6 390.8 362.3 366.4 354.6 363.1
D 1D 380.7 405.2 407.7 – 377.0 366.0 375.9
dev 3.7 21.5 22.6 (12.0) 3.8 10.6

a Full matrix neglecting continuum states.
b Full matrix using all occupied and the lowest 9 unoccupied orbitals.
c Full matrix using all occupied and the lowest 9 unoccupied orbitals.
d From Ref. [36].
e From Ref. [66].
f From Ref. [66].
g From Ref. [65].



allows a simple assignment of excitation energies, it can
serve as a first orientation in practical calculations.

Next, we have calculated excitation energies using
different exchange-correlation potentials. In this
context, the LDA was tested against (self-interaction
free) orbital approximations. Our calculations show,
that in order to obtain spectra from DFT which are
close to experiment, the underlying KS eigenvalue
differences have to be well represented.

In agreement with the results of Casida et al. [36], it
was found that the LDA potential yields excellent
results for lower excitation energies of molecules.
For these excitations, the relatively large self-interac-
tion errors, which are present in the LDA-orbital ener-
gies, cancel to a large extent. This finally leads to a
fairly good representation of the true KS eigenvalue
differences.

However, this cancellation of errors ceases to work
for excitations to higher lying states. There, the

correct asymptotic behaviour of the xc potential is
essential. In this regime, orbital functionals based on
exact exchange in the approximation of Krieger, Li
and Iafrate (KLI) performed very well. However,
these potentials show a tendency to overestimate the
molecular excitation energies. The inclusion of
correlation contributions in the form of Colle and
Salvetti (CS) consistently worsened the results,
indicating that the CS correlation potential needs
improvement for the calculation of molecular proper-
ties. This overestimation is most pronounced for
lower excitation energies, which in turn are very
well represented by the LDA.

On the whole, the quality of the results obtained
with the DFT scheme for excitation energies is
very encouraging. Improvements are however
necessary for the correlation potential. In our
opinion, orbital functionals offer a viable route
in this direction.
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Fig. 3. Difference of experimental and calculated excitation energies of CO corresponding to Tables 10 and 11. On thex-axis, the excited states
are ordered according to their experimental excitation energy with the energy increasing from left to right in arbitrary units.
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