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ABSTRACT 

High-risk localized prostate cancer (HRLPC) is associated with a substantial risk of 

recurrence and prostate cancer-specific mortality1. Recent clinical trials have shown that 

intensifying anti-androgen therapies administered prior to prostatectomy can induce pathologic 

complete responses (pCR) or minimal residual disease (MRD) (<5 mm), together termed 

exceptional response, although the molecular determinants of these clinical outcomes are largely 

unknown. Here, we performed whole exome (WES) and whole transcriptome sequencing (RNA-

seq) on pre-treatment multi-regional tumor biopsies from exceptional responders (ER: pCR and 

MRD patients) and non-responders (NR: pathologic T3 or lymph node positive disease) treated 

with intensive anti-androgen therapies prior to prostatectomy. SPOP mutation and SPOPL copy 

number loss were exclusively observed in ER, while TP53 mutation and PTEN copy number loss 

were exclusively observed in NR. These alterations were clonal in all tumor phylogenies per 

patient. Additionally, transcriptional programs involving androgen signaling and TGFb signaling 

were enriched in ER and NR, respectively. The presence of these alterations in routine biopsies 

from patients with HRLPC may inform the prospective identification of responders to 

neoadjuvant anti-androgen therapies to improve clinical outcomes and stratify other patients to 

alternative biologically informed treatment strategies.  

Introduction 

 Over 90% of the 191,930 estimated cases of prostate cancer (PCa) in 2020 will present as 

localized disease2, with approximately 15% of these cases defined as high-risk for recurrence2–4. 

Though HRLPC is often curable by surgery alone, or with combined radiation plus androgen-

deprivation therapy (ADT), the risk of progressive disease and long-term prostate cancer specific 

mortality approaches 40%1,5. In other malignancies6–11, neoadjuvant systemic therapy results in 
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pCR or MRD in a subset of patients and is associated with improved overall survival. 

Neoadjuvant treatment strategies centered on androgen signaling pathways are being tested in 

HRLPC, since PCa is generally dependent on androgen and its cellular receptor, the androgen 

receptor (AR). 

 Neoadjuvant trials of androgen-pathway inhibitors (APIs) performed in the 1990s were 

limited by heterogeneous patient-risk groups predominated by low risk PCa, inadequate 

antagonism of the AR and reductions in intra-prostatic androgen signaling, and lack of long-term 

survival data12–17. Thus, contemporary neoadjuvant efforts for treating HRLPC have focused on 

using more intensive treatment strategies that combine conventional ADT with newer APIs such 

as the androgen-synthesis inhibitor abiraterone18–21, and the AR antagonists enzalutamide22–24 or 

apalutamide25,26. Our recent trial of intensive neoadjuvant treatment with enzalutamide, ADT, 

abiraterone, and prednisone (ELAP) for 6 months prior to prostatectomy induced pCR or MRD 

in 30% of  patients27 and pCR/MRD is associated with freedom from biochemical recurrence (M. 

Taplin, communication, and28). Though studies have identified genomic associations with 

response to API in advanced PCa29,30 as well as prognostic molecular features of aggressive 

localized disease31,32, the underlying biology and molecular mediators of response to intensive 

neoadjuvant API remains largely unknown. Given that integrative molecular features have been 

implicated in selective ADT response in the advanced prostate cancer setting, we hypothesized 

that genomic and transcriptional properties may be operant and coordinated in HRLPC treated 

with intensive neoadjuvant therapy 

Results 

Whole exome analysis of ER and NR patient samples 
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We performed multi-regional WES and RNA-seq profiling of pre-treatment biopsies 

from 32 patients enrolled on neoadjuvant trials of intensive API with either ELAP or ADT with 

apalutamide and abiraterone (AAP) (Figure 1A). A total of 46 WES samples from 24 patients 

(21 high-risk and 3 unfavorable intermediate risk by NCCN criteria) passed quality control 

metrics and were included in the final cohort (Figure 1A, Figure S1A, Table S1, 

Methods).  There were no significant differences in patient age, prostate specific antigen (PSA) 

or histopathology (Gleason score) between the 13 ER and 11 NR patients (Wilcoxon rank sum, 

Table 1). Of the 46 samples, 43 had a matched RNA-seq sample extracted from the same tissue 

that passed quality control (Methods).  The median WES coverage for tumor and germline 

samples was 158x and 85x, respectively. Tumor purity varied across the samples from 0.21 to 

0.84 but did not differ between response groups (P = 0.2793, Wilcoxon rank sum, Table S1). The 

median purity-corrected tumor ploidy in each response group was 2.1, as one NR tumor (27_T3) 

had a whole genome doubling event. There was no significant difference in median tumor 

mutational burden (TMB) between ER and NR groups (P = 0.093, Wilcoxon rank sum, Figure 

1B, left panel). Similarly, no significant difference in the proportion of genome altered (PGA) 

was observed between the groups (P = 0.502, Kolmogorov-Smirnov, Figure 1B, right panel). 

Examination of genomic alterations within this cohort (Table S2) revealed SPOP 

missense mutation (6/13 patients), SPOP copy number loss (1/13 patients), and SPOPL copy 

number loss (8/13 patients) exclusively in ER. Conversely, TP53 mutation (3/11 patients), PTEN 

loss (4/11 patients), PHLPP1 loss (6/11 patients), and AR deletion (1/11 patients) were 

exclusively observed in NR. TMPRSS2-ERG fusion transcripts were detected in 6 patients, 5 of 

whom were NR (Figure 1C, Figure S1B). Copy number alterations in RB1 and TP53 were 

present in both ER and NR. Deletion of chromosome 5q21.1, which contains CHD1, was 
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significantly enriched in ER by GISTIC2.033 (Q = 0.053, Table S3, Methods) . Of all genes with 

at least one potentially damaging somatic alteration, only SPOP and FOXA1 were significantly 

mutated across our cohort by MutSigCV234 (Q < 0.05, Methods), and only SPOP mutation was 

significantly enriched in ER (P = 0.016, Fisher’s exact test, Figure 1D, Table S4, Methods).  

We then compared our cohort with an untreated localized PCa molecular cohort (The 

Cancer Genome Atlas (TCGA) study of localized PCa35). We found that our cohort had a 

significantly lower TMB (P = 2x10-6
 , Wilcoxon rank sum) but no difference in PGA (P = 0.237 , 

Kolmogorov-Smirnov) relative to the TCGA dataset (Figure S1C). TCGA samples with SPOP 

mutation also had SPOPL copy number loss and APC mutation (P < 0.001, Fisher’s exact test; 

co-occurrence), and lacked PTEN copy number loss or TMPRSS2-ERG fusion (P = 0.046 and P 

< 0.0001, respectively, Fisher’s exact test; mutual exclusivity; Figure S1D). SPOP mutations in 

our cohort were also present in the TCGA cohort, though we did identify a TP53 splice site 

mutation (chr17:7577497A>C) not present in the TCGA cohort (Figure S1E). Thus, ER and NR 

cohorts were associated with recurrent mutations in SPOP and TP53, respectively. 

Clonal architecture of ER and NR tumors 

WES studies of localized PCa have identified substantial intra-tumoral heterogeneity 

between tumor foci36–40. We therefore evaluated pre-treatment multifocal biopsies to interrogate 

the association between intra-tumoral heterogeneity and response as well as the clonal 

architecture of genes associated with response to neoadjuvant API. A total of 14 patients (8 ER, 

6 NR) had multiple biopsies available for analysis. A median of 62.5% (range: 18.3-96.6) of 

non-synonymous mutations were common across at least two biopsies within each of these 

patients.  
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To evaluate the evolutionary relationship between intraprostatic tumor foci, we utilized 

phylogicNDT41,42 to cluster mutations by cancer-cell fraction (CCF) and build phylogenetic trees 

of tumor evolution in patients with multifocal biopsies (Methods). Of the 14 patients with 

multifocal biopsies available, 12 had tumor foci that shared a truncal mutational cluster. It is 

possible that the two patients for which the mutational cluster with the highest average CCF was 

not present in all biopsies (283_21 and 283_54, evidenced by low CCF of the assigned truncal 

cluster in some of the biopsy sites), the tumor foci sampled evolved independently and were not 

clonally related. Importantly, amongst the 3 SPOP-mutant patients with multifocal biopsies, 

SPOP mutation was a truncal event, present in all samples at high CCF (Figure 2A). We 

observed a similar finding in the 2 TP53-mutant patients with multifocal biopsies (Figure 2B). 

Conversely, though we observed many truncal mutations in other PCa genes, this was not always 

the case, such as a PTEN mutation in patient 283_21 present at high CCF in only one tumor 

focus (Figure 2B). 

Mutational signatures and clinical response 

Since prior reports have suggested SPOP mutation may lead to genomic instability via 

modulation of homology-directed repair of DNA double-stranded breaks43,44, we then explored 

whether response was associated with homologous recombination deficiency (HRD) or other 

genomic alteration patterns. There was no difference in TMB or PGA between SPOP-mutant and 

non-mutant samples within ER (P = 0.76 for TMB, P = 0.68 for PGA, Wilcoxon rank sum) or 

across the cohort (P = 0.62 for TMB, P = 0.77 for PGA, Wilcoxon rank sum). Furthermore, all 

samples were microsatellite stable (MSIsensor45 scores < 0.5).  

 To assess for evidence of specific mutational processes and HRD in our cohort, we 

utilized mutation-based (deconstructSigs46 and SigMA47) and copy number-based (scarHRD48) 
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methods (Methods). Consistent with prior reports47,49, clock-like signature 1 was the 

predominant mutational signature present across all samples. No COSMIC50 mutational 

signature was significantly enriched in either response group (Figure S2A, Methods). We 

observed higher scarHRD scores in NR, suggestive of more HRD-associated genomic structural 

alterations relative to ER samples (P = 0.098, Wilcoxon rank sum, Figure S2B, Table S5). Two 

NR had biopsy scarHRD scores ≥	42, a threshold considered suggestive of HRD in preclinical 

studies51,52 as well as by the Myriad CLIA-certified myChoice HRD score. One of these patients, 

283_25, harbored somatic mutations in multiple DNA damage associated genes such as ATM, 

RAD51, FANCA, and FANCL amongst others (Figure 2D, Table S2) whereas the other patient, 

283_55, had no detected alteration in a DNA damage repair gene. SigMA, which is optimized for 

samples with lower overall mutational burden, detected the presence of the HRD-associated 

signature 3 in multiple samples in the ER and NR categories, including patient 223_25 who 

harbored both germline and somatic mutations in BRCA2. Beyond the BRCA2 germline mutation 

in patient 223_25, no other germline alteration within a curated set of DNA damage repair genes 

was observed in NR (Fisher’s exact test, Table S6).  

Transcriptome sequencing identifies androgen signaling in ER and TGFb signaling in NR 

In addition to evaluating genomic events mediating selective response, we also assessed 

transcriptional programs associated with response to neoadjuvant API in 43 pre-treatment RNA-

seq samples available from the same tumor foci as the WES samples. Gene set enrichment 

analysis (GSEA)53 of MSigDB hallmark gene sets54 identified 7 and 11 gene sets enriched in ER 

and NR at a false-discovery rate < 0.25, respectively (Figure S3A, Methods). Specifically, the 

androgen signaling gene set was enriched in ER, and gene sets consistent with inflammatory 

pathways and TGFb signaling were enriched in NR (Figure 3A, Figure S3A). We next utilized 
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single-sample GSEA55 (ssGSEA) to assess if the observed up-regulated androgen signaling in 

ER tumors are driven by SPOP mutation. As expected, ssGSEA scores for the androgen 

signaling gene set were significantly higher in ER compared to NR (P = 0.003, Wilcoxon rank 

sum); however, there was no significant difference in androgen signaling enrichment between 

SPOP-mutant or wild-type ER (Figure 3B). We next used multiple approaches (Methods) to 

identify a consensus list of genes differentially expressed by response (Figure 3C, Figure S3B). 

We identified 136 genes up-regulated in ER and 21 genes up-regulated in NR. ER up-regulated 

genes included those regulated by AR such as CAMKK2 and SLC45A3, mTOR, and ANPEP, 

whose expression loss has been proposed as a prognostic marker in localized PCa56 (Figure 

S3C). Genes up-regulated in non-responders had overall expression levels less than those up-

regulated in ER tumors, and include PLA2G7, a gene associated with PCa cell migration and 

invasion57 (Figure S3D). 

Discussion 

In summary, we identified SPOP mutation as a truncal event in prostate tumors that have 

exceptional response to neoadjuvant API in HRLPC, which may have major implications for 

treatment selection in this high-risk patient population. Exceptional response was also associated 

with SPOPL and CHD1 copy number loss and additional genomic and transcriptional features, 

suggesting multiple integrated molecular processes can contribute to exceptional response27. 

SPOP is an E3 ligase adaptor protein that forms large oligomers or heteromers with SPOPL to 

promote ubiquitination and proteosomal degradation of target proteins58. Mutations in SPOP 

have been proposed to disrupt oligomerization in a dominant negative fashion to reduce substrate 

ubiquitination, and the loss of SPOPL likely leads to a similar outcome59.  SPOP mutation has 

been associated with longer time on treatment with abiraterone in metastatic castration-resistant 
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prostate cancer30, as well as progression-free survival for standard ADT alone in metastatic 

castration-sensitive prostate cancer60. Notably, the genomic profiles of pre-treatment HRLPC 

samples from an independent neoadjuvant API clinical trial cohort revealed the presence of 

SPOP mutations exclusively in exceptional responders61. Our findings, paired with this external 

validation, demonstrate the translational relevance of mutations in this gene with API in HRLPC. 

Consistent with a prior study in preclinical mouse models that identified increased AR 

and AR-associated transcription factors as a result of SPOP mutation62, we also identified up-

regulated androgen signaling in ER relative to NR as a possible explanation for preferential 

sensitivity to intensive neoadjuvant API. Our findings are further corroborated mechanistically 

by (1) Grbesa and colleagues, who showed that SPOP mutation is sufficient to reprogram the AR 

towards its oncogenic program in mouse organoids, rendering them more dependent on androgen 

signaling, and (2) Bernasocchi et al63, who described that the expression of SPOP mutants in a 

cell line model of advanced prostate cancer induces greater sensitivity to androgen-deprivation 

and enzalutamide therapy. Increased androgen signaling was not exclusive to SPOP mutated 

samples. For example, 3 ER patients lacking a SPOP mutation were found to have missense 

mutations in FOXA1 located at the C-terminal end of the FKHD domain. Mutations in this 

location were recently characterized64 as augmenting the impact of FOXA1 on AR binding to 

DNA and transcription of target genes, which may explain increased androgen signaling in these 

non-SPOP mutated samples.   

Our findings suggest additional prospective molecular stratification may broadly improve 

selection of neoadjuvant treatment strategies in HRLPC.  For example, PTEN copy number loss 

was only observed in NR, consistent with reduced PTEN expression by immunohistochemistry 

in tumors persisting after treatment on our clinical trial27. It is possible that HRLPC patients with 
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PTEN loss should not receive neoadjuvant API, but rather may benefit from a different therapy 

such as AKT inhibition as is currently being evaluated with ipatasertib in the IPATential150 trial 

(NCT03072238)65.  Furthermore, 2 NR patients had copy number evidence of HRD in the 

absence of BRCA mutation, which may indicate sensitivity to PARP inhibition52,66. We also 

identified enrichment of TGFb signaling in NR, which parallels the increased TGFb pathway 

activity in enzalutamide resistant advanced PCa67 and preclinical findings that the TGFb 

inhibitor galunisertib augments the anti-tumor activity of enzalutamide68. Galunisertib is 

currently being evaluated in a clinical trial in combination with enzalutamide in advanced PCa 

(NCT02452008); a similar strategy may be applicable to HRLPC.  

The presence of the same SPOP mutation within multiple tumor foci from ER patients is 

in contrast to prior genomic studies of multifocal PCa prostatectomy samples unstratified by 

treatment36–40, which detected SPOP mutation either clonally or subclonally in only a subset of 

sampled regions. It is possible that SPOP mutations were present in unsampled foci from NR 

tumors that respond to therapy, whereas residual tumor foci contain other drivers of resistance to 

API69,70. Integration of multiple molecular features from multifocal biopsies may therefore be 

required for more accurate treatment selection.  

Finally, the small sample size of this cohort and use of whole exome sequencing limits 

the biomarker generalizability of our findings beyond initial biological discovery. Expanded 

prospective analyses that include expanded sequencing modalities (e.g. whole genome and 

transcriptome sequencing) and longer-term follow-up are required to validate SPOP mutation, 

TGFb pathway activity, alterations in DNA damage repair processes, and androgen signaling as 

predictive biomarkers for treatment stratification to neoadjuvant API or other approaches in 

HRLPC. Indeed, studies of these factors and other molecular associations of response are 
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planned as correlative analyses within the international randomized phase 3 PROTEUS study 

(NCT03767244) of neoadjuvant apalutamide plus ADT in HRLPC. Overall, these findings may 

ultimately direct molecular patient stratification for the HRLPC patient population most likely to 

respond to intensive androgen blockade and guide alternative neoadjuvant therapeutic strategies 

for other molecularly defined subsets of patients.  
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METHODS 

Patient Cohort 

Patients with localized prostate cancer who were candidates for prostatectomy and met 

eligibility criteria were offered enrollment on Dana-Farber Cancer Institute IRB approved 

clinical trial protocols 14-283 (enzalutamide, lupron, abiraterone acetate, and prednisone) or 16-

223 (apalutamide, abiraterone acetate, lupron). Patient written and informed consent was 

obtained for molecular analysis of pre-treatment prostate biopsies under Dana-Farber Cancer 

Institute IRB approved protocols (01-045/11-104/17-000). All patients who consented for 

molecular analysis and met criteria for exceptional response (either complete response - no 

tumor tissue upon pathologic review at time of prostatectomy, or minimal residual disease - < 5 

mm of tumor tissue in longest dimension at time of prostatectomy) or non-response  (pathologic 

T3 or lymph node positivity at time of prostatectomy) were included. A total of 32 patients 

consented, had available tissue, and had nucleic acid successfully extracted from tumor tissue. 

Eight patients were ultimately excluded from final analysis because of initial incorrect response 

classification (1 patient – actually an intermediate responder), or sequencing/downstream QC 

issues (7 patients – metrics detailed below), resulting in a final cohort of 24 patients.  

Whole exome sequencing and whole transcriptome sequencing 

DNA extraction, library preparation and WES were performed for samples as previously 

described47. Each WES sample consisted of DNA extracted from the tumor tissue in one prostate 

biopsy core. Slides were cut from FFPE biopsy blocks, macrodissected for tumor-enriched 

tissue, and deparaffinized. DNA and RNA extraction were performed using the QIAGEN 

AllPrep FFPE DNA/RNA Extraction kit. Germline DNA was obtained from peripheral blood 

mononuclear cells. WES libraries were generated from 100 ng of starting DNA material. After 
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processing and size selection, samples were subjected to exonic hybrid capture, then sequenced 

using the Illumina HiSeq platform. 

 Total RNA was assessed for quality and the percentage of fragments with a size greater 

than 200 nucleotides (DV200) was calculated using software. cDNA library synthesis and 

capture were performed using the Illumina TruSeq RNA Access Library Prep kit (now known as 

Illumina TruSeq RNA Exome kit). Amplified libraries were quantified using an automated 

PicoGreen assay. Flowcell cluster amplification and sequencing were performed according to the 

manufacturer’s protocols using the Illumina NextSeq 500 platform. Each run generated 76 bp 

stranded paired end reads. Raw sequencing data were processed using the Broad Picard Pipeline, 

which includes demultiplexing and data aggregation. 

WES Quality Control 

  Samples were included for analysis only if they successfully underwent WES, met 

criteria for either exceptional or non-response, had a matched germline normal sample, and met 

our joint quality control criterion. To estimate cross sample contamination we used ContEst71, 

and applied a cutoff of <= 4%. The median cross sample contamination was 0.1%. We utilized 

the GATK3.7 DepthOfCoverage tool72 to ascertain the mean target coverage for tumor and 

normal samples, and required at least 50x coverage for the tumor sample and 30x coverage for 

the corresponding normal sample. Finally, we utilized both FACETS73 and ABSOLUTE74 to 

determine tumor purity and excluded samples with tumor purity < 20% by both algorithms. 

Variant Calling and Mutational Significance Analysis 

Reads were aligned using BWA75 v0.5.9 and somatic mutations called using a 

customized version of the Getz Lab CGA WES Characterization pipeline 

(https://portal.firecloud.org/#methods/getzlab/CGA_WES_Characterization_Pipeline_v0.1_Dec2 
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018/) developed at the Broad Institute. We used ContEst71  to estimate cross sample 

contamination. We used MuTect76 v1.1.6 to call single nucleotide variants, and Strelka77 v1.0.11 

to call indels. MuTect2.178 was used to confirm Strelka indel calls. MuTect v1.1.6 output was 

filtered for FFPE72 and 8-oxoG79 sequencing artifacts using GATK FilterByOrientationBias. 

DeTiN80 was used to rescue true somatic variants that were removed due to tumor-in-normal 

contamination. Variant calls were subsequently filtered through a panel of normal samples to 

remove artifacts from miscalled germline alterations and other rare error modes. Variants were 

annotated using VEP, Oncotator, and vcf2maf v1.6.17 (https://github.com/mskcc/vcf2maf). The 

variant allele frequency of detected mutations that passed QC steps is indicated in Table S2. 

To identify significantly mutated genes across our cohort, we utilized MutSigCV234, 

utilizing the highest purity sample per patient since WES data from intra-tumoral foci are not 

independent of each other. 

Copy number calling and significance 

Allelic copy number, tumor purity and tumor ploidy were analyzed using both FACETS73 

and ABSOLUTE74. Purity and ploidy calls by each algorithm were generally concordant 

(spearman r = 0.707, P  = 3.9x10-8, Supplemental Table 2). Copy number alterations (CNA), 

purity, ploidy, and whole genome doubling status used for analyses in Figure 1 were based on 

FACETS calls, since FACETS provides allelic copy number calls for the X chromosome. We 

utilized GISTIC 2.033 to identify focal regions with significant enrichment of amplifications and 

deletions using genome segmentation files generated by GATK 3.7. Again, we restricted the 

analysis to the highest purity sample  from each patient. To remove germline noise, we ran 

GISTIC2.0 on the merged matched normal segmentation file and removed significantly enriched 

regions using amplification and deletion thresholds of 0.1. Any germline region with a q-value < 
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0.25 (default) was considered significant and excluded from the somatic analysis. To identify 

focal regions with significant enrichment of somatic amplifications/deletions, we 

utilized  amplification and deletion thresholds of 0.3, and applied a q-value cutoff of < 0.1. 

Phylogenetic analysis 

A union set of mutations across all samples from each patient was generated and force 

calling was performed to assess the variant allele fraction of each mutation within each sample. 

The cancer cell fraction (CCF) of mutations were defined using ABSOLUTE74, which calculates 

the CCF based on allelic fraction, purity, and local copy number. To reconstruct the clonal 

architecture of prostate cancer tumors, we used the PhylogicNDT41 Cluster module, which was 

initialized using ABSOLUTE output and utilizes Dirichlet clustering to determine the number of 

clusters and the respective assignment of each mutation to a cell subpopulation (or subclone). 

The CCF annotated MAF file from ABSOLUTE and tumor purity for each WES sample per 

patient were used as inputs to the clustering method. The outputs from the PhylogicNDT Cluster 

were then used as inputs to the PhylogicNDT BuildTree module, which produces a series of 

phylogenetic trees ordered by likelihood, with the baseline assumption that all biopsies included 

in the analysis are related. The phylogenetic trees with the highest likelihood were used in the 

analyses of this study. The cluster average CCFs and individual mutation CCFs are shown in 

Table S7.  

Mutational signature and homologous recombination deficiency analysis 

Mutational processes in our cohort were determined using deconstructSigs46 using default 

parameters with COSMIC50 v2 signatures as the reference. The highest purity sample per patient 

was used for this analysis. A signature was assessed as present if the signature contribution was 

greater than 6%. Samples were annotated for the presence or absence of each signature, and 
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enrichment of each signature by response was determined by Fisher’s exact test. We also utilized 

SigMA47, which leverages multiple methods including likelihood-based statistics to classify 

known signatures across cancer types. For this analysis, we utilized default parameters with the 

exception of setting the tumor type to “prost”, the data parameter set to “seqcap”, and the 

check_msi parameter was set to “true”.  Signature 3 status was determined using the category 

classification output by SigMa; however, we also utilized the signature 3 likelihood output to 

identify high-confidence signature 3 tumors. 

 To calculate the number of loss of heterozygosity, telomeric allelic imbalance and large 

scale transition events, we used FACETS allelic copy number calls for the highest purity sample 

per patient as input into the scarHRD48 package (https://github.com/sztup/scarHRD). Differences 

in scarHRD score by response were assessed by the Wilcoxon rank-sum test.  

Germline variant discovery 

To call short germline single-nucleotide polymorphisms, insertions, and deletions from 

germline WES data, we used DeepVariant81 (v0.8.0). Specifically, we used the publicly released 

WES model 

(https://console.cloud.google.com/storage/browser/deepvariant/models/DeepVariant/0.8.0/Deep

Variant-inception_v3-0.8.0+data-wes_standard/) to generate single-sample germline variant call 

files using the human genome reference GRCh37(b37). We filtered variants with bcftools v1.9 to 

only keep high-quality variants annotated as “PASS” in the “FILTER” column. The high-quality 

variants were merged into single-sample Variant Call Format (VCF) files using the “ 

“CombineVariants” module of GATK 3.7 (https://github.com/broadinstitute/gatk/releases). To 

decompose multiallelic variants and normalize variants, we used the computational package vt 
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v3.13 (https://github.com/atks/vt). Lastly, germline variants were annotated using the VEP v92 

with the publicly released GRCh37 cache file (https://github.com/Ensembl/ensembl-vep).  

RNA-seq processing and normalization 

After sequencing, adapters were trimmed with cutadapt82 v2.2 and reads were aligned 

using STAR83 aligner v2.7.2b. We used multi-sample 2-pass mapping for all samples from each 

patient, first mapping all samples, merging the SJ.out.tab files, then running the second pass with 

the jointly called splice junctions. STAR-aligned bams were passed into RSEM84 to generate 

gene-level transcript counts and transcript per million (TPM) quantifications using the 

Gencode30 reference. STAR chimeric junctions were supplied to STAR-Fusion85 v1.7.0 in 562 

kickstart mode to call TMPRSS2-ERG fusions. 

For RNA-seq quality control, sequencing- and alignment-specific metrics were examined 

for each sample. The following alignment metrics were considered and examined for outliers: 

number and percentage of uniquely mapped reads, number of high-quality reads, intronic rate, 

intergenic rate and rRNA rate. Samples were clustered across quality-control metrics using 

principal-component analysis that incorporated rates of high-quality reads in exonic, intronic, 

intragenic and intragenic regions as well as base mismatch rate, unique mapping rate, and rRNA 

rate. Two samples were excluded based on consistently being outliers across various metrics as 

well as by principal component analysis. Finally, only transcriptomes from tumors whose WES 

also passed quality control were included. One sample with WES data did not have an RNA-seq 

sample that successfully completed sequencing, resulting in a total of 43 RNA-seq samples in 

our analysis cohort.  

Gene set enrichment analysis 
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GSEA53 was performed using the Cancer Hallmarks gene sets from MSigDB 

(https://cloud.genepattern.org/). The trimmed mean of m-values (TMM) normalized counts for 

RefSeq genes as generated by edgeR86 were used as inputs. Genes with less than 5 reads across 

all samples were excluded from analysis. We used default settings with 1,000 phenotype 

permutations to generate P and Q values and compared the highest purity RNA-seq samples 

between ER and NR. A gene set was considered significant with a false discovery rate of less 

than 25%. To generate nonparametric gene set scores for the hallmark androgen signaling gene 

set, we generated ssGSEA projections55 using rank normalization. Differences in ssGSEA score 

were assessed by the Wilcoxon rank-sum test.  

Differential expression analysis 

RNA differential expression analysis was completed using edgeR86,87 v3.11 with the gene 

level counts from RSEM as input and tumor purity as a covariate in the design matrix. We 

performed differential expression analysis between ER and NR patients using two approaches. 

We first performed differential expression using the highest purity sample from each patient. To 

determine the generalizability of these findings across the cohort and leverage the sequencing of 

multiple samples, we also undertook a sampling approach. We randomly selected one tumor 

sample from each patient to include in an iteration of differential expression analysis; we 

repeated this process 1000 times and recorded the median edgeR Q-value of each gene across the 

1000 iterations. To ensure that differential expression results were not driven by outliers, we also 

conducted a one-sided Mann-Whitney U test on the gene level TPMs. Genes were considered 

differentially expressed if they had a Q value below 0.05 in the highest purity analysis, a Q value 

below 0.05 in the sampling approach, and a P value below 0.05 in the Mann-Whitney U test. 

STATISTICAL ANALYSIS 
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The statistical details of all analyses are reported in the main text, figure legends, and figures, 

which includes the statistical test performed and statistical significance.  

DATA AVAILABILITY 

Raw sequencing data will be available at dbGAP accession phs001988.v1.p1at the time of 

publication.  
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FIGURES 

 

 

Figure 1: Genomic features of response to neoadjuvant API. (a) Study design integrating 

WES and RNA-seq pre-treatment biopsies from two clinical trial protocols of ELAP (14-283) or 

AAP (16-223) (b) Comparison of TMB (P = 0.093, Wilcoxon rank-sum) and PGA (P = 0.502, 

Kolmogorov-Smirnov) between ER (n = 13) and NR (n=11) patients. (c) Co-mutation88 plot of 

the highest purity sample per patient illustrating select single nucleotide and insertion/deletion 

events, as well as CNA and TMPRSS2-ERG RNA fusion status. Each row represents the 

mutation or copy number status for the indicated gene, and each column represents a patient 

sample. Copy number calls are allelic, with the status of each allele indicated by a triangle. In 

cases with whole genome doubling (27_T3), it is possible for one allele to be amplified and one 

or both of the other allele to be lost. AR is on the X chromosome with only a single copy in men 
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and is thus represented by a solid box for copy number status. Complex indicates that a segment 

breakpoint occurred within a gene, creating conflicting copy number. Baseline indicates the 

default copy number status of a diploid genome with 1 copy of each allele and corresponds to 2 

copies per allele in the case of whole genome doubling. Mutations are not annotated by allele. 

Each gene shown had only one unique mutation per sample, with the exception of ATM, which 

had two. (d) Enrichment in non-synonymous mutations between ER and NR patient groups (y-

axis, Fisher’s exact test) in relation to mutational significance across the entire cohort (x-axis). 

The dashed line indicates a P-value threshold of 0.05, and circle size reflects the number of 

patients which the indicated alteration is present in.  
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Figure 2: Phylogenetic trees of select ER and NR patients reveal truncal alterations in 

SPOP and TP53. (A) PhylogicNDT BuildTree evolutionary trees of ER patients with SPOP 

mutation. Known prostate cancer associated genes are labelled according to their position in the 

tree. Each distinct mutational cluster is illustrated with a different cluster, with the number of 

mutations in each cluster indicated in each node. No information is reflected in the length of each 

branch. Biopsy location is approximated in the 12-grid prostate representation below each tree, 

and the average cancer cell fraction of each mutational cluster within each biopsy sample is 

illustrated below the grid. (B) Phylogenetic trees of ER patients lacking SPOP mutation 

generally reveal truncal mutations in known prostate cancer associated genes. (C) Phylogenetic 

trees of two NR patients with TP53 mutation. TMPRSS2-ERG fusion status is labelled as truncal 

based on its detection in all samples from the indicated patient. (D) Phylogenetic trees of NR 
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patients lacking TP53 mutation, including patient 283-25 with more complex clonal architecture 

associated with multiple missense mutations in DNA damage repair genes.  
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Figure 3: Transcriptional programs of response to neoadjuvant API reveal up-regulated 

androgen signaling in responders and TGFb signaling in non-responders. (A) GSEA was 

performed on the highest purity ER versus the highest purity NR samples (Methods). Enrichment 

plot of hallmark androgen response gene set (FDR = 0.102) and the hallmark TGFb signaling 

pathway (FDR = 0.188) are shown here. (B) ssGSEA of the hallmark androgen signaling gene 

set applied to the RNA-seq sample when available from the highest purity sample from each 

patient, stratified by SPOP mutation status (N=5, SPOP mutant/ER, N=7, SPOP wild type/ER, 

N=11, NR) and response status. A statistically significant difference was detected in androgen 

signaling between ER and NR (P = 0.003 for ssGSEA score, Wilcoxon-rank sum), but no 

difference was observed by SPOP mutation status amongst ER samples (P = 0.935, Wilcoxon-

rank sum). (C) Differential expression analysis of ER vs NR samples. The y-axis shows the 

median permutation q-value across random iterations selecting one RNA-seq sample per patient 
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and running edgeR as related to the q-value from edgeR run on RNA-seq data from the highest 

purity sample from each patient. Genes are colored by response status if they were also 

differentially expressed by TPM value between ER and NR (P < 0.05, Mann-Whitney U test). 
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Supplementary Figure 1: Genomic characteristics of all included exomes and comparison 

to TCGA samples. (A) Co-mutation plot for all included exomes illustrating the patient, select 

single nucleotide and insertion/deletion events, as well as CNA and TMPRSS2-ERG RNA fusion 

status. Each row represents the mutation or copy number status for the indicated gene, and each 

column represents a patient sample. (B) Count of selected molecular alterations present in 

highest purity sample per patient. All alterations were present in each sample assayed per patient 

with the exception of SPOPL copy number loss in patient 283_21. (C) Comparison of TMB (P = 

2 x 10-6, Wilcoxon rank-sum) and PGA (P = 0.237, Kolmogorov-Smirnov) between this cohort 

(n = 24) and treatment unselected patients from the TCGA (n=333) patients. (D) cBioPortal89,90 
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OncoPrint of molecular alterations from Supplemental Figure 1b within TCGA localized prostate 

cancer samples. (e) Lollipop plots of detected alterations in TP53 and SPOP to specific genomic 

changes in neoadjuvantly treated patients (top) versus TCGA changes (bottom). Lollipop height 

is proportional to number of alterations detected.   
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Supplementary Figure 2: Mutational processes present in neoadjuvantly treated samples 

stratified by response. (A) deConstructSigs output for highest purity ER and NR samples per 

patient. The height of each bar is colored by the proportion of mutations detected attributed to 

each of the COSMIC v2 mutational signatures. Differences in mutational signatures were 

assessed between ER and NR by Fisher’s exact test. (B) scarHRD output for copy-number based 

evidence of HRD between highest purity ER (N = 13) and NR (N = 11). Samples with evidence 

of signature-3 mutational process by SigMA are colored in yellow, the rest of the samples are 

colored by response and were identified as predominantly having the signature-1 mutational 

process. Difference in scarHRD score (P = 0.098) was assessed by Wilcoxon-rank sum. 

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2021. ; https://doi.org/10.1101/2021.04.20.440657doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.20.440657


 31 

 
 

Supplemental Figure 3: Gene sets and individual genes enriched in ER versus NR patients. 

(A) Gene set enrichment results for all Hallmark MSigDB gene sets enriched in each response 

category (ER = red, NR = blue) with a false discovery rate of less than 25%. (B) edgeR plot of 

fold change versus significance for RNA-seq samples from the highest purity biopsy per each 

patient. Genes significantly enriched in ER by both edgeR q-value < 0.05 and by difference in 

TPM (Mann-Whitney U test < 0.05) are colored red. Genes significantly enriched in NR by both 

edgeR q-value < 0.05 and by difference in TPM (Mann-Whitney U test < 0.05) are colored blue 

(C) TPM from highest purity sample for RNA-seq expression data for selected genes 
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significantly enriched in ER samples by both TPM and edgeR comparison. (D) TPM from 

highest purity sample for RNA-seq expression data for selected genes significantly enriched in 

NR samples by both TPM and edgeR comparison. 
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TABLES 

 

Table 1: Clinical cohort characteristics. P-values for differences in age, baseline PSA, and 

Gleason score calculated using Wilcoxon rank-sum test. 
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Supplemental Tables 

Table S1: Final cohort clinical and genomic characteristics 

Table S2: Union set of forcecalled nonsynonymous mutations  

Table S3: GISTIC output  

Table S4: Significance testing for detected mutations 

Table S5: Mutational processes as assessed by deConstructSigs, scarHRD, and SigMA 

Table S6: Frequency of selected germline alterations by response  

Table S7: PhylogicNDT mutational clustering output 

Table S8: RNA-seq RSEM generated counts for RefSeq genes 
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