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Abstract

Brugada syndrome (BrS) is a condition defined by ST-segment alteration in right precordial leads and a risk of sudden death.
Because BrS is often associated with right bundle branch block and the TRPM4 gene is involved in conduction blocks, we
screened TRPM4 for anomalies in BrS cases. The DNA of 248 BrS cases with no SCN5A mutations were screened for TRPM4
mutations. Among this cohort, 20 patients had 11 TRPM4 mutations. Two mutations were previously associated with cardiac
conduction blocks and 9 were new mutations (5 absent from ,149000 control alleles and 4 statistically more prevalent in
this BrS cohort than in control alleles). In addition to Brugada, three patients had a bifascicular block and 2 had a complete
right bundle branch block. Functional and biochemical studies of 4 selected mutants revealed that these mutations resulted
in either a decreased expression (p.Pro779Arg and p.Lys914X) or an increased expression (p.Thr873Ile and p.Leu1075Pro) of
TRPM4 channel. TRPM4 mutations account for about 6% of BrS. Consequences of these mutations are diverse on channel
electrophysiological and cellular expression. Because of its effect on the resting membrane potential, reduction or increase
of TRPM4 channel function may both reduce the availability of sodium channel and thus lead to BrS.
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Introduction

Brugada syndrome (BrS) is characterized by ST-segment

elevation in the right precordial leads (V1– V3) of the electrocar-

diogram (ECG) with an associate risk of cardiac arrhythmia [1].

The mean age of BrS clinical appearance is around 40 years with a

strong male preponderance [2,3]. The ECG signature of BrS is

transient and can be unmasked by administration of sodium

channel blockers such as ajmaline or flecainide [2,4]. There are

internationally accepted criteria to establish a diagnosis of BrS [5].

The prevalence is estimated to be approximately 1/2500.

Although numerous environmental factors influence BrS clinical

and ECG expressivity, it is commonly accepted that it is a genetic

disease with usually an autosomal dominant pattern of inheritance

[6,7]. Since 1998, it has been established that about 15–25% of

BrS cases can be linked to mutations in SCN5A that encodes the

alpha subunit of cardiac sodium channel Nav1.5 [8]. Several other

genes have been implied in BrS such as GPD1L, CACNA1C,

CACNB2, SCN1B, KCNE3, SCN3B, KCNJ8 [9], CACNA2D1 [10],

KCND3 [11] and MOG1 [12] (for a review see [13]).

The transient receptor potential melastatin protein number 4

(TRPM4) is a calcium-activated nonselective cation channel,

member of a large family of transient receptor potential genes

[14]. TRPM4 has been recently implied in families with

progressive cardiac conduction blocks [15,16,17]. In this study,

we addressed the question whether BrS cases could be attributed

to TRPM4 mutations since BrS is frequently associated with

cardiac conduction anomalies. In a large cohort of 248 BrS cases

with no SCN5A mutation, 11 TRPM4 mutations were found in 20

unrelated individuals. The electrophysiological and cellular

expression consequences of 4 mutations were further studied.

These findings suggest that TRMP4 mutations accounts for about

6% of BrS.
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Materials and Methods

Ethics
A signed informed consent was obtained from all participants

(or the parents of minors) prior to history recording and blood

drawing. This study was specifically approved by the local ethics

committees (comité de protection des personnes Ouest IV and

Sud-Est II) and is in accordance with the last version of the

Declaration of Helsinki (The World Medical Association, 2002).

Clinical Evaluation
The diagnosis of Brugada is based on a type 1 ECG at rest prior

or after a drug challenge (ajmaline or flecainide). Medical history

was recorded and a clinical cardiologic examination was

performed on all patients. Most of the participants had additional

examinations including echocardiogram, stress test, ambulatory

ECG recording and electrophysiological study.

Genetic Analysis
DNA was extracted from blood samples according to standard

protocols. Mutation screening of TRPM4 (RefSeq NM_017636.3,

OMIM# 606936) was carried out by High Resolution Melting

(HRM) analysis (Rotor-Gene Q, Qiagen, Courtaboeuf, France)

followed by bi-directional sequencing of abnormal profiles or

directly by sequencing. The primers were already published [16].

The Exome Variant Server (http://evs.gs.washington.edu/EVS/

) was used to add controls to our series. Variants were confirmed

on a second sample and a second PCR product.

Preparation of TRPM4 Mutants
The complete human wild-type TRPM4 cDNA was cloned in

pcDNA4/TO vector (Invitrogen, Cergy Pontoise, France) [16].

Mutants were obtained by in vitro mutagenesis using QuickChange

II site-directed mutagenesis kit (Agilent Technologies, Massy,

France). Mutant cDNA clones were systematically resequenced

before use in further experiments.

Stable TRPM4 Mutant Expression
pcDNA4/TO plasmid containing the diverse TRPM4 mutants

were used to transfect T-RExTM 293 cell lines with Lipofectamine

2000 (Invitrogen, Cergy Pontoise, France) according to manufac-

turer specifications. The T-RExTM 293 cell line stably expresses

the tetracycline repressor protein enabling the silencing of the gene

of interest unless tetracycline is added to the culture medium. T-

RExTM 293 is a stable transformed cell line of HEK 293 obtained

with a plasmid that encodes the Tet repressor under the control of

the human CMV promoter. Several stable clones (3–4) of each

TRPM4 mutant were obtained according to Invitrogen protocol

by selecting with blasticidin (Tet repressor) and zeocin (TRPM4).

These stable clones were used for the electrophysiological study.

Electrophysiology
Currents were recorded from whole-cell or inside-out patches of

T-RexTM 293 transfected cells with a patch-clamp amplifier

Axopatch 200B (Axon instruments, Forster city, CA, USA) using

pClamp 9 software (Axon instruments). Experiments were

conducted at room temperature.

For patch-clamp experiments in inside-out conditions, cells were

bathed in a solution containing (in mM): 140 NaCl; 4.8 KCl; 1.2

MgCl2; 0.1 CaCl2; 10 glucose; and 10 HEPES, pH 7.4 (with

NaOH). Solutions perfused at the inside of the membrane

contained the previous solution (with 1 mM CaCl2) or, for

determination of ionic selectivity, a low NaCl solution (in mM):

42 NaCl; 1.2 MgCl2; 1 CaCl2; 10 glucose; and 10 HEPES,

supplemented with sucrose, pH 7.2.

In the whole-cell condition, TRPM4 currents were investigated

using a ramp protocol. The holding potential was 260 mV. The

400 ms increasing ramp from 2100 to +100 mV ends with a

20 ms step at +100 mV. The measured current was then reported

to cell size estimated by capacitance measurement. A new ramp

was performed every 5 s. As previously reported [18], in this

mode, the TRPM4 current develops with time after membrane

break to stabilize within 10 minutes. Biophysical properties were

then estimated after current stabilization. To investigate channels

activation time, a pulse protocol was used from a holding potential

at 0 mV to +80 mV during 100 ms.

For whole-cell recordings, pipette solutions contained (in mM)

156 CsCl, 1 MgCl2 and 10 HEPES (pH adjusted to 7.2 with

CsOH and [Ca2+] 1026 M). Bath and perfused solutions

contained (in mM) 156 NaCl, 5 CaCl2, 10 glucose and 10 HEPES

(pH adjusted to 7.4 with NaOH).

Biotinylation Assay
For biotinylation assay, HEK-293 cells were transiently

transfected with 240 ng of either HA-TRPM4 WT or mutants

cDNAs or the empty vector in a P100 dish (BD Falcon, Durham,

North Carolina, USA) mixed with 100 ul of OPTI-MEM I, 1 ul of

Plus reagent and 3 ul of Lipofectamine LTX (Invitrogen,

Carlsbad, California, USA). The cells were incubated for 48

hours at 37uC with 5% CO2. Following 48 hours of incubation,

HEK-293 cells transiently transfected with either HA-TRPM4

WT or mutant cDNAs or the empty vector were treated with EZ-

linkTM Sulfo-NHS-SS-Biotin (Thermo Scientific, Rockford, Illi-

nois, USA) 0.5 mg/ml in cold PBS for 15 minutes at 4uC.

Subsequently, the cells were washed twice with 200 mM Glycine

in cold PBS and twice with cold 1XPBS to inactivate and remove

the excess biotin, respectively. The cells were then lysed with 16
lysis buffer (50 mM HEPES pH 7.4; 150 mM NaCl; 1.5 mM

MgCl2; 1 mM EGTA pH 8; 10% Glycerol; 1% Triton X-100; 16
Complete Protease Inhibitor Cocktail (Roche, Mannheim, Ger-

many) for 1 hour at 4uC. Cell lysates were centrifuged at 16,000 g

4uC for 15 minutes. Two milligrams of the supernatant was

incubated with 50 ul Streptavidin Sepharose High Performance

beads (GE Healthcare, Uppsala, Sweden) for 2 hours at 4uC, and

the remaining supernatant was kept as the input. The beads were

subsequently washed five times with 16 lysis buffer before elution

with 50 ul of 26 NuPAGE sample buffer (Invitrogen, Carlsbad,

California, USA) plus 100 mM DTT at 37uC for 10 minutes.

These biotinylated fractions were analyzed as TRPM4 expressed

at the cell surface. The input fractions, analyzed as total expression

of TRPM4, were resuspended with 46 NuPAGE Sample Buffer

plus 100 mM DTT to give a concentration of 1 mg/ml and

incubated at 37uC for 10 minutes.

Western Blotting
Both input and biotinylated fractions were analyzed on 8%

polyacrylamide gel and detected with anti-TRPM4 antibody

raised against the C terminal portion of TRPM4 from amino-acids

1138 to 1156 (Pineda, Berlin, Germany) and anti-a-actin A2066

(Sigma, St. Louis, Missouri, USA) antibodies. The blots obtained

were quantified using IGOR Pro (Wavemetrics, Lake Oswego,

Oregon, USA) software.

Statistics
Variant prevalence in the BrS vs control cohorts was tested by

the Fisher exact test and one sided p values are presented in table 1.

Mutant electrophysiological values and quantified bands on

TRPM4 Mutations in Brugada Syndrome
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Western blots were compared to wild type values using a Student t

test with a probability value below 0.05 considered as significant.

Results

Study Subjects and TRPM4 Screening
A cohort of 331 Brugada patients was studied. The diagnosis of

BrS was based on a spontaneous or drug-challenged type 1 ECG

pattern (figure 1A–B). All participants were screened for mutation

in the gene encoding the alpha subunit of the sodium channel gene

(SCN5A) and 83 patients (25%) had a SCN5A variant. These 83

patients were excluded for further study.

The screening of TRPM4 in this cohort of 248 BrS cases with

no SCN5A mutations evidenced 14 heterozygous variants in 25

unrelated individuals (figure 2 A–D). Five of these variants were

considered as mutations on the ground that they changed

conserved amino acids and were absent of our control series and

among European Americans and African Americans controls of

the Exome Variant Server (Table 1, Mutations). In addition, two

variants (p.A432T and p.G844D) were previously reported in

familial autosomal conduction block and their deleterious conse-

quences demonstrated by familial segregation and experimental

analysis [16]. Four variants were considered as putative genetic

BrS predisposing factors on the ground that they changed

conserved amino acids and they were found in the control

population but the prevalence in the BrS cohort was statistically

higher than in the control population (Table 1, Predisposing

factors). Finally, 3 variants were considered as polymorphisms on

the ground that they were found with a similar prevalence in the

BrS cohort and the control populations. All the mutations and

predisposing genetic factors were missense changes but we also

observed a single non-sense variation in the predisposing factor

sub-group (p.K914X). No patients had 2 mutations and/or

predisposing genetic factors.

Table 2 summarizes the clinical data of the 20 TRPM4 variant

carriers. There were many more males than females (18/2). The

average age at diagnosis was 49 years. The circumstances of

discovery were in 9 cases a routine ECG, in 1 case a chest pain, in

9 cases an episode of fainting and in a single case a sudden death.

Three had familial cases of sudden death and in one case the

father’s patient experienced palpitations. Twelve patients had a

spontaneous type 1 Brugada whereas 8 patients had a transition

from type 2 to type 1 induced by drug challenge (ajmaline in 4

cases and flecainide in 4 cases). Only 2 patients (patients 10 and

23) had QRS duration shorter than 100 msec. Ten patients had

an isolated incomplete RBBB whereas 3 had a isolated complete

RBBB. Three patients had a bifascicular block. Finally, a single

case (patient 13) had a prolonged QTc interval (458 ms).

Among the 5 new TRPM4 mutations, 3 were selected for further

electrophysiological and expression testing (P779R, T873I and

L1075P). In addition, 1 variant among the predisposing factor sub-

group, was also selected for further study: the mutation leading to

a stop codon (K914X). These 3 missense mutations gave a

Grantham score [19] of 89 or more. Grantham is a formula

estimating difference between amino acid according to their

physico-chemical properties. In addition, they were found in BrS

patients with no other TRPM4 variants (and no SCN5A variants), a

situation resulting in a simpler correlation between phenotype and

genotype.

Expression of TRPM4 Variants
TRPM4 current detection in the whole-cell

configuration. Wild type (WT) TRPM4 and all mutants

exhibited a characteristic outward rectifying current when

recorded in the whole-cell configuration (figure 3 A).

A significant decrease in current density was detected for

p.Pro779Arg and p.Lys914X transfected cells, in comparison to

WT transfected cells (figure 3 B). The p.Lys914X transfected cells

exhibited a current density similar to non-transfected HEK-293

cells, indicating that the mutant did not induce additional current.

Single channel conductance. In HEK-293 cells stably

expressing wild type TRPM4, a classical TRPM4 single current

was detected in the inside-out configuration (figure 4 A) with a

linear current-voltage relationship, providing a single channel

conductance of 21.160.6 pS (n = 9) in accordance with previous

reports [18,20]. Inside-out patches from p.Lys914X mutant

transfected cells did not exhibit any detectable current (n = 20)

(figure 4 B). Thus, this mutant was not further investigated. All

other mutants provided detectable currents with a current-voltage

relationship satisfactorily fitted to a linear regression (figure 4 B)

providing single channel conductances g similar to WT (figure 4

C).

On single channel traces provided for WT and each mutant in

figure 4, channel activity was higher at Vm = +40 mV than at

240 mV, indicating a channel sensitivity to voltage, a TRPM4

fingerprint.

Anion to cation permeability ratio. The anion to cation

permeability ratio was investigated in inside-out patches. Reducing

internal NaCl concentration from 145 mM to 42 mM shifted the

reversal potential (Vrev). A representative recording is provided for

p.Leu1075Pro (figure 5 A). The reversal potential of 2562 mV

(n = 4) for WT with 42 mM NaCl, corresponds to a permeability

ratio PNa/PCl of 14.2 according to the Goldman Hodgkin Katz

(GHK) equation. All mutants exhibited similar shifts in Vrev

indicating no variation in their permeability ratio (figure 5 B).

Sensitivity to calcium. Reducing internal calcium concen-

tration from 1023 to 1026 M suppressed 95.563.5% of WT

TRPM4 activity (figure 5 C). A similar rapid and reversible

decrease was observed for all mutants, (figure 5 D), indicating that

mutants conserve the TRPM4 sensitivity to calcium.

Sensitivity to voltage. The normalized open probability

(NPo) for each mutant was estimated during ramp protocols,

considering that the single channel conductance is linear in all

cases (see figure 4). NPo was estimated in function of voltage by

transforming the whole-cell current-voltage relationship (I/V) to

an NPo/V curve using the relation NPo = I/gV (figure 5 E). The

curve was then fitted to a Boltzman equation and voltage for half

maximal activation (V1/2) was determined (figure 5 F). V1/2 was

Figure 1. ECG of patient 9 with Brugada features. (A)
Unchallenged and (B) ajmaline-challenged ECG of patient 9 showing
a transition from Brugada type 2 to type 1. Note the characteristic ST
segment elevation in V1, V2 and V3.
doi:10.1371/journal.pone.0054131.g001
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significantly increased for p.Pro779Arg compared to WT, while

other mutants did not exhibited significant changes.

Activation time. Activation time of the current was deter-

mined using a pulse protocol from Vm = 0 to +80 mV (figure S1

A). No significant differences were seen between mutants and WT

(figure S1 B).

Channel detection in the inside-out

configuration. Channel expression was evaluated in the

inside-out configuration by estimating the maximal number of

channels opened at Vm = +40 mV with 1023 M [Ca2+]i. As shown

in figure S2, it was observed a significant decrease in the number

of active channels for p.Pro779Arg compared to WT and as

mentioned before, no active channels were detected for

p.Lys914X. Other mutants did not shown significant variation

with WT.

Total and cell surface expression of TRPM4 mutant

channels. To test whether the BrS mutations altered the

cellular and cell surface expression level of TRPM4 channels,

WT and TRPM4 mutants were transiently transfected in HEK-

293 cells. Forty-eight hours post-transfection, the expression of

TRPM4 channels at the total protein level and at the cell surface

was assessed by quantitative Western blots (figure 6 and figure S3).

Under our migration conditions, two distinct bands representing

fully and core glycosylated forms of TRPM4 were observed. All

mutants showed a significantly altered expression of TRPM4. The

p.Pro779Arg and p.Lys914X mutants showed a decreased of total

expression whereas p.Lys914X was comparable to background

level. With an anti-HA antibody, a shorter band was visible in the

total and the surface expression demonstrating that p.Lys914X

results in the production of a truncated protein (figure S4). By

contrast, the p.Thr873Ile mutant showed a significant increase in

the core glycosylated form (lower band) of total and surface

expressions whereas the p.Leu1075Pro had a significant surface

expression increase.

Discussion

Here, we present a series of genetic variants found in a large

cohort of spontaneous or drug-challenged type 1 BrS patients.

Among the 14 TRPM4 variants, 3 were considered as polymor-

phisms. By contrast, the 11 remaining variants are presumably

pathogenic mutations. Among these 11 mutations, 5 are totally

absent from the very large control cohorts (more than 6 500

individuals), whereas 4 others have a statistically higher prevalence

in the BrS cohort than in the control cohorts. As an autosomal

condition with incomplete penetrance, it is not surprising that

genetic variants resulting in BrS or predisposing to BrS might be

found in large control cohorts. It is important to note that the size

of the BrS and control cohorts allow us to use statistical tests to

assess a difference of variant prevalence between both groups.

The variants p.A432T and p.G844D were previously found in

families with autosomal dominant cardiac conduction blocks [16].

None of the mutation carriers in the conduction block families had

(even retrospectively) an ECG suggestive of a BrS [16].

Interestingly, in this series of 20 BrS cases with TRPM4 mutations

or predisposing factors, 18 patients had a conduction block. The 2

patients with no widening of QRS had a rSr’ complex. This

observation suggests that TRPM4 mutation screening should be

considered in BrS when a widening of QRS or a rSr’ complex is

observed, a condition which not rare in BrS cases. Similar to the

families with cardiac conduction blocks, no cases of left bundle

branch block were observed.

Figure 2. Electrophoregrams of 3 missense mutations and localization of TRPM4 mutations (A–C). Electrophoregrams of 3 mutations. W
for A/T heterozygosity, and Y for C/T. (D): Localization of TRPM4 mutations resulting in conduction blocks (yellow), Brugada syndrome (blue) or both
(green).
doi:10.1371/journal.pone.0054131.g002
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The genetics of BrS is complex with incomplete penetrance and

phenocopies [7]. In addition, the causality link of the SCN5A

variants has been debated [7].It is possible that some BrS cases of

the present cohort carry mutations in one or several of the 10

other BrS susceptibility genes. The prevalence of mutations in

these 10 genes is low compared to the prevalence of SCN5A

mutation which accounts for a maximum of 30% [5]. The sum of

the prevalences of all the so far published gene mutations does

exceed 50% which suggests that about half of BrS cases have

mutation in up to now undiscovered genes. In conclusion, a

TRPM4 mutation was found in 9 of 331 BrS patient (2.7%), and a

mutation or a predisposing factor was found in 11 patients of the

same cohort (3.3%). This suggests that TRPM4 accounts for a

small percentage of BrS, and may thus explain that no mutations

were found in a much smaller series [17].

Among the 4 mutants that were further studied, the most

remarkable mutant is p.Lys914X since, as expected, it did not

produce any current. On Western blots, this mutant gave bands of

the same intensity as mock transfected HEK 293 cells consistent

with endogenous expression of TRPM4 in this cell line [20]

(Amarouch et al., in preparation). Nevertheless, using an anti-HA

antibody (the HA tag is located at the N terminus of transfected

Figure 3. Biophysical properties of WT and mutants TRPM4 channel in whole-cell configuration. (A): Representative current tracings
recorded in the whole cell conditions (ramp protocol under the traces) (B): Mean current density for WT and mutants estimated using the maximal
current recorded during the ending step of 20 ms at Vm = +100 mV (see A) and reported to cell capacitance. *p,0.05, **p,0.01, ***p,0.001,
****p,0.0001, n.s.: not significant. Numbers in bars = number of experiments. Error bar: standard error of the mean.
doi:10.1371/journal.pone.0054131.g003

Figure 4. Single channel currents. Inside-out single channel currents for WT and mutants TRPM4. Representative recordings at Vm = +40 and
240 mV and mean current/voltage relationship of WT (A) and mutants (B). No significant currents were detected for K914X mutant. (C): Single
channel conductance g of WT and mutants. Mean values for 5 to 9 experiments. ND: not determined.
doi:10.1371/journal.pone.0054131.g004

TRPM4 Mutations in Brugada Syndrome

PLOS ONE | www.plosone.org 7 January 2013 | Volume 8 | Issue 1 | e54131



TRPM4), we could detect a clear band corresponding to the

truncated protein in whole cell extract and in the plasma

membrane. Since the nonsense mutation is at the end of the

fourth trans-membrane domain, this protein lacks the 2 last trans-

membrane domains and the extra-cellular segment that forms the

pore region. Hence, it not surprising that no current could be

recorded. It should be stressed though that in our experimental

setting with stable transformed cell lines, we could not evaluate the

consequence of the combined expression of wild type and mutant

TRPM4 channels. Therefore, we cannot be certain that the

K914X variant is a dominant variant.

A decrease in current density was observed for the p.Pro779Arg

mutant. Pro779 is located in the second trans-membrane domain

and changes a hydrophobic residue to a non-hydrophobic residue.

The decrease in current density is probably due to a combination

of the decrease in channel expression evidenced by electrophys-

iological and biochemical assays, and by a modification of channel

voltage sensitivity leading to decreased current at physiological

voltages.

The variants p.Thr873Ile and p.Leu1075Pro showed no

alteration of whole-cell current, single channel properties, and

TRPM4 channel regulation. Western blots showed an increased

Figure 5. Na+/Cl2 permeability ratio and channels regulation. (A): PNa/PCl permeability ratio was estimated by changing the 145 mM NaCl
solution to a 42 mM NaCl solution to measure the shift of the current-voltage relationship. Voltage ramp protocol from Vm = 2100 to +100 mV was
applied as showed for L1075P. (B): Reversal potential (Vrev) was estimated for WT and mutants as showed in A. PNa/PCl was calculated according to the
GHK equation. Similar results were obtained for mutants and WT. (C): Effect of [Ca2+]i on unitary channel activity was evaluated at Vm = +40 mV by
reducing [Ca2+]i from 1023 M to 1026 M. A representative trace is provided for WT. Magnification allows observing single-channel currents. Label ‘‘c’’
indicates the current level corresponding to the closed state of all channels. (D): Mean % of inhibition of channel activity with [Ca2+]i = 1026 M
compare to 1023 M for WT and mutants. No significant differences were detected. (E): Channel sensitivity to voltage was evaluated in the whole-cell
configuration by estimating NPo in function of voltage for each mutant during ramp protocols (see proceedings description in the text) as showed
for WT and P779R. (F): Mean voltage for half maximal activity (V1/2) estimated from traces as showed in E. P779R exhibited a significant increase in V1/

2. ** = significantly different from WT (p,0.01). Numbers in bars = number of experiments.
doi:10.1371/journal.pone.0054131.g005
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surface expression although the full glycosylated expression of

p.Thr873Ile did not reach a statistical threshold.

The mechanisms linking TRPM4 functional alterations and

ECG perturbations observed in BrS remain to be clarified. The

main perturbation characteristic of the pathology is the ST-

segment elevation observed in ECGs. Two models have been

proposed to account for the ST segment elevation in BrS: the

repolarizing disorder and the depolarizing disorder hypothesis

[21].

The repolarizing model is mainly based on the transmural

voltage gradient caused by heterogeneity in action potential (AP)

plateau among cells spanning the ventricular wall. Change in AP

dome depends on modifications of currents activated during the

early repolarization and plateau phases of the AP, mainly Ito, INa

Figure 6. Expression of TRPM4 channel in whole cell extracts and plasma membrane fraction. Several TRPM4 mutants show an alteration
of protein expression at a total level as well as at the cell surface. (A) Whole cell lysates from HEK-293 cells transfected with TRPM4 constructs used as
input, representing the total expression of TRPM4 protein. Quantification of the double bands, presumably fully and core glycosylated forms of
TRPM4, black and white arrrows, respectively, is shown on the bottom panels. (B) The biotinylated fractions from the same transfection represent the
amount of TRPM4 expressed at the cell surface. Quantification of the double bands is shown on the bottom panels. n = 3. *p,0.05, **p,0.01,
***p,0.001. Error bar: standard error of the mean.
doi:10.1371/journal.pone.0054131.g006
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and ICa. TRPM4 may participate in AP shape by promoting the

plateau. Due to its non-selective cationic selectivity, TRPM4

activation drives the membrane potential to 0 mV by conducting

an outward repolarizing K+ current at positive voltages, but an

inward depolarizing Na+ current at negative voltages. Because

TRPM4 is activated by internal Ca2+, it is more likely to activate

during the plateau phase when internal Ca2+ increased and thus

counteracts repolarizing K+ currents. Thereby, modifications of

TRPM4 expression by mutations would change AP dome. This

might explain the effect of mutants leading to increased expression

but not reduced expression since TRPM4 is only weakly expressed

in normal mammalian ventricle [15,16,22].

On the other hand, the depolarizing model depends more on

conduction delay in the right ventricular outflow tract (RVOT)

than differences in AP shape. RVOT perturbations are presented

as a substrate site for ventricular tachyarrhythmias [23,24]. While

TRPM4 is poorly expressed in mammalian ventricle, it is more

expressed in nodal tissue [15,16,25]. Interestingly, the embryologic

origin of RVOT is similar to those of atrioventricular regions [21]

but different from those of ventricles. According to this, TRPM4

might be abundantly expressed in RVOT. It can be speculated

that in analogy to the phenomenon of supernormal excitability

and conduction [26], both a gain-of-function and loss-of-function

of TRPM4 channels may lead to conduction slowing by reducing

the availability of Nav1.5 sodium channels. A gain-of-function

may depolarize the resting membrane potential and thus inactivate

sodium channels, while a loss-of-function could lead to a

hyperpolarization of the membrane potential, and so reduce

cellular excitability and conduction. These putative mechanisms of

action may be the basis of the observed phenotypic overlap found

in patients with SCN5A loss-of-function variants and TRPM4

variants.

In addition to direct effects of TRPM4 mutations cardiac

excitability, one has to consider that these mutants may also have

complex effects leading to BrS related to the fact that TRPM4 is

expressed in a variety of tissues [27]. Mutations may influence

neuro-hormonal regulation or cardiac development [28].

Altogether, this study suggests a role of TRPM4 in BrS

accounting for 2.7 to 6% of cases. In contrast to the first 4 TRPM4

mutations reported in patients with conduction blocks [15,16], the

electrophysiological consequences of the mutations resulting in

BrS is more diverse at least 2 mutations resulting in decreased

current density, 2 mutations with no electrophysiological anom-

alies in this experimental setting, and 2 previously reported

mutations with increased current. The complexity of the induced

disturbances in channel electrophysiology and trafficking is

increased by the genetic heterogeneity of BrS. In particular,

further studies are warranted to improve our understanding of the

interaction between channels that are permeable to sodium and

potassium.

Supporting Information

Figure S1 Activation time. Activation time of the current was

determined in the whole-cell configuration using a pulse protocol

from Vm = 0 to +80 mV. Currents were fitted to a double

exponential to estimate time for half activation. A: Current trace

for WT under a pulse protocol as showed under the trace. B:

Mean time for half activation for WT and mutants. No significant

differences were seen between mutants and WT.

(TIF)

Figure S2 Number of channels per patch detected in
inside-out configuration. Mean number of TRPM4 channels

detected in each inside-out patch at Vm = +40 mV (pipette and

bath: 145 mM NaCl, 1023 M Ca2+). No detectable current was

observed for K914X. Number of experiments on top of bars.

(TIF)

Figure S3 Original western blot pictures that were
including more mutants than presented in figure 6.
Panels are from top to bottom: total expression and anti-TRPM4

antibody, total expression and anti-actin antibody; surface

expression and anti-TRPM4 antibody; surface expression and

anti-actin antibody. Lanes are from left-hand side to right-hand

side: empty plasmid, size marker, wild type TRPM4, and the

following TRPM4 mutants: L138P, R164W, A432T, G737R,

P779R, G844D, T873I, K914X, L941M, L1075P and E7K.

(TIF)

Figure S4 Original pictures of western blots showing
total and surface expression revealed with an anti-HA
antibody. These are the original Western blot pictures that

included the same lanes as in figure S3. The method used is

slightly different than in western blot of figure 6 and S3 in

particular an anti-HA antibody was used instead of an anti-

TRPM4 antibody. Note that a shorter band is clearly visible on the

L914X mutant line suggesting a truncated TRPM4 mutant

present in the total expression but also in the surface expression.

(TIF)
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