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ABSTRACT

We present ALMA CO(1–0) and CO(3–2) observations of the brightest cluster galaxy (BCG) in the 2A0335+096
galaxy cluster (z=0.0346). The total molecular gas mass of 1.13±0.15×109M

e
is divided into two

components: a nuclear region and a 7kpc long dusty filament. The central molecular gas component accounts for
3.2±0.4×108M

e
of the total supply of cold gas. Instead of forming a rotationally supported ring or disk, it is

composed of two distinct, blueshifted clumps south of the nucleus and a series of low-significance redshifted
clumps extending toward a nearby companion galaxy. The velocity of the redshifted clouds increases with radius to
a value consistent with the companion galaxy, suggesting that an interaction between these galaxies <20Myr ago
disrupted a pre-existing molecular gas reservoir within the BCG. Most of the molecular gas, 7.8±0.9×108M

e
,

is located in the filament. The CO emission is co-spatial with a 104K emission-line nebula and soft X-rays from
0.5keV gas, indicating that the molecular gas has cooled out of the intracluster medium over a period of
25–100Myr. The filament trails an X-ray cavity, suggesting that the gas has cooled from low-entropy gas that has
been lifted out of the cluster core and become thermally unstable. We are unable to distinguish between inflow and
outflow along the filament with the present data. Cloud velocities along the filament are consistent with
gravitational free-fall near the plane of the sky, although their increasing blueshifts with radius are consistent with
outflow.

Key words: galaxies: active – galaxies: clusters: individual (2A 0335+096) – galaxies: ISM – galaxies: kinematics
and dynamics

1. INTRODUCTION

Located at the centers of galaxy clusters, brightest cluster

galaxies (BCGs) are the largest and most luminous galaxies in

the universe. They are giant elliptical galaxies with extended

stellar envelopes and predominantly old, “red and dead” stellar

populations. However, BCGs situated in cooling flow clusters

(Fabian 1994), where the cooling time of the hot gas is shorter

than the age of the system, harbour upward of 109M
e

of

molecular gas, approaching 1011M
e

in the most extreme

systems (Edge 2001; Salomé & Combes 2003). Star formation

proceeding at rates of several to tens of solar masses per year,

which exceeds the star formation rates of many spiral galaxies,

is also observed in these systems (McNamara 2004; O’Dea

et al. 2008; McDonald et al. 2011; Donahue et al. 2015;

Tremblay et al. 2015).
Molecular clouds and stars in BCGs likely form

from the cooling of the hot intracluster medium (ICM).

Correlations between star formation rate and the rate of mass

deposition from the ICM support this picture (Egami et al. 2006;

O’Dea et al. 2008). Furthermore, cold gas and star formation are
observed almost exclusively in systems where the central cooling
time is below a sharp threshold of ∼5×108 years (Rafferty
et al. 2008), or equivalently where the entropy is less than
30 keV cm2

(Cavagnolo et al. 2008; Voit et al. 2008). This
threshold has been attributed to the onset of thermal instabilities in
the ICM (Gaspari et al. 2012; Voit & Donahue 2015). These
systems also host diffuse emission-line nebulae, which are likely
the ionized skins of molecular clouds (Heckman 1981; Hu
et al. 1985; O’Dea et al. 1994; Jaffe et al. 2005; Oonk et al. 2010).
Alternatively, the peculiar emission line ratios in BCGs (e.g.,
Heckman et al. 1989) may originate from primarily neutral gas
that is excited by collisions with energetic particles (Ferland
et al. 2009).
Although the reservoirs of molecular gas observed in BCGs

are quite massive, they constitute only a few percent of the
mass expected from unimpeded cooling (Peterson &
Fabian 2006). Instead, feedback from the active galactic
nucleus (AGN) is heating the ICM and regulating the rate of
cooling (McNamara & Nulsen 2007, 2012; Fabian 2012).
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High-resolution Chandra X-ray imaging of cool core clusters
shows that AGNs launch jets that inflate cavities, drive shock
fronts, and generate sound waves, offsetting radiative losses
from the ICM (e.g., McNamara et al. 2000; Blanton et al. 2001;
Fabian et al. 2006). The rate of heating is closely tied to the rate
of cooling in a large sample of groups and clusters (Bîrzan
et al. 2004; Dunn & Fabian 2006; Rafferty et al. 2006), and is
sufficient to prevent the bulk of the hot gas from cooling.

Accretion of molecular gas potentially plays a key role in
forming a feedback loop, as it connects residual cooling of the
ICM with energetic outbursts from the AGN (e.g., Pizzolato &
Soker 2005; Gaspari et al. 2013; Li & Bryan 2014a). While the
effects of AGN feedback on the hot atmosphere are clear, little
is known about its connection to the cold gas. Radio jets are
known to couple to emission-line nebulae, driving outflows of
ionized (Morganti et al. 2005; Nesvadba et al. 2006; Villar-
Martín et al. 2006) and molecular gas (Alatalo et al. 2011;
Morganti et al. 2015) in radio galaxies. NGC1275, at the center
of the Perseus cluster, hosts a filamentary Hα nebula with two
prominent filaments extending toward an X-ray cavity (Fabian
et al. 2003), suggesting that the filaments have been drawn out
of a central reservoir. These filaments are well correlated with
soft X-ray emission as well as molecular hydrogen (Lim
et al. 2012) and CO (Salomé et al. 2006, 2011). Infalling
molecular gas toward the center of the BCG suggests that the
uplifted gas is returning in a molecular “fountain” (Lim
et al. 2008). Narrow, redshifted absorption lines have been
observed in NGC5044 (David et al. 2014) and A2597
(Tremblay et al. 2016), indicating that molecular clouds are
inflowing toward the central black hole. ALMA Early Science
observations of A1835 revealed 1010M

e
of molecular gas

being uplifted by the X-ray cavities in a bipolar outflow
(McNamara et al. 2014). PKS0745-191 harbours an even more
dramatic outflow—virtually all of its molecular gas has been
swept from the BCG in three low-velocity filaments (Russell
et al. 2016). These results have led McNamara et al. (2016) to
postulate that molecular gas condenses out of low-entropy ICM
that is lifted from the cluster center by X-ray cavities.

Here we present ALMA Cycle 1 observations of the
molecular gas in the BCG of 2A0335+096 (also known as
RXJ0338+09), traced by CO(1–0) and CO(3–2) line emission.
2A0335+096 is one of the brightest X-ray objects on the sky
(Edge et al. 1990; Reiprich & Böhringer 2002), and has a
center with a short radiative cooling time (Schwartz et al. 1980;
Singh et al. 1986, 1988; White et al. 1991). Its X-ray
atmosphere is complex, containing a series of cool clumps
(Mazzotta et al. 2003; Werner et al. 2006), a cold front that was
likely induced by sloshing motions (Mazzotta et al. 2003;
Sanders et al. 2009), and several cavities corresponding to
multiple generations of AGN feedback with a total enthalpy of
5×1059 erg (Sanders et al. 2009). Multiphase gas in the ICM
traces an extended Hα filament within the BCG with a total
luminosity of LHα=8×1041 erg s−1 (Romanishin & Hint-
zen 1988; Donahue et al. 2007; Sanders et al. 2009). Farage
et al. (2012) argued that the Hα filament consists of a 2kpc,
counterrotating disk within the 17kpc filament. Single-dish
IRAM-30 m observations detected the 2A0335+096 BCG at
CO(1–0), measuring a total molecular gas mass of
2.7±0.3×109M

e
(Edge & Frayer 2003, corrected for

cosmology). Optical, UV, and IR observations of the BCG
show ongoing star formation at a rate of several solar masses
per year (Romanishin & Hintzen 1988; Donahue et al. 2007;

O’Dea et al. 2008). X-ray spectroscopy from Chandra and
XMM-Newton indicate that the 0.5keV gas within the ICM is
cooling out of the hot atmosphere and depositing mass onto the
BCG at <30M

e
yr−1 (Sanders et al. 2009). The ALMA

observations presented here resolve the spatial and velocity
structure of the molecular gas within the BCG, revealing a
striking correlation between molecular gas and the Hα
filament.
Throughout this paper we assume a standard Λ-CDM

cosmology with H0=70 km s−1Mpc−1, W = 0.3m,0 , and
W =L 0.7,0 . At the redshift of 2A0335+096 (z=0.0346;
McNamara et al. 1990), the angular scale is 1″=700 pc and
the luminosity distance is 150Mpc. This paper is organized as
follows. Details of the ALMA observations and data reduction
are given in Section 2. Our results pertaining to the
morphological and kinematic distribution of the molecular
gas and its relation to other wavelengths are described in
Section 3. The origin of the molecular gas is discussed in
Section 4, and the main results are summarized in Section 5.

2. OBSERVATIONS AND DATA REDUCTION

The BCG in the 2A0335+096 galaxy cluster (R.A.:
03:38:40.50, decl.: +09:58:12.3) was observed by ALMA
Cycle 1 (Program ID 2012.1.00837.S, PI McNamara) centered
at 111.394 GHz and 334.169 GHz to cover the CO(1–0) and
CO(3–2) lines. The CO(1–0) observation was divided into two
blocks, which were observed in band 3 on 2014 July 22 and
2015 March 08. Both observations had an on-source integra-
tion time of 35 minutes. For the 2014 July (2015 March)
observation the array was configured with 33 (30) antennas
with baselines of 17–716 m (12–280 m), each with a primary
beam diameter of 56″. Our observations employed the
frequency division correlator mode, so had a frequency
resolution of 488.281 kHz (1.31 km s−1) over a 1.875 GHz
bandwidth. The CO(3–2) line was observed in band 7 with one
30 minute on-source integration on 2014 August 12. The
observation used 34 antennas with baselines of 19–915 m and a
primary beam of 18 5. At CO(3–2) the velocity resolution in
frequency division correlator mode was 0.44 km s−1. Velocity
channels were binned together during imaging to improve
sensitivity. An additional baseband with 2 GHz bandwidth was
included in order to image the continuum.
The observations were primarily calibrated in CASA version

4.4.0 (McMullin et al. 2007) using the automatic pipeline
scripts. Additional phase self-calibration on the nuclear
continuum improved the signal-to-noise of the CO(1–0)
observation by a factor of 1.2. The nuclear continuum flux at
CO(3–2) was too faint to perform successful self-calibration.
The phase calibrator chosen automatically at the time of the

2015 March CO(1–0) observation was located 10° away from
2A0335+096 and had a flux 10 times fainter than the
calibrator used in the 2014 July CO(1–0) observation. The
resulting phase solutions determined by the pipeline were poor,
and a manual recalibration of the data did not improve these
solutions to an acceptable level. The phase self-calibration also
did not rectify the problem. We therefore do not include this
observation in our analysis.
Images of the continuum were created for each band by

imaging the line-free channels. An unresolved point source was
detected in each image. At 109.84 GHz the nuclear continuum
flux is 6.854±0.044 mJy in the 2014 July observation and
6.36±0.15 mJy in the 2015 March observation. This implies a
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variability of 7.2%±2.3% over an eight-month period, which
is consistent with the variability seen in other BCGs with active
cores (Hogan et al. 2015). At 335.12 GHz (2014 August) the
nuclear continuum flux is 1.14±0.15 mJy. The corresponding
spectral index, following the convention Sν∝ν

−α and
considering only the 2014 observations, is α=1.61±0.27.
The location of the continuum source is consistent with 5 GHz
VLBI (Sanders et al. 2009). No continuum emission is
associated with the nearby companion galaxy. Imaging the
continuum in narrow velocity channels (3 km s−1) shows no
evidence of line absorption against the continuum emission.

Images of line emission were reconstructed using CLEAN

with a Briggs weighting of 2. No continuum subtraction was
applied to the CO(3–2) observation, as the continuum flux is
small compared to the line emission. The resulting images had
a synthesized beam of 1 3×0 92 (PA −34°.5) at CO(1–0)
and 0 39×0 23 (PA −50°.0) at CO(3–2). The rms noise in
20 km s−1 line-free channels was 0.56 mJy beam−1 and
0.61mJy beam−1 at CO(1–0) and CO(3–2), respectively. In
regions of low signal-to-noise we further bin the spectra to
either 40 km s−1 or 60 km s−1 channels, as needed. Missing
short spacings will filter out emission on spatial scales larger
than ∼11″ at CO(1–0) and ∼3″ at CO(3–2).

A reference velocity of 10368 km s−1 (z=0.0346) was
adopted for this analysis. This is a stellar absorption
measurement of the BCG that was measured by Huchra. The
result was first published in (McNamara et al. 1990, quoting
private communication with Huchra) and subsequently in the
2MASS catalog (Lavaux & Hudson 2011; Huchra et al. 2012),
who quote an uncertainty of 10 km s−1. The center of the CO
(1–0) and CO(3–2) emission is better estimated by the adopted
systemic velocity than by the redshifts adopted by previous
studies. For reference, a redshift of z=0.0349, which is used
by Donahue et al. (2007) and Farage et al. (2012), corresponds
to a velocity of +92 km s−1 in our adopted frame.

3. RESULTS

3.1. Distribution of Molecular Gas

The Hubble Space Telescope (HST) WFPC2 F606W image
presented in the middle frame of Figure 1 shows the central
28×28 kpc of the galaxy cluster, encompassing the BCG and
a nearby companion galaxy that is situated 5 kpc in projection
from the BCG and well within its light profile. Stellar
absorption lines from the two galaxies indicate that the
companion is offset from the BCG by 212±58 km s−1 in
velocity space (Gelderman 1996). This low velocity suggests
that the radial distance between the galaxies is small, so the
companion is not just a chance projection. However, this
information is not sufficient to determine the true 3D distance
or relative velocity between the BCG and companion. Outside
of the shown field of view, the closest galaxies are 25 kpc and
28 kpc from the BCG, respectively. These both lie well beyond
the molecular gas, so are unlikely to be relevant in our analysis.

Maps of the integrated CO(1–0) and CO(3–2) flux are
presented alongside the HST image in Figure 1. These maps
were created by summing the flux in each pixel over the
velocity range −500 to 500 km s−1, which encompasses all of
the observed flux (see Figure 2). The maps have been corrected
for the response of the primary beam, with contour levels

Figure 1. Top: integrated flux of the CO(1–0) ALMA image. The contours are
−2, 2, 3, 4, 5σ,..., where σ=0.095 Jy beam−1 km s−1. The × indicates the
position of a radio AGN determined from VLBI (Sanders et al. 2009), and the
+ indicates the flux centroid of the companion galaxy determined from the
HST F606W image. The 1.13×0.92 arcsec (PA −35°) synthesized beam is
shown in white in the lower left corner. The box indicates the CO(3–2) frame
shown in the bottom panel. Middle: HST WFPC2 F606W optical image of the
2A0335+096 BCG and the nearby companion galaxy. Bottom: integrated flux
of the CO(3–2) ALMA image, with contours set at −3, 3, 5, 7, and 9σ, where
σ=0.145 Jy beam−1 km s−1. The 0.32×0.20 arcsec beam is shown in white
in the lower left corner.
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determined from the line-free regions of an uncorrected map.
Significant CO emission is observed in two primary locations:
near the nucleus of the BCG and in a filament situated beyond a
nearby companion galaxy. The filament falls outside of the CO
(3–2) field of view.

Figure 2 shows the CO(1–0) spectrum extracted from a
17 5×22″ (12.3×15.4 kpc) box encompassing all of the
observed flux. This region is similar in size to the 21 5 IRAM
30 m beam. The spectrum was well-fit by a single Gaussian
component centered at −92±14 km s−1 with a linewidth of
213±33 km s−1 (full width at half maximum; FWHM).
Spectral fitting throughout this work used the LMFIT

17 package
with one to three Gaussian components, as necessary. Each
spectrum has been corrected for the response of the primary
beam as well as instrumental broadening introduced by the
velocity binning. Table 1 lists the best-fitting parameters for all
spectra.

The total CO(1–0) flux recovered by these observations is
4.8±0.6 Jy km s−1, which is consistent with the OVRO
measurement of 7.1±2.4 Jy km s−1 within 2σ (Edge &
Frayer 2003). This flux constitutes 43±7% of the IRAM
30 m flux (11.4±1.1 Jy km s−1; Edge 2001), implying that
over half of the molecular gas is undetected in our observa-
tions. Similar recovered fractions were noted in ALMA
observations of NGC5044 (David et al. 2014) and A1664
(Russell et al. 2014). Missing short spacings filter out emission
on scales larger than 11arcsec at CO(1–0) or 3arcsec at
CO(3–2).

3.1.1. Gas in the BCG

Near the nucleus of the BCG the molecular gas is distributed
among a series of clumps of varying size. At CO(1–0) the
emission is mostly concentrated in an unresolved clump located
south of the nucleus. At CO(3–2) this feature is further resolved
into two clumps of comparable size. The brighter of these
clumps is coincident with significant dust extinction in the
optical imaging, which is discussed further in Section 3.5. No
molecular gas is concentrated at the location of the AGN.
Toward the northwest the CO emission extends in a small spur

that breaks into a series of small, faint clouds. These clouds are
distributed in the direction of a nearby companion galaxy that
itself hosts a small association of molecular gas.
A spectrum was extracted from a 4 5×4 5 box centered

on the nucleus at both CO(1–0) (Figure 3 top) and CO(3–2)
(Figure 4). This regions includes all of the southern emission
and most of the clouds to the northwest. Both spectra are best
fit by two Gaussian components, with one blueshifted to
∼−200 km s−1 and one redshifted to ∼100 km s−1 with respect
to the systemic stellar velocity of the BCG. The total integrated
flux in this region is 1.36±0.17 Jy km s−1 at CO(1–0).
Additional spectra were extracted for the distinct structures

within the BCG. At CO(1–0) these include the southern
unresolved clump as well as the spur extending to the
northwest, which are identified in Figure 5. The resulting
spectra are shown in the bottom panels of Figure 6. Both are
well-fit by a single velocity component that, when combined,
accounts for the two peaks observed in the total BCG spectrum
in Figure 3. The blueshifted emission is observed exclusively in
the southern clump, while the spur to the northwest is entirely
redshifted. Both are relatively broad, with FWHM of
297±38 km s−1 and 238±43 km s−1, respectively.
These regions can be subdivided further at CO(3–2), as

shown in Figure 7. The “South BCG” region is the same as in
CO(1–0) (Figure 5) to allow for a direct comparison, but has
also been split into two regions that are not shown in the figure,
one for each clump. Toward the northwest the emission has
also been divided into two regions based on distance from the
nucleus. Neither of these regions corresponds 1:1 with the
“North BCG” region in Figure 5, which extends midway into
the “Diffuse Gas” region. All CO(3–2) spectra are shown in
Figure 8, with all fit parameters listed in Table 1. Multiple
velocity components are required for several of the spectra. In
the northwestern regions most of the linewidths are narrow
(<100 km s−1), so the multiple peaks likely arise from giant
molecular clouds or associations of different velocities. South
of the BCG, multiple velocity components are only required to
fit the larger of the two clumps, lying to the southwest. This
clump is coincident with dust extinction, although the north-
eastern clump may still be coincident with dust if it is located
on the far side of the BCG.

3.1.2. Filament

Beyond the companion galaxy the molecular gas is located
in a 7kpc long filament that is coincident with an extended
region of significant dust extinction. Most of the emission is
localized in the inner portion of the filament, with a second,
smaller region at the filament tail reaching 5σ significance.
These two regions are connected by a faint channel that is not
evident in Figure 1, but is significantly detected in the maps
presented in Section 3.3. This is because the channel has a
narrow linewidth, so is drowned out by the noise when
integrated between −500 and 500 km s−1. Figure 3 (bottom)

shows the CO(1–0) spectrum of the filament extracted from an
8″×8 5 box. We are unable to obtain a CO(3–2) spectrum of
the filament because it lies outside of the field of view. The CO
(1–0) spectrum is well-fit by a single Gaussian component with
an integrated flux of 3.3±0.4 Jy km s−1, which is more than
double the integrated flux within the BCG.
Spectra of the inner and outer clumps in the filament are

shown in Figure 6, with the regions identified in Figure 5. Two
velocity components are significantly detected in the inner

Figure 2. CO(1–0) spectrum extracted from a 17 5×22″ box that
encompasses both the BCG and the extended filament. The best-fit parameters
are given in Table 1. The error bar indicates the rms variation in the line-free
channels.

17
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filament. They are slightly blueshifted with respect to the BCG,
with the primary component moving at −28.1±3.6 km s−1

and the secondary at −164.7±3.0 km s−1. The outer filament
consists of three velocity components, moving at −31.6 ±

6.9 km s−1, −132.0 ± 3.4 km s−1, and −258.3 ± 8.1 km s−1.
The primary component is the central line, which is blueshifted
by 100 km s−1 relative to the main peak in the inner filament.
Along the entire filament the broadest component is the
primary peak in the inner filament, which still has a linewidth
of only 101±9 km s−1 FWHM. All of the other peaks have
widths in the range of 30–60 km s−1. These linewidths are
much narrower than for the gas in the BCG, reflecting the depth
of the underlying gravitational potential.

3.1.3. Companion Galaxy

A small clump of gas detected in CO(3–2) is coincident with
the nucleus of the companion galaxy. This emission lies within
the noise of the CO(1–0) data. The clump is also unresolved at
CO(3–2), so spreading the total flux over the larger CO(1–0)
beam will decrease the observed brightness. A single-Gaussian
fit to its CO(3–2) spectrum, shown in Figure 8, shows that the
gas is redshifted to 224±19 km s−1 with respect to the
systemic stellar component of the BCG. This is consistent with
its stellar velocity of 212±58 km s−1, implying that the
molecular gas is bound to the companion galaxy. This
molecular gas linewidth of 256±46 km s−1 FWHM is fairly
typical of small elliptical galaxies, so the molecular gas may be
virialized within the galaxy. Following the mass conversion
discussed in Section 3.2 and assuming a line flux ratio of

( – ) ( – ) »CO 3 2 CO 1 0 7, the total molecular gas mass within
the companion galaxy is 5.6±0.9×107M

e
.

3.2. Molecular Gas Mass

The integrated flux of the CO(1–0) line (SCOΔv )

can be converted to a molecular gas mass, assuming a constant
CO-to-H2 conversion factor (XCO), according to the equation
(Solomon et al. 1987; Solomon & Vanden Bout 2005; Bolatto
et al. 2013)
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Here SCOΔv is expressed in Jy km s−1, DL is the luminosity

distance in Mpc, and z is the redshift of the BCG. We assume a

Galactic CO-to-H2 conversion factor, XCO,

gal=2×10−20 cm−2 (K km s−1)−1, which is typical of

molecular clouds in the disk of the Milky Way. However, the

conversion factor is not universal. In particular, low-metallicity

regions tend to have high values of XCO. The Galactic

conversion factor can be approximately applied down to

metallicities of ∼0.5 Z
e

(Bolatto et al. 2013). In 2A0335+096,

the metallicity inferred from the ICM peaks at 0.95±0.06 Z
e

at the cluster center (Sanders et al. 2009), so the Galactic XCO

should be appropriate. On the other hand, LIRG and starburst

galaxies are known to have very low values of XCO. However,

the Spitzer-derived total IR luminosity of the BCG,

6.7×109 L
e

(Donahue et al. 2011), is well below the

1011 L
e

threshold for a LIRG. Narrow absorption features

observed in NGC5044 (David et al. 2014) and A2597

(Tremblay et al. 2016) suggest that molecular clouds in BCGs

have similar linewidths to those of the Milky Way. We

therefore expect that the Galactic value is appropriate here. Our

Table 1

Parameters of Molecular Features

CO Region χ2/dof Velocity Center FWHM Integrated Intensity Gas Mass

Line (km s−1) (km s−1) (Jy km s−1) (108 M
e
)

J=1–0 Total 101/107 −92±14 213±33 4.8±0.6 11.3±1.5

BCG 154/67 −219±21 266±57 0.73±0.13 1.7±0.3

109±12 164±32 0.63±0.11 1.5±0.3
Filament 132/107 −96±11 196±25 3.3±0.4 7.8±0.9

South BCG 136/107 −172±16 297±38 0.99±0.11 2.33±0.26

North BCG 131/107 134±18 238±43 0.560±0.088 1.31±0.21

Inner filament 291/214 −28.1±3.6 100.9±8.8 1.22±0.09 2.86±0.21

−164.7±3.0 34.5±8.1 0.32±0.06 0.74±0.14

Outer filament 240/211 −132.0±3.4 55.6±8.6 0.75±0.10 1.77±0.23

−258.3±8.1 51±21 0.27±0.10 0.64±0.22
−31.6±6.9 38±19 0.22±0.09 0.51±0.21

J=3–2 BCG 54/34 −223±15 188±36 4.8±0.8 1.60±0.28

121±27 282±71 4.7±1.0 1.58±0.33
South BCG 108/74 −160±10 279±17 6.37±0.45 2.14±0.15

−281.1±3.5 73±11 1.5±0.3 0.50±0.10

South BCG: NE Clump 80/77 −201.4±7.6 275±18 2.46±0.14 0.83±0.05

South BCG: SW Clump 65/74 −147±19 300±32 1.92±0.23 0.64±0.08

−278.6±3.2 77±10 0.89±0.16 0.30±0.05
BCG Spur 83/74 127±24 368±67 3.1±0.5 1.03±0.16

93.5±7.4 79±23 0.95±0.36 0.32±0.12

Diffuse Gas 32/34 188.3±4.9 117±13 2.56±0.23 0.86±0.08

22.2±8.2 46±30 0.45±0.22 0.15±0.08

Companion Galaxy 36/37 224±19 256±46 1.65±0.25 0.56±0.09

Note. All spectra have been corrected for the response of the primary beam and instrumental broadening. Masses determined from the CO(3–2) line have been

calculated assuming ( – ) ( – ) =CO 3 2 CO 1 0 7.
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broad conclusions are not affected by a factor of few difference

in the adopted conversion factor.
The total CO(1–0) flux detected in our observations,

4.8±0.6 Jy km s−1, corresponds to a molecular gas mass of

1.13±0.15×109M
e
. Of this, 3.2±0.4×108M

e
is loca-

lized to the BCG and 7.8±0.9×108M
e
is contained in the

elongated filament north of the companion galaxy. Table 1 lists
the molecular gas mass associated with each CO(1–0)
spectrum.
Masses are derived from CO(3–2) assuming a constant CO

(3–2)/CO(1–0) flux ratio. This ratio was determined by
smoothing the CO(3–2) data cube to the CO(1–0) resolution
and extracting the spectrum from a 5×5 arcsec box centered
on the BCG for each line. The spectra were each fitted with two
Gaussian components. Summing the fluxes of each component,
the resulting flux ratio is ( – ) ( – ) = CO 3 2 CO 1 0 7.2 1.4. We
therefore adopt a factor of 7 difference between the two
integrated fluxes, with the caveat that the conversion is only
accurate to ∼20%. The ratio of integrated brightness temper-
ature (in units of K km s−1) is 0.80±0.16. For optically thick
CO emission this ratio indicates that the gas is approximately
thermalized, implying gas densities above 104 cm−3.

3.3. Velocity Distribution

In order to study the velocity structure of the molecular gas,
we extracted spectra from each pixel of the datacube averaged
over a box the size of the synthesized beam. Each spectrum
was fit with a single Gaussian component. The significance of
the line was tested using a Monte Carlo analysis following the
prescription of Protassov et al. (2002, see Section 5.2), with
detections requiring a 2σ significance. Spectra containing a line
detection were then tested with a second component following
the same prescription. The resulting velocity (centroid and
FWHM) maps are presented alongside the integrated flux for
the corresponding component in Figures 9 and 10 for CO(1–0)
and CO(3–2), respectively. The CO(1–0) maps were created
with 40 km s−1 bins, with each pixel additionally tested with
20 km s−1 bins to ensure that the narrow features toward the tail
of the filament could be recovered. 20 km s−1 velocity bins
were used for the CO(3–2) map. The maps have been overlaid
with the corresponding contours from Figure 1.
The spatial distribution of molecular gas recovered by these

maps is consistent with the integrated maps in Figure 1, with

Figure 3. CO(1–0) spectra from a 4 5×4 5 box centered on the BCG (top)
and an 8″×8 5 box enclosing the filament (bottom). The spectra are each fit
by one or two Gaussian components, and the best-fit parameters are given in
Table 1. The error bars indicate the rms variation in the line-free channels.

Figure 4. CO(3–2) spectrum of the BCG extracted from the same region as
Figure 3 (top panel). The best-fit parameters are given in Table 1. The error bar
indicates the rms variation in the line-free channels.

Figure 5. CO(1–0) integrated intensity map identifying regions with distinct
molecular gas features. The spectra associated with these regions are shown in
Figure 6. The field of view is 22″ (15.4 kpc) on a side, showing the same area
as in Figure 1. The × and + indicate the centroids of the BCG and companion
galaxy, respectively.
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the molecular gas divided between the BCG and a long
filament north of the companion galaxy. Significant emission is
detected along the entire length of the filament, confirming that

the two clumps seen in Figure 1 are connected by a faint
channel. The apparent disconnect between the inner and outer
filament seen in Figure 1 arises because the maps were
integrated over a velocity range much broader than the
linewidth of this channel, drowning out the signal.
A large velocity gradient is present within the core of the

BCG. South of the nucleus the gas is blueshifted to
−210±10 km s−1, while the velocity of the spur extending
to the north increases from 80±10 km s−1 near the nucleus up
to about 200 km s−1. The blueshifted emission is relatively
broad, with a FWHM of 260±20 km s−1, while the redshifted
emission is considerably narrower, with a FWHM of
90–130 km s−1. The smooth gradient observed between these
regions results from the beam smearing together regions of
disparate velocities. This velocity gradient is more pronounced
at CO(3–2), where the velocity changes abruptly across the
nucleus.
South of the BCG nucleus the two clumps identified at CO

(3–2) share a broad velocity component (FWHM
200–300 km s−1) with a shallow velocity gradient ranging
from of −120 km s−1 in the southwest to −200 km s−1 in the
northeast. A second velocity component is present in the
southwestern clump, with a velocity of −270 km s−1 and
FWHM of 80 km s−1.
North of the BCG nucleus the CO(3–2) emission becomes

more diffuse farther from the galactic center, with significant

Figure 6. CO(1–0) spectra extracted from the regions shown in Figure 5. The best-fit parameters are given in Table 1. The error bar indicates the rms variation in the
line-free channels. The “Inner Filament” and “Outer Filament” spectra are presented with 20 km s−1 velocity channels, while the “South BCG” and “North BCG”
have been binned up to 40 km s−1 to improve the signal-to-noise ratio.

Figure 7. CO(3–2) integrated intensity map with regions highlighting the
different structures seen in the BCG and the companion galaxy. The associated
spectra are shown in Figure 8. The field of view is 10″ (7 kpc) on a side,
showing the same area as in Figure 1.
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detections obtained further from the nucleus than at CO(1–0).

This emission follows the same gradient as the CO(1–0)

emission, increasing from 80 km s−1 near the nucleus to

180–250 km s−1 in the diffuse clouds. A small region with

higher velocity (170 km s−1), broad (230 km s−1) emission is

observed immediately north of the nucleus, beside the

80 km s−1 emission. This map also reveals a significant

detection coincident with the companion galaxy, which has a

velocity of 240 km s−1 and a FWHM of 200–300 km s−1.

Several distinct velocity structures are observed along the

filament. Most of the emission originates from the “inner

filament” (Figure 5), which occupies a very narrow range in

velocity (−20 to −40 km s−1) with a FWHM of only

70–100 km s−1. Toward the tail of the filament the velocity

becomes increasingly blueshifted to −145 km s−1, where it

then bends northward and the velocity further increases in

magnitude to −230 km s−1. Finally, a narrow tendril protrudes

westward from the southern edge of the inner filament, with a

Figure 8. CO(3–2) spectra extracted from the regions shown in Figure 7. Additional spectra are shown for each of the two clumps within the South BCG region,
which were extracted from 0 6×0 6 boxes. The best-fit parameters are given in Table 1. Each spectrum was initially extracted with 20 km s−1 velocity bins. The
“Diffuse Gas” spectrum was binned up to 40 km s−1 channels to improve the signal-to-noise ratio, and “Companion Galaxy” was binned to 60 km s−1. The error bar
indicates the rms variation in the line-free channels.
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velocity of −120 to −170 km s−1 and a linewidth comparable
to the inner filament. Multiple velocity components are
detected at the interface between this tendril and the inner
filament, extending all the way along the filament.

3.4. Velocity Profiles

Position–velocity (PV) diagrams of the molecular gas in both
the BCG and the elongated filament are presented in Figure 11.
For each PV diagram the flux was averaged over the width of
the slit as a function of both slit position and velocity channel.
One slit was placed along the extended axis of the molecular
gas within the BCG, encompassing both the clump to the SE
and spur to the NW. This slit was 1 3 wide at CO(1–0) and
0 84 wide at CO(3–2), both with a position angle (PA) of
147°. A second, 0 52 wide slit was placed roughly orthogonal
to this (PA 47°) in order to separate the two clumps identified at
CO(3–2) but unresolved at CO(1–0). Finally, a 1 5 wide slit
(PA 130°) was placed lengthwise along the filament at CO
(1–0). The position indicated in the PV diagrams runs from the
bottom edge of the slits shown on the integrated flux maps to
the top edge, with zero offset corresponding to the midpoint of
the slit.

The PV diagrams along the long axis of the BCG (Figure 11
top) are qualitatively consistent between CO(1–0) and CO
(3–2). The gas south of the nucleus is blueshifted and very
broad. Extending toward the other side of the nucleus the
velocity increases roughly linearly until the edge of the diffuse

emission noted in CO(3–2) (see Figure 7). Gas coincident with
the companion galaxy is also detected at CO(3–2), where the
velocity is comparable to that of the diffuse emission.
The perpendicular cut across the nucleus in CO(3–2) shows

the phase space information for the two clumps south of the
BCG nucleus. The velocities of both clumps are
∼−275 km s−1. The brighter clump is best fit by two velocity
components in the velocity maps shown in Figure 6. The
narrow component is also visible in the PV diagram, and
appears to extend between the two clumps. The similar
velocities in these structures indicate that the clumps are likely
related dynamically.
All of the emission along the extended filament is confined

to the range of −200 to 0 km s−1. However, the gas appears to
be separated into two clumps. Higher blueshifted velocities are
observed toward the tail of the filament, with velocities closer
to systemic appearing at its base. The velocity of the inner
portion of the filament is relatively constant along its entire 4″
(3 kpc) length. An infall model has been overlaid on this PV
diagram (see Section 4.3.2).

3.5. Spatial Correlation with Dust Extinction

Two regions of significant extinction were noted by
Donahue et al. (2007) in the archival HST WFPC2 F606W
image of 2A0335+096. A wedge-shaped region is located
southwest of the BCG nucleus, and an elongated filament
extends north of the companion galaxy as seen in Figure 1.

Figure 9. Maps of integrated flux (left), velocity centroid (middle), and FWHM (right) obtained from pixel-by-pixel fitting of the CO(1–0) datacube, as described in
the text. Only pixels containing flux detected at >2σ are shown. The contours are the same as in Figure 1 (top). The × and + indicate the centroids of the BCG and
companion galaxy, respectively.
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Both of these regions are coincident with significant amounts
of molecular gas.

The calibrated HST WFPC2 F606W image was obtained
from the Hubble Legacy Archive. All magnitudes quoted here
have been transformed to the Johnson V-band using

( ) ( )- =m mVega ST 0.04V F606W derived for the Kinney
et al. (1996) elliptical galaxy template in the IRAF tool
Synphot. The V−I color of the template galaxy, 1.3, is similar
to that of a BCG, 1.2, so this conversion should be appropriate
(Whiley et al. 2008). The quoted magnitudes have also been
corrected for foreground Galactic extinction (AF606W), K-
correction, evolution of the stellar population, and surface
brightness dimming. The applied corrections are shown in
Table 2.

In order to quantify the dust extinction we model the two-
dimensional (2D) distribution of stellar light using the galaxy-
fitting code Galfit-M (Häußler et al. 2013), an extended version
of Galfit (Peng et al. 2002, 2010). A Sérsic profile significantly
overestimates the flux in the core of the BCG, an effect that is
common in BCGs (Lauer et al. 2007; McNamara et al. 2009)
and is thought to be caused by black hole scouring (Kormendy
et al. 2009). The BCG is better modeled by the core-Sérsic
profile (Graham et al. 2003), which is a Sérsic profile that
transitions to a power law below the break radius rb and is
given by
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Here re and n are the effective radius and Sérsic index defined

in the typical Sérsic profile, and the coefficient κ is a function

of n. The transition and inner power law are described by the

indices α and γ, respectively. The companion galaxy is

modeled using a normal Sérsic profile and fit simultaneously

with the BCG.
Structures unrelated to the BCG and companion galaxies’

stellar light were masked out prior to fitting. These included

background galaxies, a bright foreground star in the SE, and the
obvious dust features in the filament and the BCG nucleus. A

wide detector artefact at the edge of the CCD was also masked
out, and limits the fittable area considerably. The resulting fit

parameters are shown in Table 3. The companion galaxy is well

modeled by a Sérsic profile with index 1.8 and total V-band
magnitude 16.8. Using the same photometric corrections as the

BCG, its absolute magnitude of −19.1 is slightly brighter than
a dwarf galaxy.
Several biases are present in this fitting procedure. First, the

fittable area is small due to the foreground star and a large

detector artefact near the edge of the CCD. Since 2A0335
+096 is a nearby cluster, these fits do not extend far into the

envelope of the galaxy. The full shape of the BCG’s light
profile cannot be traced, so its effective radius is unconstrained.

This also results in a large Sérsic index, since a power law

provides a sufficient fit beyond the core. Second, the light
profiles of galaxies are best fit when their position angle and

ellipticity are allowed to vary as a function of radius. Isophotal
variations are not currently supported by Galfit-M. Using the

Figure 10. Maps of integrated flux (left), velocity centroid (middle), and FWHM (right) of a two-component fit to the CO(3–2) emission line. Only pixels containing
flux detected at >2σ are shown. The contours are the same as in Figure 1 (bottom). The × and + indicate the centroids of the BCG and companion galaxy,
respectively.
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Figure 11. CO(1–0) (left) and CO(3–2) (right) position–velocity (PV) diagrams along the BCG (top), elongated filament (bottom left), and a perpendicular cut across
the BCG (bottom right). In all cases the eastern (left) end of the slit corresponds to a negative position. The middle row shows the location of the slits overlaid on the
integrated fluxes determined from the velocity maps of Figures 9 and 10. The vertical lines in the PV diagrams indicate the locations of the BCG nucleus and
companion galaxy. The PV diagram of the extended filament in CO(1–0) (bottom left) is overlaid with a gravitational free-fall model, as discussed in Section 4.3.2.

11

The Astrophysical Journal, 832:148 (22pp), 2016 December 1 Vantyghem et al.



ELLIPSE task in IRAF to extract elliptical isophotes of the
stellar light favors a position angle of −5° to −10° in the
center, twisting to −30° beyond 10″. Similarly, the axis ratio
b/a is consistent at large radii with the 0.7 measured here, but
decreases to 0.65 in the core.

In Figure 12 we present a map of the dust extinction,
showing the ratio of image surface brightness to the model
brightness (I/I0). Regions with significant extinction are
highlighted by the labelled ellipses, with the corresponding
extinction (both the peak extinction in a pixel and mean within
the ellipse) tabulated in Table 4. These regions were confirmed
by eye in the original image. Systematic errors are clearly
visible in the residuals of the extinction map, primarily
perpendicular to the BCG–companion axis. Positive and
negative residuals near the BCG centroid (red ×) correspond
to a double-peaked nucleus, so the extinction northwest of
region A does not correspond to dust. The extinction
surrounding the labelled dust features is generally 5%,
though increases to ∼10% around the filament. Model residuals
surrounding the identified regions also typically have I/I0�1,
so the tabulated optical depths and dust masses may be
underestimated.

The mean optical depth τ is computed from the mean
extinction via I/I0=e−τ. This is converted into column
density (NH), assuming a standard V-band Galactic extinction
curve (Cardelli et al. 1989), through NH=2.05×1021 τV cm

2

and finally to dust mass. Region A is coincident with a clump of
molecular gas identified at CO(3–2). Taking

( – ) ( – ) =CO 3 2 CO 1 0 7, the corresponding molecular gas

mass is 9.5×107M
e

and gas-to-dust ratio is 130, which is
similar to the Milky Way value. Regions F through I are
coincident with the extended filament. The total dust mass in
these regions is 1.07±0.07×107M

e
. With a molecular gas

mass of 7.8±0.9×108M
e
, the local gas-to-dust ratio is 66.

This is a factor of two lower than the gas-to-dust ratio in the
BCG. Regions B and D are coincident with molecular gas in
the northern spur and companion galaxy, respectively, although
neither traces the gas distribution well. Attributing all of the
molecular gas in the spur to region B results in a gas-to-dust
ratio of 290, although the differing spatial distributions add
considerable uncertainty to this value.
Treating the dust as a thin screen, for regions G–J, where the

minima of I/I0 are about 0.5, the dust must lie on or in front of
the midplane of the BCG. The velocity of the molecular gas in
these regions is within a few tens of km s−1 from the systemic
value, and the FWHM is 100 km s−1 at its broadest. Taken
together, these suggest that the filament is oriented roughly
perpendicular to the line of sight, possibly flowing on a nearly
radial trajectory toward the BCG. The lesser peak extinction
within the BCG, where the minimum of I/I0;0.82, means
that the location of the dust along our line of sight is poorly
constrained.
Overall the most significant associations of molecular gas are

coincident with significant dust extinction. Dust shielding in
these regions may be promoting the formation of molecular
gas. It is also possible that the more extended associations
(such as along the spur) do not have detected dust extinction
because the dust has been spread out over a larger area,
resulting in too low a column density for visible dust
extinction.

3.6. Spatial Correlation with X-Ray and Hα Filaments

2A0335+096 hosts a bright Hα nebula with total
luminosity LHα=0.8×1042 erg s−1 (Donahue et al. 2007).

Table 2

Photometric Corrections

Galactic Extinctiona Kb Evolutionb (1+z)4

(mag) (mag) (mag) (mag)

0.989 0.073 −0.047 0.148

Notes.
a
Schlafly & Finkbeiner (2011).

b
Poggianti (1997).

Table 3

2D Optical Fitting Results

Units BCG Companion

I(rb)
a mag arcsec−2 19.310±0.005 K

rb arcsec 0.924±0.007 K

α 2.56±0.05 K

γ 0.081±0.004 K

m tot mag K 16.736±0.003

re arcsec Unconstrainedb 0.997±0.002
d I

d r

ln

ln
−1.35c K

n 19.6±2.8 1.838±0.005
b/a 0.7010±0.0004 0.884±0.001

PA degrees −21.85±0.06 7.8±0.5

Notes.
a
I(rb) is related to I′ in Equation (2) via

( ) [ ( ) ]k¢ = g a a-I I r r r2 exp 2b b e
n1 1 .

b
The BCG radii probed by the HST imaging only show a bend at the break

radius. The Sérsic component is close to a power law, with the corresponding

effective radius lying outside of the HST field of view.
c
Since the effective radius is unconstrained, we quote the logarithmic

derivative at a radius of 20″ instead.

Figure 12. Dust extinction map of the HST F606W image. Regions with
significant dust extinction are identified by the green ellipses, with statistics
shown in Table 4. The BCG and companion galaxy centroids are identified by
the red× and +, respectively. The image is shown in the same field of view as
the ALMA CO(1–0) image (Figures 1 and 9). The CO(1–0) contours from
Figure 1 have been overlaid for reference.

12

The Astrophysical Journal, 832:148 (22pp), 2016 December 1 Vantyghem et al.



While the Hα nebula is not associated with any structures in the
0.5–7 keV Chandra X-ray image, multi-temperature fits reveal
a 0.5 keV component in the ICM that is spatially coincident
with the Hα emission (Sanders et al. 2009). Similar spatial
correlations have been observed in several other cool core
clusters, including Perseus (Fabian et al. 2003, 2008), M87
(Sparks et al. 2004; Werner et al. 2013), and several nearby
giant ellipticals (Werner et al. 2014). Filaments of molecular
gas have been detected along the Hα filaments in Perseus
(Salomé et al. 2006, 2008; Lim et al. 2008, 2012), implying
that the co-spatial gas in the filaments occupies 5–6 decades in
temperature.

Multiphase gas spanning many decades in temperature is
also observed here. Figure 13 shows the Hα nebula from
Donahue et al. (2007) overlaid with contours of the CO(1–0)
emission. The two distributions are qualitatively very similar.
Bright Hα emission near the BCG extends in a spur toward the
companion galaxy. The emission extends beyond the compa-
nion galaxy into a filament coincident with the extended
filament of molecular gas seen in CO(1–0) emission. However,
the most luminous nebular emission is in the BCG, while the
molecular gas is observed preferentially in the filaments. This
may be due to line emission that has been resolved out by the
interferometer. Only 40% of the single dish flux has been
recovered here, so a diffuse component of cold gas may be
present in the BCG.

Integral field spectroscopy of the Hα nebula reveals that the
[N II] λ6583 line and the molecular gas are co-located in both
position and velocity space (Farage et al. 2012). Broad,
blueshifted emission is slightly offset to the south of the BCG
with a velocity of about −120 km s−1 (−240 km s−1 in our
adopted frame). Near the companion galaxy the Hα nebula
becomes redshifted with respect to the systemic velocity, with
blueshifted emission extending along the direction of the
filament. Farage et al. (2012) also detected nebular emission
5–10 kpc southeast of the BCG nucleus. Its redshifted velocity
led them to conclude that the nebula is in rotation about the
center of the BCG with a velocity amplitude of 130 km s−1.
Molecular gas either does not extend along the southeastern
arm of the filament or is too faint to detect, so we are unable to
corroborate this finding. The lack of molecular gas to the
southeast may arise if the surrounding atmosphere lacks the
dense regions required to form H2, or if H2 production is
enhanced by the presence of dust grains to the northwest. Since
our observations trace only the high-density molecular gas (see

Section 3.2), molecular gas may lie to the southeast but falls
below our detection limit.

4. DISCUSSION

4.1. Origin of the Molecular Gas

With a total molecular gas mass exceeding 109M
e
, 2A0335

+096 harbours significantly more molecular gas than is
typically observed in early-type galaxies. Identifying the origin
of this gas is critical in understanding the evolution of the
BCG. Two primary mechanisms could be contributing to this
gas: stripping of merging galaxies or cooling from the hot
atmosphere.
Large supplies of molecular gas are observed preferentially

in BCGs at the centers of galaxy clusters with cooling times
falling below 1 Gyr. These systems are associated with bright
emission-line nebulae and enhanced star formation. Thus the
presence of molecular gas should in general be linked to
residual cooling of the hot atmosphere.
The presence of a companion galaxy located 5kpc from the

BCG in projection raises the possibility of a merger origin for
the molecular gas in this system. Its low stellar velocity

Table 4

Dust Extinction

Region Area (I/I0)min I/I0 tá ñ NH Mdust

(1042 cm2
) (1020 cm−2) (105 M

e
)

A 2.58 0.82±0.03 0.923±0.005 0.080±0.005 3.42±0.23 7.4±0.5
B 2.0 0.88±0.04 0.938±0.006 0.064±0.006 2.75±0.27 4.6±0.5

C 4.52 0.80±0.06 0.896±0.007 0.110±0.007 4.69±0.32 17.7±1.2

D 3.12 0.81±0.02 0.944±0.005 0.057±0.005 2.45±0.23 6.4±0.6

E 1.58 0.72±0.05 0.884±0.010 0.123±0.012 5.25±0.50 6.9±0.7
F 2.3 0.76±0.09 0.922±0.014 0.081±0.015 3.46±0.63 6.7±1.2

G 13 0.48±0.08 0.884±0.007 0.123±0.008 5.26±0.35 57.0±3.8

H 14.9 0.56±0.10 0.962±0.009 0.039±0.009 1.66±0.39 20.7±4.8

I 5.24 0.56±0.09 0.886±0.012 0.121±0.013 5.16±0.23 22.6±2.5
J 15.6 0.51±0.10 0.959±0.008 0.042±0.009 1.79±0.36 23.3±4.7

Total 173±8

Figure 13. Hα emission from Donahue (2007) overlaid with the CO(1–0)
contours from Figure 1. The × and + indicate the nuclei of the BCG and
companion galaxy, respectively. The coordinate reconstruction of the Hα
image is accurate to ∼1″.
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(∼200 km s−1; Gelderman 1996) relative to the BCG suggests
that the galaxies also have a small radial separation. The trail of
molecular gas orientated toward the companion galaxy may
then be indicative of an interaction between the two galaxies.

Before delving further into the origin of the molecular gas,
we emphasize the difference in dynamics between the two
components. The inner edge of the filament is slightly
blueshifted with respect to the stellar component of the BCG,
while all nuclear gas north of the BCG is redshifted. Since the
components are not smoothly connected in phase space, we
treat them separately in our discussion.

Mergers with donor galaxies can supply gas to the BCG
through several distinct avenues. Repeated mergers between
the BCG and gas-rich donor galaxies are unlikely given the low
number of member galaxies in this low-richness cluster
(Schwartz et al. 1980), and because the high-velocity
dispersion of a cluster decreases the merger rate. We instead
focus only on a merger with the nearby companion galaxy. A
tidal interaction between the galaxies may result in either the
stripping of cold gas from the companion or the disruption of a
pre-existing gas supply within the BCG. Alternatively, ram
pressure stripping would form a tail that may correspond to the
filament.

4.1.1. Tidal Interaction

In the nucleus of the BCG, the opposed redshifted and
blueshifted velocities are suggestive of rotation. This velocity
pattern is consistent with the H2 kinematics derived from K-
band integral field spectroscopy (Wilman et al. 2011) as well as
lower-resolution Hα integral field spectroscopy of the nuclear
barred structure (Hatch et al. 2007; Farage et al. 2012). The
peak-to-peak velocity difference observed in CO(1–0) is
∼400 km s−1 over a spatial scale of about 2 kpc. This is
expected of molecular gas in merger remnants, which generally
exhibits large-scale rotation with high velocities (Ueda
et al. 2014).

Although ordered motion seems plausible at CO(1–0), the
higher-resolution CO(3–2) maps show a highly asymmetric
distribution of cold gas that is inconsistent with being a
rotationally supported disk. Twice as much molecular gas is
located south of the nucleus versus the north side, and the gas
velocity jumps abruptly across the nucleus. This asymmetry
indicates that any ordered structure must be in the process of
forming, as the gas is not in an equilibrium structure. If the gas
is orbiting the BCG, then it will form one complete spiral when
the gas on the innermost orbit has circled the galaxy one more
time than the gas on the outermost orbit. With resolved scales
of 1–2 kpc and velocities of ∼200 km s−1, the corresponding
disk formation timescale is ∼3×107 years. Since no disk-like
structure is observed, the gas is either moving mainly in the
plane of the sky or we are observing the system very recently
after the stripping began.

Gas clumps oriented toward the companion galaxy have
velocities that increase roughly linearly with projected radius to
values matching the stellar velocity of the companion galaxy.
An interaction between the companion galaxy and the BCG can
account for the molecular gas via two scenarios: either the gas
is tidally stripped from the companion, or the passage of the
companion through a pre-existing gas supply has dredged up
the gas. Differentiating between the original source of the
molecular gas is difficult with the current data. Given the
greater recession velocity of the companion, if it has already

interacted with the BCG, it is now receding from the BCG,
moving outward in projected radius and away behind the
midplane of the BCG.
In the first scenario, direct stripping from the companion

would initially maintain the sign of the velocity, with the
magnitude decreasing as the gas is slowed by the gravity of the
BCG. At later times the gas will reverse direction and fall back
onto the BCG. The persistent redshifted velocities observed
here then imply that the interaction was recent, as the clouds
have not yet reversed in direction. If even half of the gas
distributed between the galaxies originated in the companion,
then its molecular gas mass would have initially been
∼1.2×108M

e
, double its current mass. This is relatively

gas-rich compared to the ellipticals in Virgo (e.g., Young
et al. 2011). A merger with a gas-rich donor galaxy is certainly
possible, but is unlikely to be expected a priori.
Following the second scenario, gas originating in the BCG

that is pulled outward by the companion would have a velocity
that increases with radius as it is accelerated away from the
BCG, as observed. When the companion is far enough away,
the BCG will again dominate the potential and any gas that is
not bound to the companion will rain back onto the BCG. The
1.5kpc gap between the companion and the farthest extent in
the spur suggests that this has occurred recently and the clumps
between galaxies may now be dominated once again by the
BCG. Although no stellar dispersion is available for the
companion, the linewidth of its molecular gas (260 km s−1) is
typical of a normal galaxy, suggesting that the molecular gas
has had time to settle into its gravitational potential well. From
the “BCG” spectrum presented in Figure 3, the masses of the
redshifted and blueshifted peaks are consistent, containing
1.5±0.3×108M

e
and 1.7±0.3×108M

e
, respectively. If

these originated from the same reservoir, then the tidal
disruption would have removed ∼50% of the pre-existing gas
supply.
With a projected separation of 4.5kpc, an interaction

between these galaxies would have occurred roughly 20Myr
ago, assuming the line-of-sight speed of the companion is
representative of its 3D velocity. However, if the velocity is
this low near the cluster core, then the companion cannot be on
its first passage through the cluster, as several orbits would be
required to decelerate the galaxy. If the companion is on its first
passage then it must be travelling near the plane of the sky. Its
transverse velocity would be several times greater than its line-
of-sight velocity, decreasing the interaction time by a factor of
a few.
Importantly, tidal interactions affect all matter within the

galaxy, without regard to its phase. Stars should therefore be
affected just as strongly as the molecular gas. This is not
observed in the HST imaging, as the stellar light does not show
strong deviations from a smooth profile. Removing half of a
pre-existing gas reservoir via tidal forces is therefore unlikely.
It is possible that an interaction between these galaxies has not
yet begun, potentially from a radial offset between them, but
the similarity in velocity between the companion and the series
of clumps appears too striking to be a coincidence.
We again emphasize that the tidal stripping discussed here

only attempts to account for the molecular gas within the BCG;
the filament must be formed separately. The molecular filament
cannot have originated from an older merger, as the merger rate
is low and the gas would have already fallen onto the BCG.
Instead we must invoke a separate mechanism entirely, such as
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cooling from the hot atmosphere. It is far more likely that the
molecular gas is produced via one primary mechanism, and that
the companion galaxy has merely disrupted a pre-existing gas
supply.

4.1.2. Ram Pressure Stripping

In the dense cores of galaxy clusters, the ram pressure
exerted on atomic gas in an infalling galaxy is enough to
overcome its gravitational binding energy, allowing the gas to
be efficiently stripped from its host galaxy (Haynes et al. 1984;
di Serego Alighieri et al. 2007; Grossi et al. 2009). Molecular
gas is more difficult to strip than atomic gas because molecular
clouds have a much smaller surface area than atomic nebulae
and they reside deeper within the galaxy’s gravitational
potential. Galaxies in the Virgo cluster with strong HI

deficiencies have minimal molecular gas deficiencies (Kenney
& Young 1989), and the CO detection rate in the cluster is the
same as in the field (Young et al. 2011). However, ram pressure
stripping of molecular gas has still been observed in the Virgo
(e.g., Vollmer et al. 2008), Norma (Jáchym et al. 2014), and
Coma clusters (P. Jáchym et al. 2016, in preparation). If the
companion galaxy is indeed falling into the cluster, then ram
pressure stripping might be a viable source of the 7.8×108M

e

of molecular gas in the filament. This, however, is not a viable
mechanism for supplying the large reservoirs of molecular gas
in BCGs in general, since molecular gas is observed
preferentially in BCGs residing at the centers of clusters with
short central cooling times.

The Norma cluster galaxy ESO137-001 is the first system
found to contain a large amount of molecular gas in a ram
pressure stripped tail, with a total molecular gas mass
exceeding 109M

e
(Jáchym et al. 2014). This molecular gas is

associated with a 40kpc long tail of Hα emission and an
80kpc long X-ray tail, with a total HI upper limit of
∼2×109M

e
. The presence of soft X-ray emission in the tail

is expected to arise from the mixing of the cold, stripped
interstellar medium with the hot intracluster gas (Sun
et al. 2006; Tonnesen et al. 2011). Jáchym et al. (2014)
suggest that the molecular gas in the outer extent of the tail has
formed in situ out of stripped atomic gas, while the inner
reaches of the tail may also be comprised of molecular clouds
that were stripped directly from the infalling galaxy.

The spatial correlation of molecular gas with Hα and X-ray
emission in ESO137-001 resembles the filament trailing the
companion galaxy in 2A0335+096. Evidently, ram pressure
stripping of gas from a high velocity infalling galaxy is able to
form a filament similar to that observed in 2A0335+096. This
offers a natural explanation for the significant dust extinction
observed along the filament, which would be stripped from the
companion galaxy along with the atomic and molecular gas,
and would offer a seeding site for in situ molecular gas
formation. Since the line-of-sight speed of the molecular gas
along the filament is 200 km s−1, the high infall velocity
required to form the filament via ram pressure stripping would
require that most of the motion be along the plane of the sky.

Ram pressure stripping requires a very high relative velocity
in order to form the observed filament. Orbit modeling in
ESO137-001 favors infall velocities of 3000 km s−1. The
necessary relative velocity in 2A0335+096 is not this severe,
since the companion galaxy is situated closer to its cluster
center so is in a higher-density environment, lessening the
demands on velocity. Extrapolating the Sanders et al. (2009)

gas density profile assuming a power law of ne∝r
−1, the ICM

density at the base of the filament (∼13 kpc) is ≈0.07 cm−3.

This is 35 times greater than the ICM density at the location of

ESO137-001, using the β-model parameters in Table 7 of

Jáchym et al. (2014). Assuming that the force exerted by ram

pressure, ρv2, is the same here as it is in ESO137-001, the
infall velocity required to produce the tail is ∼500 km s−1.

Since the line-of-sight velocity of the companion galaxy is

230 km s−1, the inclination of the filament would need to be

about 30o.
As discussed in Section 4.1.1, the series of redshifted clumps

located between the BCG and the companion suggests that the

two galaxies have already interacted. If this is the case, then the

companion galaxy must have passed through the BCG on a

northwestward trajectory. This scenario is mutually exclusive

with the ram pressure stripping origin of the filament, which

requires that the companion be on its first passage through the

cluster and travelling to the southeast.
Additionally, the morphology of the filamentary emission

differs from what is expected from ram pressure stripping.

First, the orientation of the filament does not coincide with the

companion galaxy. Extending the inner edge of the filament to

the southeast, the shortest distance between the filament and the

companion is 2kpc. Ram pressure stripping should form a tail

in a direction directly opposing the direction of motion, which

is not the case here. Second, Hα emission and soft X-rays are

not confined to the region trailing the companion. Significant

Hα emission is observed on both sides of the BCG, with the

brightest emission surrounding the molecular gas within the

BCG. This emission is visible in the lower left corner of

Figure 13 as well as the contours of Figure 14, but its full

extent is obscured due to the presence of a bright foreground

star. If the filament is formed by ram pressure stripping then the

Hα emission should be localized to the tail of the companion

galaxy, in addition to whatever emission is associated with the

molecular gas in the BCG.

Figure 14. Chandra X-ray image of the hot atmosphere of 2A0335+096.
Several X-ray cavities and clumps of cool gas are visible in the image. The Hα
nebula, shown in white contours, extends toward the most energetic cavity.
Any emission to the south of the contours has been masked out due to
contamination by a foreground star.
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4.1.3. Cooling of the Hot Atmosphere

Cooling from the hot atmosphere naturally explains the
spatial correlation of gas over 5–6 decades in temperature. The
upper limit on the mass deposition rate of the 0.5keV X-ray
emitting gas is 30M

e
yr−1 (Sanders et al. 2009), which can

form the 7.8×108M
e

of molecular gas in the filament in
24Myr or the entire gas reservoir in 40Myr. Depletion of the
molecular gas via star formation proceeding at a rate of
2M

e
yr−1 (O’Dea et al. 2008) increases the accumulation time

by <10%. We also note that the cooling gas is distributed on
larger scales than the molecular gas. Roughly half of the
0.5keV gas is located on the side of the BCG opposite the
molecular gas. This increases the accumulation time by roughly
a factor of two, resulting in a total time of 50–90Myr. This is
approaching the mean outburst interval between generations of
AGN outbursts of 108 years (e.g., Vantyghem et al. 2014).

Most of the baryonic content in clusters is contained in the
hot atmosphere, offering a vast reservoir which can supply the
molecular gas. Approximating the central hot gas density
profile in Sanders et al. (2009) with ρ∝r−1, the extrapolated
gas mass within 13kpc, which encloses all of the molecular
gas, is 7.9×109M

e
. This is about 7 times more than is needed

to form the entire 1.13×109M
e
of molecular gas. However,

cooling does not occur over the full azimuth, and the local
supply of hot gas is much more restrictive. On the other hand,
gas cooling out of the hot atmosphere can be replenished by
gas from higher altitudes, providing more than the
7.9×109M

e
of gas within the central 13kpc.

The presence of multiple cavities in the hot atmosphere
(Mazzotta et al. 2003; Sanders et al. 2009) indicates that
2A0335+096 has undergone several cycles of AGN feedback,
which would include multiple cycles of cooling. However, if
cooling has persisted over multiple cycles then we should
expect to see several filaments, similar to those in Perseus
(Hatch et al. 2006; Salomé et al. 2011), while only one is
observed. Filaments from previous cooling cycles may have
fallen back onto the BCG, forming the observed reservoir
within it. Conversely, the presence of a single filament is
reminiscent of the cooling wake observed in A1795 (Fabian
et al. 2001; Crawford et al. 2005), where cooling is stimulated
by the motion of the cD galaxy through the hot atmosphere.
Sloshing motions in 2A0335+096 indicate that the BCG is in
motion with respect to the cluster, which may establish the
preferred direction of cooling.

Gas cooling from the hot atmosphere is expected to be
relatively dust-free (Donahue & Voit 1993). This is because
dust grains are rapidly sputtered in the ICM, and can only form
when the gas is shielded by UV and X-ray irradiation (Draine
& Salpeter 1979). As noted in Section 3.5, significant dust
extinction is present over much of the length of the filament.
Since dust production from cooling gas is difficult, the dust
likely originated from the within the BCG. Hatch et al. (2007)
suggested that the dusty nebulae observed in several BCGs
have been drawn out of the central molecular gas reservoir,
where the high densities can provide shielding long enough for
the gas to become polluted with dust.

Recent simulations have suggested that thermal instabilities
in the hot atmosphere are induced along the direction of the
radio jet (Gaspari et al. 2013; Li & Bryan 2014a), which is not
the case in 2A0335+096. A bipolar radio jet observed at
1.5GHz extends 12arcsec to the northeast and southwest of
the BCG (Sarazin et al. 1995; Donahue et al. 2007), which is

orthogonal to the filament. Instead, we argue in Section 4.2.1
that the preferred direction of gas cooling has been imposed by
uplift from an X-ray cavity. This enables dust to be lifted out of
the BCG, providing seeding sites for the production of
molecular gas.

4.1.4. Summary: Gas Origin

While galaxy mergers are unable to account for the high
molecular gas masses in cool core galaxy clusters in general,
the presence of a close companion in this system has the
potential to supply the cold gas. Tidal stripping from the
companion galaxy can supply the BCG with cold gas, but does
not account for the filament. Instead, the merger may have
disrupted a pre-existing gas supply within the BCG, dredging
up cold gas as it passed through. However, we do not see
evidence for a tidal disruption in the stellar light of either
galaxy. Alternatively, the filament observed in 2A0335+096
resembles the ram pressure stripped tails in other systems (e.g.,
ESO 137-001). Ram pressure stripping is feasible if the
companion is infalling from the northwest with a high relative
velocity, and can account for the spatial coincidence of
molecular gas, dust extinction, Hα emission, and soft X-rays.
However, it does not explain the inclined orientation of the
filament or the Hα emission and soft X-ray located southeast of
the BCG nucleus. Furthermore, if gas has in fact been dredged
up by the companion galaxy, then its implied orbit rules out the
possibility of a ram pressure stripping origin of the filament.
Cooling of the hot atmosphere provides a feasible mechanism
for supplying the molecular gas that is tenable in a much
broader sample of cool core clusters. The hot atmosphere
harbours more than enough gas to produce the filament, and the
0.5keV phase is cooling rapidly enough to form the entire
molecular gas supply in ∼108 years. The cold gas within the
BCG may then correspond to an older cycle of cooling from the
hot atmosphere that has fallen onto the BCG.

4.2. Origin of the Cooling

4.2.1. Cooling Stimulated by the AGN

Following recent ALMA observations of PKS0745-191
(Russell et al. 2016) and A1835 (McNamara et al. 2014),
McNamara et al. (2016) proposed the “stimulated feedback”
model. In this model, molecular gas condenses from lower-
entropy gas that is lifted outward from the cluster core by X-ray
bubbles, away from the location where the heating rate matches
its cooling rate. Unless the overdensity falls back to its original
position within its cooling time, it will condense out of the ICM
(Nulsen 1986; Revaz et al. 2008; Gaspari et al. 2013; Li &
Bryan 2014b), forming molecular gas and emission-line
nebulae.
The molecular gas in the PKS0745-191 BCG is distributed

along three narrow filaments that are 3–5 kpc in length (Russell
et al. 2016). Two of the filaments are oriented behind X-ray
cavities, while the third is coincident with UV emission from
young stars. The velocities of the cold gas, which lie within
±100 km s−1 of the systemic velocity, are too low to arise from
steady inflow of clouds condensing out of the hot atmosphere.
Instead, the velocity distribution of the two filaments oriented
toward X-ray cavities are consistent with the majority of the
gas flowing outward from the galaxy center.
A similar outflow was observed in the A1835 BCG, where

1010M
e
of cold gas is located in a bipolar flow behind two
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X-ray cavities (McNamara et al. 2014). This system hosts
comparably low velocities, which were initially interpreted as a
face-on disk. However, low velocities have been observed in a
growing sample of BCGs observed with ALMA (David
et al. 2014; Russell et al. 2014, 2016; Tremblay et al. 2016),
indicating that velocities well below the stellar velocity
dispersion are common among BCGs. Similarly low velocities
were also noted in the filamentary optical-line nebulae of BCGs
(e.g., Heckman et al. 1989; Jaffe et al. 2005; Hatch et al. 2006;
Oonk et al. 2010). Evidently, the gas must either be
dynamically young, having not had time to settle into its
gravitational potential, or the clouds are supported by pressure
from either magnetic fields or the hot gas.

Redshifted CO absorption lines have been observed in
NGC5044 (David et al. 2014) and A2597 (Tremblay
et al. 2016). The widths of these lines are small (∼5 km s−1),
and are comparable to individual giant molecular clouds within
the Milky Way. Since the lines are seen in absorption, the
clouds must lie in front of the AGN, blocking its continuum
emission. The redshifted velocities indicate that the clouds are
falling toward the black hole, and are possibly in the process of
being accreted. The presence of both inflow and outflow in
BCGs suggests that gas lifted by from the cluster core
eventually returns in a circulation flow, or molecular
“fountain.”

The results presented here are consistent with this stimulated
feedback model. Chandra imaging of 2A0335+096, shown in
Figure 14, reveals a series of X-ray cavities corresponding to
multiple generations of AGN feedback (Mazzotta et al. 2003;
Sanders et al. 2009). The Hα nebula, overlaid in white contours
in Figure 14, shows a striking connection to the northwestern
cavity. The emission extends from the center of the BCG
directly toward the X-ray cavity identified in Figure 14, with
fainter emission along the cavity’s inner edge. As noted in
Section 3.6, the Hα filament is coincident with soft X-ray
emission from 0.5keV gas as well as 20–30 K molecular gas.
This indicates that the gas is cooling over five decades in
temperature in the wake of a rising X-ray cavity. Dust grains
situated along the filament have presumably been uplifted from
the BCG along with the low-entropy ICM. This resembles the
scene in PKS0745-191, where the two filaments trailing X-ray
cavities are correlated with dust extinction. The uplifted dust
potentially enhances the formation of molecular gas by offering
seeding sites.

A bipolar radio jet observed at 1.5GHz extends 12arcsec to
the northeast and southwest of the BCG (Sarazin et al. 1995;
Donahue et al. 2007). This radio jet traces the most recent
generation of AGN feedback, which is orthogonal to the
emission-line filament. No molecular gas is observed along this
direction, indicating that the radio jet itself has not disrupted the
central supply of molecular gas or created thermally unstable
overdensities in the hot atmosphere. Similarly, any cavities
formed along this jet have yet to induce a significant amount of
thermally unstable cooling.

4.2.2. Cooling Wake from Galaxy Motion

Cooling of the ICM can also be induced by the gravitational
wake of a galaxy in motion with respect to the cluster. For
example, A1795 hosts a BCG with a velocity of +150 km s−1

with respect to the mean of all galaxies in the cluster, or
+374 km s−1 compared to the galaxies within 270 kpc (Oegerle
& Hill 1994). The cluster also harbours a luminous emission-

line nebula extending in a 50 kpc long filament to the southeast
of the BCG (Cowie et al. 1983; Crawford et al. 2005;
McDonald & Veilleux 2009). This filament has also been
identified in X-ray imaging (Fabian et al. 2001; Crawford
et al. 2005; Ehlert et al. 2015), molecular gas (McDonald
et al. 2012), U-band polarimetry (McNamara et al. 1996), and
far-UV imaging (McDonald & Veilleux 2009). Fabian et al.
(2001) argued that this filament was formed from a cooling
wake, where the gravitational attraction from the BCG moving
through a region with a short cooling time focuses cooling onto
its wake. Since the gas cools from the ICM, its velocity reflects
that of the cluster instead of the BCG.
In principle either the BCG or the companion galaxy could

induce this cooling wake. However, it is more likely that the
BCG causes the cooling wake due to its larger gravitational
attraction, provided it is in motion with respect to the ICM.
Furthermore, the presence of Hα filaments in cool core clusters
is not correlated with the presence of galaxies near the BCG
(McDonald et al. 2010). If the companion galaxy in 2A0335
+096 is able to induce a cooling wake, then we should expect
similar filaments in all cool core clusters hosting galaxies near
their core, which is evidently not the case.
Without a direct measurement of ICM velocity it is difficult

to determine if the BCG is in motion with respect to the cluster.
However, the X-ray atmosphere of 2A0335+096 hosts a series
of cool clumps and a cold front, which are indicative of an
unrelaxed dynamical state (Mazzotta et al. 2003; Sanders
et al. 2009). In particular, the X-ray centroid of the cluster is
difficult to pinpoint because of the series of cool clumps. The
brightest clump of X-ray emission in the 0.5–7 keV band is co-
spatial with the Hα emission 6–10 kpc southeast of the BCG
nucleus. The offset between the X-ray peak and the BCG, as
well as the presence of sloshing motions in the ICM, suggest
that the BCG is in motion relative to the cluster. We are unable
to constrain the BCG velocity in this system, although sloshing
motions in Virgo have velocities of ∼50–100 km s−1 (Roediger
et al. 2011). The low velocity of the main component of the
inner filament, −28±4 km s−1, may imply a small line-of-
sight velocity offset between the BCG and cluster, though
multiple distinct velocities throughout the filament point to a
more complicated picture. Similarly, we cannot confirm that
the motion is along the direction of the filament.
As noted in Section 4.1.3, gas cooling from the ICM is

expected to be dust-free. This appears to be the case in A1795,
where dust extinction is only observed within the central
galaxy (Pinkney et al. 1996), and is likely not affecting star
formation along the filament (Crawford et al. 2005). The
presence of dust along the filament in 2A0335+096 argues
against the cooling wake scenario unless the filament has been
enriched with dust from the BCG or companion, perhaps
through ram pressure stripping. This possibility has been
suggested by Sparks et al. (2004) for the filaments in M87.
However, ram pressure stripping requires velocities of several
hundred km s−1, even in the dense cluster core.

4.2.3. Cooling Along a Dark Matter Filament

We also note an interesting similarity in the position angles
of the BCG and filament and the apparent trajectory of the
companion galaxy. BCGs are known to have a common
orientation with their host clusters, which are themselves
aligned with the cosmological filaments of dark matter they
accreted from (Binggeli 1982; Niederste-Ostholt et al. 2010).
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The companion galaxy may have accreted along this axis,
falling from the southeast and passing through the gas supply in
the BCG. Understanding how the filamentary emission is
linked to the dark matter distribution is more difficult. Any
overdensity caused by the filament should only be significant in
the outer extent of the cluster, not in the inner tens of kpc where
the emission-line nebula is observed. Direct accretion from the
cosmological filament is similarly unlikely, since any accreted
gas should be moving at speeds approaching the cluster
velocity dispersion. The alignment noted here does not appear
to persist in other cool core clusters. Perseus and Virgo, for
example, harbour filamentary emission with no preferred
orientation (e.g., Young et al. 2002; Salomé et al. 2006). A
more likely possibility is that an infalling galaxy caused an
overdensity in the ICM that led to a thermal instability.
However, the only galaxy located along the filament is the
companion, and it cannot produce both the disrupted central
gas and the filament. Thus, the alignment between the major
axis of the BCG and filament of molecular gas is most likely
coincidental.

4.2.4. Summary: Cooling Origin

While stimulated cooling and the cooling wake are both
feasible origins for gas condensation, we favor stimulated
cooling throughout the remainder of our discussion. This is
mainly because of the connection between the cooling gas and
X-ray cavity, which resembles a growing sample of objects that
have been observed with ALMA. As a result, stimulated
cooling offers a more generally applicable explanation for the
presence of molecular gas in cool core clusters.

4.3. Molecular Filament: Inflow or Outflow?

We now consider the velocity profile of the molecular
filament and investigate whether it is consistent with inflow or
outflow. Along the filament the gas velocity becomes
increasingly blueshifted farther from the cluster center. At its
base the gas is blueshifted to −30 km s−1, while the velocity at
the tail is nearly −200 km s−1. This can be consistent with
either inflow or outflow, depending on where the gas forms and
where it is located along the line of sight. With the present data
we are unable to conclusively distinguish between the two.

Molecular gas condensing out of the hot atmosphere should
trace the velocity of the gas that it cooled from. In a cooling
wake the molecular gas condenses from a hydrostatic
atmosphere, resulting in a mean velocity of zero with respect
to the cluster. Our adopted frame is measured with respect to
the BCG, so an offset is expected if the BCG is indeed
oscillating within the cluster. Molecular gas condensing from
low-entropy gas lifted by an X-ray cavity should initially be
flowing away from the cluster center. The observed velocity
gradient then depends strongly on both the inclination of the
filament as well as its shape. For example, a filament with a
constant velocity may have an observed gradient if it becomes
progressively more inclined toward the line of sight. We cannot
differentiate between these morphologies, so preliminarily
assume that the filament is straight.

Eventually the dense molecular clouds are expected to
decouple from the hot atmosphere, decelerating and falling
back onto the central galaxy in a circulation flow. Recent
results from Hitomi found that the velocity of the ICM in
Perseus is very similar to the cold gas, suggesting that the two

phases are held together by magnetic fields for some time
(Hitomi Collaboration et al. 2016). Lim et al. (2008) argued in
favor of infall for the filaments nearest the cluster core based on
their velocity gradient, while inflowing molecular gas was
observed directly in NGC5044 (David et al. 2014) and A2597
(Tremblay et al. 2016) based on the presence of redshifted CO
absorption lines. Distinguishing between inflow and outflow
does not affect the consistency with the stimulated cooling
model, as both are expected to occur at some point in the
feedback cycle.

4.3.1. Outflow in the Wake of the Rising Cavity

If the clouds along the filament formed recently and are
located in front of the midplane of the BCG, then their
increasing velocity with radius implies that the gas is being
accelerated away from the BCG nucleus. Localized condensa-
tion at the base of the filament followed by direct uplift of the
molecular gas is unlikely, since coupling the diffuse X-ray
cavity to dense molecular clouds is difficult. This is
exacerbated by the high mass of the filament, so the coupling
of diffuse to dense gas would need to be remarkably efficient.
Instead, the molecular clouds probably condensed in situ from
the uplifted, low entropy gas.
The terminal velocity of X-ray cavities is generally 50%–

60% of the speed of sound, g m=c kT ms H , where kT is the
temperature of the hot gas and we have taken γ=5/3 for an
ideal gas and μ=0.62 (e.g., Bîrzan et al. 2004). In a 3.5keV
cluster cs≈900 km s−1, so a typical bubble velocity is
∼500 km s−1. The molecular gas in the filament reaches a
line-of-sight velocity (magnitude) of 200 km s−1, several times
lower than the bubble velocity. In order for the two velocities to
match, the filament must be inclined at <25° from the plane of
the sky.
Accelerating the molecular gas to a speed comparable to the

bubble terminal velocity of ∼500 km s−1 requires that the AGN
contribute 2×1057 erg to the kinetic energy of the cold gas.
Assuming a gravitational acceleration of g=2σ2/r with
σ=255 km s−1 (McNamara et al. 1990), the potential energy
required to lift the gas from 1kpc to R≈13 kpc is
∼5×1057 erg. The total energy requirement is therefore
∼7×1057 erg, which is only 4% of the enthalpy of the
northwestern cavity, 1.6×1059 erg (Sanders et al. 2009).
Lifting the molecular gas in the wake of the X-ray cavity is
therefore energetically feasible.

4.3.2. Clouds in Gravitational Free-fall

When molecular clouds decouple from the hot atmosphere,
they should fall ballistically under the influence of gravity. The
clouds will initially have the same velocity as the hot gas they
cooled from. This is zero in a hydrostatic atmosphere, but can
be nonzero if the clouds have cooled from uplifted gas.
Following Lim et al. (2008), we assume that the gravitational
potential can be modeled by a Hernquist profile (Hern-
quist 1990). A gas cloud undergoing free-fall should accelerate
to a velocity of
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with respect to the hot atmosphere. In the rest frame of the

BCG, which has been adopted for these observations, the

velocities in the above equation are modified to be v(r)−vICM,
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where vICM is the velocity offset between the BCG and the

cooling gas. We assume that the initial velocity of the cloud is

the same as the ICM, so v(r0)=vICM. In Equation (3) M is the

total gravitating mass of the BCG, a is the scale length, and r0
is the radius where the cloud originally formed. The inclination

angle of the cloud’s trajectory and vICM are both free

parameters in this model.
The scale length a is related to the half-light radius Re

according to

( )»R a1.8153 . 4e

Taking an effective radius of 19 24 (13.47 kpc) from the

2MASS K-band catalog, the corresponding scale length is

7.4 kpc. We note that 2MASS photometry is likely missing a

significant amount of the total stellar light (Lauer et al. 2007),

so this scale length is underestimated. Adopting a larger scale

length would result in flatter velocity profiles.
We estimate the total BCG mass using the cluster mass

profiles of Main et al. (2015), who modeled the X-ray emission
of the ICM with an NFW profile under the assumption of
hydrostatic equilibrium. For 2A0335+096 the total mass
interior to 30 kpc is 2.1×1012M

e
. Alternatively, 2MASS

reports a total K-band magnitude of 9.808±0.052 that was
extrapolated out to 45 kpc. Assuming a K-band stellar mass-to-
light ratio of 0.8 (Bell et al. 2003; Humphrey et al. 2006), the
total stellar mass in the BCG of 2A0335+096 is
4.7×1011M

e
. Combining these values gives a dark matter

mass fraction within the BCG of 80%, which is similar to that
of Hydra A at a similar radius (Okabe et al. 2016). The total
gravitating mass controls the amplitude of the velocity profile,
and is degenerate with the inclination angle. Our results are
therefore not sensitive to the adopted value of total mass, as the
inclination angle, which is not known, can be adjusted to
compensate.

From the PV diagrams presented in Figure 11, infall along
the extended filament begins at a radius of 11.5 kpc and
proceeds over a length of 6 kpc that is oriented 20° from purely
radial. The solid black line in Figure 11 shows the velocities
resulting from infall along this filament assuming an inclination
angle of 25° and a velocity offset of −200 km s−1. The position
shown along the x-axis has been transformed into the
appropriate radial distance from the BCG nucleus. The velocity
shift corresponds to a bulk offset between the ICM and the
stellar component of the BCG. The presence of a cold front
seen in the X-ray emission (Mazzotta et al. 2003; Werner
et al. 2006; Sanders et al. 2009) indicates non-zero motion
between the two components.

Over the 7 kpc length of the filament the gas is primarily
located in two clumps. Gravitational free-fall reproduces the
observed increase in velocity between these clumps. However,
the clumps are not smoothly connected in velocity, and the
free-fall model fails to account for this feature. Furthermore,
the observed average velocity of the inner portion of the
filament does not depend on the radius, while the velocity of
the free-fall model increases linearly through this region.
Although the free-fall model reproduces the bulk of the
observed velocities, differences between the data and the model
prevent any definitive conclusions about the gas undergoing
free-fall from being drawn. Nevertheless, the velocity gradient
is broadly consistent with free-fall. Since this velocity gradient
is generic for free-fall in elliptical galaxies, the discovery of

additional filaments exhibiting this gradient suggests that some
of them, at the very least, are in approximate free-fall.
A number of additional problems with the model adopted

here must also be addressed. First, the filament is not oriented
radially with respect to the BCG nucleus. This may be caused
by a transverse velocity offset between the ICM and the BCG,
which would be expected given the presence of a cold front.
This model also neglects the gravity of the companion galaxy.
Assuming the companion lies in the plane of the sky and has a
mass-to-light ratio comparable to the BCG, the inner portion of
the filament should experience 3×more gravitational accelera-
tion from the companion galaxy than from the BCG. This could
also affect the orientation of the infalling gas. Without a
reliable measurement of the line-of-sight separation between
the BCG, companion galaxy, and filament, we cannot create a
more robust gravitational free-fall model. Finally, the model we
have adopted here has a large number of unconstrained
parameters, notably the inclination angle and bulk velocity of
the ICM. As a result, virtually any linear velocity structure can
be reproduced with an appropriate choice of these parameters.

4.4. Star Formation

Attributing all of the Hα emission to star formation, the
luminosity of 8×1041 erg s−1 (Donahue et al. 2007) corre-
sponds to a star formation rate of 15–20M

e
yr−1, using the

LHα−SFR scaling relations of Kennicutt (1998). This over-
estimates the true star formation rate, as starlight alone fails to
account for the observed spectra of emission-line nebulae
(Johnstone et al. 2007). Additional heating sources are required
to supplement the ionization of the nebula. Collisional heating
by ionizing particles, such as cosmic rays that penetrate the
filament, is favored in the models of Ferland et al. (2009).
Mixing of the gas in the filaments with the hot X-ray emitting
plasma was argued to provide the dominant source of heat in
Virgo (Werner et al. 2013) and other ellipticals (Werner
et al. 2014). The ionization source in 2A0335+096 is not
currently known, although the spatial coincidence between the
filaments and 0.5keV gas suggests that star formation alone
does not power the nebula.
An analysis of the B−I color gradient of the central galaxy

shows an excess in blue emission from 4–30 kpc compared to
the central galaxies in clusters without short cooling times
(Romanishin & Hintzen 1988). This extends well beyond the
companion galaxy, indicating that active star formation is
occurring along the filament. Within 4kpc the color gradient
reddens to a level consistent with the control sample. Wilman
et al. (2011) argued that this reddening cannot be caused by
dust extinction, since any attenuation by dust would be
negligible in their K-band observation. In the BCG alone,
several different measurements place the star formation rate at a
few M

e
yr−1. Infrared photometry within a 6″ aperture, which

excludes both the companion galaxy and the filament, derives a
SFR of 2.1M

e
yr−1 (O’Dea et al. 2008). Infrared spectroscopy

(Donahue et al. 2011) and UV imaging (Donahue et al. 2007)
over regions that include both galaxies but not the filament
measure SFRs of 0.7 and 3–7M

e
yr−1, respectively.

The total molecular gas mass in the BCG is 3.2×108M
e
.

Using the CO(3–2) line to trace the emitting area yields a
molecular gas surface density of 68M

e
pc−2. Assuming that

star formation is distributed over the same area, the maximum
SFR to place the 2A0335+096 BCG within the scatter of the
Kennicutt–Schmidt relation (Kennicutt 1998; Kennicutt &
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Evans 2012) is ∼0.9M
e
yr−1. The SFR derived from IR

spectroscopy is consistent with this limit. For the 7.8×108M
e

of molecular gas in the filament, the corresponding surface
density of molecular gas is 46M

e
pc−2. Placing this on the

Kennicutt–Schmidt relation requires an SFR of roughly
0.09M

e
yr−1. However, the low confining pressure of the

ICM outside of the cluster core reduces the star formation
efficiency in systems with similar filaments (e.g., Verdugo
et al. 2015; Salomé et al. 2016a, 2016b). We should therefore
expect a lower SFR, although the excess blue emission still
supports ongoing star formation within the filament.

5. CONCLUSIONS

In this work we have presented ALMA observations of the
CO(1–0) and CO(3–2) lines of the 2A0335+096 BCG. We
detect 1.13×109M

e
of molecular gas that is distributed

between two distinct structures: a component near the center of
the BCG and a 7kpc long filament beginning 6kpc from the
BCG nucleus and extending nearly radially outward. Most of
the molecular gas, 7.8×108M

e
, is located in the filament,

while 3.2×108M
e
is located in the nucleus. The nuclear gas

is highly asymmetric, with two clumps of comparable mass
south of the radio source and several smaller clouds extending
toward a nearby companion galaxy. The filament has a shallow
velocity gradient that is slightly blueshifted at all points,
nearing the systemic velocity of the BCG at its innermost
radius. No molecular gas is detected connecting the filament to
the BCG nucleus.

Although a companion galaxy is located 5kpc from the
BCG in projection and has a small relative velocity
(∼200 km s−1), it is unlikely that the molecular gas has been
supplied by a merger. Tidal stripping alone could deposit
molecular gas onto the BCG, but the filament must then form
via completely independent means. A plume of increasingly
redshifted clouds extending toward the companion galaxy
suggests that the galaxies have already interacted, with the
companion galaxy disrupting a pre-existing reservoir of
molecular gas within the BCG as it passed through the nucleus
at <20Myr ago. However, no evidence of stellar disruption is
observed in optical imaging, indicating that any tidal interac-
tion must be weak.

Ram pressure stripping is a feasible way to produce the
filament, as similar structures have been observed in other
systems (e.g., ESO 137-01). However, filamentary emission
has also been observed in a number of cool core clusters that do
not have nearby companion galaxies. While we cannot
definitively rule out ram pressure stripping, it is not
representative of cool core clusters in general. Moreover, if
the galaxies have already interacted, then ram pressure
stripping cannot be a viable mechanism for producing the
filament.

The filament of molecular gas is coincident with significant
dust extinction, luminous Hα emission, and 0.5keV X-ray
emitting gas. This spatial correlation of gas spanning 5–6
decades in temperature implies that the molecular gas has
condensed out of gas cooling from the hot atmosphere. The hot
atmosphere offers an abundant source of gas with which to
form the molecular gas. Condensation out of the hot
atmosphere can form the total molecular gas supply rapidly
enough to sustain cycles of AGN feedback every ∼108 years.
Condensation can be triggered either in the wake of the BCG or
in the uplift behind an X-ray cavity. We favor the uplift

interpretation because of its similarity to a growing sample of
objects observed with ALMA, which may be representative of
cool core clusters in general.
The Hα emission from this cooling filament extends toward

an X-ray cavity, with faint emission spreading around its inner
edge. This resembles the distribution of molecular gas in a
growing number of objects observed with ALMA (e.g.,
PKS0745-191 and A1835), where significant amounts of
molecular gas reside in massive outflows linked to the
buoyantly rising X-ray cavities. Our observations are consistent
with the “stimulated feedback” model, where molecular gas
condenses out of low-entropy gas that is lifted out of thermal
equilibrium by X-ray cavities. With an enthalpy of
1.6×1059 erg, the X-ray cavity possesses ample energy to lift
enough low-entropy gas to form the observed molecular gas
supply.
As clouds of molecular gas condense out of the uplifted low-

entropy gas in the hot atmosphere, they should decouple from
the hot atmosphere and fall back onto the BCG under the
influence of gravity. Initially outflowing gas will eventually
decelerate and return to the BCG in an inflow. We are unable to
distinguish between inflow and outflow with our observations.
The velocity of the molecular gas in the filament increases in
magnitude from −30 km s−1 near its base to −200 km s−1 at its
tail. This velocity gradient may correspond to gas accelerated
by the cavity, but is also consistent with simple models of
gravitational infall. This ambiguity, however, does not affect
our interpretation that the molecular gas has condensed out of
low-entropy gas uplifted by an X-ray cavity.
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