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Abstract

Background: Artificial selection played an important role in the origin of modern Glycine max cultivars from the

wild soybean Glycine soja. To elucidate the consequences of artificial selection accompanying the domestication

and modern improvement of soybean, 25 new and 30 published whole-genome re-sequencing accessions, which

represent wild, domesticated landrace, and Chinese elite soybean populations were analyzed.

Results: A total of 5,102,244 single nucleotide polymorphisms (SNPs) and 707,969 insertion/deletions were

identified. Among the SNPs detected, 25.5% were not described previously. We found that artificial selection during

domestication led to more pronounced reduction in the genetic diversity of soybean than the switch from

landraces to elite cultivars. Only a small proportion (2.99%) of the whole genomic regions appear to be affected by

artificial selection for preferred agricultural traits. The selection regions were not distributed randomly or uniformly

throughout the genome. Instead, clusters of selection hotspots in certain genomic regions were observed.

Moreover, a set of candidate genes (4.38% of the total annotated genes) significantly affected by selection

underlying soybean domestication and genetic improvement were identified.

Conclusions: Given the uniqueness of the soybean germplasm sequenced, this study drew a clear picture of

human-mediated evolution of the soybean genomes. The genomic resources and information provided by this

study would also facilitate the discovery of genes/loci underlying agronomically important traits.
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Background

The modern cultivated soybean [Glycine max (L.) Merr.],

which contains high protein and oil content, is an impor-

tant crop worldwide. Soybean was domesticated from its

wild progenitor, Glycine soja Sieb. & Zucc. ~5,000 years

ago [1]. Although the cultivated and wild soybeans show

little reproductive isolation and have very similar genomes

in both size and content [2], they exhibit substantial mor-

phological difference (Figure 1a). The pre-domesticated

wild soybean accessions (G. soja) have weedy prostrate

growth habits and small black seeds, and the domesticated

landraces produce smaller plants with less vegetative

growth and often are slightly prostrate. In contrast, the

elite cultivars developed by modern breeding practices

have erect and compact stem architecture with reduced

branching, high harvest indices, and high seed yield.

The emergence of cultivated crops from their wild

progenitors was achieved primarily by artificial selection

for a wide range of desirable traits to meet human needs
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[3,4]. Although domestication traits were often controlled

by a relatively small number of genes, including major

quantitative trait loci (QTL) and/or Mendelian loci,

selection for such traits would have resulted in a pro-

gressive reduction of genetic diversity throughout the

genome [3]. Genetic diversity was further reduced fol-

lowing domestication by modern breeding practices [5].

The genetic bottlenecks associated with the domestica-

tion and genetic improvement of soybean had been

illustrated by analysis of 111 fragments from 102 genes

[6]. To date, several agronomically important genes in-

cluding the Dt1 locus controlling soybean stem growth

habit and E genes (E1-E4) controlling flowering time

have been cloned by homology-based or map-based

approaches [7-12]. Nevertheless, little is known about

how genetic diversity across the whole genome of soy-

bean was shaped by domestication.

The availability of the soybean genome sequence [13]

and high throughput sequencing technologies provides

an unprecedented opportunity to track the evolutionary

history of domesticated soybean, and to dissect the

genetic bases for soybean domestication and varietal di-

versification. Recently, for example, 31 soybean acces-

sions, representing wild and cultivated gene pools, had

been re-sequenced and analyzed [14]. This study shed

light on the nature and extent of genetic differentiation

between wild and cultivated soybean species. Neverthe-

less, no information about landraces – the bridge bet-

ween wild soybean (domestication) and elite cultivars

(improvement) was provided. Investigations of the loss

and recovery of genetic diversity in the course of soy-

bean domestication and breeding would provide guide-

lines and strategies for utilization of landraces and/or

wild accessions for soybean enhancement. Moreover,

comparative genomics analyses among wild, landrace,

and elite soybeans would identify genes under selection.

The knowledge obtained from these analyses will facili-

tate the introgression of beneficial alleles from wild soy-

bean and landraces to elite cultivars.

In this study, we re-sequenced 25 diverse soybean

accessions, which represent three distinct gene pools:

the pre-domesticated annual wild progenitor species

(G. soja), domesticated local landraces (G. max), and

modern elite cultivars (G. max). To achieve a more com-

prehensive analysis, we integrated these re-sequencing

data with the re-sequencing data previously generated

from 14 wild and 17 cultivated soybean genomes [14].

Our study not only elucidated the trends of molecular

diversity, but also identified distinct footprints in the

soybean genomes associated with artificial selection during

soybean domestication and elite cultivar development.

Results and discussion

High quality sequence data was generated for 25 diverse

soybean accessions

We used 25 diverse soybean accessions in this study: eight

wild soybeans, eight landraces, and nine modern elite

cultivars. To maximally represent the genetic diversity and

wide geographic distribution, this panel of accessions was

selected based on intensive molecular and phenotypic

characterization, which reflect the major operational taxo-

nomic units (OTUs) of soybeans in China [15] (Figure 1b,

Additional file 1 and Additional file 2). Using the genome-

wide re-sequencing approach, a total of 1.356 billion high-

quality paired-end reads (93.55 Gb) were generated

(Additional file 3), covering 98.2% of the genome

sequences (c.v., Williams 82, Glyma1.01). To overcome

potential ambiguity caused by sample size and low-pass

sequencing in detecting SNPs [16], we downloaded the 31

soybean re-sequencing data through the NCBI Short Read

Archive (accession number: SRA020131). After calibrating

the SNP calling quality by all the 55 accessions (except the

neutron-mutated line C16 from NCBI) and discarding

singletons and most doubletons according to rigorous

filtering criteria [17,18], we identified 5,102,244 high qual-

ity SNPs in our sequenced accessions (Additional file 4,

http://www.ncbi.nlm.nih.gov/SNP/snp_viewTable.cgi?

handle=NFCRI_MOA_CAAS), which was slightly lower

than that discovered previously in the 31 soybean

accessions (ftp://public.genomics.org.cn/BGI/soybean_

resequencing/). Among these, 25.5% (1,299,265) SNPs

were newly reported here. Additionally, we identified

701,792 small (<5 bp) insertion/deletions (InDels), which

Elite Landrace Wild

Elite Landrace Wild

a

S1 S2 S3 S4 S5 S6 S7 S8

L1 L2 L3 L4 L5 L6 L7 L8

E1 E2 E3 E4 E5 E6 E7 E8 E9

b

Figure 1 The photo of 25 re-sequenced soybean accessions.

The photo of (a) typical wild, landrace and elite soybean plant and

(b) seed of 25 re-sequenced soybean accessions.
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provide useful markers for mapping genes, and 6,177 large

deletions (>200 bp), with a mean length of 3,615 bp. We

validated 106 SNPs from ten randomly selected genes

using the Sanger method, and the accuracy of SNP calling

reached 97.3%, suggesting that potential miscalling of

SNPs in this study was minimal.

Bayesian clustering revealed introgression of the wild

into the cultivated soybeans

Phylogenetic relationships of the 25 accessions and

Williams 82 [13] were established using another legume

model, Medicago truncatula [19] as an out-group. The

cultivated and the wild soybeans were separated into

two groups (Figure 2, Additional file 5), suggesting that

the domestication event promoted the genetic differenti-

ation within the subgenera Soja. Within the cultivated

accessions, the lines L3, L4, L7 and L8 were separated

from the other cultivated accessions.

The Bayesian clustering approach revealed different

degrees of introgression between the cultivated and the

wild groups (Figure 2b). It is particularly interesting that

the four landraces (L3, L4, L7 and L8) with mosaic pat-

tern at K = 2 were found to have at least one of the wild

traits, such as small seed size, dark seed-coat color, and

seed-coat bloom (typical wild phenotypes). In contrast,

two wild accessions (S1 and S3) showing admixture

carrying one of correspopnding typical cultivated pheno-

types (Additional file 1). A recent study revealed that the

Oryza sativa indica, a cultivated rice subspecies, was

developed from crosses between the other cultivated rice

subspecies, O. sativa japonica and its wild progenitor

O. rufipogon [18] suggesting that introgression between

the wild and cultivated species and re-selection for desi-

rable agronomic traits may be a common process for

crop domestication. Further re-sequencing of larger pop-

ulations of representative wild and cultivated soybeans

such as core collections would allow full elucidation

of such evolutionary events occurred during soybean

domestication.

Within the cultivated soybean group, the landraces were

not separated from elite cultivars distinctly (Figure 2a,

Additional file 5). Instead, individuals from the same

geographical region tended to cluster together, which

reflected isolation by distance during evolution and/or

parallel selections in similar ecological habitats accom-

panied by gene flow.

Genome diversity was more impacted by domestication

than by genetic improvement

Number of SNPs as well as nucleotide diversity substan-

tially decreased throughout the domestication process

from the wild to the cultivated soybeans, which was
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Figure 2 Phylogenetic tree and population structure of 25 re-sequenced soybean accessions. a, Neighbor-joining tree of soybean

accessions. Northeast region. South region. Middle part of Huanghuai region. North part of Huanghuai region. South part of Huanghuai region.

W82, Williams 82. b, Population structure inferred by ADMIXTURE. Each accession shown as a vertical line partitioned into K colored components

represents inferred membership in K genetic clusters. Blue, wild lines; red, landrace lines; green, elite cultivars.

Li et al. BMC Genomics 2013, 14:579 Page 3 of 12

http://www.biomedcentral.com/1471-2164/14/579



consistent with previous studies [6,15,20,21]. Our data

revealed that 1,661,945 SNPs in wild soybean were not

polymorphic in the landraces (Figure 3). Of these SNPs,

5.7% (94,793) were located in the CDS regions of genic

sequences and 4.0% (66,637) were non-synonymous

sites. In addition, we observed a reduction of 31% and

26% of genetic diversity from the wild soybeans to

landraces, as measured by θπ and θw respectively [22]

(Additional file 6). These observations contrasted with a

previous study, which reported a reduction of nucleotide

diversity from G. soja to landraces at 34% and 51%,

measured by θπ and θw, respectively [6]. Different

samples and different sets of genes were investigated in

these two studies, which might explain the different

levels of reduction of genetic diversity detected in the

two studies.

It is hypothesized that modern plant breeding reduces

genetic diversity in elite cultivars, consequently jeopar-

dizing future crop improvement [5]. Although this con-

ception appears to be true for most crop species, our

data showed limited effects of breeding on reduction of

genetic diversity. We found that the elite gene pool har-

bored a high proportion of the genetic diversity (83.8%

for θπ and 87.8% for θw) presented in the landraces

(Additional file 6), contrasting with a previous study by

Hyten et al. [6], which demonstrated that the elite culti-

vars retained 78% (θπ) and 72% (θw) of the diversity

present in the landraces. This difference may indeed re-

flect the relative levels of genetic diversity of the two sets

of elite soybean cultivars investigated in both studies.

The number of fixed SNPs from landraces to elite culti-

vars (899,865) was only half (54%) of the number of fixed

SNPs during domestication (Figure 3, Additional file 4).

Similar patterns were observed when only one gene

component, such as intron, CDS, or UTR, was analyzed

(Figure 3, Additional file 4). Together, these observations

indicated that the impact of intensive selection by modern

soybean breeding on reduction of genetic diversity was

less severe than that of selection by the domestication

process, suggesting that the wild soybean gene pool was

the major reservoir that retained genes/alleles lost during

domestication and modern breeding practice. We would

like to point out that this interpretation would be

largely affected by the genetic base of ancestral land-

races that were used for the development of elite culti-

vars investigated in this study. Nevertheless, similar

observations were also observed in maize. A recent

study by Hufford et al. demonstrated a remarkably weak

genome-wide genetic bottleneck by mordern maize

breeding [23].

Decrease in the haplotype diversity during domestication

The extent of linkage disequilibrium can be interpreted

as a measurement of haplotype diversity in a population.

We observed a drastic increase in linkage disequilibrium

(LD) across the whole genome from wild to landraces

and elite cultivars (Additional file 7) pointing to a severe

loss of haplotype diversity. This observation reflects the

genetic bottleneck during domestication, which reduced

the genetic diversity throughout the genome by elimina-

ting some recombinant lineages. It is likely that the

lower level of outcrossing rate of the cultivated soybean

relative to the wild soybean [24] contributed to an

increase in LD in the former. By contrast, the LD pat-

tern of the landraces differed only slightly from modern

elite cultivars (Additional file 7). As a result, the reso-

lution of genome-wide association mapping for panels of

landraces or elite cultivars was much lower than that

for the wild soybeans. We also observed a large va-

riation in extent of LD among different chromosomes

Figure 3 Overlap of (a) total SNPs, (b) SNPs in CDS region, and (c) non-synonymous SNPs in three soybean gene pools (wild, landrace

and elite cultivar).
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(Additional file 7), suggesting that molecular markers

designed for genotyping strategies should be specific

to genomic regions in association mapping analyses.

For example, relatively low density of markers is

needed for the regions with relatively extensive LD.

Footprints of domestication in the soybean genome

The loss of genetic diversity during domestication and

genetic improvement is likely due to the fixation and

sweep of alleles caused by population bottlenecks or

artificial selection. We scanned a combined dataset of 55

accessions to identify genome-wide signatures of artifi-

cial selection following a bottom-up genetic approach

[25]. To detect the reduction of genetic diversity caused

by domestication, we employed a sliding window stra-

tegy to estimate θπ [26] and Tajima’s D [27]. The regions

that showed significantly lower θπ in landrace relative to

the wild group (Z test, P < 0.05) and significantly lower

Tajima’s D (Z test, P < 0.05) in landraces relative to the

wild group were considered as putative domestication-

related regions. This approach has been used to study

domestication event in silkworms [17] and rice [18]. The

genome scan revealed that only 1.47% of the whole

genome (950 M), comprising 394 regions distributed on

individual chromosomes (Figure 4a), appeared to have

been affected by selection during domestication. The

length of these regions ranged from 20 kbp to 280 kbp

and the polymorphism levels of these regions relative to

the whole genome were relatively low (Figure 4b). A

total of 928 genes were located in the regions with

footprints of artificial selection, accounting for 2.0% of

the 46,430 predicted genes in the cultivated soybean

genome [13].

It was reported that some QTLs controlling mesdo

tication-related traits located in syntenic regions among

different species [28]. We found that some candidate

genes related with soybean domestication detected in

this study had homologs, which were also affected by

artificial selection in other crops, such as rice and sun-

flower. For example, Glyma03g35520.1, which is pro-

bably involved in the carbohydrate metabolism pathway,

was found to be an orthologous gene of Grain
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Figure 4 Detection of candidate genome region and genes underwent selection during domestication and genetic improvement. The

distribution of domestication (a) and genetic improvement (c) regions and genes on the soybean chromosomes. Rectangular bar, number of

regions; line, number of genes. Polymorphism distribution between cultivated (landrace plus elite) and wild populations (b), as well as between

elite and wild groups (d) in candidate region (green line) versus the whole genome (red line).
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Incomplete Filling 1 (GIF1), a domestication gene identi-

fied in rice [29]. GIF1 encodes a cell-wall invertase that

regulates sugar levels for cell division and growth during

grain development, resulting in higher seed weight – an

important trait for rice domestication. In addition, we

found a strong selection signal for Glyma03g35250.1, an

orthologous gene of Terminal Flower 1 (TFL1), which

experienced selective sweeps in the domestication of

sunflower [30]. As the closest paralogous gene of

Glyma03g35250.1 in soybean, GmTfl1 (Glyma19g37890.1)

was identified to control the agronomically important

trait indeterminacy (Dt1/Dt1), which is associated with

soybean domestication and varietal differentiation [7,8].

Nucleotide diversity analysis of 20 wild and 89 culti-

vated soybeans detected five SNPs in the wild popula-

tion, but none of them were found in the cultivated

population, suggesting that Glyma03g35250.1 had expe-

rienced artificial selection [7].

Footprints of intensive breeding in the soybean genome

Population branch statistics (PBS) is an effective method

to detect signatures of recent natural selection [31].

Taking wild soybeans as a control in the PBS approach,

we found that 306 regions were associated with sig-

nificant signs (P < 0.001) of artificial selection by the

modern breeding practice (Figure 4c, Figure 4d). These

regions spanned a total of 14,462 kbp in length, cor-

responding to 1.52% of the whole genome (950 M). Of

these 306 regions, 271 were found to harbor a total of

1,106 genes showing signatures of selection, which

account for 2.4% of all the genes located in these 271

regions [13]. No genes were annotated in the remaining

35 regions.

The black seed-coat progressively changed to various

colors during domestication, with positive selection for

yellow in the following improvement. Multiple alleles at

the I locus were found to be associated with an unusual

cluster of five chalcone synthase genes (CHS1, CHS3,

CHS4, CHS5, and CHS9) that controlled the distribution

of seed-coat color by inhibiting coloration over the entire

seed coat [32,33]. In this study, three (Glyma08g11520.1,

Glyma08g11530.1 and Glyma08g11610.1) of these five

candidate CHS genes showed strong selection signals.

The evolution of flowering time was crucial for deve-

loping cultivars adapted to a wider geographical regions

[34,35]. We found that two genes related to flowering

time, GmCRY1a (Glyma04g11010.1) and Glyma10g42090.1,

exhibited selection signals. GmCRY1a was a major

regulator of photoperiodic flowering in soybean and had

an important role in determining latitudinal distribution

of soybean [36] while Glyma10g42090.1 was a homolo-

gous gene of CONSTANS (CO), which was found to

encod a key protein involved in photoperiod sensing in

Arabidopsis [37].

In total, 4.38% of the annotated genes were impacted

by artificial selection for agricultural traits. Polymor-

phism levels in the detected selection regions were rela-

tively low compared to that of the whole genome

(Figure 4b, Figure 4d). The percentage of candidate

genes impacted by artificial selection was similar to that

was estimated in maize (about 2% to 4%) [23,38]. How-

ever, this was slightly lower than that reported (~5%) by

Lam et al. [14] probably due to the sampling effects and

different analytical methods employed. Only two re-

gions located on Gm03 and Gm15 showed selection sig-

natures for both domestication and subsequent modern

breeding practice. The selected genes appeared to be

distributed in clusters in certain genomic regions

(Additional file 8), similar to the distribution pattern of

domestication-related QTLs defined by QTL mapping

[28]. The domestication and improvement related genes

were clustered into 386 gene families by OrthoMCL

[39]. Of these 386 genes, 230 were shared by both

processes.

Using the KEGG (Kyoto Encyclopedia of Genes and

Genomes) [40] database, potential functions of the se-

lected genes were predicted. We found that the selected

genes were significantly (χ2 test, P < 0.05) involved in

lipid metabolism, transcription factors, SNAREs (soluble

N-ethyl-maleimide sensitive factor attachment protein

receptor), solute carrier family, and transport and cata-

bolism (Figure 5). Growing demand for vegetable oil is a

paramount objective of soybean domestication and gen-

etic improvement, which has focused selection toward

cultivars with high accumulation of lipids [41,42]. A high

frequency of selected genes involved in lipid metabolism

was also observed during both processes (Additional file 9).

This indicates that continuous artificial selection had

occurred in the pursuit of preferred-quality soybean seed.

These preliminary data would allow us to prioritize

Figure 5 Accumulation of domestication and improvement

genes in different pathways of KEGG (χ2 test, P < 0.05). CW:

domestication genes; EL: improvement genes; GNM: genome

wide genes.
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further analyses with an emphasis on understanding of

the biological functions of selected genes.

Similar to described in maize [43], transcription fac-

tors were enriched in the candidate genes with selection

signaturs, suggesting that these regulatory genes had been

the major target of selection. Of the 19 domestication-

related genes identified in any plant species to date,

[44-51], 12 were transcription factor genes [45,46,48].

These genes were responsible for major morphology dif-

ferentiation between cultivated crops and their progeni-

tors, such as branch (tb1) and glume architecture (tga1) in

maize [52,53], seed size (fw2.2) and style length (Style2.1)

in tomato [54,55], seed color (R and Q) genes in wheat

[56,57], six-rowed spike (vsr1) in barley [51], seed shat-

tering (qSH1, sh4 and APETALA2) [46,58,59] in rice and

in cereal including sorghum, rice and maize (Sh1) [50],

fruit opening and seed dispersal (RPL) in Brassicaceae

[45]. A recent study accounted well for this observation

which observed that the regulatory genes with stronger

regulatory action on the other genes are the targets of

selection within the complex regulatory networks inferred

from a simulation study using a matrix model [44].

Discovering genes with an integrated QTL mapping and

re-sequencing approach

Although genomic regions and genes, most likely

affected by artificial selection, had been identified, the

functions and phenotypes of these genes remained

elusive [25]. To validate footprints of selection during

domestication and genetic improvement, we compared

the genomic regions with previously mapped QTLs,

which were identified from interspecific populations and

intraspecific populations developed by crossing landrace

and cultivar, respectively (Additional file 10). A total of

21 candidate domestication regions including 60 genes

were covered by the mapped domestication QTLs or

their adjacent regions [60-64]. Important agronomic

traits included yield, plant height, lodging, maturity time,

seed weight, seed hardness, seed-coat color, and flower

color. And a total of 20 candidate improvement regions

including 106 genes were covered by improvement

QTLs or their adjacent regions [65-67].

In addition, the integration of selection regions identi-

fied using population genetic analysis method with QTLs

region identified using an bi-parents populations may be a

useful approach to narrow down the broad QTLs [68].

We conducted a linkage mapping study in an interspecific

F2:3 population consisting of two of the parents included

in our survey and searched for QTL for seed size, one of

the most prevailing domestication phenotypes (Figure 1b).

Among the detected QTL we observed one at linkage

map of LG F (Gm13), which accounted for 15.1% of seed

size variation. The genomic distance between the two

flanking markers Satt425 and Satt114 was 4.8 Mb (from

22,874,022 bp to 27,718,828 bp of Gm13). The selection

signals were further identified in eight internal regions

(258 kbp) using 500 kbp sliding windows in the QTL

(Figure 6a). Within the narrowed regions, 17 genes were

potentially responsible for seed size variation. Four regions

(190 kbp) were identified as footprints of intensive bree-

ding in this QTL region and a seed size QTL was also dis-

covered nearby using an intraspecific cultivated soybean

population [69], indicating that artificial selection occurs

continuously in or near the QTL in the pursuit of higher

production. We further identified selection signals within

another QTL on Gm13, which is responsible for the

typical soybean domestication trait, seed blooming (B1)

[70] (Additional file 9). In 2.7 Mb of this QTL region,

three nearby candidate domestication regions consist of

234 kbp DNA were identified (Figure 6b). This approach

offers potential application for cloning candidate genes

underlying the domestication traits of soybean as well as

other crops.

Conclusions

Soybean has undergone a series of selections over time,

natural or artificial, intentional or unintentional, leading

to the decrease in genetic diversity from the wild progeni-

tor to landraces and from landraces to the modern elite

cultivars. We reported that whole genome re-sequencing

analysis enhanced our understanding of genetic diversity

in wild and cultivated soybeans, and unraveled the

processes how this important legume species was domes-

ticated. In present study, the strength of genetic bottle-

necks caused by domestication and modern breeding were

demonstrated. The continuing reduction of genetic diver-

sity in the cultivated soybean has become a bottleneck for

improvement of soybean cultivars. We currently have

unprecedented opportunities to exploit genetic diversity

in the wild soybean and landraces for sustainable enhance-

ment of soybeans.

A set of candidate genes/regions were identified, sig-

nificantly impacted by selection, for constructing pre-

ferred traits underlying soybean domestication and

genetic improvement. Comparison of candidate domes-

tication and crop improvement-related genes with pre-

vious QTL mapping results, as well as their homologs,

provides information on potential function(s) of genes

under artificial selection. In particular, we found genes

related to seed-coat color, growth habit, flowering time

and seed size, which had been confirmed as conti-

nuously changing from wild soybeans to landraces and

then elite cultivars. Further analysis is required to iden-

tify how variation in these candidate genes affect pheno-

types using QTL mapping e.g. in maize [71], association

mapping e.g. in barley [72], gene expression assays e.g.

in sunflower [30], and gene-knock-out methods [43].

Our findings, however, promote development of more

Li et al. BMC Genomics 2013, 14:579 Page 7 of 12

http://www.biomedcentral.com/1471-2164/14/579



efficient approaches to identify the genes underlying

domestication-related traits. This study also contribut0065

to construct a large-scale soybean haplotype map and

discover important trait related genes using genome-wide

association studies. Our understanding of the nature of

genetic diversity in wild and cultivated soybeans, and the

impact of domestication and breeding on genome diver-

sity, will aid future breeding of elite cultivars to improve

soybean production and meet the increasing worldwide

demands for feed, vegetable oil, soyfood and biofuels.

Methods
Sample collection for whole genome sequencing

We selected eight landraces and nine elite cultivars/

lines from the Chinese soybean mini-core collection

[73,74] and five G. soja accessions on the basis of

geographic distribution and genotypic diversity. These

represent all major operational taxonomic units (OTUs)

of the Chinese soybean germplasm and 98.8% of gene

diversity [15]. To ensure balanced geographic distribu-

tion, three annual wild soybeans were collected. Most of

the elite cultivars/lines are widely cultivated in China.

Our panel of 25 accessions originates from the North-

east region, Huanghuai region (including north, middle

and south parts) and South region of China, from 24.1

to 46.4 °N and from 102.4 to 126.6 °E, which represent

the four major soybean cultivation areas in China [75].

These accessions were obtained from the Chinese

National Soybean GenBank.

We also integrated the 30 (except C16, a neutron-

mutated line) soybean re-sequencing data of Lam et al.,

from the NCBI Short Read Archive (accession num-

ber: SRA020131) [14], in SNP calling procedures and

screening of selection regions. The information of

these 30 accessions can be found in the website:

http://wildsoydb.org/strains/soybean (personnal commu-

nication with Prof. H.M. Lam at The Chinese University

of Hong King).

QTL mapping population

A total of 85 F2 generation progenies were derived from

the cross between the G. max cultivar E9 (Jidou12) and

a G. soja accession S8 (ZYD02738). All of the F2 plants

were selfed to develop F2:3 using pedigree method. Field

trials were conducted at the sandy soil in the Dishang

Experimental Station of the Institute of Cereal and Oil

Crops in Hebei, China (114.29°E, 38.04°N) in 2009. The

F2:3 population and the parents were grown in a ran-

domized complete block design with three replications.

Each plot consisted of one row with 1.0 m wide and

3.0 m long with a space of 30 cm between two plants.

Standard agronomic practice including were followed to

maintain a weed-free field. Seven plants in each row

were used to measure 100-seed weights and extract

DNA.

Whole genome sequencing and alignment

For each sample, total genomic DNA was extracted from

fresh leaves of dark-grown plants at the first trifoliolate
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stage using the DNeasy Plant Mini Kit (QIAGEN). The

DNA library for sequencing was prepared following the

manufacturer’s instructions (Illumina). Short reads were

derived from the raw image files by applying Illumina

base-calling Pipeline (SolexaPipeline 1.3.4). These were

subsequently aligned onto the soybean reference genome

(Glycine max var. Williams 82, http://www.jgi.doe.gov)

[13] using SOAP2 [76] with parameters: -a –b –D –o −

2 –u –m –x –v –l 32 –s 40. A maximum of five mis-

matches were allowed for the 75 bp read and three for

the 44 bp read. The alignment results were classified

into three types: unique mapped, repeat mapped and

unmapped reads. PCR duplication reads during sequen-

cing, which affect the sequencing depth and variation

detection, were excluded by an in-house script.

SNP/InDel calling and validation

Both the Bayesian theory and the maximum likelihood

estimation method were applied to population SNP cal-

ling. Genotype likelihood of each genomic site for each

line was calculated by SOAPsnp [16], which considers

four main attributes: 1) ok, observed allele type; 2) qk,

sequencing quality; 3) ck, read coordinate; and 4) tk, the

tk-th observation of the same allele from reads with the

same mapping location. For each assumed genotype H,

the likelihood P(dk|H) = P((ok, qk, ck)|H) = P((ok, ck)|(H,

qk)) * P(qk|H). Here, we used dk to represent the attri-

butes, ok, qk, ck and tk.

All individual likelihood results were integrated to

generate pseudo-chromosomes for every site of all sam-

ples by maximum likelihood estimation. Finally, for each

site, certain criteria were used to improve accuracy: 1)

the depth >20 && <160; 2) the copy number < =1.5; 3)

the quality score given by SOAPsnp >20; and 4) exami-

nation of each heterozygous site by rank sum test based

on the quality values of mapped bases. To validate our

results, we randomly selected ten genes containing 106

SNP sites for PCR-Sanger sequencing using the AB

3730XL.

Small insertion and deletion (InDel) calling was also

processed using a previously described method [17].

Three steps were followed to call InDels: 1) reads were

realigned with SOAP2 allowing gaps; 2) considering the

supporting reads for each site, at least one individual

InDel existed in the population; 3) allotted InDels back

to each individual.

Population structure and phylogenetic analysis

We constructed a phylogenetic tree by a neighbor-

joining method in the software PHYLIP (version 3.68)

[77]. A total of 1,000 replicates generated the bootstrap

values. We then used a likelihood-based method with

the program ADMIXTURE [78] to investigate the ances-

try information of soybean genotypes, using PLINK [79]

for genotype quality control. Using the principal compo-

nent analysis (PCA), the population subdivision pattern

was then inferred [80].

Linkage disequilibrium (LD)

To evaluate the LD pattern in wild, landrace, and elite soy-

bean groups, we estimated the squared allele frequency

correlation (r2) of alleles using Haploview 1.4 [81],

setting the parameters as: -maxdistance 1000 -dprime -

minGeno 0.6 -minMAF 0.1 –hwcutoff 0. The LD decay

graphs were plotted using R script for each population

and for individual chromosomes.

Genome diversity and selection

To estimate the genetic diversity, we calculated the ave-

rage pairwise divergence within a population (θπ) and

the Watterson’s estimator (θw) [22] for the whole gen-

ome of wild, landrace, and elite populations. The 20 kbp

sliding window with 2 kbp step-size along the genome

was used to estimate these two parameters with an in-

house PERL script.

To identify genomic footprints of artificial selection, we

used an outlier approach looking for genetic bottlenecks.

We applied two methods to identify candidate selection re-

gions in the genome. First, using a 20 kbp sliding window

(2 kbp step-size), we compared sequence diversity between

wild annual and cultivated soybean groups. For each win-

dow, we estimated θπ and Tajima’s D. Those regions that

had significantly low θπ.cultivated/θπ.wild and low D values

(Z test, P < 0.05 for both) in cultivars were putative selected

regions. Additionally, the pair-wise nucleotide diversity and

Tajima’s D were also applied to evaluate genome diversity

of different populations. Second, we chose the population

branch statistic on the basis of Fst [31] to infer the selective

footprints from landrace to elite cultivar. This approach

had been shown to be effective in identifying recent artifi-

cial selection [17] considering the very short divergence

time between landrace and elite cultivar.

QTL mapping

Ten simple sequence repeats (SSRs) from linkage

group F (Gm13) (http://www.ars.usda.gov) were used

to genotype the F2:3 population derived from the E9

(Jidou12) × S8 (ZYD02738) cross. QTL (LOD> 2.5) were

detected by single marker analysis and interval composite

interval mapping (ICIM), implemented by QTL IciMapping

v3.0 (www.isbreeding.net). For ICIM, the scanning step-size

was set at 1, and the probabilities for markers moving

into and out of the model were set at 0.05 and 0.10,

respectively.

Data availability

All sequence read data was deposited in Sequence Read

Archive (SRA) under accession number SRP015830.
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The SNPs were also available in Database of Short

Genetic Variations (dbSNP) with batch id 1058942.
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