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Abstract

The performance of various exchange-correlation functionals is evaluated in the calculation of molecular excitation energies
from time-dependent density functional theory. Excitation energies,@d CO are reported, using either the local density
approximation (LDA) for exchange and correlation or an orbital functional in the approximation of Krieger, Li and lafrate. The
latter is based on exact exchange plus a correlation contribution in the form suggested by Colle and Salvetti. While the LDA
proves to work remarkably well for the lower excited states due to error cancellations, self-interaction-free potentials are
essential for a good description of higher lying stat@f000 Elsevier Science B.V. All rights reserved.
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1. Introduction and dedication interaction calculations [6]. In the present paper, we
will investigate the performance or this optimized
It is a great pleasure for us to contribute to this effective potential in the calculation of molecular
scientific celebration of Professor Rezso sfa. excitation energies.
With his suggestion of a local exchange potential,  As far as the determination of excitation spectra is
Gaspa was among the pioneers of a theory which, concerned, several extensions of ground-state DFT
since the work of Hohenberg, Kohn and Sham [1,2], have been proposed. They are based either on the
has been termed density-functional theory (DFT). Rayleigh—Ritz principle for the lowest eigenstate of
Over the years, the available approximations for the a given symmetry class [7—9] or on a variational prin-
local exchange potential have steadily improved [3— ciple for ensembles [10—23]. A major difficulty lies in
5]. Thevariationally bestlocal exchange potential is  the fact that the exchange-correlation (xc) functionals
obtained if the Hartree—Fock total energy is varied associated with these approaches are not identical
under the subsidiary condition that the orbitals come with the ordinary ground-state xc energy functional,
from a local potential. The resulting so-callegti- although the latter sometimes gives rather accurate
mized effective potentialvhen complemented with  results [23]. In principle, the xc functional in these
a suitable correlation contribution, was recently approaches should depend either on the symmetry
shown to yield atomic ground-state properties in labels of the prescribed symmetry class or on the
close agreement with results based on configuration particular ensemble considered, and very little is
known about the nature of this dependence. To
U s . . circumvent this problem, we recently proposed
yealiedlcated to Professor R."§ga on the occasion of his 80th [24—28] a different approach for the calculation of
* Corresponding author. excitation energies, which is based on time-dependent
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density-functional theory (TDDFT) [29]. This method electrons with spinr subject to a frequency-depen-
makes use of the fact that excitation energies may be dent perturbationV,,.(r’, ) has poles at the exact
obtained from the poles of the linear density response excitation energies (see Ref. [42]). In terms of the
function which can be expressed, in principle exactly, density—density response functigp, of interacting

in terms of the response function of a noninteracting electrons, the frequency-dependent density response
Kohn—Sham (KS) system and a frequency-dependent p,,(r,) is given by

exchange-correlation kernel. In this way, corrections

to the KS orbital energy differences (which are the _ 3./ / /

poles of the KS response function) are obtained, P1o(ls @) = % Jd Koo (1.1 Vi (T @) (D
which shift them towards the true excitation energies

of the fully interacting system. As input, the resulting  Alternatively, the time-dependent generalization of
computational scheme only requirgsound state  DFT allows one to express the exact density response

properties3 ie. occupied_ and virtual orbitals of the , via the response functiop, of the noninteract-
KS potential corresponding to thground-stateof a ing KS system [27]:

given physical system. Recent applications to atoms

[27,28,30—-32], molecules [33—38] and clusters [39— 3 , ,

41] are highly promising. In particular, the successful Po(">®) = Z Jd M Xsoo' (T, @)V (M, @) (2)
calculation of the excited-state potential energy 7

surfaces_ of formaldehyde [38] ha_s shown that |, the above equatiorVg, is the linearized time-
TDDFT is also capable _o_f describing the strong dependent KS potential given by

mixing with Rydberg transitions and the correspond-
ing avoided crossings. In view of these successes, one,, (' @)=V (', )
can expect that this scheme will become a standard > ° S

method for the calculation of excitation energies of 3y 1 .
finite many-particle systems. + Z,, Jd r ( I —r7] + Txeoror(r,1 ""))
The accuracy of any density functional method, 7
however, crucially depends on the quality of the X pr(r", w). (3)

functional approximations involved. The purpose of

this work is to investigate the role of the static KS The spin-dependent xc kemnégl is defined as the
potential from which the orbitals and orbital energies kg rier transform of

entering the scheme are calculated. Furthermore,

we address the influence of the necessary truncation L NVicolpp, P11, 1)

i i i i frcoo' (F 411 1= ————— = (G
of the matrix equation from which the corrections 50T ) o
to the KS orbital energy differences have to be 7 Fes-bes
determined.

evaluated at the ground-state spin densiies, pcs

of the unperturbed system. The response function of
the KS system can be expressed in terms of the
stationary KS-orbitals

This article is organized as follows: In Section 2, a
brief review of the underlying theory is given. In
Section 3, the employed approximate functionals are
described. Section 4 discusses the numerical results
obtained for diatomic molecules, followed by a

!
: : rr,o
summary in Section 5. Xsor )

@i (D ko (N (1N o (1)
w = (Gju' - €k()') + “7

= 60’0” Z(fko - jo-) s
2. Basic formalism jk
©)
The calculation of excitation energies from time-
dependent DFT makes use of the fact that the full wheref;, denote the Fermi-occupation factors (1 or 0).

linear density response,, of a system of interacting With these definitions, Eq. (2) may be rewritten as
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an integral equation for the linear density response:

Z str/,[ 5(ru’” or —r ”) - z J dBrIXSmr’(rv r /; o)

% 1
|r/_

! n n
r”| + fch./o_//(r S (U)) ]plo.ll(r , (1))

= Z J dsrlxsmr/(l’, r /; (I))Vlg.l(r ,, (1)). (6)

In general, the true excitation energi@sare not iden-
tical with the Kohn—Sham excitation energigs —
€. Therefore, the right-hand side of Eq. (6) remains
finite for o — (2.. Since, on the other hand, the exact
spin-density respongg,,, has poles at the true excita-
tion energied?, the integral operator acting gn, on
the left-hand side of Eq. (6) cannot be invertible for
o — (). (Assuming the existence of the inverse opera-
tor, its action on both sides of Eq. (6) results in a finite
right-hand side fow — (2. This leads to a contradic-
tion sincep,,, remaining on the left-hand side, has a
pole atw = (2.)

Consequently, the true excitation energi@sare

characterized as those frequencies where the eigen—z

values of the integral operator acting on the spin-
density vector in Eq. (6) vanish. Integrating out the
delta-function in Eq. (6), the true excitation energies
0 are those frequencies, where the eigenvalifes of

> J'd3r’Xsw/(r,r’; ®)» str”

% 1
|rl_

! n n
r”| + fxw/(r//(r ,r ,(D)) yau(r , (L))

= Mw)y,(r, o) (7)

satisfy

A =1 €)
This condition rigorously determines the true excitation
spectrum of the interacting system at hand.

For a single-particle transitiotk — j) we introduce
the notation

q= (. k. )

355
The corresponding transition energies are

Wgr = €jg — €ko- (10
Moreover, we define

Dy (1) = (1) i (1), (11
Qg = fio = fios (12
and set

L) = Jd3r’ J A" Dy, (r')*

% (e
=

- n
r”| + fxc(,.o.//(r ,r ;w))'y(,u(r 5 (,())

13
Using these definitions, Eq. (7) can be recast into
s Py (1)
S T £ () = Mw)y,(r, o). (14)
g @ Wgo +1in

Solving this equation fory,(r,w) and reinserting
the result on the right-hand side of Eq. (13) we
arrive at

M 1
_ng—”(w)_gq,g/(a)) = /\(w)gq(r(w)’ (15)
e w Wyl + In

where we have introduced the matrix elements
Mq”q’(r’(w) - aq/(,./Jdgr stl" @;(,(r)
X ;Jrf (r,r'; ) | Py (r)
|r _r/| xcoa' s 1 s qo’ .
(19

Introducing the quantityBq, = &, ()/(Q2 — wy,)
and using the condition (8), we can, at the corre-
lated excitation energiesm = (2, rewrite Eq. (15)

in the following form:

Z Z (Mq(rq’o"(‘g) + wq(r‘sqq’ 80’0”)3(}’0” = Qqu- 1n
a,/ q/

Once again, this eigenvalue problem rigorously
determines the true excitation spectrum of the
interacting system.

In practice, the matrix equation (15) or, alter-
natively, the eigenvalue problem (17), has to be trun-
cated in one way or another. One possibility consists
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in expanding all quantities in Eq. (15) about one
particular KS-orbital energy differentew,,. For

T. Grabo et al. / Journal of Molecular Structure (Theochem) 501-502 (2000) 353-367

large basis sets stability and convergence problems
have been reported [33]. Results from fully numerical

non-degenerate poles one obtains [27] in lowest order codes that solve the KS equations on a grid have the

Q = wy, + My (p,). (18)
If the pole w,, is 2-fold degenerate, i.e.
Wy = Wp,p, = = Wpgpry = W, (19

then, in lowest order, the corresponding excitation
energies(2, are given by [28]

2 = wy + Re(An(wp)) (20)

where theA,(wo) are the# eigenvalues of the trun-
cated matrix equation

P
Z Mpifipkm(wO)fé:%(wO) = An(mO)g(i?l’
=i (22)

i=1..2

This lowest-order result amounts to approximating the
KS response functiorys by the single pole contri-
bution atw, alone. It therefore will be referred to as
single-pole approximation (SPA). The resulting

advantage of being free of errors caused by the finite
size of the basis set. The disadvantage is that one can
consider only bound orbitals, as states with positive
energy are not represented accurately.

3. Approximate functionals

Apart from the truncation of the matrix equations
(15) or (17) described in Section 2, two further
approximations are necessary: (i) in the calculation
of the KS orbitals¢(r) and their eigenvaluesg,
one employs some approximation of the static xc
potentialV,.. (ii) The functional form of the dynamic
xc kernelf,. needs to be approximated.

In this work, two approximations of the exchange-
correlation potential are used: (i) the LDA in the para-
meterization of Vosko, Wilk and Nusair [44] and (ii)
orbital dependent xc functionals

Excl{ #io}] = Ex*U{ ¢} ] + Ecl{ ¢is}] (23)

excitation energies can be assigned to symmetry including the exact exchange energy expression

labels according to the symmetry of the mathikin
Eqg. (21).
Alternatively, Eq. (17) may be truncated by only

considering the matrix elements corresponding to a

particular single-particle transitiotk — j) and the
reverse transitiofj — k), denoted by2 and2, respec-
tively. This leads to the following eigenvalue
problem:

Z Z (Mquq’(r’((l) + wq<r8qq/6mr’)Bq’(r/ = Qﬁqa'

o' q=29
(22

We will refer to this scheme as small matrix approx-
imation (SMA).

In the framework of traditional quantum chemistry,
Eqg. (17) is usually solved by expanding the orbitals

and potentials in a basis set. This has the advantageu, (r) :=
that a proper choice of the basis can lead to a good
representation of the continuum contributions (see,

for example Ref. [43]). However, even with very

! This is justified if the true excitation enerdyis not too far from
the KS orbital energy difference,,,.

N

exac! 1
B Haiolplt] = — 5 Z“ .kzl
o=l |.k=
(24)

% Jd3r J d3rl goj*a(r)(PEO'(r /)¢ka(r)¢ja(r /)
= '
The corresponding xc potential is evaluated using

the semi-analytical method of Krieger, Li and lafrate
(KLI) [45-51] given by

_ 18 2 SKLI -
cha(r) -~ Pg-(r) ;|‘Pia(r)| [UXCio'(r) + (chia chizr)]
(25
with
1 5Exc[QDja] (26)

(pi*(r(r) (SQDio-(r) '
The constantgVs:! — 0,,) denote average values
taken over the density of thHer orbital, i.e.

Oy = jd3r|<pig<r>|2uxcw(r> @7
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Table 1
Orbital energies for Nat R= 20744 au. from various DFT
approaches

XCLDA XCLDA? KLI KLICS

Eror —108.6999 -108.6957 -—108.9852 —109.4629
Occupied orbitals

loyg —13.9666 —13.9677 —14.3728 —14.4126
1oy —13.9652 —13.9662 —14.3715 —14.4113
20y —1.0379 -1.0411 —1.3061 —1.3384
20y —0.4938 —0.4939 —0.7457 —0.7754
1m, —0.4370 —0.4366 —0.6809 -0.7131
3oy —0.3826 —0.3840 —0.6303 —0.6605
Unoccupied orbitals

1my —0.0813 —0.0816 —0.3100 —0.3412
4oy —0.0015 0.0000 —0.1854 —0.1988
2y >0 0.0235 —0.1486 —0.1582
3oy >0 0.0114 —0.1300 —0.1390
13, >0 - —0.1016 —0.1081
50y >0 0.0305 —0.0914 —0.0986
6oy >0 — —0.0855 —0.0886
2y >0 0.0481 —0.0799 —0.0832
3my >0 - —0.0749 -0.0777

 Results obtained with a code using a basis set of 106 contracted
Gaussian-type orbitals from Ref. [33].

and likewise forVkt!  In the following, we refer to
this scheme as KLI if the exact exchange energy func-
tional (24) is used with correlation contributions
neglected. By KLICS we denote the same method
with the inclusion of correlation contributions in the
form given by Colle and Salvetti [6,52,53,54].

It is a well-known fact that the LDA xc potential
falls off exponentially. Consequently, the LDA
valence-orbitals are too weakly bound, with orbital
energies being in error by up to 100%. Contrary
to the LDA, both the KLI and KLICS potential
show the correct-1/r tail for large r [55] (for a
recent review article see Ref. [56]). This leads to
orbital energies very close to the exact ones
[6,49,57].

Finally, the frequency-dependent quantity,,
has to be approximated. In the present work
we will restrict ourselves to the use of the adia-
batic LDA (ALDA) which can be expressed via the
quantities

82
faPA(r,r'; w) = 8(r — r’)a—pz(pei‘é”“(p)) (28

pcs(r)

357
and
GADA (1 r': ) = 8(r — 1) lecz(P) 29
HoP | pes(r)
Here, aw(p) = (%9 (§"(p.D)l—o is the

exchange-correlation contribution to the spin stiffness
of the homogeneous electron gas with relative spin-
polarization { = 0, and wo denotes the Bohr mag-
neton. In our calculations, the parameterizations of
Ref. [44] were used fok,. and a,.. The diagonal
elements of the spin dependent exchange-correlation
kernel are given by

fxcﬁ = fxcu =fc + M(%ch, (30)
and the off-diagonal elements read
fxcn = f><ch = fye — I-L%ch' (39

In the adiabatic approximation, the Fourier transforms
of the time-dependent kernels have no frequency
dependence at all. Their value corresponds to the
static = 0) limit of the linear response kernels
[58]. The frequency dependence however, still enters
the scheme via the pole-structure of the non-interact-
ing response-functioys.

It is important to realize that, although the formal-
ism makes use of the time-dependent generalization
of DFT, only ground-state properties are required in
the actual calculation.

4. Numerical results for molecular systems

For calculations on diatomic molecular systems, we
used a fully numerical, basis-set free two-dimensional
code [54,57], developed from thexXprogram written
by Laaksonen, Sundholm and Pyykigp—61]. The
code solves the one-particle Sctiireger equation for
diatomic molecules

VZ
7_

Z, D
IRy — 1] IR, — 1|

+ Vy(r) + Vae! (r))

X (pja'(r) = Ejo’@jo(r)’ (32)
where R; denotes the location and; the nuclear
charge of thath nucleus in the molecule. The partial
differential equation is solved in prolate spheroidal
coordinates on a two-dimensional mesh by a
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Table 2
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Excitation energies for Nfrom an xcLDA-calculation aR = 2.0744 au. The LDA was employed fo¥,. and the ALDA for the xc kernels.
Awgs denotes the KS orbital energy difference. All numbers in mHartrees

State Awgs SPA SMA FulP Full® Exp°®

a 'l 304 — 1m, 301.4 344.3 341.6 339.4 334.4 342.1
B °Il, 281.0 280.2 280.1 279.3 295.5
als,” 1m, — lmg 355.8 355.8 355.8 355.8 355.0 364.6
B’ %5, 355.8 355.8 355.8 355.0 355.4
ASS,? 301.6 296.7 296.7 289.6 284.5
w A, 378.3 377.6 377.6 375.6 377.4
w 3A, 328.7 327.6 327.6 324.5 326.3
a' syt 304 — 4oy 381.1 385.3 385.3 385.3 - 448.3
E%Sy" 379.9 379.8 379.8 - 441.0

o I, 20, — 1m, 4125 521.3 509.8 509.8 - 500.9
c 1, 384.9 383.9 383.7 380.7 411.2
¢ 1, lm, — 4oy 4355 435.4 435.3 435.3 - 474.1
1, 434.8 434.8 434.9 - 470.3

# Neglecting continuum states.
b Basis-set calculation including continuum states from Ref. [33].
¢ From Ref. [43].

relaxation method, while the third variable, the
azimuthal angle, is treated analytically. The Hartree
potential

p(r’)
Ir—r/|

Vy(r) = Jd3r’ (33

and the functionsi;,(r) (cf. Eq. (26)) needed for the
calculation of the exchange potentidft' (r) (cf. Eq.

from Ref. [33] of an LDA calculation using an expan-
sion of the orbitals and potentials into a large
contracted Gaussian-type basis are displayed.
Comparison with our numerical results in the first
column shows that the basis-set-expansion error is
fairly small: the total energy is 4.2 mHartrees too
high and the orbital energies show an error of the
same magnitude. For the calculation of excitation
energies, the orbital-energlfferencesare important.

(25)) are computed as solutions of a Poisson and They show an error of about 1 mHartree on average.

Poisson-like equation, respectively. In this step, the

Furthermore, the unbound orbitals with positive ener-

same relaxation technique as for the solution of the gies show a different energetic order as the corre-

one-particle Schidinger equation is employed. A
very detailed description of the code is given in Ref.
[62].

We have applied our method to the nitrogen and
carbon monoxide molecules. Both are well-studied
systems for which most of the lower excited states
have been observed and measured in detail.

In Table 1, we show the ground-state and orbital
energies of N obtained with the LDA, KLI and
KLICS potentials. Owing to the wrong behaviour of
the LDA potential in the asymptotic region, there are
only two bound unoccupied orbitals in this approxi-
mation. For the KLI and KLICS approaches, leading
to the correct—1r tail of the xc potential, we show
the lowest nine unoccupied orbitals, all of which have

sponding ones from the KLI and KLICS
calculations. Again, this indicates the poor quality of
the LDA potential in the asymptotic region. In
addition, this fact is also responsible for the poor qual-
ity of the value foreyomo, Which should be equal to
the first ionization potential in exact DFT. In LDA,
€qomo = — 383 mHartreeswhereas the experimental
ionization potential is-573 mHartrees [33]. The KLI
value for eyomo is —630 mHartrees and thus signif-
icantly closer to the exact one. However, adding the
correlation contribution of Colle and Salvetti to the
KLI scheme results in a value which is further away
from the exact one than the one obtained within the
KLI approach. This indicates that the CS correlation
potential needs some improvement when calculating

negative energies. In the second column, the resultsmolecular properties.
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Table 3 Table 4

Excitation energies for N from a KLl-calculation at Excitation energies for N from a KLl-calculation at

R = 2.0744 a.u. The exact exchange functional was employed for R= 2.0744 a.u. The CS approximation for correlation added to
V,. in KLI-approximation and the ALDA for the xc kernals. the exact exchange was employed ¥4t in KLI-approximation
Awys denotes the KS orbital energy difference. All numbers in  and the ALDA for the xc kernalsAwgs denotes the KS orbital

mHartrees energy difference. All numbers in mHartrees

State Awgs SPA  SMA Fulf  Exp® State Awgs SPA  SMA Fulf  Exp’
a'll, 30y — lmy 320.2 364.1 3614 358.7 342.1 a'lly 30y — lmy 319.3 363.6 360.9 358.1 342.1
B *1I, 299.6 298.9 298.7 295.5 B °TI, 2985 297.7 297.6 2955
a's,” 1m,—1m; 3709 3709 370.9 370.9 364.6 a's,” 1m,—1m; 3719 3719 3719 3719 3646
B’ %3, 370.9 3709 3709 355.4 B'33,” 3719 3719 3719 3554
A3S,T 317.9 3134 312.8 2845 A3t 318.2 3136 3129 2845
w A, 392.7 3921 392.0 377.4 w A, 3942 3935 3934 377.4
W 3A, 3444 3434 3432 326.3 W 3A, 345.1 344.0 343.8 326.3
o'll, 20,—1m, 4357 5453 5342 526.2 500.9 o'll, 20,—1my; 4342 5448 5335 5259 500.9
c 311, 407.7 406.8 406.4 411.2 C 311, 406.0 405.0 4047 411.2
a''s,;" 30,— 40, 4448 4615 461.2 458.1 4483 '3, 30,— 40, 461.7 479.8 4795 476.3 4483

9 [*] ] 9 ¢] [*]
E33," 440.0 440.0 439.7 441.0 E33, 456.4 456.3 456.1 441.0
¢ 1, 30, —2m, 481.6 4805 480.5 480.3 474.1 ¢ I, 30y —2m, 5023 5013 501.3 500.8 474.1
°, 479.9 479.9 479.6 470.3 I, 500.3 500.3 499.9 470.3
b ', lm, — 4o, 4955 496.1 496.1 496.1 486.6 b I, lm, — 4o, 5143 5153 5153 5153 486.6
°1, 491.8 491.8 492.1 497.8 m, 510.2 510.2 510.6 497.8
¢'s," 30y—40, 5003 5008 500.8 498.8 477.0 ¢'S,  30y,—30, 5215 5224 5224 5199 477.0
33" 496.9 496.9 496.8 466.9 ¥ 517.6 517.6 517.4 466.9
2 Using all occupied and the lowest 9 unoccupied orbitals. # Using all occupied and the lowest 9 unoccupied orbitals.
® From Ref. [43]. ® From [43].

In Table 2 results are given for the vertical particular transition, it comes as no surprise that an
excitation energies of N calculated from the  expansion of the exact equation (15) around a single
LDA xc-potential. Apart from the molecular KS pole introduces a larger error than for states where
state, the orbital transition and the orbital-energy this difference is smaller. The SMA performs clearly
difference, the excitation energies are shown for better, showing only deviations of a few tenths of a
different truncations of the exact matrix equation mHartree from the solution of the full matrix equa-
(15) as discussed in Section 3. With our numerical tion. This is most drastic for the HI, excited state,
code, we have taken into account all occupied states where the error of the SPA is strongly reduced by the
for the solution of the “full” matrix Eq. (17). For SMA. As far as the deviations between the “full’
comparison, we also show results which include solutions from the numerical code on one hand and
continuum contributions from a calculation using the basis-set code on the other hand are concerned,
the same basis set as the one used for the resultghere are two sources of error: the error introduced by
shown in Table 1, taken from Ref. [33]. The method the basis-set expansion and, in the case of the grid
used in these calculations is identical to the one solution, the error resulting from the neglect of the
outlined in Section 3. Finally, the last column displays continuum orbitals. As the differences are fairly
experimental values taken from [43]. It is evident small, being 6.1 mHartrees at the most (for the A
from the table, that the SPA (Eq. (21)) gives results 33 state), and as the errors caused by the use of
in good agreement with the ones from the solution of basis set are of comparable magnitude, we conclude
the full matrix equation. The deviation is a few that the effect of the continuum contributions is of
mHartrees, being largest for the ‘or, state with minor importance, at least for the lower excitation
11.5 mHartrees. As the KS orbital energy difference is energies studied here. Finally, we note that the agree-
quite far from the experimental value for this ment of the calculated excitation energies with the
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Fig. 1. The singlet—triplet splitting of thesg — 1wy KS transition in N from the xcLDA and KLI calculations.

experimental values is very good for the lower states all 15 orbitals listed in Table 1. As far as the perfor-
involving transitions to théll, orbital. From Table 1~ mance of the SPA and SMA is concerned, a picture
it is evident that the LDA-KS orbital-energy differ-  similar to the LDA results is found: both approxim-
ences for these transitions are close to the (nearly ations work very well, except that the SPA shows
exact) ones from the KLI potential. This indicates larger errors when the KS orbital-energy difference
that a cancellation of the LDA self-interaction errors is further away from the experimental value, as is
occurs, leading to the excellent results for the lower the case for the JIl, state. Comparison with the
excitation energies. Values corresponding to transi- experimental values shows that the agreement with
tions to the 4, orbital, however, underestimate the the calculated ones is very good. In contrast to the
experimental values considerably, reflecting the fact LDA results, this is also true for the higher excitations
that the error cancellation for the KS orbital energy involving transitions to other than then} orbital.
differences ceases to work so well. Generally, the calculated values are higher in energy
In order to study the effect of the KS potential on than the ones from the LDA approach. This is primar-
the excitation energies, we have also performed calcu- ily due to the larger KS orbital-energy differences and
lations with the KLI and KLICS potential, presented clearly visible in Fig. 1. There we have plotted the
in Tables 3 and 4, respectively. As before, the xc resulting excitation energies for the2— 1wy trans-
kernels were approximated by the ALDA. Hence the ition in LDA and KLI approximation in order to
changes in the calculated excitation energies as visualize the effect of the various truncation approx-
compared to the results of Table 2 are solely due to imations on the resulting excitation energies. Finally,
the different KS potentials used. The columns headed the KLICS scheme leads to slightly larger orbital-
“full” display solutions of Eq. (17) taking into account  energy differences and excitation energies than the
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Table 5

361

Excitation energies for Nirom various methods & = 2.0744 a.u. The ALDA was employed for the xc kernels in the DFT calculations. Dev
denotes the mean absolute deviation from the experimental values for all 12 states. All numbers in mHartrees

State LDA? KLI® KLICS® LB¢ KLI + LB MRCC-SIF Expt

2
A3S,? 296.7 312.8 312.9 267.9 290.4 277.8 284.5
B °1l, 280.1 298.7 297.6 262.4 280.6 296.0 295.5
W 3A, 327.6 343.2 343.8 305.8 3245 328.1 326.3
a'l, 339.4 358.7 358.1 319.0 338.9 340.8 342.1
B’ %5, 355.8 370.9 371.9 337.4 354.2 362.5 355.4
als,” 355.8 370.9 371.9 337.4 354.2 370.7 364.6
w A, 377.6 392.0 393.4 360.9 376.5 387.4 377.4
C °m, 383.7 406.4 404.7 369.7 388.1 411.2 411.2
E33," 379.8 439.7 456.1 452.7 446.2 431.9 441.0
a' syt 385.3 458.1 476.3 - - 448.3 448.3
c U1, 4353 480.3 500.8 - - 471.9 4741
o I, 509.8 526.2 525.9 - - 504.0 500.9
Dev 20.0 12.4 17.1 (23.1) (7.4) 4.0

2 Full matrix neglecting continuum states.
b

c

4 From Ref. [36].
¢ From Ref. [43].
" From Ref. [43].

KLI approximation, thus shifting the calculated
results further away from the experimental ones in
most cases.

Full matrix using all occupied and the lowest 9 unoccupied orbitals.
Full matrix using all occupied and the lowest 9 unoccupied orbitals.

is 43.0 mHartrees for the four higher states shown in
Table 5 and Fig. 2. A similar picture is found for the
KLICS results. Here, the mean absolute errors are

The excitation energies calculated using the three 13.8 and 23.7 mHartrees for the eight lowest and
DFT approaches are compared in Table 5 and Fig. 2 four higher states, respectively. From the DFT

with results from a multi-reference coupled cluster
(MRCC) calculation from Ref. [43]. On an average,

the KLI potential leads to the best results of the three
DFT methods with a mean absolute deviation of
12.4 mHartrees from the experimental values. The
use of the LDA potential gives a deviation of

20.0 mHartrees whereas the KLICS results lie in
between, showing a deviation of 17.1 mHartrees.
For comparison, we have also listed excitation ener-
gies given in Ref. [36], which were obtained from the
model potential of van Leeuwen and Baerends [63]
(LB). The corresponding results deviate by
23.1 mHartrees from the experimental spectrum.
Clearly, the computationally much more expensive
MRCC calculations lead to considerably better results
with a deviation of 4.0 mHartrees. Furthermore, the
quality of the LDA results depends very sensitively on
the state under consideration: for the eight lowest

methods, only the use of the KLI potential leads to
results with comparable accuracy for all states. In this
approximation, the errors are 13.3 mHartrees for the
eight lowest and 10.7 mHartrees for the four higher
excited states. While the excitation energies tend to be
overestimated by the KLI and KLICS potentials, they
tend to be underestimated by the LB potential. This is
especially true for the lowest eight states, where the
errors of both potentials are of opposite sign and are at
the same time almost equal in magnitude. This is illu-
strated by column 6 of Table 5, where the arithmetic
mean of the KLI and the LB energies are displayed.
The values given in this column are close to the
experimental spectrum (with a mean absolute
deviation of 7.4 mHartrees). However, the KLI poten-
tial alone seems to give the best representation of the
higher Rydberg states. Of course, the MRCC results
show consistent accuracy for all states as well: For the

excited states, the mean absolute deviation from the eight lowest states, the error is 4.2 mHartrees, for
experimental values is only 8.6 mHartrees, whereas it the higher ones it is 3.6 mHartrees. Nevertheless, the
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Fig. 2. Difference of experimental and calculated excitation energieg @desponding to Table 5. On theaxis, the excited states are ordered
according to their experimental excitation energy with the energy increasing from left to right in arbitrary units.

-I(;?k?il;lleenergies for CO aR= 21322 a.u. from various DFT qua”,ty Of t,he DFT results is aStoun,ding’ conside;ring
approaches the simplicity of the approach. Especially, the relatively
small deviation of the eight lowest states obtained with
XCLDA KLI KLICS the LDA potential is impressive. We note that a third-
Eror 1124782 1127832 _113.2616 order many-body perturbation theory calculation gives
Occupied orbitals an error of the same magnitude for these states [43].
1o —18.7186 —19.0959 —-19.1349 A similar picture is found for CO. The orbital ener-
20 —9.9072 —10.2983 —10.3406 gies resulting from calculations using the LDA, KLI
> o I e and KLICS potentials are shown in Table 6. As for N
. 0.4455 _0.6738 _0.7067 the LDA potential decreases too rapidly in the valence
5o ~0.3351 —0.5526 —0.5812 region, leading to only two bound states and a value
Unoccupied orbitals for eyomo Of —335 mHartrees. This is far above the
2m —0.0829 —0.2853 —0.3159 experimentally observed first ionization potential of
gjr ;3-0019 :8128; :gggj —515 mHartrees [64]. The KLI value 6553 mHar-
7o -0 0.1203 0.1292 trees is much closer, whereas adding the CS correla-
8o >0 —0.0772 ~0.0845 tion potential moves the orbital energy further from
1% >0 -0.0771 —0.0836 the exact one, yielding-581 mHartrees. Again, on
4m >0 —0.0684 —0.0721 average, the results from using the KLI potential are
9 >0 —0.0639 —0.0666

closest to the experimental values.

100 >0 —0.0530 —0.0550 o . :
In Table 7 the excitation energies resulting from an
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Table 7

Excitation energies for CO from an xcLDA-calculation at
R= 21322 a.u. The LDA was employed f&f,, and the ALDA
for the xc kernelsAwgs denotes the KS orbital energy difference.
All numbers in mHartrees

b

State Awks SPA SMA  Fulf  Exp

AYMI 50—2m 2523 326.8 3182 3102 3127
a’l 223.8 2220 2214 2323
BS" B5r—60c 3332 3389 3386 338.0 396.2
b3s* 3315 3315 3316 3822
1S 1m—2m 3626 3626 3626 362.6 363.1
e’y 362.6 362.6 362.6 363.1
a3t 318.1 3150 3149 3127
DA 381.2 380.7 380.7 375.9
d A 340.4 339.6 339.6 344.0
c’m 4s — 2w  438.8 4204 4200 4202 4245
EWl 1n—60 443.6 4435 4435 4435 4237

% Neglecting continuum states.
® From Ref. [65].

LDA calculation are shown. The SPA and SMA lead
to results close to the ones from the full solution of the
matrix Eq. (17) taking into account all nine bound
orbitals. Generally, the SMA shows the smaller
error. Again, the largest deviations arise for states
such as A'll where the corresponding KS orbital
energy difference is far away from the exact excitation

Table 8

Excitation energies for CO from a KLl-calculation at
R= 21322 a.u. The exact exchange was employed \fgr in
KLI-approximation and the ALDA for the xc kernel&wys denotes
the KS orbital energy difference. All numbers in mHartrees

b

State Awgs SPA  SMA  Fulf  Exp

Al 50—2w 2674 3458 336.8 3272 3127
a’ll 237.0 2350 2342 2323
IS~ 1m—2m 3886 3886 3836 388.6 363.1
e’y 388.6 388.6 388.6 363.1
a3t 346.7 3442 3434 3127
DA 405.6 4052 4052 3759
d A 367.6 367.0 366.9 344.0
BS" 5o0—60c 389.6 409.4 4089 4024 396.2
b3s* 383.8 383.7 3835 3822
EYl 50— 3w 431.8 430.8 430.8 4311 423.7
c 1 429.2 4292 429.1 4245
CS* b5Bo—70 4323 4377 4377 4364 4189
jt 427.0 427.0 427.0 4153
FIS* bBo—8s 4754 4778 477.8 4755 4557

2 Using all occupied and the lowest 9 unoccupied orbitals.
® From Ref. [65].

363

Table 9

Excitation energies for CO from a KLICS-calculation at
R= 21322 a.u. The CS approximation for correlation added to
the exact exchange was employed ¥4t in KLI-approximation
and the ALDA for the xc kernelsAwgs denotes the KS orbital
energy difference. All numbers in mHartrees

b

State Awgs SPA  SMA Fulf  Exp

AUl 50—2m 265.2 3450 3357 3262 312.7
a1 2343 2323 2314 2323
I'S™  1wr—2m 390.8 390.8 390.8 390.8 363.1
e’y 390.8 390.8 390.8 363.1
a3t 3482 3456 3448 312.7
DA 408.1 407.7 407.7 3759
d A 369.5 368.8 368.7 344.0
B!S* 5Bo—60 403.8 4253 4248 4175 396.2
b3s* 3975 397.4 397.2 3822
EMI 50—3mw 450.7 4496 4496 4497 4237
c 1 447.9 4479 4475 4245
CSY bBo—70 4519 4593 4592 457.2 418.9
st 4457 4456 4456 4153
FS* Bo—8s 4967 499.8 499.8 497.0 4557

& Using all occupied and the lowest 9 unoccupied orbitals.
® From Ref. [65].

energy. On the whole, it is apparent that excitation
energies involving transitions to them2KS orbital
are reproduced very well, whereas transitions to the
60 orbital show a larger error. A glance at the orbital
energies given in Table 4 indicates that while the KS
orbital energy difference is of comparable magnitude
for the transitions to the KS orbital in all approx-
imations, it is quite different for the transitions to the
60 orbital. For the latter, the LDA orbital-differences
are substantially smaller than the ones calculated from
the more accurate KLI potential, leading to excitation
energies which are too low.

Consequently, this should not be the case, if the
KLl or KLICS potentials are used instead of the
LDA. This is clearly visible from Tables 8 and 9.
Most notably, the energetic ordering of the orbital-
energy differences corresponding to the % 2w
and the & — 6¢ transition is reversed compared to
the LDA calculation. Furthermore, in KLI and KLICS
calculations the ¢l and E I excited states are
assigned to correspond to & 5+ 3w KS transition,
whereas they arise from ther4- 27w and It — 60
transitions, respectively, if the LDA potential is used.
Compared to the LDA, the quality of the results for
these higher lying excited states is increased
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Table 10
Lower excitation energies for CO from various methodR at 2.1322 a.u. The ALDA was employed for the xc kernels in the DFT calculations.
Dev denotes the mean absolute deviation for all 11 states. All numbers in mHartrees

State LDA? KLI® KLICS® LB¢ MR-CCSDF SOPPA Expt?
a’ll 221.4 234.2 231.4 205.1 232.3 219.4 232.3
Al 310.2 327.2 326.2 293.3 321.2 310.9 312.7
a3yt 314.9 343.4 344.8 307.2 308.3 293.6 312.7
d A 339.6 366.9 368.7 337.0 343.2 328.5 344.0
113 362.6 388.6 390.8 - 3715 356.5 363.1
e’y 362.6 388.6 390.8 362.3 366.4 354.6 363.1
DA 380.7 405.2 407.7 - 377.0 366.0 375.9
dev 37 21.5 22.6 (12.0) 3.8 10.6

 Full matrix neglecting continuum states.

® Full matrix using all occupied and the lowest 9 unoccupied orbitals.
¢ Full matrix using all occupied and the lowest 9 unoccupied orbitals.
¢ From Ref. [36].

¢ From Ref. [66].

 From Ref. [66].

9 From Ref. [65].

significantly if the KLI potential is used. However, the If all 11 states are taken into account, the conven-
KLICS potential overestimates the resulting excita- tional quantum chemistry methods are superior on
tion energies considerably, especially for the higher average, with a mean absolute deviation well below
lying states. For both approaches, the SPA and SMA 10 mHartrees for the eleven states listed. The DFT
give results in close agreement with the ones from the approaches show a larger error, worst among them
full solution of Eq. (15), except for thes5— 21 sing- the KLICS results with 22.2 mHartrees. The LDA
let transition where the KS orbital difference is far and KLI potentials lead to an almost equivalent
from the experimental value. average deviation of 14.4 and 15.4 mHartrees,
In Table 10 and Fig. 3 we compare our results for respectively.
the seven lowest excited states of CO with those
obtained from the MRCC method and the second
order polarization propagator approach (SOPPA) 5 Summary and conclusion
[66]. Here, the LDA leads to the best results with an
average mean absolute deviation from the experimen-  The main purpose of this work was to study the
tal values of 3.7 mHartrees, whereas the MRCC performance of various approximations involved in
approach leads to an error of 3.8 mHartrees. For the calculation of molecular excitation energies from
these lower states, both the KLI and KLICS again time-dependent DFT. Starting from the (unphysical)
overestimate the excitation energies with a deviation KS spectrum, we obtained corrections towards the
of 21.5 and 22.6 mHartrees, respectively. The LB- physical excitation energies for the, dnd the CO
potential underestimates the transition energies, but molecule.
with a mean deviation of only 12 mHartrees for the  First of all, the calculation of response properties,
states shown. which in principle involves an infinite number KS
However, for the higher states a different picture is orbitals, requires a truncation of the problem in one
found, as may be seen from Table 11 and Fig. 3. For way or another. For the excitation energies studied in
these states, the KLI results are best with a mean this work, the single-pole approximation (SPA), which,
absolute deviation of 4.9 mHartrees, which is better inanondegenerate situation, only requires one occupied
than the MRCC results, which do show an error of (initial) and one virtual (final) KS orbital, already gives
5.4 mHartrees. The LDA performs poorly leading to results which are quite close to more refined approxima-
an average error of 33.2 mHartrees. tions (“full”) using more configurations. Since the SPA
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Fig. 3. Difference of experimental and calculated excitation energies of CO corresponding to Tables 10 and 1%-aRis{liee excited states
are ordered according to their experimental excitation energy with the energy increasing from left to right in arbitrary units.

allows a simple assignment of excitation energies, it can correct asymptotic behaviour of the xc potential is

serve as a first orientation in practical calculations.

Next, we have calculated excitation energies using
different exchange-correlation potentials. In this
context, the LDA was tested against (self-interaction
free) orbital approximations. Our calculations show,
that in order to obtain spectra from DFT which are
close to experiment, the underlying KS eigenvalue
differences have to be well represented.

In agreement with the results of Casida et al. [36], it
was found that the LDA potential yields excellent
results for lower excitation energies of molecules.
For these excitations, the relatively large self-interac-
tion errors, which are present in the LDA-orbital ener-
gies, cancel to a large extent. This finally leads to a
fairly good representation of the true KS eigenvalue
differences.

However, this cancellation of errors ceases to work
for excitations to higher lying states. There, the

essential. In this regime, orbital functionals based on
exact exchange in the approximation of Krieger, Li
and lafrate (KLI) performed very well. However,
these potentials show a tendency to overestimate the
molecular excitation energies. The inclusion of
correlation contributions in the form of Colle and
Salvetti (CS) consistently worsened the results,
indicating that the CS correlation potential needs
improvement for the calculation of molecular proper-
ties. This overestimation is most pronounced for
lower excitation energies, which in turn are very
well represented by the LDA.

On the whole, the quality of the results obtained
with the DFT scheme for excitation energies is
very encouraging. Improvements are however
necessary for the correlation potential. In our
opinion, orbital functionals offer a viable route
in this direction.
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Table 11
Higher excitation energies for CO from various methods at
R= 21322 a.u. The ALDA was employed for the xc kernels in
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[15] L.N. Oliveira, E.K.U. Gross, W. Kohn, Phys. Rev. A 37
(1988) 2821.
[16] A. Nagy, Phys. Rev. A 42 (1990) 4388.

the DFT calculations. Dev denotes the mean absolute deviation [17] A. Nagy, J. Phys. B 24 (1991) 4691.

for all 11 states. All numbers in mHartrees

State LDA KLI® KLICS® MR-CCSO¥ SOPPA Expt
b3s* 3316 3835 397.2 3881 381.1 3822
B!S* 338.0 4024 4175  405.7 398.0  396.2
EMNI 4435 431.1 4497 4292 4222 4237
¢’ 4202 429.1 4475 4252 418.6 4245
dev 332 49 213 5.4 2.6

# Full matrix neglecting continuum states.

P Full matrix using all occupied and the lowest 9 unoccupied
orbitals.

¢ Full matrix using all occupied and the lowest 9 unoccupied
orbitals.

4 From Ref. [66].

¢ From Ref. [66].

" From Ref. [65].
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