Molecular features of triple negative breast cancer cells by genome-wide gene expression profiling analysis

MASATO KOMATSU^{1,2*}, TETSURO YOSHIMARU^{1*}, TAISUKE MATSUO¹, KAZUMA KIYOTANI¹, YASUO MIYOSHI³, TOSHIHITO TANAHASHI⁴, KAZUHITO ROKUTAN⁴, RUI YAMAGUCHI⁵, AYUMU SAITO⁶, SEIYA IMOTO⁶, SATORU MIYANO⁶, YUSUKE NAKAMURA⁷, MITSUNORI SASA⁸, MITSUO SHIMADA² and TOYOMASA KATAGIRI¹

¹Division of Genome Medicine, Institute for Genome Research, The University of Tokushima; ²Department of Digestive and Transplantation Surgery, The University of Tokushima Graduate School; ³Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Hyogo 663-8501; ⁴Department of Stress Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503; Laboratories of ⁵Sequence Analysis, ⁶DNA Information Analysis and ⁷Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo,

Tokyo 108-8639; ⁸Tokushima Breast Care Clinic, Tokushima 770-0052, Japan

Received September 22, 2012; Accepted November 6, 2012

DOI: 10.3892/ijo.2012.1744

Abstract. Triple negative breast cancer (TNBC) has a poor outcome due to the lack of beneficial therapeutic targets. To clarify the molecular mechanisms involved in the carcinogenesis of TNBC and to identify target molecules for novel anticancer drugs, we analyzed the gene expression profiles of 30 TNBCs as well as 13 normal epithelial ductal cells that were purified by laser-microbeam microdissection. We identified 301 and 321 transcripts that were significantly upregulated and downregulated in TNBC, respectively. In particular, gene expression profile analyses of normal human vital organs allowed us to identify 104 cancer-specific genes, including those involved in breast carcinogenesis such as NEK2, PBK and MELK. Moreover, gene annotation enrichment analysis revealed prominent gene subsets involved in the cell cycle, especially mitosis. Therefore, we focused on cell cycle regulators, asp (abnormal spindle) homolog, microcephaly-associated (Drosophila) (ASPM) and centromere protein K (CENPK) as novel therapeutic targets for TNBC. Small-interfering RNA-mediated knockdown of their expression significantly attenuated TNBC cell viability due to G1 and G2/M cell cycle arrest. Our data will provide a better understanding of the

Correspondence to: Dr Toyomasa Katagiri, Division of Genome Medicine, Institute of Genome Research, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan E-mail: tkatagi@genome.tokushima-u.ac.jp

*Contributed equally

Key words: triple negative breast cancer, expression profiling, molecular targets

carcinogenesis of TNBC and could contribute to the development of molecular targets as a treatment for TNBC patients.

Introduction

Breast cancer is one of the most common solid malignant tumors among women worldwide. Breast cancer is a heterogeneous disease that is currently classified based on the expression of estrogen receptor (ER), progesterone receptor (PgR), and the human epidermal growth factor receptor 2 (HER2) (1,2). For patients with ER- or PgR-positive breast cancer, approximately five years of adjuvant endocrine therapy reduces the annual breast cancer death rate by approximately 30% (3). The addition of HER2-antagonist trastuzumab to adjuvant chemotherapy has improved the prognosis of HER2-positive breast cancer patients (4-6). In contrast, triple negative breast cancer (TNBC), defined as tumors that are negative for ER, PgR and HER2 overexpression, accounts for at least 15-20% of all breast cancers, and the prognosis for TNBC patients is poor because of its propensity for recurrence and metastasis and a lack of clinically-established targeted therapies (7,8). Therefore, only neoadjuvant chemotherapy with conventional cytotoxic agents yield an excellent outcome for TNBC patients who have a complete pathological response, but the outcome for the vast majority with residual disease after chemotherapy is relatively poor compared to non-TNBC patients (6,7). Thus, because the heterogeneity of breast cancer makes it difficult to treat many subtypes, including TNBC, the molecular mechanisms of the carcinogenesis of TNBC must be elucidated to develop novel molecular-targeted therapies that improve the clinical outcome of TNBC patients.

Current 'omics' technology including DNA microarray analysis can provide very helpful information that can be used to categorize the characteristics of various malignant tumors and identify genes that may be applicable for the development of novel molecular targets for therapeutic modalities (9). To this end, we analyzed the gene expression profile of 30 TNBC cells and normal breast ductal cells that were purified by laser-microbeam microdissection and identified a number of cancer-specific genes that might contribute to the carcinogenesis of TNBC. TNBC gene expression profiling analysis can provide comprehensive information on the molecular mechanism underlying the carcinogenesis of TNBC and possibly lead to the development of novel effective therapies.

Materials and methods

Clinical samples and cell lines. A total of 48 TNBC (18 cases did not entry DNA microarray analysis) and 13 normal mammary tissues were obtained with informed consent from patients who were treated at Tokushima Breast Care Clinic, Tokushima, Japan. This study, as well as the use of all clinical materials described above, was approved by the Ethics Committee of The University of Tokushima. Clinical information was obtained from medical records and tumors were diagnosed as triple-negative by pathologists when immunohistochemical staining was ER-negative, PR-negative, and HER2 (0 or 1+). The clinicopathological features of each patient are summarized in Table I. Samples were immediately embedded in TissueTek OCT compound (Sakura, Tokyo, Japan), frozen, and stored at -80°C. Human TNBC cell lines MDA-MB-231, BT-20, BT-549, HCC1143, and HCC1937 were purchased from the American Type Culture Collection (ATCC, Rockville, MD, USA). The human normal breast epithelial cell line, MCF10A, was purchased from Cambrex Bioscience, Inc. All cells were cultured under the conditions recommended by their respective depositors.

Laser-microbeam microdissection (LMM), RNA extraction, RNA amplification, and hybridization. Frozen specimens were serially sectioned in $8-\mu m$ slices with a cryostat (Leica, Herborn, Germany) and stained with hematoxylin and eosin to define the analyzed regions. We purified 48 TNBC and 13 normal ductal cells using the LMM system (Carl Zeiss, Jena, Germany) according to the manufacturer's instructions. Dissected cancer and normal ductal cells were dissolved in RLT lysis buffer (Qiagen, Valencia, CA, USA) containing 1% β-mercaptoethanol. The extracted total RNA was purified with an RNeasy Mini kit (Qiagen) according to the manufacturer's instructions. For RNA amplification and labeling, we used an Agilent Low-Input QuickAmp labeling kit according to the manufacturer's instructions. Briefly, 100 ng of total RNA from each sample was amplified using T7 RNA polymerase with simultaneous Cy3-labeled CTP incorporation. Then, $2 \mu g$ of Cy3-labeled cRNA was fragmented, hybridized onto the Agilent Whole Human Genome Microarray 4x44K slide (Agilent Technologies, Palo Alto, CA, USA) and then incubated with rotation at 65°C for 18 h. Then slides were washed and scanned by the Agilent Microarray scanner system in an ozone protection fume hood.

Microarray analysis. The features of scanned image files containing the Cy3-fluorescence signals of the hybridized Agilent Microarrays were extracted using the Agilent Feature Extraction (version 9.5) (Agilent Technologies). The data were analyzed using GeneSpring (version 11.5). We normalized the microarray data across all chips and genes by quantile normalization, and baseline transformed the signal values to the median in all samples. Finally, we performed quality control and filtering steps based on flags and expression levels. To identify genes that were significantly alternated between TNBC and normal ductal cells the mean signal intensity values in each analysis were compared. In this experiment, we applied Mann-Whitney (unpaired) t-test and random permutation test 10,000 times for each comparison and adjusted for multiple comparisons using the Benjamini Hochberg false discovery rate (FDR). Gene expression levels were considered significantly different when the FDR (corrected P-value) $<5x10^{-4}$ (when comparing normal ductal cells and TNBC) and the fold change was \geq 5.0. Data from this microarray analysis has been submitted to the NCBI Gene Expression Omnibus (GEO) archive as series GSE38959.

Functional gene annotation clustering. The Database for Annotation, Visualization and Integrated Discovery (DAVID 6.7) was approved to detect functional gene annotation clusters based on gene expression profiling by gene annotation enrichment analysis (http://david.abcc.ncifcrf.gov/) (10,11). The clusters from the gene annotation enrichment analysis were selected in this study based on a previous report (12).

Quantitative reverse transcription-PCR (qRT-PCR) analysis. Total RNA was extracted from each TNBC cell line and clinical sample using an RNeasy mini kit (Qiagen) according to the manufacturer's instructions. Purified RNA from each clinical sample and cell line, as well as poly-A RNA from normal human heart, lung, liver, and kidney (Takara, Otsu, Japan) was reverse transcribed for single-stranded cDNA using oligo(dT)₁₂₋₁₈ primers with Superscript II reverse transcriptase (Invitrogen, Life Technologies, Carlsbad, CA, USA). qRT-PCR analysis was performed using an ABI PRISM 7500 Real-Time PCR system (Applied Biosystems, Life Technologies, Carlsbad, CA, USA) and SYBR Premix Ex Taq (Takara) according to the manufacturer's instructions. The PCR primer sequences were as follows: 5'-GCAGGTCTCC TTTCCTTTGCT-3' and 5'-CTCGGCCTTCTTTGAGT GGT-3' for ASPM; 5'-CACTCACCGATTCAAATG CTC-3' and 5'-ACCACCGTTGTTCCCTTTCT-3' for CENPK; 5'-AAC TTACTTTATC-3' for $\beta 2$ microglobulin ($\beta 2$ -MG) as a quantitative control.

Gene-silencing effect by RNA interference. Targeted sequences for ASPM and CENPK were determined using an siRNA Targeted Finder (Applied Biosystems, Life Technologies; http://www.ambion.com/techlib/misc/siRNA_finder.html). The siRNA targeting sequences were 5'-CATACAGAAGT GCGAGAAA-3' for ASPM, 5'-CTCAGTCAATGGC AGAAAA-3' for CENPK and 5'-GCAGCACGACTTCT TCAAG-3' for EGFP as a control siRNA. Human TNBC cell lines, HCC1937, MDA-MB-231 and BT-20, were plated at a density of 1x10⁴ cells per well in 12-wells for the MTT assay and 3x10⁴ cells per well in 6-well plates for flow cytometry and RT-PCR analyses. Cells were transfected with 16.6 nM

ID	Age	Histology	TNM	Stage	ER/PgR/HER2	Microarray	RT-PCR
1	44	Papillo-tubular	T0N3M1	IV	-/-/0	Done	Done
8	79	DCIS	T1N0M0	Ι	-/-/0	Not done	Done
10	57	Papillo-tubular	T1N0M0	Ι	-/-/1+	Not done	Done
19	63	Solid-tubular	T1N0M0	Ι	-/-/0	Not done	Done
27	60	Solid-tubular	T2N1M0	II	-/-/0	Done	Done
42	59	Solid-tubular	T2N0M0	II	-/-/0	Not done	Done
44	79	Papillo-tubular	Recurrence	-	-/-/1+	Not done	Done
53	55	Papillo-tubular	T1N0M0	Ι	-/-/0	Not done	Done
54	77	Solid-tubular	T1N1M0	II	-/-/0	Not done	Done
56	28	Scirrhous	T2N1M0	II	-/-/0	Done	Done
57	58	Solid-tubular	T1N1M0	II	-/-/0	Not done	Done
60	54	Solid-tubular	T2N1M0	II	-/-/0	Done	Done
64	60	Papillo-tubular	T2N0M0	II	-/-/0	Not done	Done
66	59	Special type	T2N1M0	II	-/-/0	Not done	Done
78	45	Solid-tubular	T2N1M0	II	-/-/0	Done	Done
89	44	Papillo-tubular	Recurrence	-	-/-/0	Not done	Done
95	60	Solid-tubular	T1N0M0	Ι	-/-/0	Not done	Done
101	60	Scirrhous	T2N1M0	II	-/-/0	Not done	Done
110	77	Scirrhous	T2N1M0	II	-/-/1+	Not done	Done
116	70	Solid-tubular	T2N1M0	II	-/-/0	Done	Done
155	36	Solid-tubular	T1N1M0	II	-/-/0	Done	Done
225	49	Papillo-tubular	T2N1M0	II	-/-/1+	Not done	Done
252	49	Solid-tubular	T2N1M0	II	-/-/1+	Done	Done
253	49	Scirrhous	T2N1M0	II	-/-/0	Done	Done
265	80	Scirrhous	T1N1M0	II	-/-/0-1+	Done	Done
313	53	Scirrhous	T3N2M0	III	-/-/0	Done	Done
337	42	Solid-tubular	T2N1M0	II	-/-/1+	Done	Done
359	55	Papillo-tubular	T2N0M0	II	-/-/0	Done	Done
362	37	Papillo-tubular	T2N1M0	II	-/-/0	Done	Done
363	69	Papillo-tubular	T2N0M0	II	-/-/0	Done	Done
366	61	Special type	T2N1M0	II	-/-/0-1+	Done	Done
384	32	Papillo-tubular	T3N0M0	II	-/-/0	Done	Done
392	46	Papillo-tubular	T1N1M0	II	-/-/0	Done	Done
414	60	Papillo-tubular	T2N1M0	II	-/-/1+	Not done	Done
415	54	Solid-tubular	T2N0M0	II	-/-/1+	Done	Done
420	41	Solid-tubular	T3N0M0	II	-/-/0	Done	Done
423	70	Solid-tubular	T2N0M0	II	-/-/0	Done	Done
438	63	Solid-tubular	T3N0M0	II	-/-/0	Done	Done
445	39	Solid-tubular	T2N1M0	II	-/-/0	Done	Done
453	50	Solid-tubular	T2N1M0	II	-/-/0	Done	Done
481	59	Solid-tubular	T3N1M0	III	-/-/0	Done	Done
528	55	Solid-tubular	T2N1M0	II	-/-/0	Done	Done
535	58	Solid-tubular	T2N1M0	II	-/-/0	Not done	Done
553	71	Solid-tubular	T0N1M0	II	-/-/1+	Not done	Done
558	56	Solid-tubular	T2N1M0	II	-/-/0	Done	Done
562	64	Scirrhous	T2N0M0	II	-/-/0	Done	Done
566	52	Solid-tubular	T3N1M0	III	-/-/0	Done	Done
651	45	Scirrhous	T2N1M0	II	-/-/0	Done	Done
	1.7	Jennous	121(1110	11		Done	Done

Table I. Clinicopathological features of 48 TNBC patients.

DCIS, ductal carcinoma *in situ*; papillo-tubular, papillo-tubular adenocarcinoma; solid-tubular, solid-tubular adenocarcinoma; scirrhous carcinoma; special type ID 66, adenocarcinoma with squamous cell carcinoma; ID 366, osseous metaplasia; case 44, axillary lymph node metastasis was diagnosed 8 months after the first surgery followed by the dissection of metastatic lymph nodes; case 89, local recurrence in residual breast occurred after 2 years of the first surgery followed by a lumpectomy. All information was judged according to the General Rules for Clinical and Pathological Recording of Breast Cancer (The Japanese Breast Cancer Society). T, tumor stage; N, lymph node metastasis status; M, distant metastasis.

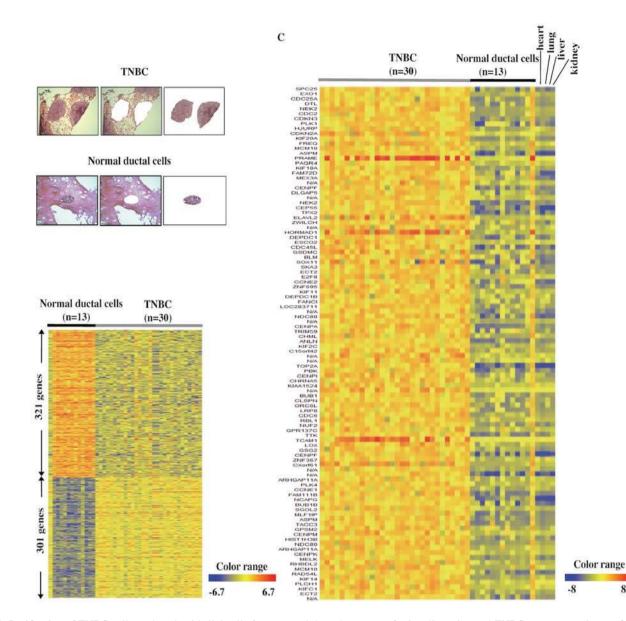


Figure 1. Purification of TNBC cells or ductal epithelial cells from normal ducts by means of microdissection and TNBC gene expression profiling. (A) Representative images of purified cancer cells and normal ductal epithelial cells from TNBC. Pre-microdissected (left lane), post-microdissected (middle lane) and microdissected cells (right lane) are shown after hematoxylin and eosin staining. (B) Heat-map image representing 622 genes that were significantly upregulated or downregulated >5-fold in TNBC. (C) Heat-map showing upregulated genes compared with normal ductal cells with no expression in normal organs including the heart, lung, liver and kidney.

of each siRNA using Lipofectamine RNAiMAX Reagent (Invitrogen). To evaluate the gene-silencing effects of the siRNAs by qRT-PCR, total RNA was extracted from the siRNA-transfected cells as described above after the indicated times. The following specific qRT-PCR primer sets were used: 5'-CGGAAAAGAAAGAAGGCGATGG-3' and 5'-ACCACCAAGTGAAGCCCTGT-3' for *ASPM* and 5'-GG GTGCCATCATTTTCTGGT-3' and 5'-CCACCGTTGTT CCCTTTCTAAG-3' for *CENPK*. To evaluate cell viability, the MTT assay was performed using the cell counting kit-8 reagent (Dojindo, Kumamoto, Japan) according to the manufacturer's instructions. Absorbance at 450 nm was measured with a micro-plate reader infinite 200 (Tecan, Männedorf, Switzerland). These experiments were performed in triplicate. Colony formation assay. Vector-based shRNAs and the psiU6BX3 expression system were constructed as previously described (13). The shRNA target sequences were the same as those of the siRNA oligonucleotides. The DNA sequences of all constructs were confirmed by DNA sequencing. BT-20 and MDA-MB-231 cells were plated in 10-cm dishes (1x10⁶ cells/dish) and transfected with 6 μ g of psiU6BX3.0-*ASPM* or psiU6BX3.0-*CENPK* and psiU6BX3.0-*EGFP* as a control using Fugene-6 (Roche, Basel, Switzerland) according to the manufacturer's instructions. Forty-eight hours after transfection, cells were re-seeded for a colony formation assay (5.0x10⁵ cells/10-cm dish) and RT-PCR (5.0x10⁵ cells/10-cm dish). We selected psiU6BX3.0-transfected cells using selection medium containing 0.6 mg/ml of neomycin for BT-20 cells and 1.4 mg/ml for MDA-MB-231 cells. Total

B

RNA was extracted from the cells after a 7-day incubation with neomycin, and then the knockdown effects of the siRNAs were examined by qRT-PCR. The specific primer sets for quantitative RT-PCR were the same as those for the siRNA oligonucleotides. Nineteen days after transfection, the cells were fixed with 4% paraformaldehyde for 10 min and stained with Giemsa solution (Merck, Darmstadt, Germany).

Cell cycle analysis. For flow cytometric analysis, adherent and detached cells were harvested and fixed with 70% ethanol at room temperature for 30 min. After washing with PBS (-), the cells were incubated at 37°C for 30 min with 1 mg/ml RNase I in PBS (-) and stained with 20 μ g propidium iodide at room temperature for 30 min in the dark. A total of 10,000 cells were analyzed for DNA content using flow cytometry and CellQuest software (FACSCalibur; BD Biosciences, Franklin Lakes, NJ, USA). Assays were performed in duplicate.

Immunocytochemical staining analysis. HCC1937 and MDA-MB-231 cells were plated onto a 2-well glass slide (Thermo Fisher Scientific, Rochester, NY, USA) at a density of 1.0x10⁴/well and incubated for 24 h before siRNA transfection. Forty-eight hours post-transfection, the cells were fixed with 4% paraformaldehyde for 30 min at 4°C and then permeablized with 0.1% Triton X-100 for 2 min at room temperature. Subsequently, the cells were covered with 3% bovine serum albumin for 60 min at room temperature and then incubated with an anti- α/β tubulin antibody (Cell Signaling, Beverly, MA, USA) diluted 1:50 for 1 h. After washing with PBS (-), the cells were stained with an Alexa 488-conjugated antirabbit secondary antibody (Molecular Probes, Eugene, OR, USA) diluted 1:1,000 for 1 h. The nuclei were counterstained with 4',6'-diamidine-2'-phenylindole dihydrochloride (DAPI). Fluorescent images were obtained using an IX71 microscope (Olympus, Tokyo, Japan).

Statistical analysis. Statistical significance was calculated by Mann-Whitney t-test using Stat View 5.0 J software (SAS Institute, Inc., Cary, NC, USA) to compare the gene expression levels between TNBC cells and normal ductal cells, and by Student's two-sided t-test using Microsoft[®] Excel 2008 to assess cell proliferation, gene expression, and alteration of cell cycle. A difference of P<0.05 was considered statistically significant.

Results

Identification of genes upregulated or downregulated in *TNBCs*. To obtain precise expression profiles of TNBC cells, we used LMM to avoid contamination of non-cancer cells, such as adipocytes, fibroblasts, and inflammatory cells from the tissue sections (Fig. 1A, upper panels). Because breast cancer originates from normal breast ductal cells, we used similarly purified populations of normal duct cells as controls (Fig. 1A, lower panels). The precise gene-expression profiles of TNBC by DNA microarray identified 301 genes that were upregulated >5-fold in TNBC compared to 13 normal ductal cells, and 321 genes that were downregulated to <1/5 of the normal ductal cells (Fig. 1B). Table II lists the 301 upregulated genes in TNBC, including ubiquitin-conjugating enzyme E2C (*UBE2C*)

(14), S100 calcium binding protein P (*S100P*) (15), ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase) (*UCHL1*) (16), pituitary tumor-transforming 1 (*PTTG1*) (17), ubiquitin-conjugating enzyme E2T (*UBE2T*) (13), ubiquitin-like with PHD and ring finger domains 1 (*UHRF1*) (18), SIX homeobox 1 (*SIX1*) (19), and protein regulator of cytokinesis 1 (*PRC1*) (20), which were previously reported to be overexpressed in breast cancer and involved in mammary carcinogenesis. In particular, topoisomerase (DNA) IIa (*TOP2A*) (21,22), HORMA domain containing 1 (*HORMAD1*) (23), ATPase family, Fatty acid binding protein 5 (psoriasis-associated) (*FABP5*) (24), and AAA domain containing 2 (*ATAD2*) (25) were previously reported to be potentially involved in the carcinogenesis of TNBC, and to serve as prognostic markers or therapeutic targets for TNBC.

On the other hand, Table III lists the 321 genes that were downregulated to <1/5 of normal ductal cells. Among these significantly downregulated genes, prolactin-induced protein (*PIP*) and dynein, axonemal, light intermediate chain 1 (*DNALI1*) were previously shown to be downregulated in TNBC (26). In particular, suppression of WNT inhibitory factor 1 (*WIF1*) (27) and signal peptide, CUB domain, EGF-like (*SCUBE2*) (28), both of which function as tumor suppressors, were among the genes that were downregulated as malignancy progressed. These data suggest that silencing or depletion of these genes might lead to the carcinogenesis of TNBC.

Identification of cancer-specific genes. Next, to develop novel therapeutic targets for TNBC with a minimum risk of adverse events, we performed a DNA microarray analysis of normal human vital organs consisting of the heart, lung, liver and kidney as well as TNBC cases and attempted to identify genes whose expression was exclusively upregulated in TNBC, but not expressed in normal vital organs. We identified 104 genes, which were specifically upregulated in TNBC, including cancer-specific molecules such as NIMA-related kinase 2 (*NEK2*) (29,30), PDZ binding kinase (*PBK*) (31), denticleless homolog (*Drosohila*) (*DTL*) (32), maternal leucine zipper kinase (*MELK*) (33), and kinesin family member C (*KIF2C*) (34), which have previously been shown to be involved in breast carcinogenesis (Fig. 1C and Table IV).

Functional gene annotation clustering analysis. To elucidate the biological processes and pathways characterized in TNBC, we performed a functional analysis of these upregulated or downregulated genes in 30 TNBC cases using the gene annotation clustering of the DAVID algorithm. We identified the most prominent cluster (cluster 1; gene enrichment score, 29.90) composed of various functional annotation terms consisting of 87 upregulated genes in TNBC (Table V). Cluster 1 consisted almost entirely of cell cycle-associated genes as represented by nuclear division (fold enrichment, 15.04), mitosis (fold enrichment, 14.78), organelle fission (fold enrichment, 14.45), and M phase (fold enrichment, 12.90) (Fig. 2). These findings suggest that most of the upregulated genes in TNBC might be functionally responsible for cell cycle progression.

On the other hand, we also identified the most prominent cluster functionally deactivated in TNBC based on down-

Table II. Genes	significantly	upregulated in TNBC compared with norma	al ductal cells.

				Fold change (log)	P-value
A_24_P334130	NM_054034	FN1	Fibronectin 1	5.33	1.26E-04
A_24_P940678	N/A	N/A		5.07	1.26E-04
A_23_P367618	NM_003412	ZIC1	Zic family member 1 (odd-paired homolog, <i>Drosophila</i>)	5.01	1.26E-04
A_23_P118834	NM_001067	TOP2A	Topoisomerase (DNA) IIa 170 kDa	4.76	1.26E-04
A_32_P119154	BE138567	N/A		4.75	1.26E-04
A_23_P35219	NM_002497	NEK2	NIMA (never in mitosis gene a)-related kinase 2	4.67	1.26E-04
A_23_P166360	NM_206956	PRAME	Preferentially expressed antigen in melanoma	4.64	1.26E-04
A_24_P332314	NM_198947	FAM111B	Family with sequence similarity 111, member B	4.63	1.26E-04
A_24_P413884	NM_001809	CENPA	Centromere protein A	4.59	1.26E-04
A_23_P68610	NM_012112	TPX2	TPX2, microtubule-associated, homolog (<i>Xenopus laevis</i>)	4.58	1.26E-04
A_23_P58266	NM_005980	S100P	S100 calcium binding protein P	4.57	1.26E-04
A_24_P297539		UBE2C	Ubiquitin-conjugating enzyme E2C	4.49	1.26E-04
A_23_P401	NM_016343	CENPF	Centromere protein F, 350/400 ka (mitosin)	4.44	1.26E-04
A_23_P57379	NM_003504	CDC45L	CDC45 cell division cycle 45-like (<i>S. cerevisiae</i>)	4.44	1.26E-04
A_23_P118815	NM_001012271	BIRC5	Baculoviral IAP repeat-containing 5	4.43	1.26E-04
A_23_P210853	NM_021067	GINS1	GINS complex subunit 1 (Psf1 homolog)	4.41	1.26E-04
A_23_P258493	NM_005573	LMNB1	Lamin B1	4.31	1.26E-04
A_24_P119745	NM_212482	FN1	Fibronectin 1	4.31	1.26E-04
A_24_P680947	BC044933	KIF18B	Kinesin family member 18B	4.3	1.26E-04
A_32_P92642	N/A	N/A	-	4.3	1.26E-04
A_23_P356684	NM_018685	ANLN	Anillin, actin binding protein	4.29	1.26E-04
A_24_P314571	BU616832	N/A		4.24	1.26E-04
A_23_P98580	NM_004265	FADS2	Fatty acid desaturase 2	4.2	1.26E-04
A_23_P52017	NM_018136	ASPM	asp (abnormal spindle) homolog, microcephaly associated (<i>Drosophila</i>)	4.17	1.26E-04
A_24_P20607	NM_005409	CXCL11	Chemokine (C-X-C motif) ligand 11	4.16	2.33E-04
A_32_P199884	NM_032132	HORMAD1	HORMA domain containing 1	4.13	2.33E-04
A_23_P70007	NM_012484	HMMR	Hyaluronan-mediated motility receptor (RHAMM)	4.11	1.26E-04
A_23_P22378	NM_003108	SOX11	SRY (sex determining region Y)-box 11	4.1	1.26E-04
A_23_P259586	NM_003318	TTK	TTK protein kinase	4.09	1.26E-04
A_23_P200310	NM_017779	DEPDC1	DEP domain containing 1	4.08	1.26E-04
A_24_P378331	NM_170589	CASC5	Cancer susceptibility candidate 5	4.06	1.26E-04
A_23_P111888	NM_138455	CTHRC1	Collagen triple helix repeat containing 1	4.05	1.26E-04
A_23_P48835	NM_138555	KIF23	Kinesin family member 23	4.05	1.26E-04
A_23_P115872	NM_018131	CEP55	Centrosomal protein 55 kDa	4.03	1.26E-04
A_23_P132956	NM_004181	UCHL1	Ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase)	4.03	1.26E-04
A_24_P911179	NM_018136	ASPM	asp (abnormal spindle) homolog, microcephaly associated (<i>Drosophila</i>)	4.02	1.26E-04
A_23_P408955	NM_004091	E2F2	E2F transcription factor 2	4.02	1.26E-04
A_23_P7636	NM_004219	PTTG1	Pituitary tumor-transforming 1	4	1.26E-04
A_23_P204941	NM_004004	GJB2	Gap junction protein, $\beta 2$, 26 kDa	4	1.26E-04
A_23_P18452	NM_002416	CXCL9	Chemokine (C-X-C motif) ligand 9	3.94	2.33E-04
A_24_P96780	NM_016343	CENPF	Centromere protein F, 350/400 ka (mitosin)	3.92	1.26E-04
A_23_P69537	 NM_006681	NMU	Neuromedin U	3.9	1.26E-04

Table II. Continued

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_24_P14156	NM_006101	NDC80	<i>NDC80</i> homolog, kinetochore complex component (<i>S. cerevisiae</i>)	3.86	1.26E-04
A_23_P254733	NM_024629	MLF11P	MLF1 interacting protein	3.85	1.26E-04
A_23_P74115	NM_003579	RAD54L	RAD54-like (S. cerevisiae)	3.84	1.26E-04
A_23_P50108	NM_006101	NDC80	NDC80 homolog, kinetochore complex component (S. cerevisiae)	3.84	1.26E-04
A_24_P150160	NM_004265	FADS2	Fatty acid desaturase 2	3.83	1.26E-04
A_23_P155815	NM_022346	NCAPG	Non-SMC condensin I complex, subunit G	3.82	1.26E-04
A_23_P125278	NM_005409	CXCL11	Chemokine (C-X-C motif) ligand 11	3.81	1.26E-04
A_23_P51085	NM_020675	SPC25	SPC25, NDC80 kinetochore complex component, homolog (<i>S. cerevisiae</i>)	3.81	1.26E-04
A_23_P133123	NM_032117	MND1	Meiotic nuclear divisions 1 homolog (S. cerevisiae)	3.8	1.26E-04
A_32_P62997	NM_018492	PBK	PDZ binding kinase	3.8	1.26E-04
A_23_P256956	NM_005733	KIF20A	Kinesin family member 20A	3.79	1.26E-04
A_24_P933613	N/A	N/A		3.78	1.26E-04
A_23_P212844	NM_006342	TACC3	Transforming, acidic coiled-coil containing protein 3	3.78	1.26E-04
A_24_P254705	NM_020394	ZNF695	Zinc finger protein 695	3.76	1.26E-04
A_23_P115482	NM_014176	UBE2T	Ubiquitin-conjugating enzyme E2T (putative)	3.75	1.26E-04
A_32_P201723	N/A	N/A		3.73	1.26E-04
A_23_P256425	NM_014479	ADAMDEC1	ADAM-like, decysin 1	3.73	1.26E-04
A_23_P432352	NM_001017978	CXorf61	Chromosome X open reading frame 61	3.73	1.26E-04
A_23_P208880	NM_013282	UHRF1	Ubiquitin-like with PHD and ring finger domains 1	3.72	1.26E-04
A_23_P323751	NM_030919	FAM83D	Family with sequence similarity 83, member D	3.71	1.26E-04
A_23_P48669	NM_005192	CDKN3	Cyclin-dependent kinase inhibitor 3	3.71	1.26E-04
A_24_P234196	NM_001034	RRM2	Ribonucleotide reductase M2	3.69	1.26E-04
A_23_P253791	NM_004345	CAMP	Cathelicidin antimicrobial peptide	3.69	1.26E-04
A_23_P76914	NM_005982	SIX1	SIX homeobox 1	3.67	4.43E-04
A_23_P94571	NM_004432	ELAVL2	ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu antigen B)	3.67	1.26E-04
A_23_P200222	NM_033300	LRP8	Low density lipoprotein receptor-related protein 8, apolipoprotein E receptor	3.67	1.26E-04
A_24_P416079	NM_016359	NUSAP1	Nucleolar and spindle associated protein 1	3.66	1.26E-04
A_23_P104651	NM_080668	CDCA5	Cell division cycle associated 5	3.65	1.26E-04
A_23_P150667	NM_031217	KIF18A	Kinesin family member 18A	3.64	1.26E-04
A_24_P859859	N/A	N/A		3.63	4.43E-04
A_23_P312150	NM_001956	EDN2	Endothelin 2	3.61	1.26E-04
A_23_P375	NM_018101	CDCA8	Cell division cycle associated 8	3.59	1.26E-04
A_32_P68525	BC035392	N/A		3.58	1.26E-04
A_23_P43490	NM_058197	CDKN2A	Cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)	3.56	1.26E-04
A_23_P1691	NM_002421	MMP1	Matrix metallopeptidase 1 (interstitial collagenase)	3.55	1.26E-04
A_23_P117852	NM_014736	KIAA0101	KIAA0101	3.54	1.26E-04
A_24_P319613	NM_002497	NEK2	NIMA (never in mitosis gene a)-related kinase 2	3.53	1.26E-04
A_23_P10385	NM_016448	DTL	Denticleless homolog (<i>Drosophila</i>)	3.53	1.26E-04

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_32_P1173	NM_138441	C6orf150	Chromosome 6 open reading frame 150	3.51	1.26E-04
A_23_P94422	NM_014791	MELK	Maternal embryonic leucine zipper kinase	3.5	1.26E-04
A_23_P340909	BC013418	SKA3	Spindle and kinetochore associated complex subunit 3	3.48	1.26E-04
A_23_P385861	NM_152562	CDCA2	Cell division cycle associated 2	3.47	1.26E-04
A_23_P124417	NM_004336	BUB1	Budding uninhibited by benzimidazoles 1 homolog (yeast)	3.47	1.26E-04
A_24_P257099	NM_018410	HJURP	Holliday junction recognition protein	3.43	1.26E-04
A_24_P270460	NM_005532	IFI27	Interferon, α -inducible protein 27	3.41	2.33E-04
A_23_P206059	NM_003981	PRC1	Protein regulator of cytokinesis 1	3.39	1.26E-04
A_23_P74349	NM_145697	NUF2	NUF2, NDC80 kinetochore complex component, homolog (<i>S. cerevisiae</i>)	3.36	1.26E-04
A_24_P302584	NM_003108	SOX11	SRY (sex determining region Y)-box 11	3.36	4.43E-04
A_24_P68088	NR_002947	TCAM1	Testicular cell adhesion molecule 1 homolog (mouse)	3.35	2.33E-04
A_24_P605612	NM_003247	THBS2	Thrombospondin 2	3.34	1.26E-04
A_24_P366033	NM_018098	ECT2	Epithelial cell transforming sequence 2 oncogene	3.34	1.26E-04
A_23_P93258	NM_003537	HIST1H3B	Histone cluster 1, H3b	3.33	1.26E-04
A_23_P211762	N/A	COL8A1	Collagen, type VIII, α1	3.29	4.43E-04
A_23_P77493	NM_006086	TUBB3	Tubulin, β3	3.29	1.26E-04
A_23_P204947	NM_004004	GJB2	Gap junction protein, $\beta 2$, 26 kDa	3.29	1.26E-04
A_23_P149668	NM_014875	KIF14	Kinesin family member 14	3.29	1.26E-04
A_23_P34325	NM_033300	LRP8	Low density lipoprotein receptor-related protein 8, apolipoprotein E receptor	3.28	1.26E-04
A_32_P56154	N/A	N/A		3.28	1.26E-04
A_32_P10403	BU618641	SERPINE1	Serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1	3.27	1.26E-04
A_23_P138507	NM_001786	CDC2	Cell division cycle 2, G1→S and G2→M	3.24	1.26E-04
A_23_P48513	NM_005532	IFI27	Interferon, α -inducible protein 27	3.23	1.26E-04
A_23_P49972	NM_001254	CDC6	Cell division cycle 6 homolog (S. cerevisiae)	3.22	1.26E-04
A_24_P306896	XR_040656	LOC283711	Hypothetical protein LOC283711	3.22	1.26E-04
A_23_P44684	NM_018098	ECT2	Epithelial cell transforming sequence 2 oncogene	3.21	1.26E-04
A_24_P161773	N/A	N/A		3.2	1.26E-04
A_23_P100344	NM_014321	ORC6L	Origin recognition complex, subunit 6 like (yeast)	3.2	1.26E-04
A_32_P162183	NM_000063	<i>C2</i>	Complement component 2	3.18	1.26E-04
A_23_P163481	NM_001211	BUB1B	Budding uninhibited by benzimidazoles 1 homolog β (yeast)	3.17	1.26E-04
A_32_P113784	N/A	N/A		3.16	1.26E-04
A_32_P87849	N/A	N/A		3.16	1.26E-04
A_24_P397107	NM_001789	CDC25A	Cell division cycle 25 homolog A (S. pombe)	3.15	1.26E-04
A_23_P209200	NM_001238	CCNE1	Cyclin E1	3.15	1.26E-04
A_32_P16625	N/A	N/A		3.15	1.26E-04
A_23_P58321	NM_001237	CCNA2	Cyclin A2	3.15	1.26E-04
A_24_P37903	N/A	LOX	Lysyl oxidase	3.12	1.26E-04

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_32_P64919	NM_001042517	DIAPH3	Diaphanous homolog 3 (Drosophila)	3.12	1.26E-04
A_23_P379614	NM_007280	OIP5	Opa interacting protein 5	3.12	1.26E-04
A_23_P206441	NM_000135	FANCA	Fanconi anemia, complementation group A	3.09	1.26E-04
A_23_P16915	NM_012413	QPCT	Glutaminyl-peptide cyclotransferase	3.09	1.26E-04
A_23_P137173	NM_021992	TMSB15A	Thymosin β 15a	3.07	1.26E-04
A_24_P313504	NM_005030	PLK1	Polo-like kinase 1 (Drosophila)	3.07	1.26E-04
A_23_P251421	NM_031942	CDCA7	Cell division cycle associated 7	3.06	1.26E-04
A_23_P252292	NM_006733	CENPI	Centromere protein I	3.04	1.26E-04
A_23_P158725	NM_001042422	SLC16A3	Solute carrier family 16, member 3 (monocarboxylic acid transporter 4)	3.04	1.26E-04
A_23_P57417	NM_005940	MMP11	Matrix metallopeptidase11 (stromelysin 3)	3.03	1.26E-04
A_24_P291044	N/A	N/A		3.02	1.26E-04
A_23_P343927	NM_175065	HIST2H2AB	Histone cluster 2, H2ab	3.01	1.26E-04
A_23_P63789	 NM_032997	ZWINT	ZW10 interactor	3.01	1.26E-04
A_23_P123596		GLDC	Glycine dehydrogenase (decarboxylating)	3	1.26E-04
A_23_P88731	 NM_002875	RAD51	RAD51 homolog (RecA homolog, <i>E. coli</i>) (<i>S. cerevisiae</i>)	3	1.26E-04
A_23_P161474	NM_182751	<i>MCM10</i>	Minichromosome maintenance complex component 10	2.99	1.26E-04
A_24_P303354	NM_021064	HIST1H2AG	Histone cluster 1, H2ag	2.98	1.26E-04
A_23_P10518	NM_016521	TFDP3	Transcription factor Dp family, member 3	2.98	1.26E-04
A_24_P247660	NM_001002033	HN1	Hematological and neurological expressed 1	2.97	1.26E-04
A_23_P134910	NM_003878	GGH	γ-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase)	2.97	1.26E-04
A_32_P7193	N/A	N/A		2.97	1.26E-04
A_23_P49878	NM_019013	FAM64A	Family with sequence similarity 64, member A	2.96	1.26E-04
A_24_P359231	BC014312	HIST1H2BJ	Histone cluster 1, H2bj	2.95	1.26E-04
A_32_P140262	N/A	N/A	·	2.95	1.26E-04
A_23_P55270	NM_002988	CCL18	Chemokine (C-C motif) ligand 18 (pulmonary and activation-regulated)	2.95	1.26E-04
A_24_P462899	NM_001012507	C6orf173	Chromosome 6 open reading frame 173	2.94	1.26E-04
A_23_P502520	NM_172374	IL4II	Interleukin 4 induced 1	2.94	1.26E-04
A_23_P253762	N/A	N/A		2.94	1.26E-04
A_23_P214908	AY374131	N/A		2.94	1.26E-04
A_24_P225534	NM_017821	RHBDL2	Rhomboid, veinlet-like 2 (Drosophila)	2.94	1.26E-04
A_23_P203419	NM_013402	FADS1	Fatty acid desaturase 1	2.94	1.26E-04
A_23_P150935	NM_005480	TROAP	Trophinin associated protein (tastin)	2.94	1.26E-04
A_24_P412088	NM_182751	<i>MCM10</i>	Minichromosome maintenance complex component 10	2.94	1.26E-04
A_23_P71727	NM_001827	CKS2	CDC28 protein kinase regulatory subunit 2	2.93	1.26E-04
A_23_P217236	NM_005342	HMGB3	High-mobility group box 3	2.92	1.26E-04
A_32_P109296	NM_152259	C15orf42	Chromosome 15 open reading frame 42	2.91	1.26E-04
A_23_P89509		SPAG5	Sperm associated antigen 5	2.91	1.26E-04
A_24_P563068	N/A	N/A	. 0	2.91	1.26E-04
A_23_P416468	NM_025049	PIF1	PIF1 5'-to-3' DNA helicase homolog (S. cerevisiae)	2.91	1.26E-04
A_24_P38895	NM_002105	H2AFX	H2A histone family, member X	2.9	1.26E-04
A_23_P52278	NM_004523	KIF11	Kinesin family member 11	2.89	1.26E-04
A_24_P144543	N/A	N/A	-	2.89	1.26E-04

Table II. Continued.

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_24_P71468	NM_012413	QPCT	Glutaminyl-peptide cyclotransferase	2.88	2.33E-04
A_23_P116123	NM_001274	CHEK1	CHK1 checkpoint homolog (S. pombe)	2.88	1.26E-04
A_32_P106235	N/A	N/A		2.87	1.26E-04
A_24_P139152	AL359062	COL8A1	Collagen, type VIII, α1	2.87	4.43E-04
A_23_P36831	NM_003979	GPRC5A	G protein-coupled receptor, family C, group 5, member A	2.87	1.26E-04
A_23_P387471	NM_005931	MICB	MHC class I polypeptide-related sequence B	2.85	1.26E-04
A_23_P9574	NM_018098	ECT2	Epithelial cell transforming sequence 2 oncogene	2.84	1.26E-04
A_24_P535256	AK001903	INHBA	Inhibin, βA	2.84	1.26E-04
A_24_P76521	AK056691	GSG2	germ cell associated 2 (haspin)	2.83	1.26E-04
A_23_P103795	NM_138959	VANGL1	vang-like 1 (van gogh, Drosophila)	2.83	1.26E-04
A_32_P74409	NM_001145033	LOC387763	Hypothetical protein LOC387763	2.83	1.26E-04
A_23_P100632	NM_001002033	HN1	Hematological and neurological expressed 1	2.83	1.26E-04
A_23_P126212	NM_022111	CLSPN	Claspin homolog (Xenopus laevis)	2.83	1.26E-04
A_24_P659113	NM_152523	CCNYL1	Cyclin Y-like 1	2.83	1.26E-04
A_24_P367227	NM_001144755	MYBL1	v-myb myeloblastosis viral oncogene homolog (avian)-like 1	2.82	1.26E-04
A_23_P162719	NM_030932	DIAPH3	Diaphanous homolog 3 (Drosophila)	2.81	1.26E-04
A_32_P221799	NM_003514	HIST1H2AM	Histone cluster 1, H2am	2.81	1.26E-04
A_23_P60120	NM_031415	GSDMC	Gasdermin C	2.81	2.33E-04
A_24_P902509	NM_018193	FANCI	Fanconi anemia, complementation group I	2.8	1.26E-04
A_23_P50096	NM_001071	TYMS	Thymidylate synthetase	2.79	1.26E-04
A_32_P143245	NM_001012507	C6orf173	Chromosome 6 open reading frame 173	2.79	1.26E-04
A_23_P155969	NM_014264	PLK4	Polo-like kinase 4 (Drosophila)	2.79	1.26E-04
A_23_P62021	N/A	N/A		2.78	1.26E-04
A_32_P183218	NM_153695	ZNF367	Zinc finger protein 367	2.77	1.26E-04
A_23_P46118	NM_001821	CHML	Choroideremia-like (Rab escort protein 2)	2.76	2.33E-04
A_23_P327643	N/A	N/A	-	2.75	1.26E-04
A_23_P375104	NM_018193	FANCI	Fanconi anemia, complementation group I	2.75	1.26E-04
A_23_P1823	NM_000280	PAX6	Paired box 6	2.75	1.26E-04
A_23_P168014	NM_021066	HIST1H2AJ	Histone cluster 1, H2aj	2.74	1.26E-04
A_24_P413126	NM_020182	PMEPA1	Prostate transmembrane protein, androgen induced 1	2.74	1.26E-04
A_23_P80032	NM_005225	E2F1	E2F transcription factor 1	2.74	1.26E-04
A_23_P215976	NM_057749	CCNE2	Cyclin E2	2.72	2.33E-04
A_32_P231415	AF132203	SCD	Stearoyl-CoA desaturase (δ -9-desaturase)	2.72	1.26E-04
A_23_P370989	NM_005914	MCM4	Minichromosome maintenance complex component 4	2.72	1.26E-04
A_23_P216429	NM_017680	ASPN	Asporin	2.71	1.26E-04
A_24_P195621	NR_027288	LOC341056	SUMO-1 activating enzyme subunit 1 pseudogene	2.71	1.26E-04
A_32_P151800	NM_207418	FAM72D	Family with sequence similarity 72, member D	2.7	1.26E-04
A_23_P122197	NM_031966	CCNB1	Cyclin B1	2.7	1.26E-04
A_23_P34788	NM_006845	KIF2C	Kinesin family member 2C	2.7	1.26E-04
A_32_P206698	NM_001826	CKS1B	CDC28 protein kinase regulatory subunit 1B	2.7	1.26E-04
A_23_P99292	NM_006479	RAD51AP1	RAD51 associated protein 1	2.7	1.26E-04
A_23_P133956	NM_002263	KIFC1	Kinesin family member C1	2.69	1.26E-04
A_32_P143496	N/A	N/A		2.69	1.26E-04
A_32_P163858	NM_005063	SCD	Stearoyl-CoA desaturase (δ-9-desaturase)	2.69	1.26E-04

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_32_P175557	R01145	N/A		2.69	1.26E-04
A_23_P63618	NM_005063	SCD	Stearoyl-CoA desaturase (δ -9-desaturase)	2.69	1.26E-04
A_23_P88630	NM_000057	BLM	Bloom syndrome, RecQ helicase-like	2.68	1.26E-04
A_24_P276102	NM_183404	RBL1	Retinoblastoma-like 1 (p107)	2.68	1.26E-04
A_23_P135385	N/A	N/A		2.68	1.26E-04
A_23_P57658	NM_020386	HRASLS	HRAS-like suppressor	2.67	1.26E-04
A_23_P23303	NM_003686	EXO1	Exonuclease 1	2.67	1.26E-04
A_23_P88691	NM_000745	CHRNA5	Cholinergic receptor, nicotinic, a5	2.67	1.26E-04
A_24_P923381	NR_002219	EPR1	Effector cell peptidase receptor 1 (non-protein coding)	2.66	1.26E-04
A_23_P24444	NM_001360	DHCR7	7-dehydrocholesterol reductase	2.65	1.26E-04
A_23_P43157	NM_001080416	MYBL1	v-myb myeloblastosis viral oncogene homolog (avian)-like 1	2.65	2.33E-04
A_23_P88740	NM_018455	CENPN	Centromere protein N	2.64	1.26E-04
A_23_P131866		AURKA	Aurora kinase A	2.64	1.26E-04
A_23_P259641	NM_004456	EZH2	Enhancer of zeste homolog 2 (Drosophila)	2.64	1.26E-04
A_32_P72341	NM_173084	TRIM59	Tripartite motif-containing 59	2.62	1.26E-04
A_24_P227091	NM_004523	KIF11	Kinesin family member 11	2.61	1.26E-04
A_23_P145238	NM_080593	HIST1H2BK	Histone cluster 1, H2bk	2.61	1.26E-04
A_23_P136805	NM_014783	ARHGAP11A	Rho GTPase activating protein 11A	2.6	1.26E-04
A_23_P167997	NM_003518	HIST1H2BG	Histone cluster 1, H2bg	2.6	1.26E-04
A_23_P63402	NM_013296	GPSM2	G-protein signaling modulator 2 (AGS3-like, <i>C. elegans</i>)	2.6	1.26E-04
A_24_P192994	NM_013402	FADS1	Fatty acid desaturase 1	2.59	1.26E-04
A_23_P25559	NM_005845	ABCC4	ATP-binding cassette, sub-family C (CFTR/MRP), member 4	2.59	3.41E-04
A_23_P309381	NM_001040874	HIST2H2AA4	Histone cluster 2, H2aa4	2.59	1.26E-04
A_23_P35871	NM_024680	E2F8	E2F transcription factor 8	2.58	1.26E-04
A_23_P207307	N/A	N/A	-	2.58	1.26E-04
	NM_001002876	CENPM	Centromere protein M	2.58	1.26E-04
A_23_P360754	NM_005099	ADAMTS4	ADAM metallopeptidase with thrombospondin type 1 motif, 4	2.57	3.41E-04
A_23_P21706	NM_001905	CTPS	CTP synthase	2.57	1.26E-04
A_24_P174924	NM_003537	HIST1H3B	Histone cluster 1, H3b	2.57	1.26E-04
A_23_P155989	NM_022145	CENPK	Centromere protein K	2.57	1.26E-04
A_23_P103981	NM_001040874	HIST2H2AA4	Histone cluster 2, H2aa4	2.56	1.26E-04
A_23_P571	NM_006516	SLC2A1	Solute carrier family 2 (facilitated glucose transporter), member 1	2.56	1.26E-04
A_23_P420551	NM_007174	CIT	Citron (rho-interacting, serine/threonine kinase 21)	2.56	1.26E-04
A_23_P411335	NM_152524	SGOL2	Shugoshin-like 2 (S. pombe)	2.54	1.26E-04
A_32_P147090	NM_199357	ARHGAP11A	Rho GTPase activating protein 11A	2.54	1.26E-04
A_23_P70448	NM_005325	HIST1H1A	Hstone cluster 1, H1a	2.53	1.26E-04
A_23_P43484	NM_058197	CDKN2A	Cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)	2.52	1.26E-04
A_24_P85539	NM_212482	FNI	Fibronectin 1	2.52	1.26E-04
A_32_P28704	N/A	N/A		2.52	1.26E-04
A_23_P107421	NM_003258	TK1	Thymidine kinase 1, soluble	2.51	1.26E-04
A_23_P502425	NM_020409	MRPL47	Mitochondrial ribosomal protein L47	2.5	1.26E-04

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_24_P351466	NM_020890	KIAA1524	KIAA1524	2.5	1.26E-04
A_23_P211910	NM_182943	PLOD2	Procollagen-lysine, 2-oxoglutarate 5- dioxygenase 2	2.5	1.26E-04
A_24_P9321	NM_003533	HIST1H3I	Histone cluster 1, H3i	2.49	1.26E-04
A_24_P334248	NM_014996	PLCH1	Phospholipase C, eta 1	2.48	1.26E-04
A_24_P819890	NM_001005210	LRRC55	Leucine rich repeat containing 55	2.48	4.43E-04
A_23_P146456	NM_001333	CTSL2	Cathepsin L2	2.48	2.33E-04
A_24_P242440	NM_003780	B4GALT2	UDP-Gal: β GlcNAc β 1,4-galactosyltransferase, polypeptide 2	2.47	1.26E-04
A_23_P88331	NM_014750	DLGAP5	Discs, large (<i>Drosophila</i>) homolog-associated protein 5	2.47	1.26E-04
A_23_P216068	NM_014109	ATAD2	ATPase family, AAA domain containing 2	2.46	1.26E-04
A_32_P31021	N/A	N/A		2.46	1.26E-04
A_23_P373119	NR_002165	HMGB3L1	High-mobility group box 3-like 1	2.46	1.26E-04
A_23_P361419	NM_018369	DEPDC1B	DEP domain containing 1B	2.45	1.26E-04
A_23_P10870	NM_014908	DOLK	Dolichol kinase	2.44	1.26E-04
A_23_P420692	NM_015053	PPFIA4	Protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), α4	2.43	1.26E-04
A_23_P146284	NM_003129	SQLE	Squalene epoxidase	2.43	1.26E-04
A_32_P159254	AK123584	N/A	Squarene operation	2.43	2.33E-04
A_23_P25626	NM_024808	C13orf34	Chromosome 13 open reading frame 34	2.43	1.26E-04
A_23_P59005	NM_000593	TAP1	Transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)	2.43	2.33E-04
A_24_P49747	XM_929965	LOC646993	Similar to high mobility group box 3	2.43	1.26E-04
A_23_P252740	NM_024094	DSCC1	Defective in sister chromatid cohesion 1 homolog (S. cerevisiae)	2.42	1.26E-04
A_23_P397341	NM_152341	PAQR4	Progestin and adipoQ receptor family member IV	2.42	1.26E-04
A_23_P59045	NM_021052	HIST1H2AE	Histone cluster 1, H2ae	2.42	1.26E-04
A_23_P140316	NM_001099652	GPR137C	G protein-coupled receptor 137C	2.42	1.26E-04
A_23_P207520	Z74615	COLIAI	Collagen, type Ι, α1	2.41	1.26E-04
A_24_P920968	NM_182625	GEN1	Gen homolog 1, endonuclease (Drosophila)	2.41	1.26E-04
A_23_P366216	NM_003524	HIST1H2BH	Histone cluster 1, H2bh	2.41	1.26E-04
A_23_P217049	NM_014286	FREQ	Frequenin homolog (Drosophila)	2.41	2.33E-04
A_32_P194264	NM_001008708	CHAC2	ChaC, cation transport regulator homolog 2 (<i>E. coli</i>)	2.4	2.33E-04
A_32_P35839	N/A	N/A		2.4	1.26E-04
A_23_P154894	NM_000100	CSTB	Cystatin B (stefin B)	2.4	1.26E-04
A_24_P340066	NM_001421	ELF4	E74-like factor 4 (ets domain transcription factor)	2.4	1.26E-04
A_24_P857404	NM_001093725	MEX3A	mex-3 homolog A (C. elegans)	2.4	1.26E-04
A_24_P133488	NM_017955	CDCA4	Cell division cycle associated 4	2.4	1.26E-04
A_23_P339240	NM_014996	PLCH1	Phospholipase C, eta 1	2.39	2.33E-04
A_23_P52410	NM_145307	RTKN2	Rhotekin 2	2.39	1.26E-04
A_23_P59877	NM_001444	FABP5	Fatty acid binding protein 5 (psoriasis-associated)	2.39	1.26E-04
A_23_P29594	NM_052969	RPL39L	Ribosomal protein L39-like	2.38	1.26E-04
A_23_P11984	NM_201649	SLC6A9	Solute carrier family 6 (neurotransmitter transporter, glycine), member 9	2.38	2.33E-04
A_23_P200866	NM_203401	STMN1	Stathmin 1	2.37	1.26E-04

Table II. Continued

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_32_P182135	N/A	N/A		2.36	1.26E-04
A_24_P323598	NM_001017420	ESCO2	Establishment of cohesion 1 homolog 2 (<i>S. cerevisiae</i>)	2.36	1.26E-04
A_23_P39574	NM_001080539	CCDC150	Coiled-coil domain containing 150	2.36	1.26E-04
A_24_P275386	AK025766	BRI3BP	BRI3 binding protein	2.36	1.26E-04
A_23_P85460	NM_078626	CDKN2C	Cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)	2.35	1.26E-04
A_23_P57306	NM_005441	CHAF1B	Chromatin assembly factor 1, subunit B (p60)	2.35	1.26E-04
A_23_P335329	NM_004485	GNG4	Guanine nucleotide binding protein (G protein), γ4	2.35	2.33E-04
A_23_P92441	NM_002358	MAD2L1	MAD2 mitotic arrest deficient-like 1 (yeast)	2.35	1.26E-04
A_24_P13390	NM_032814	RNFT2	Ring finger protein, transmembrane 2	2.35	1.26E-04
A_23_P362046	NM_138779	C13orf27	Chromosome 13 open reading frame 27	2.34	1.26E-04
A_23_P24716	NM_017870	TMEM132A	Transmembrane protein 132A	2.34	1.26E-04
A_23_P91900	NM_005496	SMC4	structural maintenance of chromosomes 4	2.33	1.26E-04
A_24_P105102	NM_182687	PKMYT1	Protein kinase, membrane associated tyrosine/ threonine 1	2.33	1.26E-04
A_24_P244420	NM_018367	ACER3	alkaline ceramidase 3	2.33	2.33E-04
A_23_P112673	NM_017975	ZWILCH	Zwilch, kinetochore associated, homolog (<i>Drosophila</i>)	2.33	1.26E-04
A_23_P87769	NM_017915	C12orf48	Chromosome 12 open reading frame 48	2.33	1.26E-04
A_24_P296254	NM_014783	ARHGAP11A	Rho GTPase activating protein 11A	2.32	1.26E-04
A_23_P166306		CBS	Cystathionine-β-synthase	2.32	1.26E-04

N/A, not annotated; P-value, Benjamini-Hochberg false discovery rate of random permutation test; log fold change, between groups. Gene symbol, accession number and gene name were exported from GeneSpring (from the NCBI databases).

regulated genes in TNBC (cluster 2; enrichment score, 6.43). As shown in Table V and Fig. 2, cluster 2 consisted of functions induced by extracellular matrix-cell adhesion-associated genes such as latent transforming growth factor β binding protein 2 (*LTBP2*), laminin α 3 (*LAMA3*) and cell adhesion molecule with homology to L1CAM (close homolog of L1) (*CHL1*), which have been reported to be downregulated in various tumors (35-37). These results suggest that loss of cell-cell or matrix-cell interactions might be a key mechanism in TNBC progression.

Identification of ASPM and CENPK as novel molecular targets for TNBC therapy. Because the upregulated genes were mainly included in the cell cycle-associated gene cluster as described above, we directed our focus to two cancer-specific genes that function as cell cycle regulators, asp (abnormal spindle) homolog, microcephaly associated (*Drosophila*) (*ASPM*), which is fundamental for cytokinesis (38) and centromere protein K (*CENPK*), which is essential for proper kinetochore assembly during mitosis (39), as novel therapeutic targets for TNBC. qRT-PCR experiments confirmed that *ASPM* and *CENPK* genes were significantly upregulated in 48 clinical TNBC cases (Fig. 3A) and five cell lines derived from TNBC (Fig. 3B), but undetectably expressed in a mixture of 13 microdissected normal mammary ductal cells and the normal mammary epithelial cell line MCF10A as well as normal human vital organs.

To ascertain the possible roles of ASPM and CENPK in TNBC cell growth, we knocked down the expression of endogenous ASPM and CENPK in three TNBC cell lines, HCC1937, BT-20 and MDA-MB-231 cells, which highly express both of these genes (Fig. 3), using RNAi. qRT-PCR experiments showed that ASPM and CENPK were significantly knocked down in cells transfected with siASPM and siCENPK, but not with siEGFP as a control (Fig. 4A). In concordance with their knockdown, the MTT assay clearly revealed growth suppression of breast cancer cells in a time-dependent manner by siASPM and siCENPK, compared with a control siEGFP, which showed no knockdown (Fig. 4B). In addition, a colony formation assay also confirmed that introducing both shRNA-ASPM and -CENPK constructs remarkably suppressed the growth of BT-20 and MDA-MB-231 cells, respectively, compared with shEGFP-transfected cells (Fig. 4C), suggesting that both genes are likely indispensable for breast cancer cell growth. Furthermore, we investigated the phenotypic alterations of TNBC cells transfected with ASPM and CENPK siRNAs

Table III. Significantly downregulated genes in TNBC compared with normal ductal cells.

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_23_P127781	NM_006552	SCGB1D1	Secretoglobin, family 1D, member 1	-6.77	1.26E-04
A_32_P234405	CK570316	N/A		-6.62	1.26E-04
A_23_P150555	NM_006551	SCGB1D2	Secretoglobin, family 1D, member 2	-6.51	1.26E-04
A_23_P12533	NM_052997	ANKRD30A	Ankyrin repeat domain 30A	-6.44	1.26E-04
A_23_P8702	NM_002652	PIP	Prolactin-induced protein	-6.34	1.26E-04
A_23_P501010	NM_000494	COL17A1	Collagen, type XVII, α1	-5.69	1.26E-04
A_24_P844984	NM_002644	PIGR	Polymeric immunoglobulin receptor	-5.55	1.26E-04
A_32_P216520	NM_007191	WIF1	WNT inhibitory factor 1	-5.53	1.26E-04
A_23_P71364	NM_015886	PI15	Peptidase inhibitor 15	-5.33	1.26E-04
A_24_P273756	NM_003722	TP63	Tumor protein p63	-5.11	1.26E-04
A_23_P132619	NM_000916	OXTR	Oxytocin receptor	-4.89	1.26E-04
A_32_P111873	BQ432543	N/A		-4.88	1.26E-04
A_32_P23272	N/A	N/A		-4.85	1.26E-04
A_24_P643776	N/A	N/A		-4.74	1.26E-04
A_23_P136777	NM_001647	APOD	Apolipoprotein D	-4.71	1.26E-04
A_23_P9711	NM_006040	HS3ST4	Heparan sulfate (glucosamine) 3-O- sulfotransferase 4	-4.58	1.26E-04
A_23_P305292	NR_027180	LOC728264	Hypothetical LOC728264	-4.57	1.26E-04
A_23_P159974	NM_033495	KLHL13	Kelch-like 13 (Drosophila)	-4.55	1.26E-04
A_23_P105144	NM_020974	SCUBE2	Signal peptide, CUB domain, EGF-like 2	-4.51	1.26E-04
A_32_P14253	N/A	N/A		-4.47	1.26E-04
A_23_P327380	NM_003722	TP63	Tumor protein p63	-4.45	1.26E-04
A_23_P337270	AK057247	N/A		-4.43	1.26E-04
A_23_P420442	NM_153618	SEMA6D	Sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6D	-4.34	1.26E-04
A_23_P8812	N/A	N/A		-4.3	1.26E-04
A_23_P160377	NM_003462	DNALII	Dynein, axonemal, light intermediate chain 1	-4.26	1.26E-04
A_24_P92680	AK093340	LOC100132116	Hypothetical LOC100132116	-4.23	1.26E-04
A_23_P216779	NM_001007097	NTRK2	Neurotrophic tyrosine kinase, receptor, type 2	-4.23	1.26E-04
A_23_P148249	NM_024817	THSD4	Thrombospondin, type I, domain containing 4	-4.18	1.26E-04
A_23_P206920	NM_001040114	MYH11	Myosin, heavy chain 11, smooth muscle	-4.13	1.26E-04
A_32_P154473	NM_004522	KIF5C	Kinesin family member 5C	-4.13	1.26E-04
A_23_P128362	NM_206819	MYBPC1	Myosin binding protein C, slow type	-4.11	3.41E-04
A_23_P83381	NM_001143962	CAPN8	Calpain 8	-4.08	1.26E-04
A_23_P397208	NM_000848	GSTM2	Glutathione S-transferase mu 2 (muscle)	-4.07	1.26E-04
A_23_P503072	NM_148672	CCL28	Chemokine (C-C motif) ligand 28	-4.03	1.26E-04
A_23_P143068	NM_024726	IQCA1	IQ motif containing with AAA domain 1	-4.01	1.26E-04
A_24_P829209	AK096334	LOC285944	Hypothetical protein LOC285944	-3.99	2.33E-04
A_23_P394246		GPR81	G protein-coupled receptor 81	-3.96	1.26E-04
A_24_P34186	NM_004010	DMD	Dystrophin	-3.96	1.26E-04
A_23_P303087	NM_002825	PTN	Pleiotrophin	-3.95	1.26E-04
A_24_P243749	NM_002612	PDK4	Pyruvate dehydrogenase kinase, isozyme 4	-3.94	1.26E-04

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_32_P39944	AK095791	N/A		-3.82	1.26E-04
A_23_P217379	NM_033641	COL4A6	Collagen, type IV, α6	-3.8	1.26E-04
A_23_P407565	NM_001337	CX3CR1	Chemokine (C-X3-C motif) receptor 1	-3.76	1.26E-04
A_23_P373464	NM_002285	AFF3	AF4/FMR2 family, member 3	-3.75	1.26E-04
A_32_P183765	NM_005235	ERBB4	v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian)	-3.75	1.26E-04
A_23_P145514	NM_014432	IL20RA	Interleukin 20 receptor, α	-3.75	1.26E-04
A_24_P870620	NM_002825	PTN	Pleiotrophin	-3.74	2.33E-04
A_32_P154361	N/A	N/A		-3.73	1.26E-04
A_24_P330633	NM_000353	TAT	Tyrosine aminotransferase	-3.72	1.26E-04
A_23_P360777	NM_013960	NRG1	Neuregulin 1	-3.72	1.26E-04
A_23_P253982	NM_002141	HOXA4	Homeobox A4	-3.69	1.26E-04
A_32_P114475	N/A	N/A		-3.68	1.26E-04
A_32_P221774	BX099483	N/A		-3.66	1.26E-04
A_23_P212608	NM_022131	CLSTN2	Calsyntenin 2	-3.66	2.33E-04
A_23_P254165	NM_021785	RAI2	Retinoic acid induced 2	-3.65	1.26E-04
A_24_P794447	NR_024430	LOC399959	Hypothetical LOC399959	-3.64	1.26E-04
A_23_P149517	NM_002644	PIGR	Polymeric immunoglobulin receptor	-3.64	1.26E-04
A_24_P904484	NR_024344	LOC283174	Hypothetical LOC283174	-3.62	1.26E-04
A_32_P194423	N/A	N/A	Hypothetical E0C203174	-3.62	1.26E-04
A_23_P371495	NM_175861	TMTC1	Transmembrane and tetratricopeptide repeat containing 1	-3.6	2.33E-04
A_23_P134162	NM_016356	DCDC2	Doublecortin domain containing 2	-3.58	1.26E-04
A_32_P232455	NM_178840	Clorf64	Chromosome 1 open reading frame 64	-3.58	1.26E-04
A_24_P318160	NM_014903	NAV3	Neuron navigator 3	-3.57	1.26E-04
A_23_P59388	NM_001723	DST	Dystonin	-3.56	1.26E-04
A_23_P399217	NM_153445	OR5P3	Olfactory receptor, family 5, subfamily P, member 3	-3.56	1.26E-04
A_23_P309739	NM_000125	ESR1	Estrogen receptor 1	-3.53	1.26E-04
A_24_P608007	AK022390	N/A		-3.53	1.26E-04
A_23_P501538	NM_153631	HOXA3	Homeobox A3	-3.52	1.26E-04
A_24_P602871	NM 001030060	SAMD5	Sterile α motif domain containing 5	-3.52	1.26E-04
A_23_P136433	N/A	N/A		-3.51	1.26E-04
A_23_P30294	NM_001801	CD01	Cysteine dioxygenase, type I	-3.48	1.26E-04
A_23_P218928	NM_016613	FAM198B	Family with sequence similarity 198, member B	-3.47	1.26E-04
A_23_P154627	XM_002345419	TSHZ2	Teashirt zinc finger homeobox 2	-3.47	1.26E-04
A 23 P303833	NM_174934	SCN4B	Sodium channel, voltage-gated, type IV, β	-3.45	1.26E-04
A_24_P930088	XM_002342181	LOC100286909	Hypothetical protein LOC100286909	-3.45	1.26E-04
A_32_P81623	AA514833	N/A)Pomenen Protein Electron 200909	-3.42	1.26E-04
A_24_P923028	BC020707	TAT	Tyrosine aminotransferase	-3.41	1.26E-04
A_23_P58869	NR_002932	LOC442245	Glutathione S-transferase mu 2 pseudogene	-3.4	1.26E-04
A_23_P2271	NM_198965	PTHLH	Parathyroid hormone-like hormone	-3.4	1.26E-04
A_23_P43664	1111_120203		r analytola hormone-like hormone	-3.39	1.26E-04
A_32_P16007	NM_207355	POTEB	POTE ankyrin domain family, member B	-3.39	1.26E-04
A_32_P10007 A_23_P94840	NM_130897	DYNLRB2	Dynein, light chain, roadblock-type 2	-3.39	1.26E-04
A_23_P94840 A_24_P5153	NM_024817	THSD4	Thrombospondin, type I, domain containing 4	-3.38	1.26E-04 1.26E-04

Table III. Continued.

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_32_P223675	N/A	N/A		-3.37	1.26E-04
A_24_P904845	AK095791	N/A		-3.37	1.26E-04
A_23_P403209	N/A	N/A		-3.36	1.26E-04
A_23_P215382	N/A	N/A		-3.35	3.41E-04
A_24_P209710	NM_004816	FAM189A2	Family with sequence similarity 189, member A2	-3.35	1.26E-04
A_23_P167168	NM_144646	IGJ	Immunoglobulin J polypeptide, linker protein for immunoglobulin α and mu polypeptides	-3.34	1.26E-04
A_24_P70183	NM_001040113	MYH11	Myosin, heavy chain 11, smooth muscle	-3.32	1.26E-04
A_23_P216361	NM_021110	COL14A1	collagen, type XIV, α1	-3.32	1.26E-04
A_23_P113351	NM_004684	SPARCL1	SPARC-like 1 (hevin)	-3.31	1.26E-04
A_32_P17145	N/A	N/A		-3.31	1.26E-04
A_23_P35414	NM_005398	<i>PPP1R3</i> C	Protein phosphatase 1, regulatory (inhibitor) subunit 3C	-3.29	1.26E-04
A_23_P31945	NM_033439	IL33	Interleukin 33	-3.27	1.26E-04
A_23_P204630	NM_021229	NTN4	Netrin 4	-3.26	1.26E-04
A_23_P501831	NM_032385	C5orf4	Chromosome 5 open reading frame 4	-3.26	1.26E-04
A_23_P200015	NM_174858	AK5	Adenylate kinase 5	-3.26	1.26E-04
A_24_P802145	NM_005544	IRS1	Insulin receptor substrate 1	-3.26	1.26E-04
A_24_P251969	NM_000800	FGF1	Fibroblast growth factor 1 (acidic)	-3.24	1.26E-04
A_32_P228618	NM_001003793	RBMS3	RNA binding motif, single stranded interacting protein	-3.23	1.26E-04
A_23_P125233	NM_001299	CNN1	Calponin 1, basic, smooth muscle	-3.22	2.33E-04
A_23_P500998	NM_152739	HOXA9	Homeobox A9	-3.19	2.33E-04
A_23_P83838	NM_004056	CA8	Carbonic anhydrase VIII	-3.19	1.26E-04
A_24_P911950	N/A	N/A		-3.17	1.26E-04
A_23_P159952	NM_018476	BEX1	Brain expressed, X-linked 1	-3.17	1.26E-04
A_23_P45185	NM_004469	FIGF	c-fos induced growth factor (vascular endothelial growth factor D)	-3.16	2.33E-04
A_23_P14083	NM_181847	AMIGO2	Adhesion molecule with Ig-like domain 2	-3.16	1.26E-04
A_24_P920366	N/A	N/A	-	-3.14	1.26E-04
A_24_P167668	NM_000428	LTBP2	Latent transforming growth factor β binding protein 2	-3.12	1.26E-04
A_32_P161033	BC043411	N/A		-3.11	1.26E-04
A_23_P348159	NM_020388	DST	Dystonin	-3.11	1.26E-04
A_32_P89415	N/A	N/A		-3.1	1.26E-04
A_23_P165778	NM_024101	MLPH	Melanophilin	-3.08	1.26E-04
A_32_P168701	N/A	N/A		-3.07	3.41E-04
A_32_P78491	NM_004956	ETV1	ets variant 1	-3.06	1.26E-04
A_24_P87036	NM_018043	ANO1	Anoctamin 1, calcium activated chloride channel	-3.06	1.26E-04
A_24_P912799	NM_003966	SEMA5A	Sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5A	-3.06	1.26E-04
A_23_P315364	NM_002089	CXCL2	Chemokine (C-X-C motif) ligand 2	-3.05	1.26E-04
A_24_P71341		FMO5	Flavin containing monooxygenase 5	-3.05	2.33E-04
A_32_P199796	NM_004023	DMD	Dystrophin	-3.05	2.33E-04
A_32_P179998	NM_033053	DMRTC1	DMRT-like family C1	-3.04	1.26E-04
A_32_P17984	N/A	N/A		-3.04	1.26E-04

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_23_P138938	NM_000926	PGR	Progesterone receptor	-3.04	1.26E-04
A_23_P18559	NM_003866	INPP4B	Inositol polyphosphate-4-phosphatase, type II, 105 kDa	-3.03	1.26E-04
A_23_P124946	NM_153610	CMYA5	Cardiomyopathy associated 5	-3.03	1.26E-04
A_23_P212241	NM_006614	CHL1	Cell adhesion molecule with homology to L1CAM (close homolog of L1)	-3.03	1.26E-04
A_23_P156402	NM_003551	NME5	Non-metastatic cells 5, protein expressed in (nucleoside-diphosphate kinase)	-3.02	1.26E-04
A_23_P150053	NM_001613	ACTA2	Actin, $\alpha 2$, smooth muscle, aorta	-3.02	1.26E-04
A_32_P58912	N/A	N/A		-3.02	1.26E-04
A_32_P216841	NM_145263	SPATA18	Spermatogenesis associated 18 homolog (rat)	-3.01	2.33E-04
A_23_P257087	NM_002612	PDK4	Pyruvate dehydrogenase kinase, isozyme 4	-3.01	1.26E-04
A_23_P110686	NM_003714	STC2	Stanniocalcin 2	-3	1.26E-04
A_23_P369994	NM_004734	DCLK1	Doublecortin-like kinase 1	-2.99	2.33E-04
A_23_P422831	NM_004816	FAM189A2	Family with sequence similarity 189, member A2	-2.98	1.26E-04
A_24_P325992	NM_002310	LIFR	Leukemia inhibitory factor receptor α	-2.98	1.26E-04
A_23_P387000	NM_173683	XKR6	XK, Kell blood group complex subunit-related family, member 6	-2.98	3.41E-04
A_32_P83811	NM_001136570	FAM47E	Family with sequence similarity 47, member E	-2.98	1.26E-04
A_32_P44210	BX538299	N/A		-2.97	1.26E-04
A_24_P918317	NM_015881	DKK3	Dickkopf homolog 3 (Xenopus laevis)	-2.97	4.43E-04
A_23_P203957	NM_175861	TMTC1	Transmembrane and tetratricopeptide repeat containing 1	-2.96	3.41E-04
A_23_P30217	NM_052863	SCGB3A1	Secretoglobin, family 3A, member 1	-2.96	1.26E-04
A_23_P77066	NM_022807	SNRPN	Small nuclear ribonucleoprotein polypeptide N	-2.94	1.26E-04
A_32_P109242	AK055302	CSRNP3	Cysteine-serine-rich nuclear protein 3	-2.91	1.26E-04
A_24_P937265	N/A	N/A		-2.91	1.26E-04
A_32_P97968	N/A	N/A		-2.9	1.26E-04
A_32_P85684	AA069768	N/A		-2.89	1.26E-04
A_23_P385067	NM_053277	CLIC6	Chloride intracellular channel 6	-2.89	4.43E-04
A_23_P82868	NM_000930	PLAT	Plasminogen activator, tissue	-2.88	1.26E-04
A_32_P108396	N/A	N/A		-2.88	1.26E-04
A_23_P148345	NM_194463	RNF128	Ring finger protein 128	-2.87	1.26E-04
A_24_P314477	NM_178012	TUBB2B	Tubulin, β 2B	-2.87	1.26E-04
A_24_P895836	N/A	N/A		-2.87	1.26E-04
A_23_P171074	NM_004867	ITM2A	Integral membrane protein 2A	-2.85	1.26E-04
A_23_P9135	NM_033655	CNTNAP3	Contactin associated protein-like 3	-2.85	4.43E-04
A_23_P372234	NM_001218	CA12	Carbonic anhydrase XII	-2.83	1.26E-04
A_23_P393099	NM_003226	TFF3	Trefoil factor 3 (intestinal)	-2.82	2.33E-04
A_23_P113701		PDGFA	Platelet-derived growth factor α polypeptide	-2.82	1.26E-04
A_23_P10995	NM_014483	RBMS3	RNA binding motif, single stranded interacting protein	-2.82	1.26E-04
A_24_P269006	NM_001182	ALDH7A1	Aldehyde dehydrogenase 7 family, member A1	-2.81	1.26E-04
A_23_P415533	AK054879	N/A		-2.81	1.26E-04
A_23_P216225	NM_004430	EGR3	Early growth response 3	-2.8	1.26E-04
A_24_P101282	N/A	N/A		-2.8	1.26E-04
A_32_P72541	N/A	N/A		-2.8	2.33E-04
A_24_P299474	NM_001122679	ODZ2	odz, odd Oz/ten-m homolog 2 (Drosophila)	-2.8	1.26E-04

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_23_P416395	NM_003714	STC2	Stanniocalcin 2	-2.8	1.26E-04
A_23_P40415	NM_007038	ADAMTS5	ADAM metallopeptidase with	-2.8	1.26E-04
			thrombospondin type 1 motif, 5		
A_32_P3545	XM_002345868	LOC100131504	Hypothetical LOC100131504	-2.79	4.43E-04
A_23_P106405	NM_002487	NDN	Necdin homolog (mouse)	-2.79	1.26E-04
A_23_P405129	NM_000428	LTBP2	Latent transforming growth factor β binding protein 2	-2.79	1.26E-04
A_24_P237804	NM_174981	POTED	POTE ankyrin domain family, member D	-2.78	1.26E-04
A_23_P89780	NM_198129	LAMA3	Laminin, a3	-2.78	1.26E-04
A_23_P213415	NM_003966	SEMA5A	Sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short	-2.77	3.41E-04
A 04 D007006	NR 000010		cytoplasmic domain, (semaphorin) 5A	2 77	1.045.04
A_24_P397386	NM_002310	LIFR	Leukemia inhibitory factor receptor α	-2.77	1.26E-04
A_23_P73297	NM_004742	MAGI1	Membrane associated guanylate kinase, WW and PDZ domain containing 1	-2.77	1.26E-04
A_23_P165783	NM_024101	MLPH	Melanophilin	-2.76	1.26E-04
A_23_P212061	NM_007289	MME	Membrane metallo-endopeptidase	-2.76	1.26E-04
A_23_P75056	NM_001002295	GATA3	GATA binding protein 3	-2.76	1.26E-04
A_24_P748377	CR749529			-2.75	2.33E-04
A_24_P810476		NTRK3	Neurotrophic tyrosine kinase, receptor, type 3	-2.74	3.41E-04
A_32_P60606	AL713753	DKFZp667F0711	Hypothetical protein DKFZp667F0711	-2.74	1.26E-04
A_32_P200697	NM_181709	FAM101A	Family with sequence similarity 101, member A	-2.73	4.43E-04
A_24_P84220	NR_027995	LOC284232	Ankyrin repeat domain 20 family, member A2 pseudogene	-2.73	1.26E-04
A_23_P157914	NM_153267	MAMDC2	MAM domain containing 2	-2.71	1.26E-04
A_24_P393596	N/A	N/A		-2.71	1.26E-04
A_32_P25419	N/A	N/A		-2.7	1.26E-04
A_24_P169873	N/A	N/A		-2.7	1.26E-04
A_24_P358534	N/A	N/A		-2.69	3.41E-04
A_32_P34750	AV702101	N/A		-2.69	1.26E-04
A_32_P9941	NM_007191	WIF1	WNT inhibitory factor 1	-2.68	2.33E-04
A_23_P335143	U81001	SNRPN	Small nuclear ribonucleoprotein polypeptide N	-2.67	1.26E-04
A_23_P56855	NM_001137671	POTEC	POTE ankyrin domain family, member C	-2.67	1.26E-04
A_32_P59837	AK091914	N/A		-2.65	1.26E-04
A_24_P737553	AK023774	N/A		-2.65	2.33E-04
A_23_P204286	NM_000900	MGP	Matrix Gla protein	-2.65	1.26E-04
A_24_P725895	BE218249	N/A		-2.63	1.26E-04
A_32_P4337	N/A	N/A		-2.63	1.26E-04
A_23_P154400	NM_001042467	MLPH	Melanophilin	-2.62	1.26E-04
A_23_P29800	NM_005602	CLDN11	Claudin 11	-2.61	1.26E-04
A_23_P156025	NM_033267	IRX2	Iroquois homeobox 2	-2.61	1.26E-04
A_32_P193091	N/A	N/A		-2.61	1.26E-04
A_23_P83857	NM_000240	MAOA	Monoamine oxidase A	-2.6	1.26E-04
A_32_P355396	NM_014844	TECPR2	Tectonin β -propeller repeat containing 2	-2.6	1.26E-04
A_32_P214565	BU928689	N/A		-2.6	1.26E-04

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_24_P468950	AK021439	N/A		-2.6	1.26E-04
A_24_P683583	N/A	N/A		-2.6	1.26E-04
A_23_P203558	NM_000518	HBB	Hemoglobin, β	-2.6	2.33E-04
A_32_P140153	N/A	N/A		-2.6	1.26E-04
A_32_P124461	AK129743	N/A		-2.59	1.26E-04
A_23_P136026	AK128476	N/A		-2.59	1.26E-04
A_23_P28295	NM_004525	LRP2	Low density lipoprotein-related protein 2	-2.59	4.43E-04
A_24_P586712	NM_198485	TPRG1	Tumor protein p63 regulated 1	-2.58	1.26E-04
A_23_P139500	NM_030762	BHLHE41	Basic helix-loop-helix family, member e41	-2.58	1.26E-04
A_23_P121480	NM_001004196	CD200	CD200 molecule	-2.58	1.26E-04
A_23_P32577		DACH1	Dachshund homolog 1 (Drosophila)	-2.58	1.26E-04
A_23_P315815	NM_004495	NRG1	Neuregulin 1	-2.58	1.26E-04
A_23_P93772	NM_019102	HOXA5	Homeobox A5	-2.58	1.26E-04
A_32_P150748	CR749529	N/A		-2.58	1.26E-04
A_32_P204959	N/A	N/A		-2.58	1.26E-04
A_23_P363149	N/A	N/A		-2.57	4.43E-04
A_23_P41487	NM_015130	TBC1D9	TBC1 domain family, member 9 (with GRAM domain)	-2.57	1.26E-04
A_23_P257296	NM_003226	TFF3	Trefoil factor 3 (intestinal)	-2.56	3.41E-04
A_23_P250735	NM_175709	CBX7	Chromobox homolog 7	-2.56	1.26E-04
A_24_P189516	NM_001609	ACADSB	acyl-coenzyme A dehydrogenase, short/ branched chain	-2.56	1.26E-04
A_23_P253012	NM_017577	GRAMD1C	GRAM domain containing 1C	-2.56	1.26E-04
A_24_P179244	XM_001723863	LOC100128979	Hypothetical protein LOC100128979	-2.55	1.26E-04
A_32_P117846	N/A	N/A		-2.55	1.26E-04
A_32_P42224	BX097190	N/A		-2.55	2.33E-04
A_24_P119665	NM_001128933	SYNPO2	Synaptopodin 2	-2.54	1.26E-04
A_32_P105825	NM_001584	MPPED2	Metallophosphoesterase domain containing 2	-2.54	3.41E-04
A_24_P225679	NM_005544	IRS1	Insulin receptor substrate 1	-2.54	1.26E-04
A_32_P226907		N/A		-2.54	1.26E-04
A_23_P356581	NM_022370	ROBO3	Roundabout, axon guidance receptor, homolog 3 (<i>Drosophila</i>)	-2.53	1.26E-04
A_32_P221096	AW015426	N/A		-2.53	1.26E-04
A_23_P106016	NM_002742	PRKD1	Protein kinase D1	-2.52	1.26E-04
A_32_P210193	N/A	N/A		-2.52	1.26E-04
A_32_P38436	N/A	N/A		-2.52	1.26E-04
A_24_P512775	N/A	N/A		-2.52	1.26E-04
A_23_P151529	NR_023938	C14orf132	Chromosome 14 open reading frame 132	-2.52	1.26E-04
A_32_P235568	AK125221	N/A	1	-2.52	1.26E-04
A_23_P71270	NM_001185	AZGP1	α -2-glycoprotein 1, zinc-binding	-2.52	4.43E-04
A_24_P650425	N/A	N/A		-2.51	1.26E-04
A_23_P71328	NM_030583	MATN2	Matrilin 2	-2.51	2.33E-04
A_24_P153803	NM_020663	RHOJ	ras homolog gene family, member J	-2.51	1.26E-04
A_24_P912730	N/A	N/A	ras noniolog gene ranny, memoer y	-2.51	1.26E-04
A_24_P347624	NM_022804	SNURF	SNRPN upstream reading frame	-2.51	1.26E-04
A_24_1 347024 A_32_P52785	NM_015345	DAAM2	Dishevelled associated activator of morphogenesis 2	-2.5	3.41E-04
A_23_P61042	N/A	N/A	morphogenesis 2	-2.5	1.26E-04

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_23_P67661	NM_001864	COX7A1	Cytochrome c oxidase subunit VIIa polypeptide 1 (muscle)	-2.49	1.26E-04
A_23_P213486	N/A	PARP8	Poly(ADP-ribose) polymerase family, member 8	-2.49	1.26E-04
A_23_P18713	NM_004827	ABCG2	ATP-binding cassette, sub-family G (WHITE), member 2	-2.48	4.43E-04
A_23_P76658	NM_052818	N4BP2L1	NEDD4 binding protein 2-like 1	-2.48	1.26E-04
A_23_P96590	NM_014710	GPRASP1	G protein-coupled receptor associated sorting protein 1	-2.48	1.26E-04
A_24_P460763	AK022443	N/A		-2.48	1.26E-04
A_23_P85672	NM_006610	MASP2	Mannan-binding lectin serine peptidase 2	-2.48	1.26E-04
A_24_P416489	N/A	N/A		-2.47	1.26E-04
A_24_P321525	NM_032918	RERG	RAS-like, estrogen-regulated, growth inhibitor	-2.47	1.26E-04
A_24_P256526	BC005914	SP2	Sp2 transcription factor	-2.47	1.26E-04
A_24_P261417	NM_015881	DKK3	Dickkopf homolog 3 (Xenopus laevis)	-2.47	1.26E-04
A_23_P98369	NM_000829	GRIA4	Glutamate receptor, ionotrophic, AMPA 4	-2.47	1.26E-04
A_23_P6818	NM_020163	SEMA3G	Sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3G	-2.46	3.41E-04
A_32_P100379	N/A	N/A		-2.46	1.26E-04
A_23_P30163	NR_026804	FLJ13197	Hypothetical FLJ13197	-2.46	1.26E-04
A_24_P206328	NM_005020	PDE1C	Phosphodiesterase 1C, calmodulin-dependent 70 kDa	-2.46	1.26E-04
A_24_P93948	AB210045	N/A		-2.46	1.26E-04
A_32_P52414	N/A	N/A		-2.45	1.26E-04
A_23_P123228	NM_000111	SLC26A3	Solute carrier family 26, member 3	-2.45	1.26E-04
A_24_P666553		N/A	•	-2.45	1.26E-04
A_24_P916816	N/A	N/A		-2.44	1.26E-04
A_23_P134734	NM_017786	GOLSYN	Golgi-localized protein	-2.44	1.26E-04
A_24_P296772	NM_033256	PPP1R14A	Protein phosphatase 1, regulatory (inhibitor) subunit 14A	-2.43	1.26E-04
A_24_P267523	NM_144613	COX6B2	Cytochrome c oxidase subunit VIb polypeptide 2 (testis)	-2.43	1.26E-04
A_23_P133517	NM_002310	LIFR	Leukemia inhibitory factor receptor α	-2.43	1.26E-04
A_24_P787680	N/A	N/A		-2.43	1.26E-04
A_32_P52829	N/A	N/A		-2.43	3.41E-04
A_23_P162047	NM_015881	DKK3	Dickkopf homolog 3 (Xenopus laevis)	-2.43	1.26E-04
A_32_P185140	BX648171	TPM1	Tropomyosin 1 (α)	-2.43	1.26E-04
A_24_P319892	NM_198274	SMYD1	SET and MYND domain containing 1	-2.43	1.26E-04
A_24_P226322	NM_031469	SH3BGRL2	SH3 domain binding glutamic acid-rich protein like 2	-2.42	1.26E-04
A_23_P86012	NM_001017402	LAMB3	Laminin, ß3	-2.42	1.26E-04
A_23_P62255	NM_005314	GRPR	Gastrin-releasing peptide receptor	-2.41	1.26E-04
A_24_P141520		N/A		-2.41	2.33E-04
A_23_P114883	NM_002023	FMOD	Fibromodulin	-2.41	1.26E-04
A_23_P300033	NM_006206	PDGFRA	Platelet-derived growth factor receptor, α polypeptide	-2.41	2.33E-04
A_24_P108311	NM_015277	NEDD4L	Neural precursor cell expressed, developmentally downregulated 4-like	-2.41	1.26E-04

Table III. Continued.

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_23_P345746	NM_199261	TPTE	Transmembrane phosphatase with tensin homology	-2.41	1.26E-04
A_23_P418083	NM_181714	LCA5	Leber congenital amaurosis 5	-2.41	1.26E-04
A_32_P208341	N/A	N/A		-2.41	1.26E-04
A_24_P930337	N/A	N/A		-2.41	1.26E-04
A_24_P915095	NM_017577	GRAMD1C	GRAM domain containing 1C	-2.4	1.26E-04
A_32_P4792	AK057820	N/A		-2.4	1.26E-04
A_24_P82032	NM_020663	RHOJ	ras homolog gene family, member J	-2.39	2.33E-04
A_23_P204296	NM_032918	RERG	RAS-like, estrogen-regulated, growth inhibitor	-2.38	1.26E-04
A_24_P920712	N/A	N/A		-2.38	2.33E-04
A_24_P401185	NM_001042784	CCDC158	Coiled-coil domain containing 158	-2.38	1.26E-04
A_32_P109604	XM_001715342	LOC100132733	Similar to FLJ00310 protein	-2.37	1.26E-04
A_24_P131173	NM_024709	Clorf115	Chromosome 1 open reading frame 115	-2.37	2.33E-04
A_24_P64241	NM_001012421	ANKRD20A2	Ankyrin repeat domain 20 family, member A2	-2.37	1.26E-04
A_32_P58437	N/A	N/A		-2.37	1.26E-04
A_24_P602348	N/A	N/A		-2.37	1.26E-04
A_24_P135856	NM_016124	RHD	Rh blood group, D antigen	-2.37	1.26E-04
A_23_P333038	NM_025145	C10orf79	Chromosome 10 open reading frame 79	-2.37	2.33E-04
A_23_P352266	NM_000633	BCL2	B-cell CLL/lymphoma 2	-2.36	1.26E-04
A_23_P207699		MAPT	Microtubule-associated protein tau	-2.36	1.26E-04
A_23_P392529	NR_027270	C21orf81	Ankyrin repeat domain 20 family, member A3 pseudogene	-2.36	1.26E-04
A_23_P904	NM_024603	BEND5	BEN domain containing 5	-2.36	1.26E-04
A_23_P115785	NM_145235	FANK1	Fibronectin type III and ankyrin repeat domains 1	-2.35	1.26E-04
A_32_P146844	N/A	N/A		-2.35	1.26E-04
A_23_P26865	NM_002470	МҮНЗ	Myosin, heavy chain 3, skeletal muscle, embryonic	-2.35	1.26E-04
A_32_P100641	XM 001714998	LOC100128139	Hypothetical LOC100128139	-2.35	2.33E-04
A_24_P930727		N/A		-2.35	1.26E-04
A 23 P406341	NM_001001936	AFAP1L2	Actin filament associated protein 1-like 2	-2.35	1.26E-04
A_24_P54863	NM_152400	C4orf32	Chromosome 4 open reading frame 32	-2.34	1.26E-04
A_23_P133120	NM_018342	TMEM144	Transmembrane protein 144	-2.34	1.26E-04
A_32_P86705	BC040577	N/A	I	-2.34	1.26E-04
A_24_P833256	N/A	N/A		-2.33	1.26E-04
A_23_P401106	NM_002599	PDE2A	Phosphodiesterase 2A, cGMP-stimulated	-2.33	1.26E-04
A_24_P102119	AF264623	N/A		-2.33	1.26E-04
A_23_P358714	NM_020775	KIAA1324	KIAA1324	-2.32	1.26E-04
A_32_P162494	N/A	N/A		-2.32	3.41E-04
A_23_P326931	NM_145170	TTC18	Tetratricopeptide repeat domain 18	-2.32	1.26E-04

N/A, not annotated; P-value, Benjamini-Hochberg false discovery rate of random permutation test; log fold change, between groups. Gene symbol, accession number and gene name were exported from GeneSpring (from the NCBI databases).

showing significant knockdown effects. FACS analysis revealed that depleting *ASPM* caused a cell cycle arrest at the

G2/M phase in HCC1937 cells (si*EGFP*:si*ASPM*, 24.4:34.0%) at 2 days after transfection, and a subsequent increase in the

Table IV. Genes spe	ecifically expres	ssed in TNBC, but no	t expressed in normal	human vital organs.

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_23_P118834	NM_001067	TOP2A	Topoisomerase (DNA) IIα 170 kDa	4.76	1.26E-04
A_32_P119154	BE138567	N/A		4.75	1.26E-04
A_23_P35219	NM_002497	NEK2	NIMA (never in mitosis gene a)-related kinase 2	4.67	1.26E-04
A_23_P166360	NM_206956	PRAME	Preferentially expressed antigen in melanoma	4.64	1.26E-04
A_24_P332314	NM_198947	FAM111B	Family with sequence similarity 111, member B	4.63	1.26E-04
A_24_P413884	NM_001809	CENPA	Centromere protein A	4.59	1.26E-04
A_23_P68610	NM_012112	TPX2	TPX2, microtubule-associated, homolog (Xenopus laevis)	4.58	1.26E-04
A_23_P401	NM_016343	CENPF	Centromere protein F, 350/400 ka (mitosin)	4.44	1.26E-04
A_23_P57379	NM_003504	CDC45L	CDC45 cell division cycle 45-like (S. cerevisiae)	4.44	1.26E-04
A_23_P356684	NM_018685	ANLN	Anillin, actin binding protein	4.29	1.26E-04
A_23_P52017	NM_018136	ASPM	asp (abnormal spindle) homolog, microcephaly associated (<i>Drosophila</i>)	4.17	1.26E-04
A_32_P199884	NM_032132	HORMAD1	HORMA domain containing 1	4.13	2.33E-04
A_23_P259586	NM_003318	TTK	TTK protein kinase	4.09	1.26E-04
A_23_P200310	NM_017779	DEPDC1	DEP domain containing 1	4.08	1.26E-04
A_23_P115872	NM_018131	CEP55	Centrosomal protein 55 kDa	4.03	1.26E-04
A_24_P911179	NM_018136	ASPM	asp (abnormal spindle) homolog, microcephaly associated (<i>Drosophila</i>)	4.02	1.26E-04
A_24_P96780	NM_016343	CENPF	Centromere protein F, 350/400 ka (mitosin)	3.92	1.26E-04
A_24_P14156	NM_006101	NDC80	NDC80 homolog, kinetochore complex component (<i>S. cerevisiae</i>)	3.86	1.26E-04
A_23_P254733	NM_024629	MLF11P	MLF1 interacting protein	3.85	1.26E-04
A_23_P74115	NM_003579	RAD54L	RAD54-like (S. cerevisiae)	3.84	1.26E-04
A_23_P50108	NM_006101	NDC80	NDC80 homolog, kinetochore complex component (<i>S. cerevisiae</i>)	3.84	1.26E-04
A_23_P155815	NM_022346	NCAPG	Non-SMC condensin I complex, subunit G	3.82	1.26E-04
A_23_P51085	NM_020675	SPC25	SPC25, NDC80 kinetochore complex component, homolog (<i>S. cerevisiae</i>)	3.81	1.26E-04
A_32_P62997	NM_018492	PBK	PDZ binding kinase	3.8	1.26E-04
A_23_P256956	NM_005733	KIF20A	Kinesin family member 20A	3.79	1.26E-04
A_23_P212844	NM_006342	TACC3	Transforming, acidic coiled-coil containing protein 3	3.78	1.26E-04
A_24_P254705	NM_020394	ZNF695	Zinc finger protein 695	3.76	1.26E-04
A_23_P432352	NM_001017978	CXorf61	Chromosome X open reading frame 61	3.73	1.26E-04
A_23_P48669	NM_005192	CDKN3	Cyclin-dependent kinase inhibitor 3	3.71	1.26E-04
A_23_P94571	NM_004432	ELAVL2	ELAV (embryonic lethal, abnormal vision, <i>Drosophila</i>)-like 2 (Hu antigen B)	3.67	1.26E-04
A_23_P150667	NM_031217	KIF18A	Kinesin family member 18A	3.64	1.26E-04
A_32_P68525	BC035392	N/A	-	3.58	1.26E-04
A_24_P319613	NM_002497	NEK2	NIMA (never in mitosis gene a)-related kinase 2	3.53	1.26E-04
A_23_P10385	NM_016448	DTL	Denticleless homolog (Drosophila)	3.53	1.26E-04
A_23_P94422	NM_014791	MELK	Maternal embryonic leucine zipper kinase	3.5	1.26E-04
A_23_P340909	BC013418	SKA3	Spindle and kinetochore associated complex subunit 3	3.48	1.26E-04
A_23_P124417	NM_004336	BUB1	Budding uninhibited by benzimidazoles 1 homolog (yeast)	3.47	1.26E-04
A_24_P257099	NM_018410	HJURP	Holliday junction recognition protein	3.43	1.26E-04

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_23_P74349	NM_145697	NUF2	NUF2, NDC80 kinetochore complex component, homolog (S. cerevisiae)	3.36	1.26E-04
A_24_P302584	NM_003108	SOX11	SRY (sex determining region Y)-box 11	3.36	4.43E-04
A_24_P68088	NR_002947	TCAM1	Testicular cell adhesion molecule 1 homolog (mouse)	3.35	2.33E-04
A_24_P366033	NM_018098	ECT2	Epithelial cell transforming sequence 2 oncogene	3.34	1.26E-04
A_23_P93258	NM_003537	HIST1H3B	Histone cluster 1, H3b	3.33	1.26E-04
A_23_P149668	NM_014875	KIF14	Kinesin family member 14	3.29	1.26E-04
A_23_P34325	NM_033300	LRP8	Low density lipoprotein receptor-related protein 8, apolipoprotein E receptor	3.28	1.26E-04
A_32_P56154	N/A	N/A		3.28	1.26E-04
A_23_P138507	NM_001786	CDC2	Cell division cycle 2, G1→S and G2→M	3.24	1.26E-04
A_23_P49972	NM_001254	CDC6	Cell division cycle 6 homolog (S. cerevisiae)	3.22	1.26E-04
A_24_P306896	XR_040656	LOC283711	Hypothetical protein LOC283711	3.22	1.26E-04
A_23_P44684	NM_018098	ECT2	Epithelial cell transforming sequence 2 oncogene	3.21	1.26E-04
A_23_P100344	NM_014321	ORC6L	Origin recognition complex, subunit 6 like (yeast)	3.2	1.26E-04
A_23_P163481	NM_001211	BUB1B	Budding uninhibited by benzimidazoles 1 homolog β (yeast)	3.17	1.26E-04
A_32_P87849	N/A	N/A		3.16	1.26E-04
A_24_P397107	NM_001789	CDC25A	Cell division cycle 25 homolog A (S. pombe)	3.15	1.26E-04
A_23_P209200	NM_001238	CCNE1	Cyclin E1	3.15	1.26E-04
A_32_P16625	N/A	N/A	5	3.15	1.26E-04
A_24_P37903	N/A	LOX	Lysyl oxidase	3.12	1.26E-04
A_24_P313504	NM_005030	PLK1	Polo-like kinase 1 (<i>Drosophila</i>)	3.07	1.26E-04
A_23_P252292		CENPI	Centromere protein I	3.04	1.26E-04
A_23_P161474		<i>MCM10</i>	Minichromosome maintenance complex component 10	2.99	1.26E-04
A_23_P253762	N/A	N/A	1	2.94	1.26E-04
A_24_P225534		RHBDL2	Rhomboid, veinlet-like 2 (Drosophila)	2.94	1.26E-04
A_24_P412088		<i>MCM10</i>	Minichromosome maintenance complex component 10	2.94	1.26E-04
A 32 P109296	NM_152259	C15orf42	Chromosome 15 open reading frame 42	2.91	1.26E-04
A_24_P76521		GSG2	Germ cell associated 2 (haspin)	2.83	1.26E-04
A_23_P126212	NM_022111	CLSPN	Claspin homolog (Xenopus laevis)	2.83	1.26E-04
A 23 P60120	NM_031415	GSDMC	Gasdermin C	2.81	2.33E-04
A_24_P902509	NM_018193	FANCI	Fanconi anemia, complementation group I	2.8	1.26E-04
A_23_P155969	NM_014264	PLK4	Polo-like kinase 4 (<i>Drosophila</i>)	2.79	1.26E-04
A_32_P183218	NM_153695	ZNF367	Zinc finger protein 367	2.77	1.26E-04
A_23_P46118	NM_001821	CHML	Choroideremia-like (Rab escort protein 2)	2.76	2.33E-04
A_23_P327643	N/A	N/A		2.75	1.26E-04
A_23_P215976	NM_057749	CCNE2	Cyclin E2	2.72	2.33E-04
A_32_P151800	NM_207418	FAM72D	Family with sequence similarity 72, member D	2.7	1.26E-04
A_23_P34788	NM_006845	KIF2C	Kinesin family member 2C	2.7	1.26E-04
A_23_P133956	NM_002263	KIFC1	Kinesin family member C1	2.69	1.26E-04
A_23_P88630	NM_000057	BLM	Bloom syndrome, RecQ helicase-like	2.68	1.26E-04
A_24_P276102	NM_183404	RBL1	Retinoblastoma-like 1 (p107)	2.68	1.26E-04
A_23_P23303	NM_003686	EXO1	Exonuclease 1	2.67	1.26E-04
A_23_P88691	NM_000745	CHRNA5	Cholinergic receptor, nicotinic, α5	2.67	1.26E-04
A_32_P72341	NM_173084	TRIM59	Tripartite motif-containing 59	2.62	1.26E-04

Probe ID	Accession no.	Symbol	Gene name	Fold change (log)	P-value
A_24_P227091	NM_004523	KIF11	Kinesin family member 11	2.61	1.26E-04
A_23_P136805	NM_014783	ARHGAP11A	Rho GTPase activating protein 11A	2.6	1.26E-04
A_23_P63402	NM_013296	GPSM2	G-protein signaling modulator 2 (AGS3-like, <i>C. elegans</i>)	2.6	1.26E-04
A_23_P35871	NM_024680	<i>E2F8</i>	E2F transcription factor 8	2.58	1.26E-04
A_23_P207307	N/A	N/A		2.58	1.26E-04
A_24_P399888	NM_001002876	CENPM	Centromere protein M	2.58	1.26E-04
A_23_P155989	NM_022145	CENPK	Centromere protein K	2.57	1.26E-04
A_23_P411335	NM_152524	SGOL2	Shugoshin-like 2 (S. pombe)	2.54	1.26E-04
A_23_P43484	NM_058197	CDKN2A	Cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)	2.52	1.26E-04
A_32_P28704	N/A	N/A		2.52	1.26E-04
A_24_P351466	NM_020890	KIAA1524	KIAA1524	2.5	1.26E-04
A_24_P334248	NM_014996	PLCH1	Phospholipase C, eta 1	2.48	1.26E-04
A_23_P88331	NM_014750	DLGAP5	Discs, large (<i>Drosophila</i>) homolog-associated protein 5	2.47	1.26E-04
A_32_P31021	N/A	N/A		2.46	1.26E-04
A_23_P361419	NM_018369	DEPDC1B	DEP domain containing 1B	2.45	1.26E-04
A_23_P397341	NM_152341	PAQR4	Progestin and adipoQ receptor family member IV	2.42	1.26E-04
A_23_P140316	NM_001099652	GPR137C	G protein-coupled receptor 137C	2.42	1.26E-04
A_23_P217049	NM_014286	FREQ	Frequenin homolog (Drosophila)	2.41	2.33E-04
A_32_P35839	N/A	N/A		2.4	1.26E-04
A_24_P857404	NM_001093725	MEX3A	mex-3 homolog A (C. elegans)	2.4	1.26E-04
A_24_P323598	NM_001017420	ESCO2	Establishment of cohesion 1 homolog 2 (<i>S. cerevisiae</i>)	2.36	1.26E-04
A_23_P112673	NM_017975	ZWILCH	Zwilch, kinetochore associated, homolog (<i>Drosophila</i>)	2.33	1.26E-04
A_24_P296254	NM_014783	ARHGAP11A	Rho GTPase activating protein 11A	2.32	1.26E-04

N/A, not annotated; P-value, Benjamini-Hochberg false discovery rate of random permutation test; log fold change, between groups. Gene symbol, accession number and gene name were exported from GeneSpring (from the NCBI databases).

sub-G1 population (siEGFP:siASPM, 9.86:43.68%) at 6 days (Fig. 5A). On the other hand, reduced CENPK expression resulted in an increase in the proportion of G0/G1 phase cells (siEGFP:siCENPK, 56.49:72.2%) in MDA-MB-231 after 2 days of transfection, and a subsequent increase in the sub-G1 population (siEGFP:siCENPK, 12.73:30.96%) at 6 days (Fig. 5B). Interestingly, we observed an enlarged size of HCC1937 cells, which was likely due to abnormal tubulin formation due to decreased ASPM expression (Fig. 5C, arrowheads). In addition, we observed a disruption in the structural integrity of tubulin in CENPK-depleted MDA-MB-231 cells (Fig. 5D, arrowheads), compared with those in siEGFP-transfected cells.

These results suggest that the absence of *ASPM* and *CENPK* caused an arrest in the G2/M and G0/G1 phases, respectively,

and then induced cell death. Taken together, these findings strongly suggest that *ASPM* and *CENPK* have indispensable roles in cell proliferation and mitosis, especially in the G2/M and G0/G1 phases, in TNBC cells.

Discussion

TNBC patients do not benefit from endocrine therapy and trastuzumab. Conventional chemotherapy is currently the mainstay of systemic medical treatment, although TNBC patients have a worse outcome after chemotherapy than patients with other breast subtypes. In particular, because cytotoxic drugs often cause severe adverse effects, it is obvious that thoughtful selection of novel target molecules based on the detailed molecular mechanisms of TNBC carcinogenesis Table V. Genes listed in cluster 1 and cluster 2.

No. of genes	Genes
Cluster 1 (enrichment score, 29.90)	
87	 BLM, CKS1B, CKS2, CHEK1, E2F1, E2F2, E2F8, FANCA, FANCI, H2AFX, HORMAD1, HJURP, MAD2L1, NDC80, NEK2, NUF2, OIP5, PBK, RAD51, RAD54L, SPC25, TPX2, TTK, ZWINT ZWILCH, ANLN, ASPM, AURKA, BIRC5, BUB1, BUB1B, CASC5, CDC25A, CDC6, CDCA2, CDCA5, CDCA8, CENPA, CENPF, CEP55, CHAF1B, SKA3, C13orf34, CIT, CLSPN, CCNA2, CCNB1, CCNE1, CCNE2, CDKN2A, CDKN2C, CDKN3, DSCC1, DLGAP5, ESCO2, EXO1, FAM83D, GSG2, INHBA, KIF11, KIF14, KIF18A, KIF18B, KIF20A, KIF23, KIF2C, KIFC1, LMNB1, MND1, NCAPG, NUSAP1, PTTG1, PLK1, PLK4, PKMYT1, PRC1, RBL1, SGOL2 SPAG5, STMN1, SMC4, TMSB15A, TOP2A, TACC3, TUBB3, UBE2C, UHRF1
Cluster 2 (enrichment score, 6.43)	
45	ADAMTS5, MAMDC2, SPARCL1, WIF1, AZGP1, APOD, FIGF, CHL1, CCL28, CXCL2, COL4A6, COL14A1, COL17A1, CNTNAP3, DKK3, DST, FGF1, FMOD, HS3ST4, IGJ, IL33, LAMA3, LAMAB, LTBP2, LIFR, LRP2, MASP2, MATN2, MGP, NTN4, NRG1, PTHLH, P115, PLAT, PDGFA, PTN, PIGR, PIP, SCGB1D1, SCGB1D2, SCGB3A1, SEMA3G, STC2, THSD4, TFF3

Genes enriched in cluster 1 and cluster 2 according to DAVID.

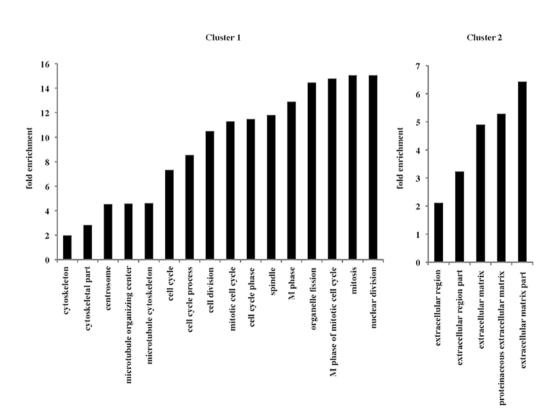


Figure 2. Gene annotation enrichment analysis based on DAVID was performed to elucidate the biological processes and pathways characterized in TNBC. Functional annotation terms are shown in bar plots; the value of the vertical axis represents the fold enrichment score of each term.

should be very helpful to develop effective anticancer drugs with a minimum risk of side effects. To this end, we performed

DNA microarray using the microdissected TNBC and normal ductal cells, and normal human vital organs including the

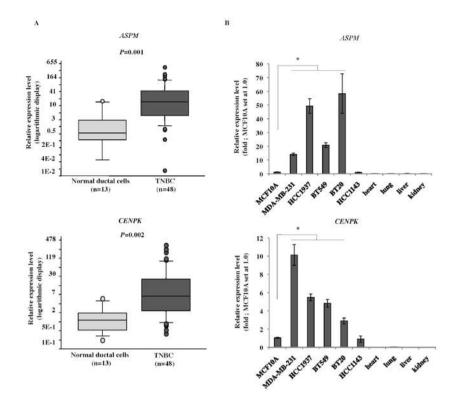


Figure 3. ASPM and CENPK expression profiles. (A) qRT-PCR results of ASPM and CENPK in microdissected tumor cells from 48 TNBC tissues and 13 normal ductal cells (Mann-Whitney t-test). (B) qRT-PCR results of ASPM and CENPK in five TNBC cell lines, MCF10A cells (human normal mammary epithelial cell line) and various normal organs (Student's two-sided t-test: *P<0.05).

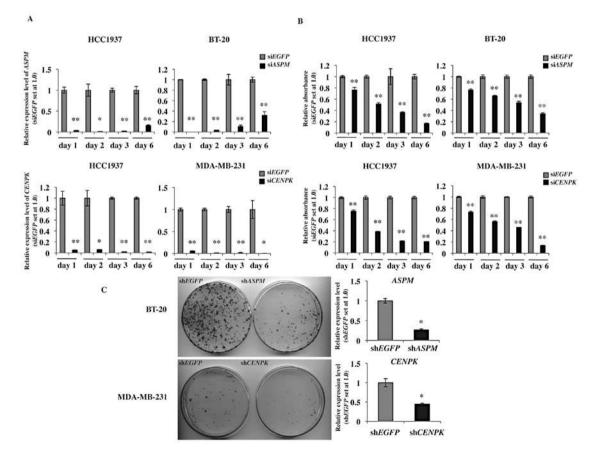


Figure 4. siRNA-mediated growth inhibitory effects in TNBC cells. (A) siRNA-mediated knockdown of *ASPM* in HCC1937 and BT-20 cells, and *CENPK* in HCC1937 and MDA-MB-231 cells was validated by qRT-PCR analysis (Student's two-sided t-test: *P<0.05, **P<0.01). (B) The MTT assay showing a decrease in the number of cells upon *ASPM* knockdown in HCC1937 and BT-20 cells and *CENPK* knockdown in HCC1937 and MDA-MB-231 cells (Student's two-sided t-test: *P<0.05, **P<0.01). (C) Colony formation assay (left) demonstrating a decrease in the number of colonies upon *ASPM* and *CENPK* knockdown (right) (Student's two-sided t-test: *P<0.05).

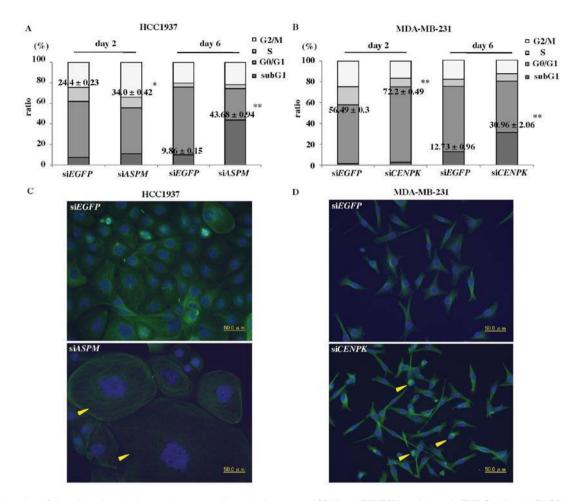


Figure 5. Alteration of the cell cycle and changes in cancer cell morphology upon *ASPM* and *CENPK* knockdown in TNBC cells. (A) FACS analysis at each time-point. The proportion of cells at the G2/M phase was elevated 2 days after si*ASPM* transfection followed by sub-G1 induction at 6 days in HCC1937 cells. (B) Upon *CENPK* knockdown, the proportion of cells at the G0/G1 phase was elevated in MDA-MB-231 cells at 2 days after si*CENPK* transfection, followed by sub-G1 induction at 6 days after transfection. A total of 10,000 cells were counted (Student's two-sided t-test: *P<0.05, **P<0.01). (C) Immunocytochemical staining analysis of α/β -tubulin at 48 h after siRNA transfection. Enlarged si*ASPM*-treated HCC1937 cells (arrowhead). Control cells that entered metaphase are indicated by the arrow. (D) Disruption of the structural integrity of tubulin in si*CENPK*-treated MDA-MB-231 cells (arrowhead). α/β -tubulin and nuclei staining are shown as green and blue, respectively. Scale bars, 50 μ m.

heart, lung, liver and kidney and identified 104 genes that were significantly upregulated in TNBC compared to normal duct cells, but not expressed in normal human vital organs. They included cancer specific kinases, such as *NEK2*, *PBK*, and *MELK*, which might serve as druggable targets for new therapeutic agents against TNBC.

NEK2, a member of the NIMA-related serine/threonine kinase family, is involved in cell division and the mitotic regulation by centrosome splitting, and is upregulated in a wide variety of human cancers including breast cancer (40). siRNA-mediated depletion of *NEK2* expression results in growth suppression of breast and colorectal cancers (29,30). *PBK*, a mitotic serine/threonine kinase, is significantly upregulated in the majority of breast cancers. siRNA-mediated knockdown of PBK expression also results in significant suppression of cell growth due to cytokinetic failure (31). *MELK*, a member of the snf1/AMPK serine-threonine kinase family, is involved in mammalian embryonic development and is also frequently upregulated in breast cancers and brain tumors (33,41). Suppression of *MELK* expression by siRNA significantly inhibits the growth of human breast cancer cells (33). These findings strongly suggest that

these cancer-specific kinases, *NEK2*, *PBK* and *MELK*, are promising therapeutic targets for TNBC.

Furthermore, we performed a gene-annotation enrichment analysis using DAVID based on gene expression profiling to elucidate the biological processes and pathways associated with each gene cluster. We found that the vast majority of genes upregulated in TNBC are functionally responsible for cell cycle progression involved in nuclear division, microtubule organization, kinetochore, and chromosome segregation, and that most inactivated functions closely related to TNBC progression are involved in cell-cell or cell-matrix interactions, which is consistent with epithelial mesenchymal transition (EMT) features as a phenotype of TNBC (42).

To further the development of novel anticancer drugs with minimum adverse effects, we focused on the cancerspecific cell-cycle associated genes *ASPM* and *CEPNK* as novel molecular targets for TNBC therapy. *ASPM* has been reported to play an essential role in nucleating microtubules at centrosomes, to localize to the spindle poles during mitosis (39) and to contribute to glioblastoma cell growth (43), but has not been associated with breast carcinogenesis, especially TNBC. Here, we confirmed that ASPM is upregulated in clinical samples and TNBC cell lines (Fig. 3) and that siRNAmediated knockdown of endogenous ASPM results in the loss of nucleating microtubules through mitosis by impeding centrosome function, resulting in G2/M cell cycle arrest and subsequent apoptosis. These results suggest that aberrant ASPM expression might be involved in the carcinogenesis of TNBC and that ASPM targeting might be an attractive therapeutic option with less adverse effects. CENPK is known to be a subunit of the CENPH-I complex, and essential for proper kinetochore assembly (39), but little is known about the roles of CENPK in human cancer growth, progression, and carcinogenesis. We also confirmed that CENPK is upregulated in clinical samples and TNBC cell lines, and that siRNA-mediated knockdown also causes cell growth inhibition through G0/G1 cell cycle arrest due to a loss of correct tubulin structures (Figs. 3-5). Interestingly, we determined that other centromere or kinetochore-associated proteins, CENPA, CENPF, CENPI, CENPM, NDC80 and HJURP, were also significantly overexpressed in TNBC cases, but not expressed in normal vital organs (Fig. 1C and Table IV). Human CENPA was first identified based on autoantibodies found in patients suffering from scleroderma (44) and is overexpressed in colorectal cancers (45). CENPF is also reportedly upregulated in head and neck squamous cell carcinomas and pancreatic ductal carcinomas (46,47). NDC80 and HJURP are reportedly overexpressed in breast cancers and associated with tumor grade and poor prognosis (48,49). These findings suggest that aberrant regulation of kinetochore assembly and centromere function through mitosis might contribute to the carcinogenesis of TNBC and that destroying one component of the kinetochore, such as targeting CENPK, might be a novel molecular target for TNBC treatment.

TNBC is a heterogeneous subgroup of breast cancers; therefore oncologists, pathologists, and geneticists had tried to clarify TNBC by means of gene expression profiling and immunohistochemical analyses. We also applied unsupervised 2-dimensional hierarchical clustering analysis to groups of genes based on similarities in the expression pattern, but there is no clustering for TNBC based on gene expression patterns, probably due to the small sample size (data not shown). However, the information provided in this study will facilitate the development of novel and attractive molecular drug targets without adverse events.

Acknowledgements

We thank Dr Tomoya Fukawa and Dr Le Tan Dat for helpful and constructive discussions and Ms. Hitomi Kawakami for technical assistance in microdissection. This work was supported in part by a grant from Health Labour Research Grant 'Third Term Comprehensive Control Research for Cancer (H24-3rd-Gan-Ippan-006), and Kobayashi Foundation for cancer Research (2009) (TK).

References

 Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T and Thun MJ: Cancer Statistics, 2008. CA Cancer J Clin 58: 71-96, 2008.

- Di Cosimo S and Baselga J: Management breast cancer with targeted agents: importance of heterogeneity. Nat Rev Clin Oncol 7: 139-147, 2010.
- 3. Rahman M, Pumphrey JG and Lipkowitz S: The TRAIL to targeted therapy of breast cancer. Adv Cancer Res 103: 43-73, 2009.
- 4. Smith I, Procter M, Gelber RD, Guillaume S, Feyereislova A, Dowsett M, Goldhirsch A, Untch M, Mariani G, Baselga J, Kaufmann M, Cameron D, Bell R, Bergh J, Coleman R, Wardley A, Harbeck N, Lopez RI, Mallmann P, Gelmon K, Wilcken N, Wist E, Sánchez Rovira P and Piccart-Gebhart MJ: HERA study team: 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 369: 29-36, 2007.
- 5. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, Swain SM, Pisansky TM, Fehrenbacher L, Kutteh LA, Vogel VG, Visscher DW, Yothers G, Jenkins RB, Brown AM, Dakhil SR, Mamounas EP, Lingle WL, Klein PM, Ingle JN and Wolmark N: Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353: 1673-1684, 2005.
- 6. Joensuu H, Kellokumpu-Lehtinen PL, Bono P, Alanko T, Kataja V, Asola R, Utriainen T, Kokko R, Hemminki A, Tarkkanen M, Turpeenniemi-Hujanen T, Jyrkkiö S, Flander M, Helle L, Ingalsuo S, Johansson K, Jääskeläinen AS, Pajunen M, Rauhala M, Kaleva-Kerola J, Salminen T, Leinonen M, Elomaa I and Isola J, for the FinHer Study Investigators: Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 354: 809-820, 2006.
- Foulkes WD, Smith IE and Reis-Filho JS: Triple-negative breast cancer. N Engl J Med 363: 1938-1948, 2010.
 Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA,
- Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, Cristofanilli M, Hortobagyi GN and Pusztai L: Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26: 1275-1281, 2008.
- Petricoin EF III, Hackett JL, Lesko LJ, Puri RK, Gutman SI, Chumakov K, Woodcock J, Feigal DW Jr, Zoon KC and Sistare FD: Medical applications of microarray technologies: a regulatory science perspective. Nat Genet 32: 474-479, 2002.
- Huang DW, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 4: 44-57, 2009.
- Huang DW, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: 1-13, 2009.
- Hao JM, Chen JZ, Sui HM, Si-Ma XQ, Li GQ, Liu C, Li JL, Ding YQ and Li JM: A five-gene signature as a potential predictor of metastasis and survival in colorectal cancer. J Pathol 220: 475-489, 2010.
- 13. Ueki T, Park JH, Nishidate T, Kijima K, Hirata K, Nakamura Y and Katagiri T: Ubiquitination and downregulation of BRCA1 by ubiquitin-conjugating enzyme E2T overexpression in human breast cancer cells. Cancer Res 69: 8752-8760, 2009.
- Loussouarn D, Campion L, Leclair F, Campone M, Charbonnel C, Ricolleau G, Gouraud W, Bataille R and Jézéquel P: Validation of UBE2C protein as a prognostic marker in node-positive breast cancer. Br J Cancer 101: 166-173, 2009.
- Arumugam T and Logsdon CD: S100P: a novel therapeutic target for cancer. Amino Acids 41: 893-899, 2011.
- 16. Xiang T, Li L, Yin X, Yuan C, Tan C, Su X, Xiong L, Putti TC, Oberst M, Kelly K, Ren G and Tao Q: The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer. PLoS One 7: e29783, 2012.
- 17. Yoon CH, Kim MJ, Lee H, Kim RK, Lim EJ, Yoo KC, Lee GH, Cui YH, Oh YS, Gye MC, Lee YY, Park IC, An S, Hwang SG, Park MJ, Suh Y and Lee SJ: PTTG1 oncogene promotes tumor malignancy via epithelial to mesenchymal transition and expansion of cancer stem cell population. J Biol Chem 287: 19516-19527, 2012.
- Jin W, Liu Y, Xu SG, Yin WJ, Li JJ, Yang JM and Shao ZM: UHRF1 inhibits MDR1 gene transcription and sensitizes breast cancer cells to anticancer drugs. Breast Cancer Res Treat 124: 39-48, 2010.
- Ford HL, Landesman-Bollag E, Dacwag CS, Stukenberg PT, Pardee AB and Seldin DC: Cell cycle-regulated phosphorylation of the human SIX1 homeodomain protein. J Biol Chem 275: 22245-22254, 2000.

- 20. Shimo A, Nishidate T, Ohta T, Fukuda M, Nakamura Y and Katagiri T: Elevated expression of protein regulator of cytokinesis 1, involved in the growth of breast cancer cells. Cancer Sci 98: 174-181, 2007.
- 21. Di Leo A and Isola J: Topoisomerase II alpha as a marker predicting the efficacy of anthracyclines in breast cancer: are we at the end of the beginning? Clin Breast Cancer 4: 179-186, 2003.
- 22. Nakagawa M, Bando Y, Nagao T, Morimoto M, Takai C, Ohnishi T, Honda J, Moriya T, Izumi K, Takahashi M, Sasa M and Tangoku A: Expression of p53, Ki-67, E-cadherin, N-cadherin and TOP2A in triple-negative breast cancer. Anticancer Res 31: 2389-2393, 2011.
- 23. Adélaïde J, Finetti P, Bekhouche I, Repellini L, Geneix J, Sircoulomb F, Charafe-Jauffret E, Cervera N, Desplans J, Parzy D, Schoenmakers E, Viens P, Jacquemier J, Birnbaum D, Bertucci F and Chaffanet M: Integrated profiling of basal and luminal breast cancers. Cancer Res 67: 11565-11575, 2007.
- 24. Liu RZ, Graham K, Glubrecht DD, Germain DR, Mackey JR and Godbout R: Association of FABP5 expression with poor survival in triple-negative breast cancer: implication for retinoic acid therapy. Am J Pathol 178: 997-1008, 2011.
- 25. Kalashnikova EV, Revenko AS, Gemo AT, Andrews NP, Tepper CG, Zou JX, Cardiff RD, Borowsky AD and Chen HW: ANCCA/ATAD2 overexpression identifies breast cancer patients with poor prognosis, acting to drive proliferation and survival of triple-negative cells through control of B-Myb and EZH2. Cancer Res 70: 9402-9412, 2010.
- 26. Parris TZ, Danielsson A, Nemes S, Kovács A, Delle U, Fallenius G, Möllerström E, Karlsson P and Helou K: Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma. Clin Cancer Res 16: 3860-3874, 2010.
- 27. Ai L, Tao Q, Zhong S, Fields CR, Kim WJ, Lee MW, Cui Y, Brown KD and Robertson KD: Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis 27: 1341-1348, 2006.
- Cheng CJ, Lin YC, Tsai MT, Chen CS, Hsieh MC, Chen CL and Yang RB: SCUBE2 suppresses breast tumor cell proliferation and confers a favorable prognosis in invasive breast cancer. Cancer Res 69: 3634-3641, 2009.
- Tsunoda N, Kokuryo T, Oda K, Senga T, Yokoyama Y, Nagino M, Nimura Y and Hamaguchi M: Nek2 as a novel molecular target for the treatment of breast carcinoma. Cancer Sci 100: 111-116, 2009.
- Suzuki K, Kokuryo T, Senga T, Yokoyama Y, Nagino M and Hamaguchi M: Novel combination treatment for colorectal cancer using Nek2 siRNA and cisplatin. Cancer Sci 101: 1163-1169, 2010.
- Park JH, Lin ML, Nishidate T, Nakamura Y and Katagiri T: PDZ-binding kinase/T-LAK cell-originated protein kinase, a putative cancer/testis antigen with an oncogenic activity in breast cancer. Cancer Res 66: 9186-9195, 2006.
- 32. Ueki T, Nishidate T, Park JH, Lin ML, Shimo A, Hirata K, Nakamura Y and Katagiri T: Involvement of elevated expression of multiple cell-cycle regulator, DTL/RAMP (denticleless/ RA-regulated nuclear matrix associated protein), in the growth of breast cancer cells. Oncogene 27: 5672-5683, 2008.
- 33. Lin ML, Park JH, Nishidate T, Nakamura Y and Katagiri T: Involvement of maternal embryonic leucine zipper kinase (MELK) in mammary carcinogenesis through interaction with Bcl-G, a pro-apoptotic member of the Bcl-2 family. Breast Cancer Res 9: R17, 2007.
- 34. Shimo A, Tanikawa C, Nishidate T, Lin ML, Matsuda K, Park JH, Ueki T, Ohta T, Hirata K, Fukuda M, Nakamura Y and Katagiri T: Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis. Cancer Sci 99: 62-70, 2008.
- 35. Chan SH, Yee Ko JM, Chan KW, Chan YP, Tao Q, Hyytiainen M, Keski-Oja J, Law S, Srivastava G, Tang J, Tsao SW, Chen H, Stanbridge EJ and Lung ML: The ECM protein LTBP-2 is a suppressor of esophageal squamous cell carcinoma tumor formation but higher tumor expression associates with poor patient outcome. Int J Cancer 129: 565-573, 2011.

- 36. Sathyanarayana UG, Maruyama R, Padar A, Suzuki M, Bondaruk J, Sagalowsky A, Minna JD, Frenkel EP, Grossman HB, Czerniak B and Gazdar AF: Molecular detection of noninvasive and invasive bladder tumor tissues and exfoliated cells by aberrant promoter methylation of laminin-5 encoding genes. Cancer Res 64: 1425-1430, 2004.
- 37. Senchenko VN, Krasnov GS, Dmitriev AA, Kudryavtseva AV, Anedchenko EA, Braga EA, Pronina IV, Kondratieva TT, Ivanov SV, Zabarovsky ER and Lerman MI: Differential expression of CHL1 gene during development of major human cancers. PLoS One 6: e15612, 2011.
- do Carmo Avides M and Glover DM: Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers. Science 283: 1733-1735, 1999.
- Cheeseman IM, Hori T, Fukagawa T and Desai A: KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. Mol Biol Cell 19: 587-594, 2008.
- 40. Hayward DG and Fry AM: Nek2 kinase in chromosome instability and cancer. Cancer Lett 237: 155-166, 2006.
- 41. Nakano I, Masterman-Smith M, Saigusa K, Paucar AA, Horvath S, Shoemaker L, Watanabe M, Negro A, Bajpai R, Howes A, Lelievre V, Waschek JA, Lazareff JA, Freije WA, Liau LM, Gilbertson RJ, Cloughesy TF, Geschwind DH, Nelson SF, Mischel PS, Terskikh AV and Kornblum HI: Maternal embryonic leucine zipper kinase is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells. J Neurosci Res 86: 48-60, 2008.
- 42. Jeong H, Ryu YJ, An J, Lee Y and Kim A: Epithelial-mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology 60: E87-E95, 2012.
- 43. Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi S, Chen Z, Lee Y, Scheck AC, Liau LM, Wu H, Geschwind DH, Febbo PG, Kornblum HI, Cloughesy TF, Nelson SF and Mischel PS: Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA 103: 17402-17407, 2006.
- 44. Moroi Y, Peebles C, Fritzler MJ, Steigerwald J and Tan EM: Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci USA 77: 1627-1631, 1980.
- 45. Tomonaga T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H, Ochiai T, Yoda K and Nomura F: Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res 63: 3511-3516, 2003.
- 46. de la Guardia C, Casiano CA, Trinidad-Pinedo J and Báez A: CENP-F gene amplification and overexpression in head and neck squamous cell carcinomas. Head Neck 23: 104-112, 2001.
- 47. Grützmann R, Pilarsky C, Ammerpohl O, Lüttges J, Böhme A, Sipos B, Foerder M, Alldinger I, Jahnke B, Schackert HK, Kalthoff H, Kremer B, Klöppel G and Saeger HD: Gene expression profiling of microdissected pancreatic ductal carcinomas using high-density DNA microarrays. Neoplasia 6: 611-622, 2004.
- 48. Bièche I, Vacher S, Lallemand F, Tozlu-Kara S, Bennani H, Beuzelin M, Driouch K, Rouleau E, Lerebours F, Ripoche H, Cizeron-Clairac G, Spyratos F and Lidereau R: Expression analysis of mitotic spindle checkpoint genes in breast carcinoma: role of NDC80/HEC1 in early breast tumorigenicity, and a two-gene signature for aneuploidy. Mol Cancer 10: 23, 2011.
- 49. Hu Z, Huang G, Sadanandam Á, Gu S, Lenburg ME, Pai M, Bayani N, Blakely EA, Gray JW and Mao JH: The expression level of HJURP has an independent prognostic impact and predicts the sensitivity to radiotherapy in breast cancer. Breast Cancer Res 12: R18, 2010.