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Abstract 

Schizophrenia is a severe mental disorder characterized by positive and negative 

symptoms, such as psychosis and anhedonia, as well as cognitive deficits. Schizophrenia 

affects about 0.5 to 1% of population worldwide, with equal prevalence between the 

genders and different residential environments. That schizophrenia constitutes a 

significant burden for both the affected individuals and for the whole societies has 

encouraged its active research over the past decades. At present, schizophrenia is 

considered a complex disorder of neurodevelopmental origin with both genetic and 

environmental factors contributing to its onset. Despite the established strong genetic 

component, any major genetic determinant has remained unidentified. 

The current hypothesis for schizophrenia liability comprises multiple genetic variants 

with small individual effects in conjunction with environmental factors. These 

combinations of genetic variants may differ substantially between the affected 

individuals, especially between the families not sharing the same ancestry. On the other 

hand, the same variants may cause different disorders depending on their combinations. 

Although a number of candidate genes for schizophrenia have been highlighted, only 

very few schizophrenia patients are likely to share identical genetic liability. 

Close relatives of schizophrenia patients have an elevated risk for both schizophrenia 

and so-called schizophrenia spectrum disorders. This favors the use of family samples in 

genetic studies of schizophrenia. Furthermore, samples collected from isolated 

populations with increased genetic homogeneity may assist in identification of 

predisposing variants. This study is based on the nation-wide schizophrenia family 

sample of the National Institute for Health and Welfare. This wide series, collected from 

the relatively isolated Finnish population with limited genetic variation, represents one 

of the largest and most well-characterized familial series in the world. 

In the first part of this study, we investigated the roles of the Dystrobrevin binding 

protein 1 (DTNBP1), Neuregulin 1 (NRG1), and V-akt murine thymoma viral oncogene 

homolog 1 (AKT1) genes in the background of schizophrenia in Finland. Although these 

genes are associated with schizophrenia liability in several populations, any significant 

association with clinical diagnostic information of schizophrenia remained absent in our 

sample of 441 schizophrenia families. Therefore, our study provides no support for any 

major role of these genes behind schizophrenia in the Finnish population. 

In the second part of this study, we first replicated schizophrenia linkage on the long arm 

of chromosome 7 in 352 schizophrenia families. In the following association analysis, 

we utilized additional clinical disorder features and intermediate phenotypes—

endophenotypes—in addition to diagnostic information from altogether 290 

neuropsychologically assessed schizophrenia families. An intragenic short tandem repeat 

(STR) allele of the regional Reelin (RELN) gene, supposed to play a role in the 



 

background of several neurodevelopmental disorders, showed significant association 

with poorer cognitive functioning and more severe schizophrenia symptoms. 

Importantly, the effect of the risk allele on cognition was replicated in an independent 

subsample, and interestingly, its effect was stronger among the individuals affected with 

psychosis in the whole sample. Although any significant association with the clinical 

diagnoses remained absent, this risk allele was significantly more prevalent among the 

individuals affected with schizophrenia spectrum disorders. Our results support the 

involvement of RELN in schizophrenia liability, and especially, its role as a genetic 

modifier of the disorder features. 

The wide spectrum of additional diagnostic information available in altogether 293 

schizophrenia families was further utilized in the last part of this study. We have 

previously identified linkage of schizophrenia and its cognitive endophenotypes on the 

long arms of chromosomes 2, 4, and 5. Here, we selected altogether 104 functionally 

relevant candidate genes from the linked regions, and performed association analysis of 

clinical diagnostic categories, clinical disorder features, and several endophenotypic 

traits representing the central cognitive functions impaired in schizophrenia. Our 

approach allowed identification of several promising associations, of which especially 

interesting are the Verb-a erythroblastic leukemia viral oncogene homolog 4 (ERBB4) 

gene, showing association with the severity of schizophrenia symptoms and impairments 

in traits related to verbal abilities, and the Glutamate receptor, ionotropic, AMPA 1 

(GRIA1) gene, showing association with the severity of schizophrenia symptoms. 

This study supports the view that due to the heterogeneity of the disorder, sole clinical 

diagnostic information may be insufficient for detection of all predisposing variants for 

schizophrenia, and supposedly, for psychiatric disorders overall. Our results extend the 

previous evidence that the genetic risk for schizophrenia is at least partially mediated via 

the effects of the candidate genes and their combinations on relevant brain systems, 

resulting in alterations in different disorder domains, such as the cognitive deficits. 

Therefore, these results encourage the use of detailed disorder-related features and 

intermediate factors to extract maximal information from the study material in the search 

for specific risk variants. 
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Tiivistelmä 

Skitsofrenia on vakava mielenterveyden häiriö, jonka keskeisiä piirteitä ovat positiiviset 

ja negatiiviset oireet, kuten aistiharhat ja tunteiden latistuminen, sekä heikentynyt 

kognitiivinen suoriutuminen. Skitsofrenia alkaa yleensä nuorella aikuisiällä ja siihen 

sairastuu elinaikanaan arviolta 0,5-1,0 % maailman väestöstä. Skitsofrenian 

esiintyvyydessä ei ole merkittävää eroa eri sukupuolten tai maantieteellisten alueiden 

välillä. Sairauden aiheuttama merkittävä sekä inhimillinen että yhteiskunnallinen taakka 

ovat kannustaneet taudin aktiiviseen tutkimukseen viimeisten vuosikymmenien aikana. 

Nykykäsityksen mukaan skitsofrenia on keskushermoston kehityshäiriöstä johtuva 

monitekijäinen sairaus, jonka puhkeamiseen vaikuttavat sekä perimä että 

ympäristötekijät. Vaikka skitsofreniaan liittyy vahva geneettinen alttius, yksittäisiä 

korkean riskin alttiusgeenejä ei ole toistaiseksi tunnistettu. 

Skitsofrenian taustalla oleva perinnöllinen alttius johtuu todennäköisesti useiden eri 

geenien vaikutuksesta. Vaikka yksittäisiin alttiusgeeneihin liittyvä sairastumisriski on 

luultavasti matala, useiden alttiusgeenien skitsofrenialle altistavat muodot voivat yhdessä 

vaikuttaa merkittävästi yksilön sairastumisriskiin. Siten erilaiset geenimuodot ja niiden 

yhdistelmät voivat vaihdella huomattavastikin paitsi sairastuneiden henkilöiden myös eri 

väestöjen välillä. Toisaalta samojen geenimuotojen eri yhdistelmät saattavat altistaa 

skitsofrenian lisäksi myös muille vakaville mielenterveyden häiriöille. Vaikka lukuisia 

skitsofrenialle altistavia geenimuotoja on tunnistettu, todennäköisesti vain harvoilla 

sairastuneilla on taudin taustalla samanlainen altistavien geenimuotojen yhdistelmä. 

Skitsofreniaan sairastuneiden henkilöiden lähisukulaisilla on lisääntynyt riski sairastua 

sekä skitsofreniaan että muihin niin kutsuttuihin skitsofreniakirjon sairauksiin. Tämän 

vuoksi perheaineistojen käyttö voi auttaa skitsofrenialle altistavien geenimuotojen 

tunnistamisessa. Väestötasolla geneettinen samankaltaisuus vaikuttaa merkittävästi myös 

sairauksiin liittyvien alttiusgeenien kirjoon. Siten asutushistoriansa vuoksi 

eristäytyneiden väestöryhmien, kuten suomalaisten, geneettisen vaihtelun vähäisyys voi 

auttaa alttiusgeenien tunnistamisessa. Tämä tutkimus perustuu Terveyden ja 

hyvinvoinnin laitoksen keräämään suomalaiseen skitsofreniaperheaineistoon, joka on 

paitsi laajuudeltaan myös suomalaisen väestön geneettiset erityispiirteet huomioiden 

merkittävä koko maailmankin mittakaavassa. 

Tutkimuksen ensimmäisessä osatyössä kartoitettiin Dystrobrevin binding protein 1 

(DTNBP1), Neuregulin 1 (NRG1) ja V-akt murine thymoma viral oncogene homolog 1 

(AKT1) -geenien merkitystä skitsofrenian taustalla. Vaikka näiden geenien eri muodot on 

yhdistetty lisääntyneeseen skitsofreniariskiin useissa eri väestöryhmissä, 

tutkimuksessamme ei havattu merkittävää yhteyttä sairauden ja kyseisten geenien välillä 

441 perheen aineistossamme. Siten tulosten perusteella vaikuttaa todennäköiseltä, että 

tutkitut skitsofrenian alttiusgeenit eivät selitä merkittävästi skitsofrenian 

sairastumisriskiä suomalaisessa väestössä. 



 

Tutkimuksen toisessa ja kolmannessa osatyössä toistimme aluksi 352 perheen 

aineistossa skitsofreniakytkennän kromosomin 7 pitkän käsivarren alueelle. Seuraavassa 

vaiheessa hyödynsimme sairausdiagnoositiedon lisäksi erilaisiin kliinisiin 

sairauspiirteisiin ja välimuotoisiin ilmiasupiirteisiin—endofenotyyppeihin—perustuvia 

muuttujia yhteensä 290 neuropsykologisesti testatun perheen aineistossa. Havaitsimme 

kytkeytyvällä kromosomialueella sijaitsevassa Reelin (RELN) -geenissä sijaitsevan 

geenimerkin yhdistyvän sekä heikentyneeseen kognitiiviseen suoriutumiseen että 

vaikeampiin skitsofreniaoireisiin. Aikaisemman tutkimustiedon valossa RELN-geenin eri 

muodot vaikuttavat useiden keskushermoston kehityksellisten sairauksien taustalla. 

Tutkimuksessamme havaitun riskialleelin vaikutus toistui myös riippumattomassa 

aineistossa ja sen vaikutus oli voimakkaampi psykoottistasoiseen mielenterveyden 

häiriöön sairastuneiden keskuudessa. Vaikka merkittävää yhteyttä skitsofrenian 

kliiniseen diagnoosiin ei havaittu, tunnistettu riskialleeli oli yleisempi skitsofreniakirjon 

sairauksia sairastavien keskuudessa. Tuloksemme tukevat täten RELN-geenin merkitystä 

skitsofrenian taustalla ja erityisesti tautiin liittyvien piirteiden muokkaajana. 

Aineistomme yhteensä 293 perheestä saatavilla olevia ilmiasumuuttujia hyödynnettiin 

myös tutkimuksemme viimeisessä osiossa. Tutkimusryhmämme on aiemmin havainnut 

sekä skitsofrenian että sen kognitiivisten endofenotyyppien kytkeytymisen kromosomien 

2, 4 ja 5 pitkien käsivarsien alueelle. Valitsimme näiltä alueilta yhteensä 104 geeniä, 

joilla voi tunnettujen toimintojensa perusteella olla merkitystä skitsofrenian taustalla. 

Kyseisten geenien ja skitsofrenian yhteyden tutkimisessa hyödynnettiin sekä 

sairausdiagnoositietoja että kliinisiin sairauspiirteisiin ja kognitiivisiin 

endofenotyyppeihin perustuvia muuttujia. Havaitsimme lukuisia lupaavia yhteyksiä 

geeneihin, joista erityisen merkittäviä olivat V-erb-a erythroblastic leukemia viral 

oncogene homolog 4 (ERBB4), joka yhdistyi vaikeampiin skitsofreniaoireisiin ja 

heikentyneeseen kielelliseen suoriutumiseen, sekä Glutamate receptor, ionotropic, 

AMPA 1 (GRIA1), joka yhdistyi vaikeampiin skitsofreniaoireisiin. 

Tutkimuksemme tukee näkemystä, että skitsofrenian monimuotoisuudesta johtuen 

kliininen sairausdiagnoosi voi olla tutkimuksellisena mittarina liian karkea kaikkien 

tautiin liittyvien alttiusgeenien tunnistamiseksi. Siten yksityiskohtaisemmat kliiniset 

sairauspiirteet ja välimuotoiset ilmiasupiirteet eli endofenotyypit voivat auttaa paitsi 

skitsofrenialle myös mahdollisesti muillekin psykiatrisille sairauksille altistavien 

geenimuotojen tunnistamisessa. Tuloksemme tukevat aikaisempaa arviota skitsofrenian 

geenitaustan monimuotoisuudesta. Tutkimuksemme perusteella  skitsofrenian 

geneettinen tausta voi ainakin osin selittyä yksittäisten geenien vaikutuksella 

keskushermoston kehitykseen ja toimintoihin, mikä voi ilmetä erityisesti vaihteluna 

sairauteen liittyvissä piirteissä, kuten kognitiivisissa toiminnoissa. Tämän vuoksi 

tutkimustuloksemme rohkaisevat käyttämään monitekijäisen taudin alttiusgeenien 

tunnistamisessa erilaisia sairauteen liittyviä piirteitä ja välillisiä muuttujia, jotka 

mahdollistavat paitsi tutkimusaineiston tehokkaamman hyödyntämisen myös 

todennäköisesti sairauksien ilmiasuja muokkaavien geenien tunnistamisen. 
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Abbreviations 

α3β1 Alpha-3-beta-1 integrin receptor 

A adenine 

ACSL3 Acyl-CoA synthetase long-chain family member 3 

AF all Finland (outside internal isolate) 

AKT1 V-akt murine thymoma viral oncogene homolog 1 

ALL whole sample 

ANYPSY psychotic disorders 

AOO age of onset 

APOE Apolipoprotein E 

ApoER2 Apolipoprotein E receptor 2 

C cytosine 

CAMK2A Calcium/calmodulin-dependent protein kinase II alpha 

CAMK2D Calcium/calmodulin-dependent protein kinase II delta 

CENTD3 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 3 

CEPH Centre d'Etude du Polymorphisme Humain 

CFLAR CASP8 and FADD-like apoptosis regulator 

CHLC Cooperative Human Linkage Center 

CHRNA7 Cholinergic receptor, nicotinic, alpha 7 

CI confidence interval 

cM centiMorgan 

CNS central nervous system 

CNV copy number variation 

COMT Catechol-O-methyltransferase 

CORESCH schizophrenia 

CSNK1A1 Casein kinase 1, alpha 1 

CTRL control sample 

CVLT California Verbal Learning Test 

CYP27A1 Cytochrome P450, family 27, subfamily A, polypeptide 1 

DAO D-amino-acid oxidase 

DAOA D-amino acid oxidase activator 

DGCR2 DiGeorge syndrome critical region gene 2 

DISC1 Disrupted in schizophrenia 1 

DISC2 Disrupted in schizophrenia 2 

DLX1 Distal-less homeobox 1 

DNA deoxyribonucleic acid 

DR delayed recall of a story 

DRD1 Dopamine receptor D1 

DRD2 Dopamine receptor D2 

DRD3 Dopamine receptor D3 

DRD4 Dopamine receptor D4 

DSM-IV Diagnostic and Statistical Manual for Mental Disorders, fourth edition  

DTNBP1 Dystrobrevin binding protein 1 

DV delayed visual recall 

EF executive functioning 

EPHA4 EPH receptor A4 

EPHA5 EPH receptor A5 
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ERBB4 V-erb-a erythroblastic leukemia viral oncogene homolog 4 

EREG Epiregulin 

Fam families 

FN1 Fibronectin 1 

G guanine 

GABA gamma-aminobutyric acid 

GABRB2 Gamma-aminobutyric acid (GABA) A receptor, beta 2 

GAD1 Glutamate decarboxylase 1 

GEE Generalized Estimation Equation Model 

GPRIN3 G protein regulated inducer of neurite outgrowth 3 

GRIA1 Glutamate receptor, ionotropic, AMPA 1 

GRID2 Glutamate receptor, ionotropic, delta 2 

GRIN N-methyl D-aspartate glutamate receptor 

GRIN2B Glutamate receptor, ionotropic, N-methyl D-aspartate 2B 

GRM3 Glutamate receptor, metabotropic 3 

HBEGF Heparin-binding EGF-like growth factor 

HDAC3 Histone deacetylase 3 

HDAC4 Histone deacetylase 4 

HGNC HUGO Gene Nomenclature Committee 

hME homogenous Mass Extend 

HP Haptoglobin 

HTR2A 5-hydroxytryptamine (serotonin) receptor 2A 

HUGO Human Genome Organisation 

HWE Hardy-Weinberg equilibrium 

ICD-10 International Classification of Diseases, tenth edition 

ID identification 

IL1B Interleukin 1, beta 

Ind individuals 

IR immediate recall of a story 

IRE intrusive recall errors 

IS internal isolate 

IV immediate visual recall 

KIF1A Kinesin family member 1A 

KLF7 Kruppel-like factor 7 

L verbal learning 

LC liability class 

LD linkage disequilibrium 

LDe recalling words after long delay 

LOD logarithm of odds 

MAF minor allele frequency 

Mb megabase 

MHC major histocompatibility complex 

miRNA micro ribonucleic acid 

MLS maximum likelihood score 

MMN mismatch negativity 

mRNA messenger ribonucleic acid 

MT mental tracking 

mtDNA mitochondrial deoxyribonucleic acid 

MTHFR 5,10-methylenetetrahydrofolate reductase 
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NA not available/not applicable/not assessed 

NAP1L5 Nucleosome assembly protein 1-like 5 

NCBI National Center for Biotechnology Information 

NDUFS1 NADH dehydrogenase (ubiquinone) Fe-S protein 1 

NK not known 

NP neuropsychological tests 

NPL non-parametric linkage 

NR3C1 Nuclear receptor subfamily 3, group C, member 1 

NRG1 Neuregulin 1 

NRP2 Neuropilin 2 

ns not significant 

OMIM Online Mendelian Inheritance in Man 

OPCML Opioid binding protein/cell adhesion molecule-like 

OPCRIT Operational Criteria Checklist 

OR odds ratio 

P300 event-related potential, 300 ms 

P50 event-related potential, 50 ms 

PAX3 Paired box 3 

PCP phencyclidine 

PCR polymerase chain reaction 

PLXNA2 Plexin A2 

PPP2R2B Protein phosphatase 2, regulatory subunit B, beta isoform 

PPP3CC Protein phosphatase 3, catalytic subunit, gamma isoform 

PRE perseverative recall errors 

pre-mRNA precursor messenger ribonucleic acid 

PRODH Proline dehydrogenase (oxidase) 1 

PS processing speed 

PURA Purine-rich element binding protein A 

RAD50 RAD50 homolog 

RASGEF1B RasGEF domain family, member 1B 

RELN Reelin 

RGS4 Regulator of G-protein signaling 4 

RNA ribonucleic acid  

RPGRIP1L Retinitis pigmentosa GTPase regulator interacting protein 1 -like 

rRNA ribosomal ribonucleic acid 

RS replication sample 

S Stroop interference score 

SANS Scale for the Assessment of Negative Symptoms 

SAPS Scale for the Assessment of Positive Symptoms 

SC semantic clustering 

SCHSPECT schizophrenia spectrum disorders 

SCID-I Structured Clinical Interview for DSM-IV 

SDe recalling words after short delay 

SEMA3A Semaphorin 3A 

SEPT11 Septin 11 

SERPINE2 Serpin peptidase inhibitor, clade E, member 2 

siRNA small interfering ribonucleic acid 

SLC18A1 Solute carrier family 18, member 1 

SLC4A4 Solute carrier family 4, sodium bicarbonate cotransporter, member 4 
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SNP single nucleotide polymorphism 

SPEC2 CDC42 small effector 2 

STR short tandem repeat 

T thymine 

TACR3 Tachykinin receptor 3 

tagSNP tagging single nucleotide polymorphism 

TMT Trail Making Test 

TP53 Tumor protein p53 

TPH1 Tryptophan hydroxylase 1 

tRNA transfer ribonucleic acid 

TSNAX Translin-associated factor X 

U uracil 

UGT2A1 UDP glucuronosyltransferase 2 family, polypeptide A1 

UTR untranslated region 

VCFS Velocardiofacial syndrome 

VeAb verbal ability 

VeAt verbal attention 

VeWM verbal working memory 

ViAt visual attention 

ViWM visual working memory 

VLDLR Very-low-density lipoprotein receptor 

WAIS-R Wechsler Adult Intelligence Scale-Revised 

WMS-R Wechsler Memory Scale-Revised 

ZCD2 CDGSH iron sulfur domain 2 

ZNF804A Zinc finger protein 804A 

 

The gene names are in italics and protein names capitalized. 
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1 Introduction 

Schizophrenia [OMIM 181500] is a severe mental disorder affecting about 0.5 to 1% of 

the population worldwide. It thus constitutes a significant burden for not only the 

affected individuals but also for the whole societies. Schizophrenia is characterized by 

positive symptoms, such as paranoia, hallucinations, and delusions, and negative 

symptoms, such as avolition, anhedonia, and thought poverty, as well as cognitive 

dysfunction affecting especially attention, working memory, and executive functioning. 

Treatment of these severe and usually highly disabling symptoms is challenging, as the 

present medication options lessen primarily the positive symptoms without any major 

improvement on the cognitive performance (Mueser et al. 2004, Tandon et al. 2009). 

Currently, schizophrenia is considered a complex disorder of neurodevelopmental origin, 

its onset being contributed by both genetic and environmental factors. Despite the active 

research over the past decades, characterization of these predisposing factors has proven 

challenging (Rapoport et al. 2005, Keshavan et al. 2008). Despite the large number of 

chromosomal regions, candidate genes, and genetic factors suggested, their detailed roles 

at the population level remain mostly undetermined. The knowledge on specific 

underlying mechanisms could help, however, to understand the disorder 

pathophysiology, and to develop more accurate diagnostic procedures and treatment 

options. 

In Finland, the founder effect arising from the small number of original settlers, the 

genetic bottlenecks causing random sampling to small subgroups, the genetic drift 

causing changes in gene variant frequencies, and the long-lasting isolation of the 

population have affected the Finnish gene pool (Norio 2003b). This population history 

has formed the basis for the enrichment of some rare genetic variants causative for 

nearly 40 rare monogenic disorders, together referred to as the Finnish Disease Heritage 

(Norio 2003a). Putatively, these same mechanisms may result in enrichment of disease 

alleles predisposing to complex disorders as well. This population feature, combined 

with the well-documented Finnish population history, extensive medical and parish 

registers, and relatively uniform cultural and social environment, makes the Finns an 

excellent study population for complex genetic studies. Furthermore, general attitude 

towards medical research is supportive in Finland, diminishing the possibility of 

distortion in population-wide sample collection (Peltonen et al. 2000). The schizophrenia 

family sample of the National Institute for Health and Welfare has already proven 

successful especially in studies of the Disrupted in schizophrenia 1 (DISC1) gene, 

currently considered one of the most promising candidate genes for schizophrenia 

(Hennah et al. 2006). 

The aim of this study was to search for novel genetic variants behind schizophrenia, as 

well as to further characterize the role of the variants already highlighted in studies of 

other populations. 
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2 Review of the literature 

2.1 Schizophrenia 

2.1.1 History 

As none of the known ancient texts evidently refers to schizophrenia, no conclusive 

proof of its origin exists. The worldwide occurrence of schizophrenia supports, however, 

the view of its long-lasting presence among mankind (Gottesman 1991). 

In 1809, John Haslam (1764-1844) in England, and Philippe Pinel (1745-1826) in 

France, made independently of each other the first clinically adequate descriptions of 

schizophrenia. Thereafter, both the number of studies describing the disorder with 

varying names and the number of diagnosed patients increased rapidly. In 1852, 

Benedict Morel (1809-1873) in France described for the first time schizophrenia with the 

term démence précoce (in Latin, dementia praecox). The term dementia praecox was 

later used in Germany by Emil Kraepelin (1856-1926), whose definitive work in 

categorization of the disorder symptoms and characteristics established the basis for the 

present diagnostic criteria. Later in 1908 in Switzerland, Eugen Bleuler (1857-1939) 

tried to introduce a new view on the symptom categories and renamed the disorder as 

schizophrenia. Although this term became later internationally accepted, the modern 

diagnostic systems are more based on Kraepelin's work (Gottesman 1991). 

 

2.1.2 Diagnosis 

Currently, two diagnostic systems are used: the International Classification of Diseases, 

tenth edition (ICD-10) (World Health Organization 1992), and the Diagnostic and 

Statistical Manual for Mental Disorders, fourth edition (DSM-IV) (American Psychiatric 

Association 1994). In Europe, ICD-10 is the official system in clinical practice, while 

DSM-IV is widely used in scientific research. In both criteria, the diagnosis is based on 

different categories and subcategories of the disorder characteristics, of which a certain 

minimum number need to be met. One of the main differences between the systems is 

the requirement for symptom duration for at least six months in DSM-IV but not in 

ICD-10. In practice, however, the differences between the systems are minor (Jager et al. 

2004). As any specific clinical or laboratory test for schizophrenia remain non-existent, 

the diagnostic assessment is based on subjective symptoms experienced by the patient, 

objective symptoms observed by the physicians, and long-term information on the 

symptoms documented in the patient's medical records (Table 1). 
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Table 1. The DSM-IV diagnostic criteria for schizophrenia (American Psychiatric 

Association 1994). 

A. Characteristic symptoms: Two (or more) of the following, each present for a 

significant portion of time during a 1-month period (or less if successfully treated): 

 

 Delusions 

 Hallucinations 

 Disorganized speech (e.g., frequent derailment or incoherence) 

 Grossly disorganized or catatonic behavior 

 Negative symptoms (i.e., affective flattening, alogia, or avolition) 

 

Only one Criterion A symptom is required if delusions are bizarre or hallucinations 

consist of a voice keeping up a running commentary on the person's behavior or 

thoughts, or two or more voices conversing with each other. 

 

B. Social/occupational dysfunction: For a significant portion of the time since the onset 

of the disturbance, one or more major areas of functioning such as work, interpersonal 

relations, or self-care are markedly below the level achieved prior to the onset (or when 

the onset is in childhood or adolescence, failure to achieve expected level of 

interpersonal, academic, or occupational achievement). 

 

C. Duration: Continuous signs of the disturbance persist for at least 6 months. This 6-

month period must include at least 1 month of symptoms (or less if successfully 

treated) that meet Criterion A (i.e., active-phase symptoms) and may include periods of 

prodromal or residual symptoms. During these prodromal or residual periods, the signs 

of the disturbance may be manifested by only negative symptoms or two or more 

symptoms listed in Criterion A present in an attenuated form (e.g., odd beliefs, unusual 

perceptual experiences). 

 

D. Schizoaffective and Mood Disorder exclusion: Schizoaffective Disorder and Mood 

Disorder With Psychotic Features have been ruled out because either (1) no Major 

Depressive Episode, Manic Episode, or Mixed Episode have occurred concurrently 

with the active-phase symptoms; or (2) if mood episodes have occurred during active-

phase symptoms, their total duration has been brief relative to the duration of the active 

and residual periods. 

 

E. Substance/general medical condition exclusion: The disturbance is not due to the 

direct physiological effects of a substance (e.g., a drug of abuse, a medication) or a 

general medical condition. 

 

F. Relationship to a Pervasive Developmental Disorder: If there is a history of Autistic 

Disorder or another Pervasive Developmental Disorder, the additional diagnosis of 

Schizophrenia is made only if prominent delusions or hallucinations are also present 

for at least a month (or less if successfully treated). 
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2.1.3 Clinical features 

Schizophrenia symptoms can be divided according to their emergence. Even before any 

actual symptoms, patients may develop some strange emotions in relation to self and/or 

environment (Huber et al. 1980). Later on, before the first acute phase of the disorder, 

patients usually experience some prodromal symptoms for a few days to several years. 

These include, for instance, neurotic symptoms (e.g., anxiety), mood symptoms (e.g., 

depression), cognitive symptoms (e.g., difficulties to concentrate), perceptional 

symptoms, apathy, sleep disturbances, and behavioral changes (suspiciousness, social 

withdrawal, etc.) (Yung et al. 1996). 

In acute phase, the most prominent symptoms are the positive symptoms, the most 

characteristic features of schizophrenia. These include, for instance, hallucinations, 

delusions, paranoia, incoherence of behavior, and inconsistence of speech (Mueser et al. 

2004, Tandon et al. 2009). 

The acute phase is usually followed by stabilization of the disorder, which may typically 

last for several months. In this phase, the negative symptoms usually strengthen. These 

symptoms include, for instance, avolition, anhedonia, thought poverty, and speech 

impoverishment (Mueser et al. 2004, Tandon et al. 2009). 

During the stabilization phase, patients are still prone to acute phases with positive 

symptoms dominating, and these two phases may alternate repeatedly. Later on, patients 

may attain a steady state in the course of the disorder, and may even be able to return 

back to work and/or other normal everyday activities. The overall performance usually 

remains, however, at a lower level than before the disorder onset, and typically shows no 

major improvement with time (Mueser et al. 2004, Tandon et al. 2009). 

 

2.1.4 Endophenotypes 

By definition, endophenotypes are intermediate factors between the clinical phenotype 

and the genotype. They are measurable but not directly detectable without "an aided eye" 

(Gottesman et al. 2003). Endophenotypes are assumed to involve same biological 

pathways as the disorder but to be related more closely to relevant gene effects and 

involve simpler etiological background (Gottesman et al. 2003, Braff et al. 2007). 

Therefore, a disorder endophenotype should (Gottesman et al. 2003): 

 associate with the disorder in the population 

 be heritable 

 be state-independent, that is, manifest independently of the disorder phase 

 co-segregate with the disorder in families 

 manifest in unaffected family members of patients at a higher rate than in the 

general population 

In addition to positive and negative symptoms, schizophrenia patients usually have 

generalized cognitive impairment with deficits especially in attention, working memory, 

verbal learning and memory, information processing, and executive functioning 

(Heinrichs et al. 1998). Most of these deficits exist even before the first acute phase of 

the disorder, during which they rapidly deteriorate. Later, these deficits stabilize at a 

lower level than before the disorder onset and show no recovery thereafter (Heaton et al. 

2001) (Figure 1). 
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These cognitive features appear also in milder forms in healthy relatives of the patients 

(Hoti et al. 2004), and are heritable (Tuulio-Henriksson et al. 2002, Greenwood et al. 

2007), which implies their genetic background (Toulopoulou et al. 2007). Therefore, 

traits derived from neuropsychological tests measuring these cognitive functions have 

been suggested as valid endophenotypes for schizophrenia (Gur et al. 2007), as well as 

other psychotic disorders (Antila et al. 2007). 

Other suggested endophenotypic traits for schizophrenia include different 

electrophysiological measurements of the brain activity, especially the event-related 

potentials P50 (Patterson et al. 2008), P300 (Bramon et al. 2004), and mismatch 

negativity (MMN) (Umbricht et al. 2005). Of these, the P50 and P300 are voltage 

deflections occurring roughly 50 ms and 300 ms after auditory stimulus as recorded in 

electroencephalography (Bramon et al. 2004). Although MMN resembles these, it is 

generated only if the stimulus is different from those preceding it (Umbricht et al. 2005). 

Other potential endophenotypic features include eye-tracking abnormalities (Kathmann 

et al. 2003), different pharmacological measurements, such as medication responses 

(Garver et al. 2000), and physical measurements of the brain concerning, for instance, 

cortical gray matter and both inter- and intrahemispheric white matter (Cannon et al. 

2002, Tanskanen et al. 2008). 

 

Figure 1. The average overall cognitive performance level in affected and unaffected 

individuals according to age. The performance level of an affected individual is usually 

slightly decreased even before the schizophrenia onset, and at the onset, the performance 

level usually drops quickly, showing no recovery thereafter (Heaton et al. 2001). 
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2.1.5 Pathophysiology 

Although several brain abnormalities have been described in schizophrenia, these 

features are usually slight at the individual level. None of these abnormalities are 

specific for schizophrenia, therefore providing no support for diagnostics. Despite the 

observed brain abnormalities, the incidence of neurodegenerative disorders in 

schizophrenia patients is comparable with that of general population (Baldessarini et al. 

1997). 

At the macroscopic level of the brain in schizophrenia patients, the total cerebral volume 

is smaller, the total ventricular volume is larger, the total cortical grey matter is reduced, 

and the hemispheric asymmetry is reduced. There is no large-scale neuronal loss, 

however. As for the specific brain structures, most of the size aberrations concentrate in 

hippocampus, thalamus, amygdala, superior temporal gyri, and frontal and temporal 

cortex (Wright et al. 2000, Honea et al. 2005, Steen et al. 2006, Keshavan et al. 2008). 

At the microscopic level of the brain in schizophrenia patients, the abnormal distribution 

of neurons especially in the layer II of the cortex and in the interstitial white matter, 

smaller size of the pyramidal cells, decreased number of the dendrites and interneurons, 

and reduced number and functionality of the oligodendrocytes emerge. In synapses, 

synaptic terminals have revealed only minor morphological changes (Harrison 1999, 

Harrison et al. 2005, Keshavan et al. 2008). 

At the molecular level, several specific neurotransmitter systems seem to be affected, 

including dopaminergic neurons in the prefrontal cortex and striatum, glutamatergic 

neurons in the hippocampus and prefrontal cortex, and gamma-aminobutyric acidergic 

(GABAergic) and glutamatergic neurons in the dorsolateral prefrontal cortex (Harrison 

et al. 2005, Keshavan et al. 2008). However, whether these changes are primary features 

of the disorder or merely reflections of the fundamental neuropathology remains still 

somewhat unclear. 

 

2.1.6 Epidemiology 

The lifetime prevalence of schizophrenia varies from 0.2% to 1.2% worldwide with no 

significant differences between urban, rural, or mixed geographical regions. The 

prevalence seems to be lower in the least developed countries, although the possibility of 

an underlying statistical bias based on, for instance, under-diagnosing the disorder, must 

be taken into account. Additionally, the prevalence among migrants is 1.8 times higher 

when compared to natives (Saha et al. 2005). Interestingly, schizophrenia prevalence has 

shown no significant changes over time despite the schizophrenia patients having fewer 

offspring than the general population (McGrath et al. 1999). 

Although schizophrenia is equally prevalent in men and women (Saha et al. 2005), men 

tend to have more severe course of the disorder (Castle et al. 1995). In addition, the 

average age of onset varies between the genders, being early twenties in men, and mid-

to-late twenties in women, with the second peak of onset in women being at the age of 

menopause (Castle et al. 1995). 

Heritability is defined as the proportion of phenotypic variation in the population which 

is attributable to genetic factors (Visscher et al. 2008). For schizophrenia, the heritability 

estimates among twins are as high as 83% to 88%, implying strong genetic background 
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(Cardno et al. 2000). This is supported by adoption studies revealing risk connection 

between biological relatives but not adoptive relatives of the schizophrenia patients 

(Tienari et al. 2004). Although close relatives of schizophrenia patients have 

substantially elevated risk for schizophrenia, and the amount of affected siblings elevates 

the risk (Hovatta et al. 1997), the risk diminishes rapidly in more distant relatives 

(Gottesman 1991, Tsuang 2000) (Table 2). Additionally, the majority of schizophrenia 

patients belong to families with no known history of the disorder or other psychotic 

conditions (Gottesman 1991, Tsuang 2000). 

In addition to schizophrenia itself (the "core schizophrenia"), the incidence of so-called 

schizophrenia spectrum disorders is elevated among the close relatives of schizophrenia 

patients (Kendler et al. 1993a, Kendler et al. 1993b, Kendler et al. 1993c, Kendler et al. 

1993d). Although different criteria exist concerning the disorders belonging to the 

spectrum, the broad definition used by our research group comprises schizoaffective, 

schizophreniform, delusional and brief psychotic disorders, and schizoid, schizotypal 

and paranoid personality disorders, as well as psychotic disorder not otherwise specified. 

The view that all these disorders likely share at least some factors in their 

pathophysiological and genetic background is further supported by the Finnish Adoptive 

Family Study of Schizophrenia, showing broadly dispersed liability for several 

schizophrenia-related disorders (Tienari et al. 2003). 

The genetics of schizophrenia is discussed in chapter 2.4. 

 

Table 2. Morbid risks of schizophrenia. Adapted from (Tsuang 2000). 

Relationship Shared genes Risk 

General population NA 1% 

Spouses of patients NA 2% 

Third-degree relatives 12.5%  

 First cousins  2% 

Second-degree relatives 25%  

 Uncles/aunts  2% 

 Nieces/nephews  4% 

 Grandchildren  5% 

 Half-siblings  6% 

First-degree relatives 50%  

 Parents  6% 

 Siblings  9% 

 Children  13% 

 Siblings with 1 schizophrenic parent  17% 

 Dizygotic twin  17% 

Monozygotic twin 100% 48% 

Children with 2 schizophrenic parents 100% 46% 

Abbreviations: NA, not applicable 
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2.1.7 Environmental risk factors 

The risk of schizophrenia seems to be increased in conjunction with several obstetric 

complications. These include complications in pregnancy, abnormal fetal growth and 

development, and complications in delivery, altogether increasing the schizophrenia risk 

twofold (Cannon et al. 2002). Other risk factors include maternal infections, especially 

influenza (Mednick et al. 1994) and other respiratory infections (Brown et al. 2000b), 

polio (Suvisaari et al. 1999), and rubella (Brown et al. 2000a), as well as prenatal 

exposure to famine (St Clair et al. 2005, Xu et al. 2009). Additionally, large sibship size 

(≥4), young maternal age, and early age of onset of the parent with schizophrenia seem 

to increase the risk (Haukka et al. 2004). 

After birth, known environmental risk factors include infections of the central nervous 

system (Rantakallio et al. 1997), malnutrition (Wahlbeck et al. 2001), as well as abuse 

and maltreatment during childhood (Ellason et al. 1997, Read et al. 1999). Later, 

cannabis use is known to increase the risk twofold (Arseneault et al. 2002). 

None of these environmental factors increase, however, the risk for schizophrenia 

specifically. 

 

2.1.8 Treatment 

On average, schizophrenia causes considerable shortening of the impending lifespan for 

secondary reasons (Saha et al. 2007). Although relatively large proportion of these are 

unnatural causes, such as the notably elevated suicide risk (Kooyman et al. 2007), the 

majority are natural causes, such as cardiovascular diseases, though possibly at least 

partly being consequences of, for instance, medication side-effects, such as weight gain 

(Saha et al. 2007). As the clinical picture and course of schizophrenia varies, treatment 

options need to be evaluated individually (Barrowclough et al. 1999), and delays in 

commencement of the treatment debilitate recovery (Marshall et al. 2005, Marshall et al. 

2006). 

The present pharmacological intervention is mostly based on antipsychotic medication, 

which typically lessens positive symptoms effectively but has much smaller effect on 

negative and cognitive symptoms (Keefe et al. 2007). The major challenges are that the 

actual functional disability of the patient correlates with the severity of the negative 

symptoms and the cognitive impairment but not with the positive symptoms (Elvevag et 

al. 2000), and that relatively large proportion of the patients experience relapses when 

taking the medication (Kissling et al. 1999). 

The majority of schizophrenia patients are currently treated with second-generation 

antipsychotics, a highly heterogeneous group of drugs. The most widely used of these 

are clozapine, olanzapine, risperidone, and quetiapine, of which only clozapine is 

associated with reduced mortality when compared with the first-generation antipsychotic 

perphenazine (Tiihonen et al. 2009). 

In addition to medication, different psychosocial therapies are recommended as they 

assist the functional recovery, for instance, in social life and work (Kern et al. 2009). 
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2.2 Human genome 

2.2.1 Structure 

The human genome is comprised of about three billion nucleotides in the form of 

double-stranded deoxyribonucleic acid (DNA) divided into 22 pairs of autosomal 

chromosomes and sex chromosomes denoted as X and Y. Of these, women carry two X 

chromosomes, and men both one X and one Y chromosome. Half of the chromosomes, 

including one of the sex chromosomes, are inherited from the mother and another half 

from the father. In addition to the chromosomes, the mitochondria of the human cells 

contain a small amount of DNA, mitochondrial DNA (mtDNA), which is inherited 

solely from the mother (International Human Genome Sequencing Consortium 2004). 

DNA, the storage form of the hereditary information, is packed in the nuclei of cells. All 

the human cells, excluding the gametes, contain the whole genetic information which is 

expressed differently depending on the type or function of the cell. In DNA, bases 

adenine (A), thymine (T), cytosine (C), and guanine (G) form nucleotide pairs (A and T; 

C and G) between the opposite DNA strands with backbones involving sugars and 

phosphate groups. The DNA strand has directionality due to its chemical composition. 

The so-called 5' end of the DNA backbone contains a hydroxyl group, and the so-called 

3' end contains a phosphate group. New monomers are added to the backbone via 

dehydration reaction which can only use the 5' end hydroxyl as nucleophile, thus the 

DNA is always read in 5' to 3' direction (Gerstein et al. 2007). 

The genetic code is utilized and read in groups of three nucleotides called codons. Each 

of the 64 different codons correspond to one of the 20 amino acids, the building blocks 

of proteins, or mark the ending positions, stop codons, of the DNA read frame. The 

human genome contains altogether 20 000 to 25 000 genes. Only about 1.5% of the total 

DNA comprises all the protein-coding sequences, however. The role of the non-coding 

regions is still very much unknown, but supposedly involves many regulatory sites in 

addition to so-called "junk" DNA with no known function (International Human 

Genome Sequencing Consortium 2004). 

When the genes are expressed, the corresponding DNA strand is read and copied in the 

process called transcription. The forming messenger ribonucleic acid (mRNA), at the 

first stage called precursor mRNA (pre-mRNA), is comprised of the same nucleotides as 

DNA, with the exception of uracil (U) replacing thymine. Unlike DNA, RNA is a single-

stranded structure. When the required reading frame of the DNA is copied, parts 

corresponding to the non-coding DNA of the newly formed pre-mRNA are spliced out, 

leaving only the nucleotides coding for amino acids in the so-called mature mRNA. The 

mRNA is then transferred from the nucleus to cytoplasm, where it is read in ribosomes 

one codon at a time in the process called translation, and corresponding amino acids are 

added by the transfer RNA (tRNA) in chain to form the protein structure (Black 2003). 

In addition to mRNA and tRNA, human cells involve ribosomal RNA (rRNA), part of 

the ribosomal structure, and different microRNAs (miRNAs) and small interfering 

RNAs (siRNAs), which are small RNA molecules of 20-25 nucleotides taking part in 

post-transcriptional regulation of gene expression (Ghildiyal et al. 2009). 
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2.2.2 Genetic variation 

Genetic variation can be divided in recombinations and structural variations of the DNA 

sequence. In recombination, the DNA strand is cut and then united again at different 

location. Recombinations occur between the chromosome pairs in every meiosis, that is, 

in formation of gametes with halved amount of chromosomes. Therefore, recombination 

is a basic source of genetic variation in the offspring. These recombinations have 

basically no effect on the function of DNA as they just divide the inherited genetic 

material. Additional recombinations may occur, however, and depending on the position 

of the cut, they may or may not affect DNA function. If, for instance, the DNA strand is 

cut under or very close to a gene, the transcription of that gene is practically always 

distorted or prevented (Coop et al. 2007). Genetic distance along chromosome in which 

a recombination is statistically supposed to occur is called Morgan, however, in genetic 

analyses a smaller quantity centiMorgan (cM) is usually used. It equals to 1% chance of 

recombination and corresponds to roughly one million nucleotides in length, that is, one 

megabase (Mb) (Barzel et al. 2008). 

Structural variations can be divided into those altering the DNA sequence length and 

those changing the sequence content without affecting the length. Furthermore, structural 

variations can be classified into mutations and polymorphisms. The central characteristic 

of a mutation is that it affects the function of DNA and thus cosegregates with some 

feature, for instance, disorder status, whereas polymorphisms appear functionally 

neutral. If the mutation has reduced penetrance, however, its effect may not always 

manifest (Frazer et al. 2009). 

The variations altering the sequence length are called deletions, in which one or more 

nucleotides are removed from the sequence, and insertions, in which one or more 

nucleotides are added into the sequence. Depending on the length of the 

deletion/insertion it may remove/add one or more codons as whole, the others remaining 

unaffected. But if the deletion/insertion length is not divisible by three, it changes the 

DNA reading frame entirely from the deletion/insertion point forward (Hastings et al. 

2009) (Table 3). 

A special form of insertions are duplications, in which even whole genes or large parts 

of the chromosome are duplicated, usually as a result from an error in recombination. 

Because duplicated genes are known to undergo mutations more often than original 

genes, they may have evolutionary effects (Zhang 2003). Duplications and large 

deletions occur most often in repetitive intronic elements of the genes and are designated 

as copy number variations (CNVs) (Hastings et al. 2009) (Table 3). 

Translocations, in which larger chromosome regions change their positions reciprocally, 

may be balanced, in which the exchange of genetic material is equal, or unbalanced, in 

which the exchange of genetic material is unequal, that is, some chromosomal region(s) 

are duplicated or deleted. Thus, the translocations may interfere the function of the 

regional genes, although balanced translocations are usually functionally neutral (Barzel 

et al. 2008). 

In inversions the order of the nucleotides is reversed for a specified length of the DNA 

sequence, varying from only a few nucleotides to large parts of the whole chromosome. 

Similarly to translocations, also inversions may be unbalanced, and balanced inversions 

may remain functionally neutral (Frazer et al. 2009). 
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A variation conserving the DNA sequence length is called point mutation. It involves 

one changed nucleotide or nucleotide pair, thus called single nucleotide polymorphism 

(SNP), which potentially changes the amino acid encoded by the corresponding codon. 

Although majority of these point mutations have no effect on the protein structure and 

are thus called silent mutations, emerging evidence supports that also they may play a 

role in gene expression regulation due to alterations in the secondary mRNA structure, 

causing changes in the transcription. In addition, although the amino acid specified by 

the altered codon may remain the same, the amounts of different tRNAs corresponding 

to the same amino acid may differ, potentially affecting the transcription speed 

(Chamary et al. 2006) (Table 3). 

 

Table 3. Examples of different human genetic variants. For deletions, duplications, 

insertions, and copy number variations, the size of the variant may vary between a few 

nucleotides, as presented here, to hundreds of thousands of nucleotides. The variants are 

shaded and repetitive elements underlined. 

Insertion/ GTTCAAGACTAGCATGGCCAAGAT 

Deletion GTTCAAGAC---CATGGCCAAGAT 

  

Duplication/ GTTCAAGACTAGCAAGACTAGCATGGCCAAGAT 

Copy number variation GTTCAAGACTAGCATGGCCAAGAT 

  

Inversion GTTCAACCATGCTAGTCCCAAGAT 

GTTCAAGACTAGCATGGCCAAGAT 

  

Point mutation/ GTTCAAGACTAGCATGGCCAAGAT 

Single nucleotide polymorphism GTTCAAGACTATCATGGCCAAGAT 

  

Polymorphic site/ GTTCAAGACTAGCGCGCGCGCGCAAGAT 

Short tandem repeat GTTCAAGACTAGCGCGCAAGAT 

 

2.2.3 Gene structure and function 

Genes are the basic units of heredity, comprising information of maintaining the cells 

and their functions. Overall, human DNA carries two copies of every gene, one inherited 

from the mother and another from the father. The traditional definition of a gene is a 

protein-coding unit of the DNA sequence. Based on the present knowledge, however, 

this definition is no more sufficient as genes may, for instance, encode for RNA 

structures not being translated but used for regulatory actions (Gerstein et al. 2007). 

The gene starts with a promoter, in the 5' end of the gene, which is a position recognized 

by the transcription machinery in the nucleus in the beginning of the transcription. The 

promoter is followed by a variable number of alternating exons and introns. Exons are 

the parts of the DNA sequence which encode for the amino acid structure of the 

translated protein. In addition, the last coding exon contains the stop codon which ends 

the transcription. Introns, being longer than the exons, supposedly comprise different 

regulatory functions, for instance, enhancer elements binding activator and repressor 

proteins. In addition, the highly conserved regions at the ends of the introns are required 

in the mRNA splicing, in which the introns are spliced away from the pre-mRNA, 
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likewise part of the 3' untranslated region (UTR) which may follow the last exon 

(Gerstein et al. 2007) (Figure 2). 

 

Figure 2. Schematic of a gene structure, here the Reelin (RELN) gene on chromosome 

7q22 shown as an example. The exons are emphasized for visualization purposes. 
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2.2.4 Gene expression regulation 

All the gene expression regulation beyond the DNA structure itself is called epigenetic 

regulation. At the DNA level, histone modifications affect the basic properties of the 

DNA, for instance, gene expression and sequence repair. The histones are protein 

structures around which the DNA strand is coiled, compacting it about 40 000-fold 

(Grewal et al. 2007). In DNA methylation, methyl groups attach to the DNA strand and 

typically diminish or prevent transcription of the gene under the sequence. The DNA 

sequence comprises numerous GC-rich areas which are prone to methylation (Robertson 

2005). Furthermore, different activator and repressor proteins can bind to enhancer 

elements typically in the introns of the genes and initiate or decrease the gene 

expression, respectively (Farnham 2009). 

At the RNA level, alternative splicing of pre-mRNA results in different mRNA 

sequences and thus different protein isoforms. Over 80% of human genes are 

alternatively spliced, most commonly in the process called exon skipping, in which some 

exon or exons are included in the mRNA in some condition(s) and spliced away in some 

other(s). Diverse regulatory mechanisms for alternative splicing include, for instance, 

different activator and repressor proteins which bind to pre-mRNA and affect the 

locations of the splice site junctions (Black 2003, Matlin et al. 2005). Additionally, 

miRNAs and siRNAs can bind to the 3' UTR of an mRNA sequence, preventing its 

translation and therefore silencing the gene in a post-transcriptional manner. This 

phenomenon has provided sophisticated methods to study gene functions by silencing 

genes after transcription (Ghildiyal et al. 2009). 

 

2.2.5 Genetic disorders 

Approximately 99.9% of the human genome is identical between individuals. Therefore, 

only a minor part of the DNA sequence constitutes all the genetic variation in the 

mankind, including the disorder-related variants (Reich et al. 2002). 

Monogenic disorders, often called as Mendelian disorders after Gregor Mendel (1822-

1884), a famous Austrian scientist and priest, are caused by a defect in a single gene and 

follow simple rules of inheritance. In dominant disorders, a single copy of mis- or 

unfunctional gene causes the disorder, in which case the gene may be inherited from 
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either parent with the exception of the sex chromosomal genes. In recessive disorders, 

both gene copies must be mis- or unfunctional to cause the disorder, and thus, to be 

inherited from both parents. In these cases, parents are usually unaffected carriers of a 

single affected gene. As a rare exception are the genes with only one active copy due to a 

process called parental imprinting, in which only the gene copy inherited from the 

mother or father is expressed, and thus, a single mutation in that active gene is sufficient 

to cause the disorder (Antonarakis et al. 2006). 

The vast majority of the disorders are, however, multifactorial. In these cases, affected 

individuals usually have several genetic alterations, and different environmental factors 

play a role in the pathogenesis. Typically the disorder risk varies, and it may expose 

gradations depending on the affected genes, the number of them, and/or the amount and 

level of the environmental strain. Multifactorial disorders are often called complex 

disorders due to the diversity of their background (Frazer et al. 2009). 

 

2.2.6 Generalist and modifier genes 

In addition to the variants directly increasing the disorder liability, so-called generalist 

genes may affect different characteristics in the general population regardless of the 

affection status. They may, however, also alter both the disorder liability and its features 

in a secondary manner. In addition, one gene may affect several individual 

characteristics, called pleiotropy, and on the other hand, several individual genes may 

affect the same characteristic, called polygenicity (Kovas et al. 2006). For cognitive 

functions, their high heritability, up to 80%, and established correlations between 

different genetic associations with different cognitive domains support the generalist 

gene hypothesis (Butcher et al. 2006). 

Instead, the modifier genes may show stronger effects in combination with other genetic 

variants directly increasing the disorder liability (Nadeau 2001). As an important 

difference compared to generalist genes, modifier genes supposedly show only slight 

effects among unaffected individuals (Fanous et al. 2001). However, different 

hypothesized modifier gene subtypes vary in their effects on liability to different 

disorder subtypes, disorder characteristics, and features in unaffected individuals 

(Fanous et al. 2005). Overall, several reported associations between different candidate 

genes and features of psychiatric disorders without association to clinical diagnosis 

support the view that genetic variants could modify the disorder characteristics without 

altering the liability itself (Fanous et al. 2005). 
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2.3 Genetic mapping of complex disorders 

2.3.1 Study samples 

Family samples usually involve enriched nuclear families and/or pedigrees with multiple 

affected individuals. This diminishes genetic variation and favors identification of 

causative risk variants. Additionally, segregation of variants can be monitored through 

generations. A specific subtype of family samples is a trio sample comprising parents 

and their single offspring. Typically, family samples allow identification of rare variants 

with a strong effect, and are used especially in linkage analysis (Pritchard et al. 2002) 

(Figure 3). 

Case-control samples comprise affected individuals and control individuals matched to 

the affected ones in all other aspects than the disorder or trait under investigation. The 

basic simplicity of this series favors collection of large sample sizes relatively easily, 

allowing proper statistical power. Typically, case-control samples allow identification of 

common variants with a small effect, and are used especially in association analysis 

(Palmer et al. 2005). 

Twin samples involve mono- and dizygotic twins, either equal or opposite in terms of 

disorder status, called concordant and discordant pairs, respectively. As the twin samples 

settle somewhere between the family and case-control samples, they allow some special 

research frames, for instance, the estimation of disorder or trait heritability based on the 

comparison of concordance rates in monozygotic and dizygotic twins for the 

investigated trait (Cardno et al. 2000). 

Population cohorts comprise all the people who have a common characteristic, for 

instance, are born in a defined period of time, in which case called as birth cohort. 

Cohorts are typically used in longitudinal follow-up studies, allowing especially the 

estimation of the impact of environmental factors on the disorder. Another useful 

purpose for population cohort is to investigate the impact of identified risk factor(s) at 

the general population level (Hattersley et al. 2005). As the cohort studies tend to require 

considerable financial investments, they are usually carried out only in developed 

countries, and considering birth cohorts, may require several decades of follow-up 

(Welham et al. 2009). 
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Figure 3. Schizophrenia pedigree from an internal isolate (IS) of Finland with all the 

affected individuals (filled symbols) sharing common ancestors dating back to 1650 

(Hovatta et al. 1999). Here, only the connecting relatives are shown. Pedigree figure 

courtesy of Teppo Varilo. 

1650 Present
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2.3.2 Population isolates 

In all study samples, population stratification, that is, the study sample involving 

subpopulations with different allelic frequencies, may lead to false positive discoveries 

(Cardon et al. 2003), or on the other hand, mask the effects of true positive signals 

(Helgason et al. 2005). To overcome this, population isolates with limited allelic 

variation and more uniform background may be utilized, such as the Finns (Peltonen et 

al. 2000). 

The coastal regions of Finland were inhabited after the last glacial period, approximately 

10 000 years ago, by small individual groups following the melting ice. Presumably, 

additional migration waves arrived about 4000 and 2000 years ago mainly from South 

Russia and Central Europe, respectively. Despite the supposed northern migration by 

some of the earliest settlers, the possible ancestors of the Saami population, no major 

migration to northern and eastern Finland occurred before the 1500s. At that time, small 

individual groups especially from South Savo began moving inland from the early 

settlement region (Figure 4a). The incoming settlers forced the Saami to retreat further 

north, and apparently, no major genetic admixture occurred between these 

subpopulations. The genetic drift, random sampling of gene variants into these settler 

groups and changes in their frequencies over time, and genetic bottlenecks caused by, for 

instance, the great famine during 1696-1698 killing about third of the population, have 

affected the Finnish gene pool. Importantly, due to long-lasting isolation, the expansion 

of the Finnish population has resulted mostly from population growth, with only minor 

external migration. Due to this founder effect, arising from small number of the original 

settlers and causing reduced genetic variation, the Finns and similarly isolated 

populations are often called founder populations (Varilo 1999). 

Because of these effects, genetic variants predisposing to altogether 36 monogenic 

disorders, referred to as the Finnish Disease Heritage, have enriched in Finland (Norio 

2003a, Norio 2003b, Norio 2003c). Analogous enrichment of alleles predisposing to 

complex disorders is plausible (Peltonen et al. 2000), supported by the limited genetic 

diversity (Sajantila et al. 1996) and high interdependence, that is, linkage disequilibrium 

(LD) between genetic markers in Finns (Service et al. 2006). These features, combined 

with the well-documented population history, extensive medical and parish registers, and 

relatively uniform cultural and social environment, supports the usability of Finnish 

samples in genetic studies (Varilo 1999). 

The use of population isolates comprises some caveats, however. Even some relatively 

common genetic disorders may be almost absent in an isolate. For instance, cystic 

fibrosis and phenylketonuria are rare among Finns (Kere et al. 1994, Guldberg et al. 

1995). On the other hand, frequencies and thus impact of different alleles may differ 

between different populations, restricting the generalizability of the study results (Palmer 

et al. 2005). Furthermore, even population isolates may comprise internal genetic 

substructures which need to be taken into account in genetic studies (Salmela et al. 2008, 

Jakkula et al. 2008). Although by the end of 1600s nearly the whole Finland was 

inhabited, the inhabitant groups remained small and surprisingly isolated even until 

World War II. In Finland, this has influenced not only the genetic substructures but also 

regional prevalences of many disorders. For instance, in an internal isolate (IS) in the 

northeastern part of Finland, the lifetime risk of schizophrenia is 3.2%, compared to 

1.1% in the rest of Finland (Hovatta et al. 1997) (Figure 4b). This suggests that different 
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risk variants and/or differences in their frequencies may affect the liability in and outside 

the isolate (Varilo 1999). 

 

Figure 4. a) Internal migration of inhabitants in Finland in the 1500s. Movement of 

several small independent individual groups from the early (before 1500s) to the late 

(beginning from 1500s) settlement region caused genetic bottlenecks, resulting in 

internal genetic isolates. b) The inhabitation in the 1600s of an internal isolate (IS) with a 

higher than average incidence of schizophrenia (Varilo et al. 2000). Maps courtesy of 

Teppo Varilo. 

 

a b

 
 

 

 

2.3.3 Traits 

Qualitative traits are dichotomous classifications. Typically, a study sample is divided 

into individuals with or without the investigated trait, usually disorder status based on 

the diagnostic information. Qualitative traits are widely used especially in the case-

control studies due to their simplicity in data collection and statistical analysis. The 

disadvantage is that they may be too cursory to allow proper description of the 

investigated disorder or trait, and may not allow sufficient statistical power especially in 

the analysis of complex traits (Balding 2006). 



2 Review of the literature 

 

THL – Research 28/2010 34 
Molecular Genetics of Schizophrenia 

and Related Intermediate Phenotypes 

in a Founder Population 
 

Quantitative traits are continuous variables typically based on different measurement 

information. In schizophrenia research, for instance, many of the endophenotypic traits 

are continuous variables. In the analysis, continuous variables are usually required to 

follow the normal distribution. Additionally, the distances of the trait values from each 

other must be equal. In the analysis of both qualitative and quantitative traits, the trait 

status of some individuals may remain unknown, meaning that these subjects provide 

information only on the genetic variant frequencies (Balding 2006, Mackay et al. 2009). 

Other traits include, for instance, class variables which settle somewhere between the 

qualitative and quantitative traits when compared with data handling and statistical 

power in the analysis. In this arrangement, study subjects are assigned in different 

classes on the grounds of, for instance, phenotypic clusters. If the classes are based on 

measurement information and their number is large enough, usually at least seven, they 

may alternatively be treated in the analysis as quantitative variables (Balding 2006). 

 

2.3.4 Genetic markers 

Of the currently used markers, the single nucleotide polymorphisms (SNPs) are the most 

frequent point mutations in the genome. Although majority of these, called synonymous 

SNPs, are assumed to be genetically neutral as they do not change the corresponding 

amino acid, at least some of them may possess a role in the gene expression regulation 

via alterations in the mRNA structure (Chamary et al. 2006). While single exonic or 

intronic SNPs are typically relatively uninformative by themselves, their relatively 

simple detection methods, and their total amount of over four million in the human 

genome make them feasible in the genetic mapping (Kidd et al. 2008). The current chip-

based genotyping technologies allow hundreds of thousands of SNPs to be genotyped 

simultaneously. 

Due to their density, SNPs on the same chromosome are usually inherited together in 

combinations, that is, haplotypes. The haplotypes have higher information content in the 

analysis than the individual markers, since the individuals sharing a variant affecting the 

investigated disorder or trait supposedly share also other nearby alleles, that is, the same 

haplotype harboring the variant. The chromosomal regions with low number of 

recombinations and thus relatively stable haplotype structures are called haplotype 

blocks. The haplotype block structures and, on the other hand, regions with elevated rate 

of recombination—so-called recombination hotspots—are partly shared between 

different populations, however, only a minority of them are exactly the same in all 

populations (Jakobsson et al. 2008). The haplotype phenomenon is also utilized in 

selection of so-called tagging SNPs (tagSNPs) which are in high LD with other SNPs in 

the same haplotype block. The LD is usually measured as co-variance between markers, 

denoted as D', or squared correlation coefficient, denoted as r2. Theoretically, tagSNPs 

provide information on those other SNPs as well and thus allow the extraction of 

maximal information with a minimal set of markers (de Bakker et al. 2005). Despite 

some controversy (Terwilliger et al. 2006), this phenomenon is nowadays widely 

accepted and utilized in the marker selection (International HapMap Consortium 2005) 

(Table 3, Figure 5, Table 4). 

The short tandem repeats (STRs) are polymorphic sites in the DNA sequence, consisting 

of repeating units of typically 2 to 10 nucleotides in length. The about 10 000 known 

STRs locate mostly on non-coding DNA regions. The STRs reveal elevated rate of 
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mutation due to being prone to errors in DNA replication and recombination. This allelic 

variability makes the typical STRs highly polymorphic and thus informative in the 

analysis, especially in family samples. On the other hand, the somewhat laborious 

genotyping has reduced their current use (Bailey et al. 2006) (Table 3). 

In sequencing, the order of all nucleotides within the sequence region of interest is 

determined. Traditionally, this has required significant computational and financial 

efforts, but the technological progression will supposedly allow its more extensive use 

even in the near future. The sequencing of the whole human genome has set the basis for 

all the modern genetic research (Lander et al. 2001, Venter et al. 2001). 

 

Figure 5. LD between SNPs and estimated haplotype blocks in Reelin (RELN) gene 

according to HapMap CEPH genotype data (all SNPs with minor allele frequency ≥0.10) 

(International HapMap Consortium 2005). The SNP positions are indicated with lines, 

and the estimated haplotype blocks are presented as triangles underneath the gene at the 

top. The darker the coloring in the LD diagram, the stronger the LD between the SNPs. 

Tagging SNPs may be estimated and selected from the SNPs in high LD with each other, 

and they are expected to reflect the effects of those other SNPs as well. 

 

 

 

 

Table 4. An example of tagSNPs in three haplotypes from a haplotype block. The 

tagSNPs are shaded, and are together sufficient to identify the haplotype structures. 

Haplotype 1 G T C A C A T A A C G T C G G 

  

Haplotype 2 G T C A T A G A A C C T C C G 

  

Haplotype 3 G G C G T C G A A C G A C C G 
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2.3.5 Statistical analysis 

In linkage analysis, inheritance of genetic markers is followed up and analyzed against 

trait information. In general, linkage analysis tests if a genetic marker is inherited with 

the trait more often than would be expected by chance. If the analyzed marker does not 

itself affect the investigated disorder or trait—thus, is not the causative variant—it 

should reflect the effects of the causative one if they are located relatively close to each 

other and, therefore, recombination occurs only rarely between them. Linkage analysis is 

especially suitable for detection of rare high-risk variants. The linkage signal is usually 

expressed as logarithm of odds (LOD), which is the logarithm of the ratio of 

probabilities of obtaining a result with a specified degree of linkage and obtaining the 

same result with no linkage. For genome-wide analysis, LOD score of 3.3 is usually 

interpreted as statistically significant (Lander et al. 1995). In parametric linkage 

analysis, the causative variant frequency, penetrance (probability of the causative variant 

actually causing the disorder or having effect on the trait), and phenocopy rate 

(probability of individuals sharing the disorder status or trait independently of the 

causative variant) need to be estimated in advance. In contrast to monogenic disorders, 

these cannot usually be estimated exactly for complex disorders. Although non-

parametric linkage analysis, not using any assumptions on the disorder or trait 

inheritance, may be utilized to overcome this (Goring et al. 2000), the location of the 

linkage signal in complex disorders with equivocal inheritance is prone to fluctuation, 

making the positional mapping challenging (Roberts et al. 1999, Altmuller et al. 2001). 

In association analysis, genetic marker allele frequencies are analyzed against trait 

information. In general, association analysis tests if the marker allele is more frequent 

among the individuals with the investigated trait than would be expected by chance. 

Although the association analysis may enable accurate location of the predisposing 

variant, its sensitivity diminishes quickly with distance. Association analysis is 

especially suitable for detection of common variants. The association signal is usually 

expressed as P-value, which is the probability of obtaining a result at least as extreme as 

the one observed when the null hypothesis—for instance, that the investigated genetic 

marker has no effect on the disorder status or trait—is actually true. For genome-wide 

analysis, a P-value of 0.00005 has been suggested as statistically significant (Colhoun et 

al. 2003). The usual problems with association analysis include, for instance, density and 

relatedness of the markers, multiple testing, and population stratification (Cardon et al. 

2003, Weiss et al. 2000). However, in detection of variants with modest effects the 

association analysis is superior compared to linkage analysis (Risch et al. 1996). 

In both of these analyses, additional covariates may be included, which are additional 

factors affecting the analyzed trait. Their inclusion may assist in the detection of 

predisposing variants and, on the other hand, diminish the risk for false positive signals. 

Basically, the same criteria applies to covariates as the quantitative traits. Also 

dichotomous variables may be used, however, such as gender. Importantly, the genotype 

information is not suitable as covariate, and additionally, the covariates should correlate 

with each other as little as possible (Balding 2006). 
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2.3.6 Statistical significance 

In addition to the generic significance values for genome-wide analyses mentioned 

above, also study-specific significance threshold can be evaluated. Before the analysis, 

simulations based on the study material characteristics may be used to evaluate the 

adequate threshold values for significance (Balding 2006, Wilkinson 2009). 

After the initial analyses, empiric P-values may be calculated by performing permutation 

analysis. In a similar manner than in the simulations, the study material characteristics 

are used to evaluate the likelihood of obtained results occurring only by chance. 

However, the results depend upon the number of permutations, which should at least 

equal the number of performed independent tests (Balding 2006). 

Alternatively, the P-values may be corrected for multiple testing. In the conventional 

Bonferroni correction, the desired significance level is divided by the number of 

independent tests made to obtain the threshold value for individual signals. However, in 

the genetic studies of complex disorders the Bonferroni correction is usually considered 

highly conservative as typically neither the markers nor traits are fully independent of 

each other (Balding 2006). To overcome this, the equivalent number of independent 

markers and traits may be evaluated from the analyzed material (Nyholt 2004). 

In addition to different correction methods, replication of the original results in an 

independent study material is usually considered adequate proof of true positive signal. 

On the other hand, in the analysis of complex disorders, negative replication results are 

usually considered insufficient to determine prior positive signals as false ones due to 

disorder characteristics mentioned before. Furthermore, no definite agreement exists 

whether a positive association with the same gene/region, the same haplotype(s), the 

same marker(s), or the same allele(s) constitutes an acceptable replication. In any case, 

the most rigorous criterion for replication would require the same allele of the same 

marker to be associated with the exactly same phenotype as in the original study 

(Burmeister et al. 2008). 

 

2.3.7 Meta-analysis 

In meta-analysis, results from multiple individual studies addressing related hypothesis 

are combined by modelling common measure(s) with regression analysis. Most 

importantly, the increased sample size allows more power in the analysis. Overall, the 

results highlighted in meta-analyses supposedly comprise high significance, although 

some caveats exist. The so-called publication bias, referring to studies with positive 

findings getting more easily published than those with negative ones, may affect the 

repertoire of the source studies. Furthermore, strong individual signals may cover 

weaker ones in the combined analysis (Normand 1999). 

In genetic meta-analyses, the studied chromosomal regions are usually divided into 

sections called bins. Signals located near the boundaries of the bins are prone to be 

missed, thus the regions are usually analyzed multiple times with different sets of bins. 

Additionally, the individual bin ranks are usually weighted by the number of affected 

subjects in the corresponding study (Wise et al. 1999). 
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2.4 Genetics of schizophrenia 

2.4.1 Overview 

Traditionally, the genetic risk for complex disorders has been hypothesized to be based 

on effects of rare variants with large individual effects, or common variants with small 

individual effects (Reich et al. 2001). These hypotheses are not necessarily 

contradictory, however, since the rare variants may increase the disorder risk by 

themselves, whereas the common variants may primarily reflect the effects of the other 

causative variant(s) in LD with them (Bodmer et al. 2008). At least some of the common 

variants may still affect the investigated disorder or trait also directly, however, as 

described in section 2.2.2 (Chamary et al. 2006). 

The current hypothesis for the liability of schizophrenia suggests a role for combination 

of multiple genetic variants in conjunction with environmental factors. Despite the high 

heritability of the disorder—much higher than that of, for instance, breast cancer—

identification of underlying risk variants has proven tedious. Evidently, due to genetic 

heterogeneity, the risk variant combinations may differ substantially between affected 

individuals, especially between families not sharing the same ancestry. On the other 

hand, different phenotypes may result from the same variants, depending on the amount 

and/or combinations of the variants. Probably only very few patients share identical 

genetic liability, complicating especially the personalized treatment efforts (Harrison et 

al. 2005, Rapoport et al. 2005, Burmeister et al. 2008, Keshavan et al. 2008). 

 

2.4.2 Chromosomal abnormalities 

A deletion in chromosome 22q11.2 causes Velocardiofacial syndrome (VCFS). This 

disorder is characterized by congenital dysmorphology, heart disease, and learning 

disabilities. Additionally, even 24% of these patients fulfill the criteria for schizophrenia 

(Murphy et al. 1999). On the other hand, only about 0.65% of all schizophrenia patients 

have deletion(s) in the 22q11 region (Ivanov et al. 2003). These deletions are, however, 

substantially more prevalent, up to 5.3%, among patients with childhood onset of 

schizophrenia (Sporn et al. 2004). 

One of the best-known examples of familial liability in psychiatric disorders is a large 

multi-generational Scottish pedigree with a highly elevated risk for major psychiatric 

disorders, including schizophrenia. This results from an inherited balanced translocation 

between chromosomes 1q and 11q, t(1;11)(q42;q14.3) (St Clair et al. 1990), which 

disrupts three genes in chromosome 1q (Millar et al. 2000a, Millar et al. 2000b). 

In addition to these, several rare chromosomal aberrations are associated with the 

schizophrenia liability. Although their significance seems to be only minor at the 

population level (MacIntyre et al. 2003), at least some of the genes disrupted in these 

aberrations seem to affect the disorder liability in their functional forms as well, as seen, 

for instance, for the Disrupted in schizophrenia 1 (DISC1) gene on the aforementioned 

chromosome 1q translocation region (Hennah et al. 2006). 

 



2 Review of the literature 

 

THL – Research 28/2010 39 
Molecular Genetics of Schizophrenia 

and Related Intermediate Phenotypes 

in a Founder Population 
 

2.4.3 Copy number variations 

Recent progress in large-scale genotyping technologies has enabled systematic screening 

of CNVs which, in contrast to chromosomal abnormalities, are typically smaller in size 

and higher in number. Especially deletions larger than one million nucleotides in length, 

that is, over 1 Mb, are more prevalent among patients with schizophrenia. The actual 

underlying genetic mechanisms remain somewhat unclear, however. The locations of the 

CNVs vary, not all of them disrupting known genes, and in addition, the findings are 

inconsistent concerning the possibly affected pathways involved in, for instance, 

neuronal development and transmission. Although these variants evidently elevate the 

disorder risk at the individual level, their impact seems to remain low at the population 

level (International Schizophrenia Consortium 2008, Stefansson et al. 2008, Walsh et al. 

2008, Kirov et al. 2009, Need et al. 2009). 

 

2.4.4 Linked chromosomal regions 

Several individual genome-wide linkage studies for schizophrenia have pointed to 

almost all chromosomal regions (Sullivan 2005). The wide dispersion of the linked 

regions may result from, for instance, differences in both the utilized samples and their 

ascertainment, as well as from dissimilarities in the used methodology, including 

genotyping and analysis techniques. However, it may also reflect the extent of the 

disorder-related genetic variants. In any case, meta-analyses have highlighted some 

chromosomal regions harboring plausible candidate genes, and overall supported these 

regions in the genetic background of schizophrenia (Lewis et al. 2003, Ng et al. 2009) 

(Table 5). Although the present large-scale genotyping technologies have enabled 

genome-wide association analysis methods, the linkage studies may still provide some 

additional information on the candidate chromosomal regions. 

In Finland, our genome-wide linkage analyses have revealed schizophrenia susceptibility 

loci on chromosomes 1q32.2-q42, 2q, 4q, 5q, and 7q22 (Hovatta et al. 1999, Ekelund et 

al. 2000, Ekelund et al. 2001, Paunio et al. 2001), as well as a locus for visual working 

memory on chromosome 2q, and a locus for verbal learning and memory on 4q (Paunio 

et al. 2004). Among others, these cognitive traits showing linkage are considered valid 

schizophrenia endophenotypes (Gur et al. 2007). Importantly, the 2q and 5q 

schizophrenia loci have also been highlighted in international schizophrenia linkage 

meta-analyses (Lewis et al. 2003, Ng et al. 2009). Of these, only the chromosome 1q 

locus has previously been studied in an extensive manner in the Finnish samples 

(Hennah et al. 2003, Hennah et al. 2005). 
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Table 5. Chromosomal regions highlighted in meta-analyses of partly overlapping 20 

(Lewis et al. 2003) and 32 (Ng et al. 2009) genome-wide linkage studies of 

schizophrenia. Only regions with P-value <0.05 are shown. The regions highlighted in 

both studies are shown in bold. The subset of European studies from (Ng et al. 2009) are 

shown in italics. 

Location cM
a

Weighted analysis Both Sample
 

PAR
b

PSR
c

POR
d

P<0.05 

1p32.2-p31.1 85.8-114.5 NA 0.02692 0.08449 ALL (32) 

1p13.3-q23.3 142.2-170.8 0.0235 NA 0.0136 * ALL (20) 

1p13.2-q23.3 143.1-171.7 NA 0.00814 0.06639 ALL (32) 

1q23.3-q31.1 170.8-201.6 0.082 NA 0.0142 ALL (20) 

2p12-q22.1 101.6-128.4 0.0004 NA 0.0327 * ALL (20) 

2q12.1-q21.2 117.5-146.9 NA 0.00755 0.22798 ALL (32) 

2q22.1-q23.3 128.4-154.5 0.023 NA 0.0448 * ALL (20) 

2q21.2-q31.1 146.9-176.3 NA 0.02395 0.14269 ALL (32) 

2q33.3-q36.3 205.7-235.1 NA 0.00916 0.0197 * ALL (32) 

NA 0.01016 0.35077 EUR (22) 

3p25.3-p22.1 32.4-63.1 0.006 NA 0.0311 * ALL (20) 

3p14.1-q13.32 95.9-127.9 NA 0.04047 0.0114 * ALL (32) 

NA 0.04359 0.62724 EUR (22) 

5q23.2-q34 131.5-164.2 0.0032 NA 0.0491 * ALL (20) 

5q31.3-q35.1 148.9-178.7 NA 0.00459 0.43156 ALL (32) 

NA 0.01718 0.33717 EUR (22) 

5q35.1-q35.3 178.7-208.5 NA 0.0276 0.0343 * ALL (32) 

6pter-p22.3 0-32.6 0.0159 NA 0.0328 * ALL (20) 

6p22.3-p21.1 32.6-65.1 0.033 NA 0.0024 * ALL (20) 

6p21.31-p12.1 56.0-84.0 NA 0.04433 0.44626 EUR (22) 

6q15-q23.2 99.0-131.1 0.098 NA 0.0177 ALL (20) 

8p22-p21.1 27.4-55.0 0.031 NA 0.0068 * ALL (20) 

8p22-p12 28.1-56.2 NA 0.03086 0.0207 * ALL (32) 

NA 0.00057 0.06659 EUR (22) 

10pter-p14 0-29.2 0.068 NA 0.0046 ALL (20) 

10q26.12-q26.3 145.9-175.0 NA 0.03487 0.0135 * ALL (32) 

11q22.3-q24.1 99.0-123.0 0.006 NA 0.004 * ALL (20) 

14pter-q13.1 0-40.1 0.047 NA 0.0043 * ALL (20) 

15q21.3-q26.1 52.3-85.6 0.095 NA 0.0293 ALL (20) 

16p13-q12.2 32.1-67.6 0.056 NA 0.0069 ALL (20) 

16p13.12-q12.2 33.3-66.7 NA 0.01775 0.15808 EUR (22) 

17q21.33-q24.3 63.6-94.0 0.112 NA 0.0349 ALL (20) 

18q22.1-qter 96.5-126.0 0.065 NA 0.0103 ALL (20) 

20p12.3-p11 21.2-47.5 0.046 NA 0.0098 * ALL (20) 

22pter-q12.3 0-33.8 0.031 NA 0.0216 * ALL (20) 
aMarshfield map position (http://research.marshfieldclinic.org/genetics/) from (Lewis et al. 2003), Rutgers map 

position (Matise et al. 2007) from (Ng et al. 2009), both presented as centiMorgans (cM) 
bP-value for average rank (AR) analysis (bin ranks averaged across all studies) (Lewis et al. 2003) 
cP-value for summed rank (SR) analysis (bin ranks summed across all studies) (Ng et al. 2009) 
dP-value for ordered rank (OR) analysis (bin ranks ordered according to their values and their places in the 

order taken into account) (Lewis et al. 2003, Ng et al. 2009) 

Abbreviations: ALL (20), all 20 studies in (Lewis et al. 2003); ALL (32), all 32 studies in (Ng et al. 2009); 

EUR (22), subset of 22 European studies in (Ng et al. 2009); NA, not assessed 
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2.4.5 Candidate genes 

The linkage studies, detected structural variations, and the known gene functions have 

traditionally set the basis for candidate gene selection for association studies. For the 

development in technology and methodology, the focus in association analyses is already 

shifting towards the whole genome association analyses (Burmeister et al. 2008). In 

recent large-scale genome-wide association studies, the only consistent finding has been 

the major histocompatibility complex (MHC) region on chromosome 6p22 (International 

Schizophrenia Consortium et al. 2009, Shi et al. 2009, Stefansson et al. 2009), harboring 

several genes playing important roles in the immune system and autoimmunity (The 

MHC sequencing consortium 1999). Overall, the studies have supported the hypothesis 

of the genetic liability to schizophrenia involving several common variants with small 

individual effects, and additionally, that the major psychiatric disorders share at least 

some factors in their genetic background which, on the other hand, are not shared with 

non-psychiatric disorders (O'Donovan et al. 2008, International Schizophrenia 

Consortium et al. 2009, Shi et al. 2009, Stefansson et al. 2009). 

At present, no single major genetic determinant has been identified, although several 

genes have been highlighted across the genome (Table 6). That the variants showing 

association have often varied within the genes may stem from differences in the LD 

structures of the samples, assuming that none of the analyzed markers is the actual 

causative variant (Balding 2006). It may, however, also imply underlying allelic 

heterogeneity, that is, multiple variants in the same gene affecting the liability 

(Burmeister et al. 2008). Of the strongest candidate genes, some relevant are described in 

detail below. 

The balanced t(1:11)(q43,q21) translocation inherited in one Scottish pedigree disrupts 

the Disrupted in schizophrenia 1 (DISC1) [OMIM 605210], Disrupted in 

schizophrenia 2 (DISC2) [OMIM 606271], and Translin-associated factor X (TSNAX) 

[OMIM 602964] genes on chromosome 1q42.1-q42.2 (Millar et al. 2000a, Millar et al. 

2000b). Numerous members of the pedigree show symptoms fulfilling criteria for 

several major mental illnesses, including schizophrenia (St Clair et al. 1990). 

Interestingly, the linkage signal to the translocation region increases when the disorder 

phenotype is broadened from schizophrenia to include also other major affective 

disorders (Blackwood et al. 2001), supporting the view of their overall overlapping 

genetic liability (Kendler et al. 1993a, Kendler et al. 1993b, Kendler et al. 1993c, 

Kendler et al. 1993d, Tienari et al. 2003). In the brain, DISC1 is widely expressed and 

participates in regulation of neuronal migration and intercellular transport (Miyoshi et al. 

2003, Ozeki et al. 2003). In mice, Disc1 missense mutation causes physiological and 

phenotypic changes similar to schizophrenia and major depression (Clapcote et al. 

2007). Interestingly, antipsychotic medication reverses these features to some degree 

(Clapcote et al. 2007). In Finland, human DISC1 markers and/or haplotypes have shown 

association with schizophrenia, (Hennah et al. 2003), bipolar disorder [OMIM 125480] 

(Palo et al. 2007), autism [OMIM 209850] (Kilpinen et al. 2008), and Asperger 

syndrome [OMIM 608638] (Kilpinen et al. 2008). Furthermore, DISC1 may affect 

cognitive functioning, including visual memory (Hennah et al. 2005) and verbal memory 

(Cannon et al. 2005). Interestingly, DISC1 variants show association with social 

anhedonia, a psychosis-related trait, in general population (Tomppo et al. 2009). Due to 

the wide spectrum of evidence, DISC1 is considered perhaps the most promising 

candidate gene for schizophrenia liability. 
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The Dystrobrevin binding protein 1 (DTNBP1) [OMIM 607145] gene on chromosome 

6p22.3 encodes for a neuronal protein expressed widely in the human brain (Weickert et 

al. 2004). DTNBP1 locates in schizophrenia-linked region (Straub et al. 1995), is 

associated with schizophrenia (Straub et al. 2002) (Figure 4), as well as cognitive 

functions (Donohoe et al. 2007), and its expression is reduced in schizophrenia 

(Weickert et al. 2004, Weickert et al. 2008). Although the specific function of DTNBP1 

remains unknown, and the identified risk variants have varied between the several 

studies revealing associations with schizophrenia (Figure 8), DTNBP1 is considered one 

of the most promising candidates for the liability. 

The V-akt murine thymoma viral oncogene homolog 1 (AKT1) [OMIM 164730] gene on 

chromosome 14q32.32-q32.33 encodes for a serine/threonine kinase which is widely 

expressed in the brain and participates in neuronal proliferation and maintenance (Wang 

et al. 2003). The AKT pathway is associated with schizophrenia liability (Emamian et al. 

2004), and putatively with bipolar disorder (Toyota et al. 2003). Interestingly, 

overexpression of DTNBP1 elevates the AKT activity via phosphorylation, and thus 

increases its neuronal protective properties, and vice versa (Numakawa et al. 2004). In 

rats, the Akt pathway is associated with spatial memory functions (Mizuno et al. 2003). 

In humans, AKT1 is also associated with verbal learning and memory, as well as cortical 

gray matter density (Pietilainen et al. 2009). 

The Glutamate receptor, metabotropic 3 (GRM3) [OMIM 601115] gene on chromosome 

7q21.1-q21.2 participates in glutamatergic neurotransmission (Cartmell et al. 2000). In 

rats, both Grm2 and Grm3 agonists reverse the effects of phencyclidine (PCP), a drug 

which induces schizophrenia-like symptoms (Moghaddam et al. 1998). Furthermore, 

chronic exposure to olanzapine, an antipsychotic drug, upregulates Grm2 and Grm3 

(Tascedda et al. 2001). In humans, GRM3 has shown association with schizophrenia 

(Fujii et al. 2003, Egan et al. 2004, Chen et al. 2005), and cognitive functions, including 

verbal learning (Egan et al. 2004). 

The Semaphorin 3A (SEMA3A) [OMIM 603961] gene on chromosome 7q21.11 is 

involved in axon guidance, and regulates dendritic attraction, possessing primarily 

inhibitory functions (He et al. 2002). In human brain, SEMA3A expression is increased in 

schizophrenia (Eastwood et al. 2003). However, any direct genetic association with 

schizophrenia remains undetermined. 

The Reelin (RELN) [OMIM 600514] gene on chromosome 7q22 encodes for a 

glycoprotein involved in neuronal migration regulation and synaptic plasticity 

(D'Arcangelo et al. 1995, DeSilva et al. 1997, Rice et al. 2001, Fatemi 2005). 

Functionally, the most important regions of Reelin are the conserved C-terminus, crucial 

for downstream signaling (Nakano et al. 2007), and reelin repeats five and six out of the 

total eight, forming the essential binding site (Yasui et al. 2007) for the Very-low-

density lipoprotein receptor (VLDLR), Apolipoprotein E receptor 2 (ApoER2), and 

Alpha-3-beta-1 integrin receptor (α3β1) (D'Arcangelo et al. 1999, Dulabon et al. 2000). 

In mice, the reeler phenotype of Reln null mice involves malformation of the brain 

cortex and severe phenotypic changes, such as tremor and ataxia (D'Arcangelo et al. 

1998). In addition, heterozygous Reln null mutation as well as homozygous null 

mutation of Reelin receptor Apoer2 or Vldlr result in cognitive disturbances (Qiu et al. 

2006, Barr et al. 2007). In human brain, reduced Reelin protein and/or mRNA levels are 

detected in schizophrenia (Impagnatiello et al. 1998), autism (Fatemi et al. 2005), 

lissencephaly [OMIM 257320] (Hong et al. 2000), bipolar disorder (Guidotti et al. 2000) 



2 Review of the literature 

 

THL – Research 28/2010 43 
Molecular Genetics of Schizophrenia 

and Related Intermediate Phenotypes 

in a Founder Population 
 

and major depression [OMIM 608516] (Fatemi et al. 2000). RELN expression is reduced 

by its promoter-region hypermethylation (Chen et al. 2002), and in post-mortem brain 

studies, RELN promoter regions important for transcriptional regulation have usually 

been hypermethylated in schizophrenia patients (Grayson et al. 2005). RELN 

methylation may, however, increase with age as well (Tamura et al. 2007). RELN 

expression is also reduced by its promoter-region trinucleotide repeat lengthening 

(Persico et al. 2006) which in turn is associated with treatment-resistant schizophrenia 

(Goldberger et al. 2005). In addition to its promoter-region, however, only a few direct 

genetic associations between schizophrenia and RELN exist (Kahler et al. 2008, Shifman 

et al. 2008), thus leaving the specific mechanisms underlying the disorder liability 

somewhat unclear. 

The Neuregulin 1 (NRG1) [OMIM 142445] gene on chromosome 8p21-p12 encodes for 

a growth factor with multiple splice variants, several of which possess extensive roles in 

both the development and functioning of the brain, including modulation of neuronal 

migration, synaptogenesis, and neurotransmission (Harrison et al. 2006). Like DTNBP1, 

also NRG1 locates in schizophrenia-linked region (Pulver et al. 1995), and has been 

associated with schizophrenia (Stefansson et al. 2002), although the identified risk 

variants differ between the several studies showing association (Figure 8). At present, 

NRG1 is considered one of the most promising genes in schizophrenia liability. 

The V-erb-a erythroblastic leukemia viral oncogene homolog 4 (ERBB4) [OMIM 

600543] gene on chromosome 2q34 encodes for a NRG1 receptor. ERBB4 shows 

association with schizophrenia both in candidate gene (Norton et al. 2006, Silberberg et 

al. 2006) and genome-wide studies (Shi et al. 2009). A possible underlying mechanism 

is altered ERBB4 splicing in schizophrenia (Law et al. 2007). Furthermore, copy number 

variations in ERBB4 are overrepresented among patients with schizophrenia (Walsh et 

al. 2008). Altered NRG1-ERBB4 signaling is likely to contribute to N-methyl D-

aspartate glutamate receptor (GRIN; formerly NMDAR) hypofunction in schizophrenia 

(Hahn et al. 2006). In mice, Erbb4 null mutation shows phenotypic similarities with that 

of schizophrenia (Golub et al. 2004). Also in healthy individuals, ERBB4 may influence 

cognitive functioning, as seen for verbal working memory (Nicodemus et al. 2006). 
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Table 6. The schizophrenia candidate genes considered most promising in four recent 

reviews (Owen et al. 2004, Harrison et al. 2005, Rapoport et al. 2005, Keshavan et al. 

2008) and/or highlighted in the Schizophrenia Research Forum 

(http://www.schizophreniaforum.org/) as in July 2009. 

Gene OMIM Locus Function In schizophrenia 

    BP
a

GA
b

AE
c 

AS
d 

CNV
e 

MTHFR 607093 1p36.3 Homocysteine 

metabolism; enzyme 

+ +++ NK (+) NK 

RGS4 602516 1q23.3 G protein signaling; 

regulator 

++ +++ - (+) NK 

PLXNA2 601054 1q32.2 CNS development; 

semaphorin receptor 

+++ ++ NK NK NK 

DISC1 605210 1q42.1 CNS development 

and neural plasticity; 

regulator 

+++ +++ NK NK NK 

IL1B 147720 2q14 Inflammatory 

response; cytokine 

++ ++ NK NK NK 

GAD1 605363 2q31 Glutamate 

metabolism; enzyme 

+++ +++ - NK NK 

DLX1 600029 2q31.1 CNS development; 

transcription factor 

++ + - NK NK 

ZNF804A 612282 2q32.1 Zinc finger protein 0 + NK NK NK 

ERBB4 600543 2q33.3-

q34 

Neuregulin receptor +++ +++ + + + 

DRD3 126451 3q13.3  Dopamine receptor +++ +++ (+) + NK 

GABRB2 600232 5q34 Inhibitory synaptic 

transmission; GABA 

A receptor 

+++ +++ (+/-) + NK 

DRD1 126449 5q34-q35 Dopamine receptor +++ 0 NK NK NK 

DTNBP1 607145 6p22.3 Component of 

dystrophin-associated 

protein complex 

+ +++ - NK NK 

SEMA3A 603961 7q21.11 CNS development; 

inhibitory regulator 

+++ 0 + NK NK 

GRM3 601115 7q21.1-

q21.2 

Glutamate receptor +++ +++ 0 (+) NK 

RELN 600514 7q22 CNS development 

and neural plasticity; 

stimulatory regulator 

+++ ++ - NK NK 

PPP3CC 114107 8p21.3  Phosphorylation; 

enzyme 

+++ + (-) NK NK 

SLC18A1 193002 8p21.3 Neurotransmitter 

transporter (synaptic 

vesicles) 

++ ++ NK (+) NK 

NRG1 142445 8p21-p12 CNS development; 

stimulatory regulator 

+++ +++ (+) NK NK 

NA NA 10q26.13 Not known NA + NA NA NA 

DRD4 126452 11p15.5 Dopamine receptor +++ +++ NK NK + 

TPH1 191060 11p15.3- Serotonin +++ +++ (+) NK NK 
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p14 biosynthesis; enzyme 

NA NA 11p14.1 Not known NA + NA NA NA 

DRD2 126450 11q22-

q23 

Dopamine receptor +++ +++ (+/-) (+/-) + 

OPCML 600632 11q25 Immunoglobulin 0 + NK NK NK 

GRIN2B 138252 12p12 Glutamate receptor +++ +++ NK NK NK 

DAO 124050 12q24 Glutamate 

metabolism; enzyme 

+++ ++ (+) + NK 

HTR2A 182135 13q14-

q21 

Serotonin receptor +++ +++ NK NK NK 

DAOA 607408 13q33.2 DAO activator + +++ NK NK NK 

AKT1 164730 14q32.32-

q32.33 

CNS development; 

neuron survival 

regulator 

+ +++ - NK NK 

CHRNA7 118511 15q13.3 Cholinergic receptor ++ +++ - NK NK 

NA NA 16p13.12 Not known 0 + NA NA NA 

RPGRIP1L 610937 16q12.2 Cilia and centrosome 

function 

++ + NK NK + 

HP 140100 16q22.1 Hemoglobin binding ++ +++ + NK NK 

TP53 191170 17p13.1 Cell cycle regulation; 

transcription factor 

++ ++ NK NK NK 

APOE 107741 19q13.31 Lipoprotein 

metabolism; 

transporter 

+++ +++ + + NK 

PRODH 606810 22q11.2 Proline metabolism; 

enzyme 

+ +++ NK NK + 

DGCR2 600594 22q11.21 Neuronal migration; 

adhesive receptor 

+++ ++ + NK + 

COMT 116790 22q11.21 Catecholamine 

neurotransmitter 

inactivation; enzyme 

+++ +++ (+/-) NK NK 

aBiological plausibility: 0, none; +, weak; ++, suggestive; +++, strong 
bGenetic association: 0, none; +, single; ++, some (≤3); +++, multiple (>3) 
cAltered expression: 0, none; -, decreased; +, increased; (), uncertain 
dAlternative splicing: +, some variant(s) overrepresented; (), uncertain 
eCopy number variations: +, yes 

Abbreviations: OMIM, Online Mendelian Inheritance in Man; NA, not available; NK, 

not known; for gene name abbreviations, refer to the Abbreviations chapter 
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3 Aims of the study 

The aim of this study was to investigate the genetic background of schizophrenia in the 

Finnish nationwide sample of familial schizophrenia, collected by the National Institute 

for Health and Welfare (formerly National Public Health Institute). Specifically, the 

aims were: 

 

1. To characterize the impact of common variants in the schizophrenia candidate 

genes DTNBP1, NRG1, and AKT1 in Finnish schizophrenia families (I). 

2. To replicate the schizophrenia linkage on chromosome 7q22 highlighted in our 

previous study (Ekelund et al. 2000), and to further examine the regional 

candidate genes in an extended sample of Finnish schizophrenia families (II). 

3. To replicate the detected association between the RELN gene and cognitive 

functions impaired in schizophrenia, and to investigate further whether RELN 

variants modify the clinical features of schizophrenia, or are associated with 

cognitive disturbances in an extended sample of Finnish schizophrenia families 

and controls from general population (III). 

4. To survey altogether 104 candidate genes on chromosomal regions 2q33.1-

2q37.3, 4q13.1-4q26, and 5q31.1-5q33.3, highlighted in our previous linkage 

analyses (Paunio et al. 2001, Paunio et al. 2004), by utilizing both diagnostic 

information and cognitive test measurements in Finnish schizophrenia families 

and controls from general population (IV). 
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4 Ethical considerations 

This study has followed the Declaration of Helsinki (World Health Organization, 1964) 

and its amendments in full. The research plan has been approved by the Ministry of 

Social Affairs and Health, Finland (Dnro 105/07/98, 29.4.1999), the Ethics Committees 

of National Institute for Health and Welfare (6093, 7.10.1998) and the Hospital District 

of Helsinki and Uusimaa, Finland (HUS 434/E0/05, 3.1.2006), and by the appropriate 

institutional review boards of the participating institutions. Written informed consent has 

been obtained from all the participants. 

The confidentiality of the participants has been assured by using anonymous numeric 

coding in all the analyses and data handling. Only specified senior researchers have been 

allowed to access the information behind the coding and the personal identifying 

information. 
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5 Materials and methods 

5.1 Study samples 

5.1.1 Schizophrenia family sample 

The utilized schizophrenia family samples were nested within the Finnish schizophrenia 

family study sample of the National Institute for Health and Welfare (formerly National 

Public Health Institute) (I-IV). This series has been collected by using three nationwide 

medical registers (Hospital Discharge Register, and Pension and Reimbursement 

Registers) and the Population Register Centre for pedigree information. In this series, the 

nuclear families have been collected both from an internal isolate (IS) from northeastern 

Finland with a higher lifetime morbid risk (3.2%) of schizophrenia (Hovatta et al. 1997), 

and from the general population from rest of Finland (AF; all Finland) with a similar 

morbid risk (1.1%) of schizophrenia (Perala et al. 2007) than elsewhere (Saha et al. 

2005) (Figure 4b). The contacted families from the isolate involved at least one affected 

individual, whereas the contacted families originating outside the isolate comprised at 

least two affected individuals. Although the affected individuals in the participating 

families have had more hospital treatments than the refused ones, no significant clinical 

differences exist between these groups (Juvonen et al. 2000). 

In these families, at least one affected individual was born between 1940 and 1976, with 

the first schizophrenia diagnosis in any of the registers made between 1969 and 1998. 

Clinical data were collected from all the mental health treatment contacts, and final 

diagnostic assessments was made independently by two, or three if necessary to gain 

consensus, psychiatrists or psychiatric residents according to the Diagnostic and 

Statistical Manual of Mental Disorders, 4th edition (DSM-IV) criteria (American 

Psychiatric Association 1994). One of the psychiatrists also completed the Operational 

Criteria Checklist (OPCRIT) (McGuffin et al. 1991) (Figure 6). 

In this series, altogether 983 affected and unaffected individuals have been interviewed 

with the Structured Clinical Interview for DSM-IV (SCID-I) (First et al. 1997) and have 

been tested with a comprehensive neuropsychological test battery (Tuulio-Henriksson et 

al. 2002). These tests cover the central cognitive functions impaired in schizophrenia 

(Heinrichs et al. 1998). Additionally, the interview included the Scale for the 

Assessment of Positive Symptoms (SAPS) (Andreasen 1984) for the affected 

individuals, and the Scale for the Assessment of Negative Symptoms (SANS) 

(Andreasen 1983) for the affected individuals as well as their healthy family members 

(II-IV) (Figure 6). 

This family sample was also divided into two genealogical subcategories, families from 

the internal isolate (IS), and families outside the isolate (AF; all Finland) (Figure 4b). 

This further division of the families is justified by both the disorder status distribution in 

Finland (Hovatta et al. 1997), and the known genetic substructure of the Finns (Salmela 

et al. 2008, Jakkula et al. 2008). In study I, the inclusion criterion for families from the 

isolate was based on at least one parent born in the geographical isolate region, the 

criterion used previously in our genome-wide linkage analyses (Paunio et al. 2001). In 

study II, the genealogical information allowing (Hovatta et al. 1999, Varilo et al. 2000), 

the inclusion criterion was tightened, and was based on at least one maternal and one 
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paternal grandparent born in the geographical isolate region. For studies III and IV, 

novel identical by state (IBS) clustering information was available from families with a 

member genotyped with Illumina HumanHap300 platform (Illumina inc., San Diego, 

CA, USA) as part of the SGENE consortium (http://www.sgene.eu/), and thus, the 

inclusion criterion was based primarily on this clustering information, and secondarily, 

on at least one maternal and one paternal grandparent born in the geographical isolate 

region. In all, roughly 20% of the families were differentially categorized depending on 

the use of the IBS clustering information. 

In Study I, the whole sample comprised altogether 1864 individuals belonging to 441 

nuclear families (171 IS and 270 AF families). Of these, altogether 638 individuals were 

affected with schizophrenia (liability class 1; LC1), and 865 individuals were affected 

with schizophrenia spectrum disorders, including schizophrenia (liability class 3; LC3). 

The samples used in Study II, III, and IV are detailed in Table 7 and Table 8. 

 

Figure 6. Identification and collection of the schizophrenia family sample. 

 

Social Insurance Institution
Disability pension | Free medication

Hospital Discharge Register
Hospitalization for schizophrenia

National Population Register
� Construction of pedigrees

Treating physicians
� Contact with probands
� Recruitment of family members

Blood samples
� DNA available for 1912 individuals (460 families)

Diagnostical assessment
DSM-IV + OPCRIT (affected ind)

Neuropsychological tests
SCID, CVLT, WMS-R, WAIS-R, etc.

33731 schizophrenia patients
� Born between 1940-1976
� Hospitalization between 1969-1998
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Table 7. Sample in study II. a) The replication linkage analysis sample excludes the 

original 52 families demonstrating linkage to chromosome 7q22 (Ekelund et al. 2000). b) 

The qualitative trait association analysis sample is nested within families originating 

from the AF region in the replication and the original linkage analysis samples (Ekelund 

et al. 2000). c) The quantitative trait analysis sample is nested within the total replication 

and the original linkage analysis samples (Ekelund et al. 2000). 

Fam Ind Affected Add phen data 

LC1 LC2 LC3 NP 

a) Linkage analysis of clinical diagnostic categories 

Total 352 1626 480 586 657 

Males 825 302 357 398 

Females 801 178 229 259 

AF 256 1211 387 477 541 

Males 608 245 291 326 

Females 603 142 186 215 

IS 96 415 93 109 116 

Males 217 57 66 72 

Females 198 36 43 44 

b) Candidate gene analysis of clinical diagnostic categories 

Total (AF) 245 1074 369 442 503 

Males 528 227 260 289 

Females 546 142 182 214 

c) Candidate gene analysis of neuropsychological test measurements 

Total 186 861 234 274 303 618 

Males 119 138 150 324 

Females 115 136 153 294 

AF 93 451 143 165 187 326 

Males 72 84 92 175 

Females 71 81 95 151 

IS 93 410 91 109 116 292 

Males 47 54 58 149 

Females 44 55 58 143 

Abbreviations: Fam, families; Ind, individuals; Add phen data, additional phenotype data; 

LC1, liability class 1 (schizophrenia); LC2, liability class 2 (LC1 + schizoaffective 

disorder); LC3, liability class 3 (LC2 + other schizophrenia spectrum disorders); NP, 

neuropsychological tests; IS, internal isolate; AF, all Finland (outside the isolate) 
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Table 8. Samples in a) study III and b) study IV. In both studies, the samples comprise 

all the neuropsychologically assessed families available in the total schizophrenia study 

sample. The differences in amount of subjects are due to divergent genotyping 

technologies utilized in the studies. 

Fam Ind Affected Additional phenotype data 

CORE-

SCH 

SCH-

SPECT 

ANY-

PSY NP SAPS SANS OPCRIT 

a) Sample in study III 

Total 290 1259 297 409 464 892 476 709 474 

Males 640 191 250 271 457 274 381 282 

Females 619 106 159 193 435 202 328 192 

AF 109 518 135 189 210 367 192 259 214 

Males 268 83 109 119 185 107 139 125 

Females 250 52 80 91 182 85 120 89 

IS 181 741 162 220 254 525 284 450 260 

Males 372 108 141 152 272 167 242 157 

Females 369 54 79 102 253 117 208 103 

b) Sample in study IV 

Total 293 1111 283 402 454 877 463 692 461 

Males 573 182 246 265 448 265 369 273 

Females 538 101 156 189 429 198 323 188 

AF 110 454 127 182 202 355 182 248 203 

Males 236 79 105 114 178 100 132 117 

Females 218 48 77 88 177 82 116 86 

IS 183 657 156 220 252 522 281 444 258 

Males 337 103 141 151 270 165 237 156 

Females 320 53 79 101 252 116 207 102 

Abbreviations: Fam, families; Ind, individuals; CORESCH, schizophrenia; SCHSPECT, 

CORESCH + other schizophrenia spectrum psychotic disorders; ANYPSY, SCHSPECT 

+ major affective disorders with psychotic features; NP, neuropsychological tests; SAPS, 

Scale for the Assessment of Positive Symptoms; SANS, Scale for the assessment of 

Negative Symptoms; OPCRIT, Operational Criteria Checklist; IS, internal isolate; AF, 

all Finland (outside the isolate) 
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5.1.2 Control samples 

In study II, the parents (n=114) from altogether 57 anonymous trios (father, mother, and 

child) were used to define the haplotype blocks and allelic variation in the general 

Finnish population. These parents with unknown phenotypes were also included in 

association analyses as independent healthy controls. Here, the risk for including some 

affected individual(s) wrongly as unaffected is relatively low, however, since the 

lifetime risk of schizophrenia is smaller in samples with known parenthood than in 

randomly selected samples of unrelated individuals (Gottesman et al. 1982, Kendler et 

al. 1993a). 

In studies III and IV, the control sample was nested within the nationwide Health 2000 

survey (http://www.terveys2000.fi/) of altogether 9922 Finnish adults from 80 

municipalities, and comprised altogether 375 unrelated individuals (180 males, 195 

females). Of these, 205 were chosen from the Psychoses in Finland (PIF) (Perala et al. 

2007) and 82 from the Mental Health in Early Adulthood in Finland (Suvisaari et al. 

2009) subsamples of the Health 2000 survey based on available neuropsychological test 

data and negative history for any psychotic disorder. The remaining 88 individuals, of 

which 43 were neuropsychologically assessed by using the same protocol as in the PIF 

study (Perala et al. 2007), were selected for regional controls living in or near the 

internal isolate (IS) (Hovatta et al. 1997). Of the altogether 330 neuropsychologically 

tested individuals, 150 were males and 180 females. The control sample was not further 

divided into genealogical subcategories due to the lack of family history information 

comparable with the schizophrenia family sample. 

 

5.2 Test variables 

5.2.1 Qualitative traits 

The used diagnostic classes varied slightly between the studies. In study II, the utilized 

liability classes (LC) were LC1 consisting of schizophrenia only, LC2 adding 

schizoaffective disorder, and LC3 adding other schizophrenia spectrum disorders 

(schizophreniform, delusional and brief psychotic disorder, and schizoid, schizotypal and 

paranoid personality disorder), and psychotic disorder not otherwise specified. Of these, 

LC1 and LC3 were utilized in study I. For studies III and IV, the diagnostic classes were 

reconstructed, and the utilized were CORESCH consisting of schizophrenia only, 

SCHSPECT adding other schizophrenia spectrum psychotic disorders (schizoaffective, 

schizophreniform, delusional, brief psychotic, psychotic, and shared psychotic 

disorders), and ANYPSY adding both bipolar type I or II disorders with psychotic 

features, and major depressive disorder with psychotic features. Thus, the classes LC1 

and CORESCH are equal, and LC3 and SCHSPECT are highly equal (Table 7, Table 8). 

Additionally, in study IV, poor premorbid work and social adjustments, manic-type 

mood symptoms (either elevated or irritable mood), and widespread delusions were 

examined as clinical features of schizophrenia based on the OPCRIT ratings (McGuffin 

et al. 1991) (Table 8). 
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5.2.2 Quantitative traits 

In the schizophrenia (II-IV) and control samples (III, IV), the selected test variables from 

the Wechsler Memory Scale-Revised (WMS-R) (Wechsler 1987), the Wechsler Adult 

Intelligence Scale-Revised (WAIS-R) (Wechsler 1981), the California Verbal Learning 

Test (CVLT) (Delis et al. 1987), the Trail Making Test (TMT) (Reitan et al. 1993), and 

the Stroop Task Interference Score (Golden 1978) measure variations in attention, 

working memory, verbal learning and memory, information processing, and executive 

functioning (Heinrichs et al. 1998) (Table 9). The affected schizophrenia family 

members showed poorer average level of performance in these traits than their 

unaffected family members who, in turn, showed poorer performance than the controls 

from the general population. These characteristics are in line with the endophenotype 

concept and thus support the use of these traits in the analyses (Gottesman et al. 1973, 

Gottesman et al. 2003) (Figure 7). 

In the schizophrenia sample (III, IV), the age of onset was defined as the earliest age 

when medical advice was sought for psychiatric reasons, or when symptoms began to 

cause subjective distress or dysfunction based on the OPCRIT rating (McGuffin et al. 

1991). The severity of positive symptoms was assessed with the sum of all the SAPS 

items (Andreasen 1984), and the severity of negative symptoms with the sum of all the 

SANS items (Andreasen 1983). Although these symptom ratings are prone to changes 

according to disorder phase, in the study subject interviews, all available lifelong clinical 

data were evaluated and taken into account whenever possible (Table 9). 

For all the traits, raw scores or transformed raw scores were used in the analyses. The 

normality of the trait value distributions were verified by using SPSS 16.0.1 (SPSS Inc., 

Chicago, IL, USA), and the raw scores were transformed if the skewness and/or kurtosis 

of the trait value distribution was <-1.0 or >1.0. 



5 Materials and methods 

 

THL – Research 28/2010 54 
Molecular Genetics of Schizophrenia 

and Related Intermediate Phenotypes 

in a Founder Population 
 

Table 9. Analyzed quantitative traits. Further information on test scores and their 

distribution characteristics in the utilized samples are available in the referred original 

publications. 

Trait (abbreviation) Test Subtest/definition Study 

Attention and working memory    

Verbal attention (VeAt) WMS-R Digit Span forward II-IV 

Verbal working memory (VeWM) WMS-R Digit Span backward II-IV 

Visual attention (ViAt) WMS-R Visual Span forward II-IV 

Visual working memory (ViWM) WMS-R Visual Span backward II-IV 

Mental tracking (MT) TMT Trail Making A III,IV 

Verbal learning and memory    

Verbal learning (L) CVLT Word list recall in five trials II-IV 

Recalling words after short delay (SDe) CVLT Recall after 5 minutes II-IV 

Recalling words after long delay (LDe) CVLT Recall after 20 minutes II-IV 

Semantic clustering ratio (SC) CVLT Learning strategy II-IV 

Perseverative recall errors (PRE) CVLT Repeating words II 

Intrusive recall errors (IRE) CVLT Words not in the list II 

Immediate recall of a story (IR) WMS-R Logical Memory, immediate II 

Delayed recall of a story (DR) WMS-R Logical Memory, delayed II 

Visual learning and memory    

Immediate visual recall (IV) WMS-R Visual Reproduction, 

immediate 

II 

Delayed visual recall (DV) WMS-R Visual Reproduction, 

delayed 

II 

Ability functions    

Verbal ability (VeAb) WAIS-R Vocabulary II-IV 

Processing speed (PS) WAIS-R Digit Symbol II-IV 

Executive functions    

Executive functioning (EF) TMT Trail Making B III,IV 

Stroop interference score (S) Stroop Stroop task II-IV 

Positive symptoms    

Severity of symptoms (SAPS) SAPS All items III,IV 

Negative symptoms    

Severity of symptoms (SANS) SANS All items III,IV 

Age of onset    

Earliest age of dysfunction (AOO) OPCRIT Item 4 III,IV 

Abbreviations: WMS-R, Wechsler Memory Scale-Revised; TMT, Trail Making Test; 

CVLT, California Verbal Learning Test; WAIS-R, Wechsler Adult Intelligence Scale-

Revised; Stroop, Stroop Task Interference Score; SAPS, Scale for the Assessment of 

Positive Symptoms; SANS, Scale for the assessment of Negative Symptoms; OPCRIT, 

Operational Criteria Checklist 
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Figure 7. Neuropsychological test differences (raw test scores) between individuals 

(n=385) affected with psychosis according to ANYPSY criteria (category A), their 

unaffected family members (n=536) (category B), and healthy controls (n=330) from 

general population (category C). For traits 1 to 10, lower test scores, and for traits 11 and 

12, higher test scores represent poorer performance. The rectangle ends in the boxplots 

represent the lower (Q1) and upper (Q3) quartiles, the horizontal line in the rectangles 

the median value, the whiskers the smallest and largest non-outlier values [lower limit: 

Q1-1.5*(Q3-Q1)); upper limit: Q3+1.5*(Q3-Q1)], and the circles the outlier values. 

Modified with permission from Figure S2 in study III (Wedenoja et al. 2009). 
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5.3 Gene and marker selection 

5.3.1 Study I 

In 2002, two reports revealed convincing evidence of association between schizophrenia, 

and both DTNBP1 (Straub et al. 2002) and NRG1 (Stefansson et al. 2002). Importantly, 

both of these genes are located in previously described schizophrenia loci (Straub et al. 

1995, Pulver et al. 1995). Shortly thereafter, several positive replications emerged for 

both DTNBP1 (Van Den Bogaert et al. 2003, van den Oord et al. 2003, Schwab et al. 

2003, Tang et al. 2003, Funke et al. 2004, Kirov et al. 2004, Numakawa et al. 2004, 

Williams et al. 2004, Li et al. 2005) and NRG1 (Stefansson et al. 2003, Williams et al. 

2003, Yang et al. 2003, Bakker et al. 2004, Corvin et al. 2004, Kampman et al. 2004, Li 

et al. 2004, Tang et al. 2004, Zhao et al. 2004, Petryshen et al. 2005, Fukui et al. 2006, 

Lachman et al. 2006). However, the associated markers and haplotypes varied 

(Figure 8), and also negative replication attempts were reported. The diverse results 

encouraged us to study the impact of these genes on schizophrenia in Finland by 

utilizing our large schizophrenia family sample, especially as a suggestive association 

between NRG1 and medication response in schizophrenia had already been reported in a 

smaller Finnish sample (Kampman et al. 2004). In the initial stage of the study, a novel 

association was reported between schizophrenia and AKT1 (Emamian et al. 2004), and 

shortly thereafter, was replicated in other studies (Ikeda et al. 2004, Schwab et al. 2005), 

and thus, this small gene was additionally included in the study. The characteristics of 

these genes are detailed in chapter 2.4.5 and summarized in Table 6. 

The intragenic and flanking SNPs were primarily selected among those utilized in the 

previous studies. To enhance the marker coverage on the genes, additional SNPs were 

selected from the public database dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/), 

totalling up to 15 SNPs for DTNBP1, 10 for NRG1, and three for AKT1. Of these, eight 

SNPs for DTNBP1 were the same as in the original publication (Straub et al. 2002). 

However, for NRG1, only two SNPs were the same as in the original publication 

(Stefansson et al. 2002). All the three SNPs for AKT1 were the same as in the original 

publication (Emamian et al. 2004). Additionally, our existing genotype data were 

utilized from two flanking STRs for DTNBP1, two flanking and one intragenic STRs for 

NRG1, and one flanking STR for AKT1 (Paunio et al. 2001, Paunio et al. 2004) 

(Figure 8). 
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Figure 8. Analyzed SNPs for a) DTNBP1, b) NRG1, and c) AKT1 genes (in black), as 

well as all the SNPs showing association (P<0.05) with schizophrenia in previous studies 

with the connecting lines indicating the most significantly associated haplotypes (in 

gray). The marker positions are presented according to the NCBI Build 34 human 

genome assembly. The relative positions of the gene transcripts are presented at the top. 

The LD structures in Finns are presented below the marker names. Modified with 

permission from Figure 1 in study I (Turunen et al. 2007). 
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5.3.2 Study II 

Previously, our genome-wide linkage scan had revealed a novel schizophrenia locus on 

chromosome 7q22 (Ekelund et al. 2000). Additionally, our genome-wide scan of 

cognitive schizophrenia endophenotypes had revealed a locus for semantic clustering—a 

learning strategy—on 7q21 (Paunio et al. 2004). Only a few other studies utilizing 

samples of European origin have reported even suggestive linkage to chromosome 7q, 

however, and only one of them to chromosome 7q21-q31 (Moises et al. 1995, Blouin et 

al. 1998, Faraone et al. 1998). To further evaluate this locus in a larger sample of Finnish 

schizophrenia families, we utilized altogether 25 STRs on the full length of chromosome 

7. The markers had been originally selected from the Cooperative Human Linkage 

Center (CHLC) 6 set with an average intermarker interval of 7.4 cM. These previously 

genotyped markers had not been utilized in the full sample before (Paunio et al. 2001, 

Paunio et al. 2004). Additionally, five intragenic STRs within the RELN gene, identified 

by sequencing by Millennium Pharmaceuticals Inc. (Cambridge, MA, USA) were 

included. The genetic distances were primarily derived from the Marshfield map 

(http://research.marshfieldclinic.org/genetics/). For the proprietary intragenic RELN 

STRs, the Human Genome Browser (Kent et al. 2002) was used to estimate the map 

distances by presuming the equivalence of 1 Mb to 1 cM. 

After linkage analysis, altogether four functional and regional candidate genes were 

selected from chromosome 7q21-32 for further association analysis. The characteristics 

of the selected genes SEMA3A, GRM3, and RELN are detailed in chapter 2.4.5 and 

summarized in Table 6. In addition, the VGF nerve growth factor inducible (VGF) 

[OMIM 602186] gene, showing a wide pattern of expression in the nervous system 

(Trani et al. 1995, Salton et al. 2000), especially during the organization of the 

cerebellum and synaptogenesis (Salton et al. 1991, Lombardo et al. 1995), was included 

in the study. 

The validated intragenic and flanking SNPs, 4 for GRM3, 10 for RELN, 7 for SEMA3A, 

and 2 for VGF, were selected by using the public application SNPper (Riva et al. 2004). 

The SNPs had to be bi-allelic, validated in Caucasian populations, present in multiple 

databases, and found with a minor allele frequency (MAF) ≥10%. 

 

5.3.3 Study III 

Based on the detected association between RELN and cognitive functions in 

schizophrenia families (II), the RELN marker coverage was expanded. Additionally, the 

number of neuropsychologically assessed subjects had increased after study II, allowing 

both extension of the sample size and replication efforts. 

The previously utilized RELN intragenic STRs RELNSAT2 and RELNSAT6 were 

selected based on the previous schizophrenia linkage and quantitative trait association 

results, respectively (II), to further genotyping in individuals not previously investigated 

with these markers. The novel RELN promoter-region STR D7S3120 was selected based 

on previous autism and schizophrenia studies (Fatemi 2005). 

The RELN intragenic and flanking tagSNPs were selected by using Tagger (de Bakker et 

al. 2005) implemented in Haploview 4.1 (Barrett et al. 2005) with pairwise tagging 

method with r2 threshold of 0.8 based on the CEPH genotype data of the International 
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HapMap Project (International HapMap Consortium 2005). The tagSNPs had to be bi-

allelic with MAF ≥10%. 

 

5.3.4 Study IV 

Our previous genome-wide linkage analyses had revealed schizophrenia loci on 

chromosomes 2q and 5q (Paunio et al. 2001), as well as a locus for visual working 

memory on chromosome 2q and a locus for verbal learning and memory on chromosome 

4q (Paunio et al. 2004). These cognitive traits are considered as valid schizophrenia 

endophenotypes (Gur et al. 2007). Of these, the 2q and 5q schizophrenia loci have also 

been highlighted in international meta-analyses (Lewis et al. 2003, Ng et al. 2009). 

However, these three loci had not been studied previously in an extensive manner in our 

sample. 

The selected chromosomal regions 2q33.1-2q37.3, 4q13.1-4q26, and 5q31.1-5q33.3 

were screened for all known genes with a HUGO Gene Nomenclature Committee 

(HGNC) approved ID by using the Ensembl Human database (Hubbard et al. 2007). 

Based on literature searches in scientific collaboration with researchers from Orion 

Pharma, the relevance of the identified 768 genes was evaluated for molecular 

etiopathogenesis of schizophrenia. The evaluation was based on previously reported 

associations with schizophrenia and related disorders, the known functions of the genes, 

and the hypothesized pathophysiology of schizophrenia (Harrison et al. 2005, Rapoport 

et al. 2005, Burmeister et al. 2008, Keshavan et al. 2008). In all, 104 genes were selected 

for analysis. 

The altogether 1511 intragenic and flanking tagSNPs for the candidate genes were 

selected by using Tagger (de Bakker et al. 2005) with the pairwise tagging method with 

r2 threshold of 0.8 based on the CEPH genotype data of the International HapMap 

Project (International HapMap Consortium 2005). The tagSNPs had to be bi-allelic with 

MAF ≥10%. For the six largest genes (ERBB4, HDAC4, PPP2R2B, GRIA1, CAMK2D, 

and GRID2), an additional two-marker tagging was used with the same threshold values. 

 

5.4 Genotyping 

5.4.1 Single nucleotide polymorphisms 

In studies I and II, the SNPs were genotyped in 3 to 4-plex reactions in 384-well plates 

by using Sequenom homogenous Mass Extend (hME) MassARRAY platform according 

to manufacturer's instructions (Sequenom Inc., San Diego, CA, USA). The flanking 

DNA sequences of the SNPs were derived from SNPper (Riva et al. 2004), and PCR and 

extension primers were designed by using Sequenom SpectroDESIGNER 2.0. The PCR 

reactions were performed in a total reaction volume of 5 µl using 7.5 ng of genomic 

DNA. As quality controls, eight water controls and eight duplicated DNA samples were 

included in each plate. The alleles were automatically called by Sequenom MassARRAY 

Typer and verified manually by two independent reviewers. 

For study III, the SNPs were genotyped in 24 to 31-plex reactions in 384-well plates by 

using Sequenom MassARRAY iPLEX Gold platform according to manufacturer's 

instructions (Sequenom Inc., San Diego, CA, USA). The flanking DNA sequences of the 
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SNPs were derived from SNPper (Riva et al. 2004), and PCR and extension primers 

were designed with Sequenom MassARRAY Assay Design 3.1. The PCR reactions were 

performed in a total reaction volume of 5 µl using 12.5 ng of genomic DNA. As quality 

controls, eight water controls and eight duplicated DNA samples were included in each 

plate. The alleles were automatically called by Sequenom MassARRAY Typer 4.0 and 

verified manually. 

In study IV, The SNPs were genotyped in 96-well plates by using the Illumina 

GoldenGate platform according to manufacturer’s instructions (Illumina Inc., San Diego, 

CA, USA). The PCR reactions were performed using 50 ng of genomic DNA. As quality 

controls, one plate-specific and one inter-plate duplicated DNA sample was included in 

each plate. The alleles were automatically called by Illumina BeadArray Reader and 

verified manually. 

 

5.4.2 Short tandem repeats 

In studies I and II, the STR genotype data were received from previously performed 

genotyping (Paunio et al. 2001, Paunio et al. 2004). 

In study III, the STR genotyping was performed in single-plex reactions in 96-well 

plates by using ABI 3730xl DNA Analyzer platform (Applied Biosystems, Foster City, 

CA, USA). The flanking DNA sequences of RELNSAT2 and RELNSAT6 were derived 

from the UCSC Genome Browser (Kent et al. 2002) and PCR primers were designed 

with Primer3 software (Rozen et al. 2000). The D7S3120 STR PCR primers were 

derived from a previous study (Persico et al. 2001). The PCR reactions were performed 

in a total reaction volume of 15 µl including 10 ng of genomic DNA. As quality 

controls, two water controls and two duplicated DNA samples were included in each 

plate. The alleles were automatically called by ABI GeneMapper 4.0 and verified 

manually. 

 

5.4.3 Quality controls 

For all the markers, inclusion criteria included the genotyping success rate ≥95% (II-IV), 

MAF ≥1% (I-IV), HWE P-value ≥0.01 calculated from non-related individuals by using 

standard χ2 test (I), PEDSTATS 0.6.10 (Wigginton et al. 2005) (II, III), or Haploview 4.0 

(Barrett et al. 2005) (IV), and the number of Mendelian errors <5 (I-III) or <3 (IV) 

according to PedCheck 1.1 (O'Connell et al. 1998) (I-III) or PLINK 1.05 (Purcell et al. 

2007) (IV). In study I, no marker-specific threshold for success rate was used, however, 

the overall genotyping success rate was >95%. Additionally, in study II the reliability of 

the genotyping results was verified with the multipoint error detection option of 

MERLIN 1.1.2 (Abecasis et al. 2002) identifying possible problematic genotypes using 

all the genotype information simultaneously. 

For the subjects, inclusion criteria included the individual genotyping success rate ≥90%, 

and the number of Mendelian errors ≤3 per individual and per nuclear family. In case of 

occasional Mendelian errors, all the genotypes were removed for the corresponding 

marker and nuclear family (I-IV). 
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5.5 Statistical analysis 

5.5.1 Linkage disequilibrium and haplotype block estimation 

The LD between SNPs was estimated among trio founders (II), or among non-related 

individuals (one per family) (I, III, IV) by using Haploview (Barrett et al. 2005). 

Additionally, LD between SNPs and STRs was estimated by using ldmax (Excoffier et 

al. 1995) implemented in GOLD (Abecasis et al. 2000). Haplotype blocks were defined 

according to the confidence interval algorithm (Gabriel et al. 2002), in which all the 

SNPs in the haplotype blocks are in strong LD with each other (I), or 'solid spine of LD' 

algorithm, in which the first and last SNP in every haplotype block are in strong LD with 

all the intermediate SNPs, which may or may not be in strong LD with each other (II, 

III). Either the tagSNPs (I-II) or all the markers (III), including the STRs, within the 

haplotype blocks were used to construct the haplotypes. 

 

5.5.2 Linkage analysis 

Singlepoint linkage analyses (II) were performed with Pseudomarker (Goring et al. 

2000) which performs separate and joint linkage and LD analyses testing each marker 

locus against a phenotype-based "pseudomarker" locus. This likelihood-based analysis 

method, numerically equivalent to model-free analysis, uses efficiently mixed data sets 

of singletons and various pedigrees. In the linkage analysis, default dominant and 

recessive models with no phenocopies and low gene frequency were used. 

Nonparametric multipoint linkage analyses (II) were performed with SimWalk2 (Sobel 

et al. 1996, Sobel et al. 2001, Sobel et al. 2002) after preparation of files with Mega2 

(Mukhopadhyay et al. 2005), and results were confirmed with MERLIN (Abecasis et al. 

2002) by using the helper program AUTOGSCAN (Hiekkalinna et al. 2005). 

 

5.5.3 Qualitative association analysis 

In studies I, III, and IV, qualitative allelic association analyses were performed by using 

FBAT (Laird et al. 2000, Horvath et al. 2001) on affected-only basis. The analysis was 

performed by using additive model with empirical variance, as recommended in the 

presence of linkage (Lake et al. 2000), since all the studied genes were located within the 

previously described schizophrenia loci (Table 5, Table 6). In study II, the allelic 

qualitative association analyses were performed by using Pseudomarker (Goring et al. 

2000) similarly to the linkage analysis. The 'LD given linkage' option was used due to 

the known presence of linkage in the region. 

In studies I and III, qualitative haplotype association analyses were performed with the 

haplotype analysis option of FBAT (Horvath et al. 2004) in a similar manner as the 

allelic association analysis. In study II, the haplotype association analysis was performed 

with TRANSMIT (Clayton 1999) by using bootstrapping method with 100 000 

replicates. Alleles and haplotypes with frequencies <3% were pooled together. 

In sex-specific analyses, the phenotypes of the other gender were set as unknown. 
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5.5.4 Quantitative association analysis 

Quantitative association analyses were performed with QTDT (Abecasis et al. 2000) 

with the proportion of alleles shared identical by descent (IBD) calculated with 

multipoint computation of MERLIN (Abecasis et al. 2002) to extract maximal 

inheritance information from the families. The total association model, which allows 

more powerful analysis of samples including partly incomplete families, was used with 

'polygenic', 'non-shared environment', 'common environment', and 'nuclear family 

environment' as variance components, as they supposedly best describe the similarities 

in the analyzed traits between the family members. The population stratification, a 

potential source of false positive signals, was determined to be statistically insignificant 

in our sample with the 'population stratification' model of QTDT (Abecasis et al. 2000) 

by using the same variance components and covariates as in the association analysis 

(II-IV). 

In the analysis of neuropsychological traits derived from WMS-R (Wechsler 1987), 

WAIS-R (Wechsler 1981), CVLT (Delis et al. 1987), TMT (Reitan et al. 1993), and 

Stroop Task (Golden 1978), the used covariates were sex, testing age, and affection 

status according to any psychotic disorder, since all these factors are related to variations 

in the overall cognitive performance (Heaton et al. 2001) (II, III). In the analysis of 

clinical variables derived from SANS (Andreasen 1983), the used covariates were sex, 

and affection status according to any psychotic disorder, and from SAPS (Andreasen 

1984) and OPCRIT (McGuffin et al. 1991), the used covariate was sex (III). 

Additionally, in study IV, the isolate status (IS/AF) was included as a covariate. 

To explore the effect of the correlation between the cognitive functions [tests derived 

from WMS-R (Wechsler 1987), WAIS-R (Wechsler 1981), CVLT (Delis et al. 1987), 

TMT (Reitan et al. 1993), and Stroop Task (Golden 1978)], and both the severity of 

positive symptoms and the severity of negative symptoms of schizophrenia, the sum of 

all SAPS (Andreasen 1984) or SANS (Andreasen 1983) items were included as 

covariates in cognitive trait analyses (III). Other covariates were sex, testing age, and 

additionally, affection status according to any psychotic disorder when severity of 

negative symptoms was included as a covariate. The analysis model and variance 

components were the same as in the main analysis. 

In study III, the quantitative haplotype association analyses were performed with QTDT 

(Abecasis et al. 2000) by using the same options as in the allelic association analysis. 

The haplotypes were constructed with MERLIN (Abecasis et al. 2002) according to the 

most likely pattern of gene flow, and the haplotypes were coded as numeric alleles by 

using a custom-made computer script. 
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5.5.5 Statistical significance estimation 

P-value thresholds corresponding to type I error rate of 0.05 were estimated by using 

conservative Bonferroni correction according to the number of independent markers, and 

additionally, the number of independent traits (III, IV). Since both the analyzed markers 

and traits were not fully independent, their effective numbers were estimated with 

SNPSpD (Nyholt 2004) and matSpD (Nyholt 2004), respectively. The smaller of the pair 

of estimates, either Meff or MeffLi (Li et al. 2005), or Veff or VeffLi (Li et al. 2005), 

respectively, were used as recommended by the author 

(http://gump.qimr.edu.au/general/daleN/SNPSpD/). As for the effective number of 

independent markers, the SNPSpD (Nyholt 2004) estimate for SNPs (IV), or the sum of 

the SNPSpD (Nyholt 2004) estimate for SNPs and the number of the STRs (III) was 

used. As for the effective number of independent traits, the sum of the matSpD (Nyholt 

2004) estimates for qualitative and quantitative traits was used (III). The Pearson 

correlation coefficient matrixes of qualitative and quantitative traits were calculated by 

using SPSS 16.0.1 (SPSS Inc., Chicago, IL, USA). 

In study III, the P-value threshold of 0.0009 for significant and 0.00007 for highly 

significant trait associations were estimated according to the number of independent 

markers (n=56.74), and the product (n=717.76) of the number of independent markers 

(n=56.74) and the number of independent traits (n=12.65), respectively. Additionally, a 

P-value threshold of 0.01 was used for suggestive association. 

In study IV, the P-value threshold of 0.0005 for suggestive and 0.00006 for significant 

trait associations were estimated according to the number of analyzed genes (n=104) and 

the effective number of independent markers (n=791.18), respectively. 

 

5.5.6 Effect estimation 

In studies II and III, the significance of trait differences between the individuals positive 

(carrying one or two copies of the allele or haplotype) and negative (not carrying the 

allele or haplotype) for the STR alleles or haplotypes showing association with the trait 

were estimated with the Generalized Estimation Equation Model (GEE) (Zeger et al. 

1986) of the package 'gee' in R (R Development Core Team 2006). Sex, testing age [with 

cognitive traits (II, III)] and affection status according to any psychotic disorder [with 

cognitive traits (II, III), and SANS (III)] were used as covariates. The nuclear family 

status was used as cluster division to take into account the within-family correlation. 

In study IV, the effects of the SNPs showing association with the traits were analyzed by 

using linear modelling in R (R Development Core Team 2006) with sex, testing age, 

affection status according to any psychotic disorder, isolate status (AF/IS), and SNP 

genotype coded as 0, 1, or 2 copies of the minor allele as predictors. For the SANS 

(Andreasen 1983) sum score, the predictors were sex, affection status according to any 

psychotic disorder, isolate status (AF/IS), and SNP genotype coded as 0, 1, or 2 copies 

of the minor allele. For the SAPS (Andreasen 1984) sum score and the age of onset from 

OPCRIT (McGuffin et al. 1991), the predictors were sex, isolate status (AF/IS), and SNP 

genotype coded as 0, 1, or 2 copies of the minor allele. In the traits derived from the 

clinical diagnostic categories and OPCRIT (McGuffin et al. 1991), the effects were 

estimated by logistic regression in R (R Development Core Team 2006) with predictors 
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sex, isolate status (AF/IS), and SNP genotype coded as 0, 1, or 2 copies of the minor 

allele. 

For qualitative traits, the effect size was estimated as odds ratio (OR), which describes 

how likely an incident (here, being affected) is in individuals with the investigated allele 

compared to individuals without the allele. For quantitative traits, the effect size was 

estimated as beta value, which describes the quantity of the average trait value change 

attributed to the investigated allele. 

The correlations between the severity of clinical symptoms and amount of risk alleles 

were estimated by fitting the values into a linear model and calculating the Pearson 

correlation coefficient in R (R Development Core Team 2006). The markers not in 

strong LD with each other (r2<0.10) were selected for the analysis by using Tagger (de 

Bakker et al. 2005) implemented in Haploview (Barrett et al. 2005). 
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6 Results and discussion 

6.1 Analysis of candidate genes DTNBP1, NRG1, and AKT1 
(Study I) 

6.1.1 Association analysis of clinical diagnostic categories 

In allelic and haplotype analyses, no associations with P-value <0.01 were detected 

between any of the studied markers or haplotypes and clinical diagnostic categories. One 

STR flanking DTNBP1 (D6S285), and altogether six SNPs and one haplotype within and 

flanking NRG1 showed marginal signals (P<0.05), although these cannot be considered 

statistically significant associations. 

For DTNBP1, the studied 15 SNPs and 2 flanking STRs cover relatively well the 

common variants of the gene, and altogether eight of the SNPs were the same as utilized 

in the original publication revealing association with schizophrenia (Straub et al. 2002). 

In previous studies, the detected associations have concentrated in the 5' part of the gene. 

Interestingly, the flanking D6S285 STR (P=0.01 with LC3 in combined sample) is 

located on this side of the gene. However, despite this gene region having the highest 

marker coverage in our study as well (Figure 8a), any other even suggestive signals 

remained absent. The population differences are unlikely to cause the inconsistencies 

between the studies, however, since the overall haplotype structures of the study 

populations correspond to each other at a high degree (Mutsuddi et al. 2006). 

For NRG1, the studied 10 SNPs, and one intragenic and two flanking STRs are 

supposedly insufficient to cover other than the most common variants of the gene due to 

its large size, although the high LD in Finnish samples compensates the low number of 

the markers for some degree (Service et al. 2006). Although the studied SNPs included 

two from the original publication revealing association with schizophrenia (Stefansson et 

al. 2002), our marker coverage concentrated in the 3' part of the gene with lower number 

of reported associations (Figure 8b). However, any association with the SNPs belonging 

to the original "Icelandic" haplotype in the 5' part of the gene, its most studied region, 

remained absent. On the other hand, the detected suggestive association signals from the 

3' region of the gene could be interpreted, in combination with the previous evidence, as 

supportive for the involvement of this region in the etiology of schizophrenia (Yang et 

al. 2003, Li et al. 2004, Petryshen et al. 2005, Lachman et al. 2006). Furthermore, these 

multiple marginal signals emerged among the AF subsample from the geographical 

region of Finland, in which the genetic architecture is more closely related to other 

Western European populations than that in the isolate (IS) located in the northeastern 

Finland (Salmela et al. 2008). 

For AKT1, the studied three SNPs and one flanking STR are supposedly sufficient to 

cover the common variants of this gene due to its small size (Figure 8c). All these SNPs 

overlap with those investigated in the original publication revealing association with 

schizophrenia (Emamian et al. 2004). 
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6.1.2 Conclusions 

Overall, this study showed no support for any major role for DTNBP1, NRG1, or AKT1 

in the genetic liability of schizophrenia in Finland. However, the number of analyzed 

genetic markers, 15 SNPs for DTNBP1, 10 for NRG1, and 3 for AKT1, was relatively 

low. This leaves a possibility for other regions of these genes playing a role behind the 

liability. On the other hand, the SNPs in our study were selected primarily based on the 

previous studies, and therefore, the selection of the SNPs cannot solely explain the 

negative results in our series. 

Despite the lacking significant associations in this study, multiple line evidence suggest 

a role for the studied genes in schizophrenia in other populations. For DTNBP1, this 

evidence includes the location of DTNBP1 in schizophrenia-linked region (Straub et al. 

1995), association with schizophrenia (Straub et al. 2002) and cognitive features 

(Donohoe et al. 2007), and the reduced level of DTNBP1 expression in schizophrenia 

(Weickert et al. 2004, Weickert et al. 2008). Despite the negative association results in 

this study, DTNBP1 remains as one of the notable candidate genes for schizophrenia. For 

NRG1, the established roles in the development and function of the brain (Harrison et al. 

2006), the location in schizophrenia-linked region (Pulver et al. 1995), and association 

with schizophrenia (Stefansson et al. 2002) propose its actions behind the schizophrenia 

pathogenesis. Similarly, the AKT pathway seems to be associated with both the liability 

of schizophrenia (Emamian et al. 2004), and with that of bipolar disorder (Toyota et al. 

2003). In murine model, the Akt pathway is associated with spatial memory functions 

(Mizuno et al. 2003), and interestingly, human AKT1 is associated with verbal learning 

and memory, as well as with cortical gray matter density (Pietilainen et al. 2009). 

To conclude, our study is insufficient to fully exclude the role of these genes in the 

pathogenesis of schizophrenia or closely related traits, especially as our phenotypic 

information were limited to clinical diagnosis only. Therefore, only more detailed 

analysis with novel markers and/or phenotypic features may elucidate the role of these 

genes in Finnish schizophrenia families. 
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6.2 Analyses of 7q22 locus and regional candidate gene RELN 
(Studies II & III) 

6.2.1 Linkage analysis of clinical diagnostic categories 

The singlepoint linkage analysis was performed among the replication sample (RS) of 

altogether 352 families independent from our previous study (Ekelund et al. 2000). The 

highest LOD scores were 0.65 for STR D7S2204 when using core schizophrenia (LC1) 

as a diagnostic criterion, and 0.82 for RELN intragenic STR RELNSAT2 when using 

schizophrenia spectrum (LC3). 

In multipoint analysis, the highest SimWalk2 multipoint NPL scores of 1.38 (LC1) and 

1.83 (LC3) were detected between the STRs D7S821 (7q21.3) and D7S1804 (7q32.3). 

Among the subsamples of 256 AF families and 96 IS families, the AF subsample 

revealed the highest SimWalk2 multipoint NPL score of 2.44 between the STRs D7S821 

(7q21.3) and D7S1804 (7q32.3) with the LC3 criterion. The IS subsample revealed no 

significant linkage to chromosome 7 (Figure 9). 

The confirmation analyses with MERLIN revealed consistently similar patterns of 

linkage in all classes (LC1, LC3) (data not shown). Thus, we replicated the 

schizophrenia linkage on chromosome 7q21-q32 in an independent series of 352 Finnish 

nuclear families, and in agreement with the original study (Ekelund et al. 2000), this 

signal was predominantly contributed by the families outside the internal isolate. 
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Figure 9. a) SimWalk2 multipoint linkage analysis results (LC3) in the replication 

sample (RS), the subsample outside the isolate (AF), and the isolate subsample (IS) on 

non-parametric linkage (NPL) score. b) Magnification of the linked region with the 

marker positions indicated. RELNSAT refers to all the five RELN intragenic STRs. 

Additionally, our original multipoint linkage results (LC3) (Ekelund et al. 2000) are 

shown on the maximum likelihood score (MLS) scale for the whole original sample 

(Orig-All), and for its subsample originating outside the isolate (Orig-AF). Modified 

with permission from Figure 1 in study II (Wedenoja et al. 2008). 
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6.2.2 Association analysis of clinical diagnostic categories 

None of the markers or haplotypes in the selected regional and functional candidate 

genes SEMA3A, GRM3, VGF, and RELN showed significant association with any of the 

diagnostic categories among the families originating from the same geographical region 

as those revealing the linkage to chromosome 7q21-q32. Similarly, the sex-specific 

analyses failed to reveal any association (II). Further evaluation of RELN with extended 

marker coverage in the partly overlapping sample, including also nuclear families 

originating from the internal isolate (Hovatta et al. 1997), showed no significant 

associations with any of the markers or haplotypes (III). 

The RELN promoter-region STR D7S3120 alleles and their frequencies resembled those 

reported previously (Persico et al. 2001). In our Finnish sample, however, none of the 

alleles exceeded the length of 15 repeats (III). This is noteworthy, since the longer alleles 

are associated with autism (Persico et al. 2001) and treatment-resistant schizophrenia 

(Goldberger et al. 2005), possibly via decreased RELN expression (Persico et al. 2006). 

 

6.2.3 Association analysis of clinical disorder features 

Suggestive associations (P<0.01) emerged between the severity of positive symptoms 

and SNPs rs2299356, rs12705141, rs727708, rs540058, rs563264, rs16872603, and 

rs11761011 (Figure 10a) (III). All the identified SNP risk alleles increased the symptom 

severity in an additive fashion (data not shown). After selecting the SNPs not in strong 

LD with each other (r2<0.10; rs563264, rs16872603, and rs11761011) by using Tagger 

(de Bakker et al. 2005) implemented in Haploview 4.1 (Barrett et al. 2005), the total 

number of their risk alleles and the severity of positive symptoms showed a significant 

positive correlation (P=0.0000001, r=0.24) (Figure 10b). 

Among the affected individuals, the longest allele of RELNSAT6 (AATA repeat in 

RELN intron 27) showed significant association with both more severe positive 

symptoms (P=0.0005; Beta 13.28, 95%CI 3.74-22.82) and negative symptoms 

(P=0.00006; Beta 16.50, 95%CI 7.17-25.83) of schizophrenia (III). Additionally, the 

allele 13 of D7S3120 showed suggestive association (P=0.002) with the age of 

schizophrenia onset, the allele positive individuals (n=23) having earlier age of onset 

(mean 20.3, median 18 years) than the allele negative individuals (n=432) (mean 24.6, 

median 22 years). 
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Figure 10. a) SNP association results with the severity of positive symptoms of 

schizophrenia as a sum of all SAPS (Andreasen 1984) items. The horizontal dashed line 

corresponds to P=0.01. The SNPs rs2299356, rs12705141, rs727708, rs540058, 

rs563264, rs16872603, and rs11761011 showed suggestive association with the severity 

(P<0.01). Of these, the SNPs rs563264, rs16872603, and rs11761011 (presented as 

diamonds) were selected to further analysis by using the Tagger algorithm (de Bakker et 

al. 2005) implemented in Haploview 4.1 (Barrett et al. 2005). 

b) The severity of the positive symptoms compared with the total number of risk alleles 

of those three SNPs. Only the individuals with genotypes available for all the three SNPs 

were included in the analysis. The number of individuals in each category (category in 

parentheses): 25 (2); 106 (3); 186 (4); 125 (5); 30 (6). Due to the low number of 

individuals, the categories one and two were combined. The rectangle ends in the 

boxplots represent the lower (Q1) and upper (Q3) quartiles, the horizontal lines in the 

rectangles the median values, the whiskers the smallest and largest non-outlier values 

[lower limit: Q1-1.5*(Q3-Q1)); upper limit: Q3+1.5*(Q3-Q1)], and the circles the 

outlier values. Modified with permission from Figure 1 in study III (Wedenoja et al. 

2009). 

 

 

 

6.2.4 Association analysis of neuropsychological test measurements 

In the analysis of quantitative traits derived from neuropsychological test measurements 

(II), RELNSAT6 showed suggestive global association with verbal working memory 

(P=0.003). In further allele-specific analysis, the longest detected RELNSAT6 allele—

hence, the risk allele—showed significant association with several traits. The allele 

positive individuals (those carrying one or two copies of the allele, n=23) showed 

generalized cognitive impairment compared with the allele negative individuals (those 

not carrying the allele, n=527). In replication analysis among altogether 342 individuals 

with genotype and trait information available (III), this original STR association was 

replicated with the allele positive individuals (n=20) showing similarly impaired 

cognitive performance as in the original study (Table 10). Interestingly, the effect of the 
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risk allele was stronger among the individuals affected with psychosis (ANYPSY 

criteria) (Table 11). 

To further diminish the effects of within-family correlation and age, the performance 

differences were further explored by selecting only the youngest risk allele positive 

(n=12) or negative (n=169) individual from each family (II). Among these unrelated 

individuals, the performance differences remained significant for verbal (P=0.005) and 

visual (P=0.003) working memory, and verbal memory (P=0.02) traits according to the 

Mann-Whitney U-test, and the overall trend in test performance remained for all the 

tested traits (data not shown). 

Since the neuropsychological traits and both the SAPS (Andreasen 1984) and SANS 

(Andreasen 1983) symptom ratings showed correlation (Table 12), the effect of this 

correlation on the results was further explored by including the SAPS and SANS sum 

scores as covariates. The association between the risk allele and verbal working memory 

remained suggestive (P=0.003) with SAPS included as covariate, and significant 

(P=0.0003) with SANS included as covariate, despite the lower number of informative 

individuals in these analyses (n=461 and n=627, respectively). 

In the AF subsample, the same RELNSAT6 risk allele showed similar patterns of 

association as observed in the whole sample (II, III). In addition, one allele of 

RELNSAT7, showing some LD with RELNSAT6 (D'=0.78), revealed significant 

association with verbal working memory (P=0.003) and visual attention (P=0.0009) (II). 

In the AF subsample, the frequency of the trait-associated allele was 41.2%. When the 

AF subsample was divided into homozygous RELNSAT7 allele positives (n=49), 

heterozygous allele positives (n=147), and allele negatives (n=101), significant 

difference arose only between the homozygous allele positive and negative individuals 

for the verbal working memory (P=0.01). Additionally, one haplotype not involving 

RELNSAT6 showed highly significant association with poorer performance in verbal 

memory traits (P=0.00005 to 0.00006) (III). 

In the IS subsample, the RELNSAT6 risk allele was almost entirely absent; it was 

detected in only one nuclear family fulfilling the criterion of at least one maternal and 

one paternal grandparent born in the geographical isolate region (III). In agreement with 

this and the lack of schizophrenia linkage in the IS subsample (Figure 9), any significant 

RELN associations remained absent in this subsample. 

In the control sample, two SNP haplotypes showed association with verbal working 

memory (P=0.0005), and verbal memory (P=0.0009) (III). 

In the total RS sample of altogether 1626 individuals from 352 nuclear families, 54.1% 

of the RELNSAT6 risk allele positives, compared to 39.6% of the negatives, were 

affected with schizophrenia spectrum disorders (LC3). This difference was statistically 

significant according to the χ2 test (P=0.01). 
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Table 10. The RELNSAT6 risk allele effects on overlapping neuropsychological test 

traits (raw test scores) in the original sample (II), and replication subsample (III). 

Significance is estimated with GEE (Zeger et al. 1986) analysis by using sex, testing age, 

and affection status according to any psychotic disorder (LC3 in II, ANYPSY in III) as 

covariates. The nuclear family status was used as cluster division to take into account the 

within-family correlation. All P-values <0.05 are shown. 

Trait Original ind (n=550) Replication ind (n=342) 

Attention and working memory Beta (95% CI) P-value Beta (95% CI) P-value 

Verbal attentiona -0.69 (± 0.69) 0.03 -0.23 (± 0.69) ns 

Verbal working memorya -1.66 (± 0.53) 4*10-10 -0.98 (± 0.93) 0.02 

Visual attentiona -0.86 (± 0.69) 0.007 -0.88 (± 0.69) 0.007 

Visual working memorya -1.59 (± 0.93) 0.0004 -1.36 (± 1.21) 0.01 

Verbal learning and memory 

Verbal learninga -6.71 (± 5.72) 0.01 -4.18 (± 5.21) ns 

Recalling words after short delaya -2.31 (± 1.24) 0.0001 -1.05 (± 1.33) ns 

Recalling words after long delaya -1.25 (± 1.15) 0.02 -0.74 (± 1.37) ns 

Ability functions 

Verbal abilitya -5.62 (± 5.38) 0.02 -1.18 (± 6.16) ns 

Executive functions 

Stroop interference scoreb,c 13.67 (± 11.00) 0.001 -3.46 (± 13.94) ns 
aLower test score represents poorer performance 
bHigher test score represents poorer performance 
cSignificance was estimated by using the transformed raw test score 

Abbreviations: ind, individuals; CI, confidence interval; ns, not significant 
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Table 11. The RELNSAT6 risk allele effects on neuropsychological test traits (raw test 

scores) in the whole schizophrenia sample, and in a subsample of individuals affected 

with psychosis. Significance is estimated with GEE (Zeger et al. 1986) analysis by using 

sex, testing age, and affection status according to any psychotic disorder (ANYPSY) as 

covariates. The nuclear family status was used as cluster division to take into account the 

within-family correlation. All P-values <0.05 are shown. 

Trait All ind (n=892) Affected ind (n=385) 

Attention and working memory Beta (95% CI) P-value Beta (95% CI) P-value 

Verbal attentiona -0.45 (± 0.50) 0.04 -1.10 (± 0.73) 0.001 

Verbal working memorya -1.34 (± 0.54) 6*10-7 -1.72 (± 0.76) 4*10-6 

Visual attentiona -0.84 (± 0.48) 0.0003 -1.10 (± 0.74) 0.002 

Visual working memorya -1.44 (± 0.82) 0.0003 -1.93 (± 1.35) 0.002 

Mental trackingb,c 4.21 (± 9.89) ns 5.85 (± 13.00) ns 

Verbal learning and memory 

Verbal learninga -5.31 (± 4.29) 0.008 -7.88 (± 5.01) 0.001 

Recalling words after short delaya -1.58 (± 1.02) 0.001 -2.18 (± 1.42) 0.001 

Recalling words after long delaya -0.97 (± 0.97) 0.03 -1.38 (± 1.37) 0.02 

Semantic clustering ratioa 0.04 (± 0.24) ns -0.06 (± 0.39) ns 

Ability functions 

Verbal abilitya -3.74 (± 4.32) 0.04 -7.12 (± 6.22) 0.01 

Processing speeda -1.22 (± 3.67) ns -6.40 (± 4.63) 0.003 

Executive functions 

Executive functioningb,c 17.90 (± 28.62) ns 57.86 (± 49.84) 0.0003 

Stroop interference scoreb,c 5.86 (± 10.10) ns 9.50 (± 17.31) ns 
aLower test score represents poorer performance 
bHigher test score represents poorer performance 
cSignificance was estimated by using the transformed raw test score 

Abbreviations: ind, individuals; CI, confidence interval; ns, not significant 
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Table 12. Spearman's rho values between neuropsychological tests, and the severity of 

both the positive and negative symptoms of schizophrenia (sum of all SAPS (Andreasen 

1984) and SANS (Andreasen 1983) items, respectively). 

Trait Spearman's rho 

Attention and working memory SAPS SANS 

Verbal attention -0.102 -0.257 

Verbal working memory -0.243 -0.415 

Visual attention -0.127 -0.382 

Visual working memory -0.129 -0.365 

Mental tracking 0.154 0.458 

Verbal learning and memory   

Verbal learning -0.356 -0.596 

Recalling words after short delay -0.290 -0.516 

Recalling words after long delay -0.285 -0.544 

Semantic clustering ratio -0.253 -0.285 

Ability functions   

Verbal ability -0.179 -0.453 

Processing speed -0.149 -0.496 

Executive functions   

Executive functioning 0.161 0.377 

Stroop interference score 0.212 0.345 

Abbreviations: SAPS, Scale for the Assessment of Positive Symptoms; SANS, Scale for 

the Assessment of Negative Symptoms 

 

6.2.5 Conclusions 

Multiple RELN SNPs showed association with the severity of positive symptoms of 

schizophrenia, and the total number of the risk alleles revealed a positive correlation 

with the severity. Overall, the strongest signals emerged from the longest allele of 

RELNSAT6, this allele being associated with impaired cognitive functioning on multiple 

domains, and with more severe positive and negative symptoms of schizophrenia. As 

expected, the symptom ratings and cognitive traits showed correlation, but the 

association with cognition remained while covarying for the symptom ratings. Whether 

RELNSAT6 itself is the causative variant or merely reflects the effects of another 

variant(s) remains unclear. That the longest variant revealed the associations, however, 

could imply the actions of this STR in conjunction with some epigenetic regulatory 

effects. Interestingly, this kind of phenomenon is seen in some other disorders, most 

notably the Fragile X Syndrome, where the expansion of a nucleotide repeat exposes the 

sequence to excess methylation, eventually silencing the expression of the underlying 

gene (Graff et al. 2008, Graff et al. 2009). 

The risk allele appeared only in four families from the internal isolate (IS) (Hovatta et al. 

1997), yet only one of the families fulfilled the criterion of at least one maternal and 

paternal grandparent born in the geographical isolate region. In agreement with this, no 

RELN associations were detected in the IS subsample. Thus, the geographical 

distribution of RELN associations was uneven, supporting the evidence of different risk 

variants and/or their different frequencies affecting the schizophrenia liability in the 

isolate and in the general population (Hovatta et al. 1997) (III). That the RELN 
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associations were mostly contributed by the AF families supports the generalizability of 

our results, since the genetic architecture outside the internal isolate is more closely 

related to that of the other Western European populations (Salmela et al. 2008). 

Although statistical bias due to the low number of risk allele positive individuals (n=42) 

is possible, the risk allele positives in the non-overlapping individuals between the 

studies II and III had similar deficits in cognitive performance (Table 10). Interestingly, 

the effect of the risk allele on cognition was stronger among the cases (Table 11), 

whereas any effect among the controls remained negligible. This phenomenon fits the 

modifier gene hypothesis, and proposes a role for RELN in modifying the disorder 

features (Nadeau 2001, Fanous et al. 2005). 

Although our studies involved genetic association analyses without functional 

experiments, a wide spectrum of data supports the role of RELN in both development 

and function of the brain. RELN seems to regulate neuronal migration and affect synaptic 

plasticity (Rice et al. 2001, Fatemi 2005). As for RELN structure, its C-terminus is 

crucial for the downstream signaling (Nakano et al. 2007) and the reelin repeats five and 

six form the essential binding sites for the Reelin receptors (Yasui et al. 2007). Although 

the RELNSAT6, showing the strongest signals in our study, is located apart from these 

supposedly most important functional regions, this location cannot exclude its possible 

effects in the complex process of gene regulation. That the reduced RELN expression 

appears in several major neurodevelopmental disorders suggest its central role in these 

conditions (Fatemi 2005). Especially interesting is that the promoter-region 

hypermethylation of RELN, which reduces its expression (Chen et al. 2002), arises in the 

brains of schizophrenia patients (Grayson et al. 2005). On the other hand, one of the 

factors increasing the RELN methylation may be aging (Tamura et al. 2007). That the 

trinucleotide repeat lengthening in the RELN promoter-region, affecting its expression 

levels (Persico et al. 2006), appears in treatment-resistant schizophrenia (Goldberger et 

al. 2005) provides further evidence for RELN actions in the background of 

schizophrenia. Interestingly, a long allele of this RELN promoter-region STR showed 

association in our study with the earlier age of schizophrenia onset. 

Despite the fact that the promoter-region of RELN may be associated with schizophrenia, 

other findings of RELN associations with schizophrenia are rare (Kahler et al. 2008, 

Shifman et al. 2008). Thus, regarding the association analysis with clinical diagnoses, 

our results are in line with the previous evidence. Our study shows, however, that 

utilization of intermediate phenotypes reveals specific disorder domains associated with 

RELN. While our results add data to the RELN literature and support its role especially in 

cognitive features affected in schizophrenia, the underlying mechanisms between the 

RELN and the disorder liability remain to be clarified. To assist future studies based on 

our results, we have included all the required information for RELN intragenic STR 

genotyping in the supplementary material of our published article. 
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6.3 Analysis of 104 regional candidate genes from 2q, 4q, and 
5q loci (Study IV) 

6.3.1 Chromosome 2q33.1-2q37.3 

Our previous studies revealed linkage between chromosome 2q and both schizophrenia 

(Paunio et al. 2001) and visual working memory (Paunio et al. 2004). The schizophrenia 

linkage was contributed mostly by the families originating from the internal isolate (IS), 

whereas working memory linkage was contributed mostly by the families originating 

outside the isolate (AF). 

In this study, 37 regional candidate genes were selected for detailed association analyses 

of clinical diagnostic categories, clinical disorder features, and cognitive traits. All the 

detected significant and suggestive associations are summarized in Table 13. The 

significant and those suggestive associations considered most promising are presented in 

detail below. 

The CASP8 and FADD-like apoptosis regulator (CFLAR) [OMIM 603599] on 

chromosome 2q33.1 showed significant association with executive functioning in the 

control sample (CTRL). Interestingly, CFLAR downregulation induces Akt activation 

via phosphorylation (Shim et al. 2007). 

The V-erb-a erythroblastic leukemia viral oncogene homolog 4 (ERBB4) [OMIM 

600543] on chromosome 2q34 showed suggestive associations with eight different SNPs 

and several traits, including widespread delusions (ALL), severity of positive symptoms 

of schizophrenia (IS), as well as verbal (ALL and IS, different SNPs) and visual 

attention (IS). Interestingly, a previous study (Nicodemus et al. 2006) has revealed an 

association with verbal attention among healthy controls with the same Digit Span 

subtest from WMS-R (Wechsler 1987) which revealed the association here. The 

characteristics of ERBB4 are detailed in chapter 2.4.5 and summarized in Table 6. 

The EPH receptor A4 (EPHA4) [OMIM 602188] on chromosome 2q36.1 showed 

suggestive associations with both schizophrenia spectrum (SCHSPECT) and psychotic 

disorders (ANYPSY) in the whole schizophrenia sample (ALL). Additionally, 

associations were detected between EPHA4 and poor premorbid work adjustment (ALL; 

significant and suggestive), poor premorbid social adjustment (ALL and IS; suggestive; 

different SNPs), mood symptoms (IS; suggestive), and visual working memory (IS; 

suggestive). EPHA4 encodes for an ephrin receptor from the protein-tyrosine kinase 

family, and is important regulator of the formation of neuronal connections in the brain, 

especially in the hippocampus (Murai et al. 2003, Ho et al. 2009). 

The Paired box 3 (PAX3) [OMIM 606597] on chromosome 2q36.1 showed significant 

association with long delay verbal recall (AF). PAX3 is expressed only during the 

embryogenesis, especially in the developing neuronal tissue (Goulding et al. 1991). 

PAX3 mutations cause the Waardenburg syndrome type I and III (Hoth et al. 1993), 

characterized by several defects in neural crest derived tissues, and especially congenital 

deafness (Morell et al. 1997). 
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Table 13. Association results on chromosome 2q33.1-2q37.3. Beta values are for the 

untransformed trait. Only P-values below the suggestive threshold are shown, and 

P-values below the significant threshold are shown in bold. 

SNP Gene Allele
a 

P-value Trait OR Beta Sample 

rs2110728 CFLAR G 0.00006 EF 11.61 CTRL 

G 0.0001 PS -4.08 CTRL 

rs1983343 NRP2 A 0.0003 PWA 1.33 IS 

rs1996412 NRP2 G 0.0002 S 8.50 IS 

rs888085 NDUFS1 A 0.0004 MT 4.96 ALL 

rs12694040 NDUFS1 A 0.0004 MT 4.96 ALL 

rs12466841 KLF7 A 0.00009 VeAb -3.37 CTRL 

rs13005841 ERBB4 A 0.0005 VeAt -0.49 IS 

rs7607942 ERBB4 G 0.0004 SAPS 7.53 IS 

rs12694261 ERBB4 A 0.0001 VeAb -5.69 CTRL 

rs12373751 ERBB4 A 0.0004 VeAt -0.40 ALL 

rs1521657 ERBB4 A 0.0003 SAPS 8.22 IS 

rs1357141 ERBB4 G 0.0002 EF 22.63 AF 

rs17418814 ERBB4 C 0.0004 ViAt -0.53 IS 

rs12104818 ERBB4 A 0.0004 WD 1.49 ALL 

rs13652 FN1 G 0.0004 SDe -1.40 CTRL 

rs645163 CYP27A1 G 0.0001 L -7.30 AF 

G 0.0003 SDe -1.81 AF 

G 0.0004 LDe -1.86 AF 

rs10498110 EPHA4 G 0.0003 SCHSPECT 1.66 ALL 

G 0.0005 ANYPSY 1.51 ALL 

G 0.0002 PWA 1.74 ALL 

rs12476016 EPHA4 G 0.0005 PSA 1.22 IS 

G 0.0002 MS 1.86 IS 

rs9288569 EPHA4 G 0.00006 PWA 1.46 ALL 

G 0.0005 PSA 1.30 ALL 

rs2056290 EPHA4 G 0.0005 ViWM -0.53 IS 

rs6706608 PAX3 A 0.00006 LDe -1.37 AF 

rs935025 ACSL3 G 0.0003 SAPS 10.60 ALL 

rs7608941 SERPINE2 C 0.0003 VeAb -5.02 AF 

rs7590948 SERPINE2 A 0.0002 VeWM -0.34 ALL 

A 0.0005 VeWM -0.46 AF 

rs4674842 SERPINE2 A 0.0004 VeWM -0.39 ALL 

rs13013387 SERPINE2 A 0.0002 VeWM -0.51 ALL 

rs3791480 HDAC4 G 0.00008 PS -4.60 AF 

rs3732341 KIF1A A 0.0003 VeAb -2.70 AF 

rs11693670 KIF1A C 0.0004 VeWM -0.33 ALL 

rs12624059 KIF1A G 0.0004 VeWM -0.36 ALL 
aAllele for which the effect is shown 

Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; A, adenine; C, 

cytosine; G, guanine; ALL, whole sample; IS, internal isolate; AF, all Finland (outside 

the isolate); CTRL, control sample; for gene name abbreviations, refer to the 

Abbreviations chapter; for trait abbreviations, refer to Table 9 
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6.3.2 Chromosome 4q13.1-4q26 

Our previous study revealed linkage between chromosome 4q and multiple verbal 

memory traits, contributed mostly by families outside the internal isolate (AF) (Paunio et 

al. 2004). Additionally, southern families from the internal isolate (IS-S) have revealed 

linkage between 4q and schizophrenia spectrum disorders (Paunio et al. 2008). 

In this study, 36 regional candidate genes were selected for detailed association analyses 

of clinical diagnostic categories, clinical disorder features, and cognitive traits. All the 

significant and suggestive associations detected in this study are summarized in Table 14. 

The significant and those suggestive associations considered most promising are 

presented in detail below. 

The EPH receptor A5 (EPHA5) [OMIM 600004] on chromosome 4q13.1 showed 

suggestive association with mental tracking (ALL), as well as with short and long delay 

verbal recall (AF). Like EPHA4, also EPHA5 encodes for an ephrin receptor from the 

protein-tyrosine kinase family, and regulates synaptogenesis in the hippocampus, and 

dopaminergic pathways in the midbrain (Martinez et al. 2005, Cooper et al. 2009). In 

mice, EPHA5 null mutation causes behavioral changes, such as reduced overall activity 

(Mamiya et al. 2008). Interestingly, inhibition of EphA receptors leads to impaired 

performance in hippocampal-dependent memory tasks, whereas Epha5 activation 

reduces these deficits (Murai et al. 2002). 

The Nucleosome assembly protein 1-like 5 (NAP1L5) [OMIM 612203] on chromosome 

4q22.1 showed significant (IS) and suggestive association (ALL) with executive 

functioning with the same SNP. NAP1L5 is widely expressed in mouse hypothalamus, 

hippocampus, and cerebral cortex (Davies et al. 2004). 

The Tachykinin receptor 3 (TACR3) [OMIM 162332] on chromosome 4q24 showed 

association with processing speed (CTRL). TACR3 is expressed widely in the brain 

(Pinto et al. 2004), and is associated with nicotine and cocaine dependence (Foroud et al. 

2008), but at least in one reported study any association with schizophrenia remained 

absent (Saito et al. 2008). 
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Table 14. Association results on chromosome 4q13.1-4q26. Beta values are for the 

untransformed trait. Only P-values below the suggestive threshold are shown, and 

P-values below the significant threshold are shown in bold. 

SNP Gene Allele
a

P-value Trait OR Beta Sample 

rs11737238 EPHA5 C 0.0005 SDe -0.90 AF 

rs9999552 EPHA5 A 0.0003 SDe -1.05 AF 

A 0.0001 LDe -1.06 AF 

rs4518304 EPHA5 G 0.0005 MT 5.77 ALL 

rs7655988 EPHA5 A 0.0004 LDe -1.00 AF 

rs7670819 UGT2A1 A 0.00008 PWA 1.81 AF 

rs1560605 UGT2A1 C 0.0005 PWA 1.46 AF 

rs11937245 SLC4A4 G 0.0003 EF 20.59 IS 

rs12507157 EREG G 0.0003 ANYPSY 1.12 IS 

rs17262520 SEPT11 C 0.0003 S 6.89 ALL 

rs878729 SEPT11 G 0.0002 S 7.31 ALL 

rs6535252 RASGEF1B A 0.00009 ViWM -0.59 IS 

rs2972011 NAP1L5 A 0.0004 EF 11.48 ALL 

A 0.00003 EF 19.28 IS 

rs1394342 GPRIN3 G 0.0002 EF 15.75 ALL 

rs223391 ZCD2 G 0.0002 S 5.40 ALL 

rs13134657 TACR3 C 0.00002 PS -6.95 CTRL 

rs11098195 CAMK2D A 0.0004 SANS 4.39 ALL 
aAllele for which the effect is shown 

Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; A, adenine; C, 

cytosine; G, guanine; ALL, whole sample; IS, internal isolate; AF, rest of Finland 

(outside the isolate); CTRL, control sample; for gene name abbreviations, refer to the 

Abbreviations chapter; for trait abbreviations, refer to Table 9 

 

6.3.3 Chromosome 5q31.1-5q33.3 

Our previous study revealed linkage between chromosome 5q region and both 

schizophrenia and the broad category of severe major affective disorders, both 

contributed mostly by the families originating outside the internal isolate (AF) (Paunio et 

al. 2001). However, no linkage was detected with the cognitive traits (Paunio et al. 

2004). 

In this study, 31 regional candidate genes were selected for detailed association analyses 

of clinical diagnostic categories, clinical disorder features, and cognitive traits. All the 

significant and suggestive associations detected in this study are summarized in 

Table 15. The significant and those suggestive associations considered most promising 

are presented in detail below. 

The associations with any of the clinical diagnostic categories remained non-existent. 

However, the RAD50 homolog (RAD50) [OMIM 604040] on chromosome 5q31.1 

showed significant association with the age of schizophrenia onset in the AF subsample. 

The associating marker was, however, not intragenic but flanking 28 kb. RAD50 is an 

essential part of a protein complex central in DNA repair (Lee et al. 2005). 
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Interestingly, multiple significant associations emerged with the cognitive traits. The 

Purine-rich element binding protein A (PURA) [OMIM 600473] on chromosome 5q31.3 

showed association with short delay verbal memory in the AF subsample. PURA 

encodes for DNA- and RNA-binding protein related to cell cycle (Gallia et al. 2000). 

This protein is essential in postnatal brain development (Khalili et al. 2003). 

Additionally, PURA shows altered expression in bipolar I disorder (Nakatani et al. 

2006). 

The Heparin-binding EGF-like growth factor (HBEGF) [OMIM 126150] on 

chromosome 5q31.3 showed significant association with short delay verbal memory in 

the AF subsample. HBEGF encodes for a neuroprotective matrix metalloproteinase, and 

may be related to inflammatory demyelization in the central and peripheral nervous 

system (Hartung et al. 2000). 

The Histone deacetylase 3 (HDAC3) [OMIM 605166] on chromosome 5q31.3 showed 

significant association with executive functioning (Stroop Interference Score) in the AF 

subsample. HDAC3 is one of the key regulators in cell proliferation, and its inactivation 

results in delay of the cell cycle, DNA damage, and apoptosis (Bhaskara et al. 2008). 

The Protein phosphatase 2, regulatory subunit B, beta isoform (PPP2R2B) [OMIM 

604325] on chromosome 5q32 showed significant association with visual working 

memory in the AF subsample. PPP2R2B regulates protein phosphatase 2A which plays a 

role in various tauopathies. The CAG repeat length in PPP2R2B has shown association 

with inherited ataxia (Holmes et al. 1999), and Alzheimer's disease (Chen et al. 2009). 

However, any association with schizophrenia is lacking (Laurent et al. 2003). 

The Casein kinase 1 alpha 1 (CSNK1A1) [OMIM 600505] on chromosome 5q33.1 

showed significant association with processing speed in the whole sample (ALL). 

CSNK1A1 encodes for a protein kinase which is associated with neurodegenerative 

disorders (Knippschild et al. 2005), and suggestively with a rat model of ADHD 

(DasBanerjee et al. 2008). 

The Calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) [OMIM 114078] 

on chromosome 5q33.2 showed significant association with verbal attention in the whole 

sample. CAMK2A encodes for a protein kinase which shows increased expression in 

major depression (Tochigi et al. 2008) and is involved in adaptation to stress (Muller et 

al. 2003). In mice, CAMK2A is downregulated under chronic mild stress (Orsetti et al. 

2008). 

The Glutamate receptor, ionotropic, AMPA 1 (GRIA1) [OMIM 138248] on chromosome 

5q33.2 showed multiple suggestive associations with the severity of positive symptoms 

of schizophrenia, and the association was stronger among the IS subsample. GRIA1 

encodes for a glutamate receptor, and its elevated mRNA levels are detected in brains of 

schizophrenia patients (O'Connor et al. 2007). Furthermore, GRIA1 has been associated 

with schizophrenia (Magri et al. 2006), and psychotic bipolar disorder (Kerner et al. 

2009). 
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Table 15. Association results on chromosome 5q31.1-5q33.3. Beta values are for the 

untransformed trait. Only P-values below the suggestive threshold are shown, and 

P-values below the significant threshold are shown in bold. 

SNP Gene Allele
a 

P-value Trait Beta Sample 

rs3756295 SPEC2 G 0.0004 ViAt -0.50 CTRL 

rs2079103 RAD50 A 0.00006 AOO -3.53 AF 

rs269783 PURA G 0.00005 SDe -1.17 AF 

A 0.0002 VeAt -0.47 IS 

rs155946 PURA A 0.0002 SDe -0.99 AF 

rs7268 HBEGF A 0.000006 SDe -1.07 AF 

rs2237078 HBEGF C 0.0003 SDe -0.94 AF 

rs3844598 HDAC3 A 0.00002 S 12.18 AF 

rs11742646 HDAC3 G 0.0004 S 10.78 AF 

rs251041 HDAC3 C 0.0004 S 11.57 AF 

rs6580194 CENTD3 T 0.0004 S 11.23 AF 

rs4912905 NR3C1 G 0.0003 EF 26.65 AF 

rs7713438 PPP2R2B G 0.0005 S 8.89 ALL 

rs11952689 PPP2R2B C 0.00002 ViWM -1.12 AF 

rs7721529 CSNK1A1 A 0.00004 PS -1.74 ALL 

rs1947582 CSNK1A1 A 0.0003 PS -1.45 ALL 

A 0.0002 PS -3.07 AF 

rs17712679 CAMK2A A 0.00001 VeAt -0.42 ALL 

A 0.00003 VeAt -0.45 IS 

rs12515622 GRIA1 G 0.0005 ViAt -0.37 ALL 

rs10057063 GRIA1 A 0.00008 SAPS 9.62 IS 

rs2216649 GRIA1 C 0.0002 SAPS 6.31 ALL 

C 0.0001 SAPS 9.18 IS 

rs12189362 GRIA1 G 0.00008 SAPS 8.61 IS 
aAllele for which the effect is shown 

Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; A, adenine; C, 

cytosine; G, guanine; T, thymine; ALL, whole sample; IS, internal isolate; AF, rest of 

Finland (outside the isolate); CTRL, control sample; for gene name abbreviations, refer 

to the Abbreviations chapter; for trait abbreviations, refer to Table 9 

 

6.3.4 Conclusions 

The studied chromosomal regions were selected based on our previous genome-wide 

linkage analyses (Paunio et al. 2001, Paunio et al. 2004). Although the 2q and 5q loci 

have proved to be relevant in international meta-analyses as well (Lewis et al. 2003, Ng 

et al. 2009) and all the regions were initially screened for all the known genes, the 

altogether 1511 selected SNPs failed to reveal any significant associations with the 

clinical diagnostic categories of schizophrenia and related disorders. A number of 

regional and functional candidate genes showed, however, association with both the 

clinical symptoms of schizophrenia as well as for cognitive features considered relevant 

schizophrenia endophenotypes. 

Of the highlighted genes, of special interest is ERBB4, showing association with the 

severity of positive symptoms and impairments in traits related to verbal attention and 
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verbal ability, since ERBB4 has been previously associated with schizophrenia and 

verbal working memory (Silberberg et al. 2006, Nicodemus et al. 2006). Similarly, 

GRIA1 showed association with the severity of positive symptoms, and has been 

previously associated with schizophrenia (Magri et al. 2006). Of the other genes, EPHA4 

showed suggestive association with schizophrenia spectrum disorders and several 

clinical disorder features, and EPHA5 with several verbal learning and memory traits, 

and interestingly, these ephrin receptors not only play critical roles in the development of 

CNS but also in modifying synaptic connections in mature brain, supporting their 

plausible roles in the pathogenesis of schizophrenia (Murai et al. 2002). 

Our material involving only the known functionally relevant genes from the linked 

regions leaves a possibility for unintentional exclusion of some potentially relevant 

genes or regulatory regions. However, the accurate location of linkage signals is prone to 

fluctuation in complex disorders with equivocal inheritance (Roberts et al. 1999, 

Altmuller et al. 2001), and this creates a possible caveat for all candidate gene analyses 

based on genome-wide screens. In any case, any single regional gene is unlikely to 

solely explain our previous linkage results. Instead, those linkage signals may represent a 

net effect from multiple variants associated with a diverse spectrum of features affecting 

distinct disorder domains (Roberts et al. 1999, Altmuller et al. 2001). These results may 

therefore be in line with the observation of a net influence of detected variants on the 

overall disorder liability (Toulopoulou et al. 2007). 

The partly distinct associations detected in our subsamples fit both the known genetic 

substructure of the Finnish population (Salmela et al. 2008, Jakkula et al. 2008), and the 

previous evidence of different risk variants and/or differences in their frequencies 

affecting the disorder liability in and outside the isolate (Hovatta et al. 1997, Paunio et 

al. 2001). Additionally, the distinct associations detected among schizophrenia families 

and controls may represent divergent effects in the presence or absence of the disorder 

load, that is, in conjunction with other variants directly increasing the liability (Fanous et 

al. 2001, Fanous et al. 2005). Overall, that any single high-risk determinant remained 

absent in our study is also in line with the recent genome-wide studies showing the role 

for number of variants with small individual effects (O'Donovan et al. 2008, 

International Schizophrenia Consortium et al. 2009, Shi et al. 2009, Stefansson et al. 

2009). The risk for false negative results, however, cannot be ruled out, although a 

number of detected signals still passed our threshold for significant association. 

Furthermore, these thresholds were calculated by using Bonferroni correction, which in 

genetic studies is rather conservative than liberal (Balding 2006). The Bonferroni 

correction was selected, however, due to its wide use in the field of statistics, and since 

no "golden standard" exists yet regarding the multiple testing correction in genetic 

studies. 

These results warrant further studies on the highlighted genes to evaluate their plausible 

roles in the pathogenesis of schizophrenia and, additionally, of the related psychotic 

disorders. Overall, these results revealing several significant associations for different 

genes encourage the use of intermediate phenotypes in the search of predisposing 

variants for schizophrenia. In addition, these results highlight the difficulties in 

discovering the key genetic players behind the linkage signals, making future studies on 

these associated gene variants essential, or rather, the combined roles of these variants. 
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7 Concluding remarks 

This study provides evidence for the plausible role of several candidate genes in the 

genetic liability of schizophrenia and related psychotic disorders. The effective and long-

term collaboration between the number of experts in medical genetics and clinical 

psychiatry, as well as achievements of the Finnish public health care, has made this 

study possible.  

The heterogeneity in the genetic background of schizophrenia favors the use of as large 

and well-characterized sample sets as possible, as well as replication efforts to help in 

the estimation of the impact of identified risk variants. Our study I represents a 

straightforward attempt to try to replicate the previous positive associations between 

schizophrenia and candidate genes DTNBP1, NRG1, and AKT1. Despite our reasonably 

large sample set with reliable clinical assessment, any significant associations with these 

genes remained absent. While the relatively low number of analyzed markers, especially 

for NRG1, leaves the possibility of missing some rare risk-increasing variants, our results 

may indeed reflect the minor role of these genes in the genetic liability of schizophrenia 

in Finland. 

The phenotypic heterogeneity within the core diagnoses of psychiatric disorders, 

especially for schizophrenia, challenges the traditional genetic analyses which use solely 

the clinical diagnosis as trait information. Although fine-tuning the diagnostic criteria 

may provide some help, further dissecting the disorder background with trait 

components, clinical features, and endophenotypic measurements may allow more 

powerful detection of variants affecting the individual disorder domains. As shown for 

RELN in parts II and III of this study, the use of additional phenotypic information may 

elucidate intriguing results. Although the identified risk allele in RELN may reflect the 

effects of some other causative variant, our results support the involvement of RELN in 

schizophrenia liability and especially its role as a modifier of disorder-related 

characteristics. 

The successful utilization of extensive phenotypic information in our prior analyses 

encouraged also the mapping of potential candidate genes on the chromosomes 2q, 4q, 

and 5q. These loci were highlighted in our previous genome-wide linkage analyses, and 

importantly, also partly in international schizophrenia linkage meta-analyses. 

Interestingly, several genes showed promising associations with traits supposedly 

representing different disorder domains. From the wide spectrum of genes, of special 

interest are ERBB4, which showed association with the same verbal attention trait as in a 

previous analysis, and GRIA1, which showed association with the severity of positive 

symptoms of schizophrenia, in line with a previous association with schizophrenia 

liability.  

When this study began, the era of linkage analyses was already coming to its end. Tens 

of genome-wide and numerous smaller linkage scans of schizophrenia had pointed to 

nearly all chromosomal regions, providing no conclusive evindence for any major 

genetic determinant. The field of psychiatric genetics had already started shifting 

towards association analyses, for which also the first genome-wide genotyping 

technologies were soon to be introduced. Although the wide range of association studies 

based on individual candidate genes have provided evidence for the plausible 

involvement of several genes, the results have been notably diverse for many of them. So 
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far, the results from the recent large genome-wide association analyses have ensured that 

there really are no low-hanging fruits when it comes to genetics of schizophrenia. 

The novelty value of this study is largely based on the versatile use of different 

measurable characteristics in addition to clinical diagnostic information. These 

characteristics, such as endophenotypes, the intermediate factors between clinical 

phenotype and genotype, as well as clinical measurements, may mediate or reflect the 

risk to catch the disorder. The use of endophenotypes and other intermediate factors is 

still reasonably new in the field of psychiatric genetics, although the concept itself has 

been itroduced already decades ago. The toilsomeness and expensiveness of the required 

individual testing are supposedly the principal factors limiting the more extensive use of, 

for instance, these different cognitive measurements. Here, the far-sighted investments 

of the National Institute for Health and Welfare in these assessments now bear fruit. 

To conclude, this study provides evidence for the involvement of RELN in the 

pathogenesis of schizophrenia, and in addition, supports the roles of several other 

candidate genes located on known schizophrenia loci. In general, this study supports the 

view that only detailed phenotypic data may allow for identification of all the risk 

variants behind schizophrenia, and supports the use of endophenotypes in studies on 

schizophrenia genetics. Although the results presented here add small individual pieces 

to the genetic puzzle of this disorder, these studies also reveal the challenges of 

schizophrenia genetics. Even in the Finnish population, several genes, probably in many 

different combinations, are likely to account for the risk of schizophrenia and the related 

phenotypic features. 
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8 Future prospects 

Traditionally, schizophrenia and the psychiatric disorders overall have been highly 

stigmatizing for the affected individuals as well as their close relatives, especially for the 

parents of the patients. The accumulation of knowledge of the factors predisposing to 

schizophrenia help, in addition to diagnostic and treatment procedures, to relieve the 

negative social load on the patients and their family members. As an example of research 

influence, the old view on bad parenting, especially bad mothering, as the main cause of 

the disorder has been disproved already decades ago. 

Despite the high heritability of schizophrenia and intensive research efforts during the 

past decades, any major genetic determinant of liability has remained unidentified. This 

has lead to the present hypothesis of multiple genetic factors with usually small 

individual effects constituting the liability in conjunction with the environmental factors 

which may, at least in part, "discharge the weapon armed by the genes". Furthermore, 

different genetic variants may affect different disorder domains, for instance, cognitive 

functions. This challenges the possibilities of sole diagnosis-based variant detection. 

Instead, more detailed analysis of different disorder characteristics may help in the gene 

identification, especially as the combinations of the variants rather than the individual 

variants themselves may determine the liability. Furthermore, since the genes are 

unlikely to follow any diagnostic boundaries of psychiatric disorders, same variants may 

appear in the background of diagnostically distinct entities. 

In the present era of large-scale genotyping and, in the near future, genome-wide 

sequencing, the amount of information in the analyses will literally explode. This may 

challenge the analysis techniques, as the line between the false and real signals may 

remain unclear, especially due to problems related to multiple testing. Evidently, the 

analyses will also be broadened more and more beyond the traditional straightforward 

analysis between the variants and traits to include gene-gene interactions, gene-

environment interactions, and pathways. Additionally, different epigenetic factors need 

to be taken into account, and the growing knowledge of these will undoubtedly reflect 

the study designs. The accuracy of the utilized phenotypic information is of concern as 

well. That the psychiatric diagnoses are based on symptoms, not objective laboratory 

tests, will be still a concern in the foreseeable future. Supposedly the use of different 

intermediate phenotypes and factors will broaden, our study being among those 

supporting this development. The challenges in collection of these data will, however, 

still require extensive organization in addition to adequate financial investments. Also in 

contrast to genotyping, the gathering of these data will supposedly still be as time-

consuming as it is today. 

The results presented here encourage further evaluation of the highlighted genes, 

especially RELN, in the pathogenesis of schizophrenia. Multiple-line evidence suggests 

RELN involvement in several psychiatric and neurodevelopmental disorders. Although 

RELN may play a role in different psychiatric conditions, any targeted diagnostic or 

treatment options for schizophrenia are unlikely to be developed in the near future. This 

is not only due to incomplete information on RELN itself, however, but also due to 

limitations in treatment options. The present pharmacological intervention in psychiatric 

disorders is based on drugs affecting broadly the different neurotransmitter systems of 

the central nervous system. To utilize the more specific knowledge on disorder 
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mechanisms also more targeted treatment technologies need to be developed. The 

progress in, for instance, cancer treatment options is encouraging, however, although the 

same methodology may not be adapted to psychiatry. 

Whether low-cost sequencing of the whole genome and assessment of the role of several 

individual risk variants will allow better diagnostics and treatment of schizophrenia 

remains to be seen. The active research in psychiatric genetics, and also in clinical 

psychiatry, will undoubtedly reveal novel data behind schizophrenia and its liability 

during the next decades. Translational research combining the wide spectrum of clinical 

data and basic research will be essential to develop even individualized therapeutic 

options. Only science itself can show how distant that future may be. 
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