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Abstract

Molecular “fingerprints” encoding structural information are the workhorse of cheminformatics 

and machine learning in drug discovery applications. However, fingerprint representations 

necessarily emphasize particular aspects of the molecular structure while ignoring others, rather 

than allowing the model to make data-driven decisions. We describe molecular graph 
convolutions, a machine learning architecture for learning from undirected graphs, specifically 

small molecules. Graph convolutions use a simple encoding of the molecular graph—atoms, 

bonds, distances, etc.—which allows the model to take greater advantage of information in the 

graph structure. Although graph convolutions do not outperform all fingerprint-based methods, 

they (along with other graph-based methods) represent a new paradigm in ligand-based virtual 

screening with exciting opportunities for future improvement.
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Introduction

Computer-aided drug design requires representations of molecules that can be related to 

biological activity or other experimental endpoints. These representations encode structural 

features, physical properties, or activity in other assays [28, 38]. The recent advent of “deep 

learning” has enabled the use of very raw representations that are less application-specific 

when building machine learning models [15]. For instance, image recognition models that 

were once based on complex features extracted from images are now trained exclusively on 

the pixels themselves—deep architectures can “learn” appropriate representations for input 

data. Consequently, deep learning systems for drug screening or design should benefit from 

molecular representations that are as complete and general as possible rather than relying on 

application-specific features or encodings.
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First-year chemistry students quickly become familiar with a common representation for 

small molecules: the molecular graph. Figure 1 gives an example of the molecular graph for 

ibuprofen, an over-the-counter non-steroidal anti-inflammatory drug. The atoms and bonds 

between atoms form the nodes and edges, respectively, of the graph. Both atoms and bonds 

have associated properties, such as atom type and bond order. Although the basic molecular 

graph representation does not capture the quantum mechanical structure of molecules or 

necessarily express all of the information that it might suggest to an expert medicinal 

chemist, its ubiquity in academia and industry makes it a desirable starting point for machine 

learning on chemical information.

Here we describe molecular graph convolutions, a deep learning system using a 

representation of small molecules as undirected graphs of atoms. Graph convolutions extract 

meaningful features from simple descriptions of the graph structure—atom and bond 

properties, and graph distances—to form molecule-level representations that can be used in 

place of fingerprint descriptors in conventional machine learning applications.

Related work

The history of molecular representation is extremely diverse [38] and a full review is outside 

the scope of this report. Below we describe examples from several major branches of the 

field to provide context for our work. Additionally, we review several recent examples of 

graph-centric approaches in cheminformatics.

Much of cheminformatics is based on so-called “2D” molecular descriptors that attempt to 

capture relevant structural features derived from the molecular graph. In general, 2D features 

are computationally inexpensive and easy to interpret and visualize. One of the most 

common representations in this class is extended-connectivity fingerprints (ECFP), also 

referred to as circular or Morgan fingerprints [30]. Starting at each heavy atom, a “bag of 

fragments” is constructed by iteratively expanding outward along bonds (usually the 

algorithm is terminated after 2–3 steps). Each unique fragment is assigned an integer 

identifier, which is often hashed into a fixed-length representation or “fingerprint”. 

Additional descriptors in this class include decompositions of the molecular graph into sub-

trees or fixed-length paths (OpenEye GraphSim Toolkit), as well as atom pair (AP) 

descriptors that encode atom types and graph distances (number of intervening bonds) for all 

pairs of atoms in a molecule [4].

Many representations encode 3D information, with special emphasis on molecular shape and 

electrostatics as primary drivers of interactions in real-world systems. For example, rapid 

overlay of chemical structures (ROCS) aligns pairs of pre-generated conformers and 

calculates shape and chemical (“color”) similarity using Gaussian representations of atoms 

and color features defined by a simple force field [11]. ROCS can also be used to generate 

alignments for calculation of electrostatic field similarity [23]. Ultrafast shape recognition 

(USR) calculates alignment-free 3D similarity by comparing distributions of intramolecular 

distances [2].
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The Merck Molecular Activity Challenge [5] catalyzed interest in deep neural networks 

trained on fingerprints and other molecular descriptors. In particular, multitask neural 

networks have produced consistent gains relative to baseline models such as random forest 

and logistic regression [6, 17, 19, 29].

Other approaches from both the cheminformatics and the machine learning community 

directly operate on graphs in a way similar to how we do here. The “molecular graph 

networks” of Merkwirth and Lengauer [21] iteratively update a state variable on each atom 

with learned weights specific to each atom type–bond type pair. Similarly, Micheli [22] 

presents a more general formulation of the same concept of iterated local information 

transfer across edges and applies this method to predicting the boiling point of alkanes.

Scarselli et al. [33] similarly defines a local operation on the graph. They demonstrate that a 

fixed point across all the local functions can be found and calculate fixed point solutions for 

graph nodes as part of each training step. In another vein, Lusci et al. [16] convert undirected 

molecular graphs to a directed recursive neural net and take an ensemble over multiple 

conversions.

Recently, Duvenaud et al. [9] presented an architecture trying to accomplish many of the 

same goals as this work. The architecture was based on generalizing the fingerprint 

computation such that it can be learned via backpropagation. They demonstrate that this 

architecture improves predictions of solubility and photovoltaic efficiency but not binding 

affinity.

Bruna et al. [3] introduce convolutional deep networks on spectral representations of graphs. 

However, these methods apply when the graph structure is fixed across examples and only 

the labeling/features on individual nodes varies.

Convolutional networks on non-Euclidean manifolds were described by Masci et al. [18]. 

The problem addressed was to describe the shape of the manifold (such as the surface of a 

human being) in such a way that the shape descriptor of a particular point was invariant to 

perturbations such as movement and deformation. They also describe an approach for 

combining local shape descriptors into a global descriptor and demonstrate its use in a shape 

classification task.

Methods

Deep neural networks

Neural networks are directed graphs of simulated “neurons”. Each neuron has a set of inputs 

and computes an output. The neurons in early neural nets were inspired by biological 

neurons and computed an affine combination of the inputs followed by a non-linear 

activation function. Mathematically, if the inputs are x1. . .xN, weights w1. . .wN and bias b 
are parameters, and f is the activation function, the output is
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(1)

Popular activation functions include the sigmoid function  and rectified linear 

unit (ReLU) (f(z) = 0 if z ≤ 0 else z).

Any mostly differentiable function can be used as the unit of computation for a neuron and 

in recent years, many other functions have appeared in published networks, including max 

and sum.

Convolution in neural networks refers to using the same parameters (such as the wi in Eq. 1) 

for different neurons that are attached to different parts of the input (or previous neurons). In 

this way, the same operation is computed for many different subsets of the input.

At the “top” of the neural network you have node(s) whose output is the value you are trying 

to predict (e.g. the probability that this molecule binds to a target or the binding affinity). 

Many output nodes for different tasks can be added and this is commonly done [17, 29]. In 

this way, different output tasks can share the computation and model parameters in lower 

parts of the network before using their own parameters for the final output steps.

The architecture of a neural network refers to the choice of the number of neurons, the type 

of computation each one does (including what learnable parameters they have), which 

parameters are shared across neurons, and how the output of one neuron is connected to the 

input of another.

In order to train the network, you first have to choose a loss function describing the penalty 

for the network producing a set of outputs which differ from the outputs in the training 

example. For example, for regression problems, the L2 distance between the predicted and 

actual values is commonly used. The objective of training is then to find a set of parameters 

for the network that minimizes the loss function. Training is done with the well known 

technique of back-propagation [32] and stochastic gradient descent.

Desired invariants of a model

A primary goal of designing a deep learning architecture is to restrict the set of functions 

that can be learned to ones that match the desired properties from the domain. For example, 

in image understanding, spatial convolutions force the model to learn functions that are 

invariant to translation.

For a deep learning architecture taking a molecular graph as input, some arbitrary choice 

must be made for the order that the various atoms and bonds are presented to the model. 

Since that choice is arbitrary, we want:

Property 1 (Order invariance) The output of the model should be invariant to the 

order that the atom and bond information is encoded in the input.
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Note that many current procedures for fingerprinting molecules achieve Property 1. We will 

now gradually construct an architecture which achieves Property 1 while making available a 

richer space of learnable parameters.

The first basic unit of representation is an atom layer which contains an n-dimensional 

vector associated with each atom. Therefore the atom layer is a 2 dimensional matrix 

indexed first by atom. Part of the original input will be encoded in such an atom layer and 

the details of how we construct the original input vector are discussed in the “Input 

featurization” section. The next basic unit of representation is a pair layer which contains an 

n-dimensional vector associated with each pair of atoms. Therefore, the pair layer is a 3 

dimensional matrix where the first two dimensions are indexed by atom. Note that the pair 

input can contain information not just about edges but about any arbitrary pair. Notably, we 

will encode the graph distance (length of shortest path from one atom to the other) in the 

input pair layer. The order of the atom indexing for the atom and pair layer inputs must be 

the same.

We will describe various operations to compute new atom and pair layers with learnable 

parameters at every step. Notationally, let Ax be the value of a particular atom layer x and Py 

be the value of a particular pair layer y. The inputs that produce those values should be clear 

from the context.  refers to the value of atom a in atom layer x and  refers to the 

value of pair (a, b) in pair layer y.

In order to achieve Property 1 for the overall architecture, we need a different type of 

invariance for each atom and pair layer.

Property 2 (Atom and pair permutation invariance) The values of an atom layer and 

pair permute with the original input layer order. More precisely, if the inputs are 

permuted with a permutation operator Q, then for all layers x, y, Ax and Py are 

permuted with operator Q as well.

In other words, Property 2 means that from a single atom's (or pair's) perspective, its value in 

every layer is invariant to the order of the other atoms (or pairs).

Since molecules are undirected graphs, we will also maintain the following:

Property 3 (Pair order invariance) For all pair layers y, 

Property 3 is easy to achieve at the input layer and the operations below will maintain this.

Properties 2 and 3 make it easy to construct a molecule-level representation from an atom or 

pair such that the molecule-level representation achieves Property 1 (see “Molecule-level 

features” section).

Invariant-preserving operations

We now define a series of operations that maintain the above properties.

Throughout, f represents an arbitrary function and g represents an arbitrary commutative 
function (g returns the same result regardless of the order the arguments are presented). In 
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this work, f is a learned linear operator with a rectified linear (ReLU) activation function and 

g is a sum.

The most trivial operation is to combine one or more layers of the same type by applying the 

same operation to every atom or pair. Precisely, this means if you have layers x1, x2, . . ., xn 
and function f, you can compute a new atom layer from the previous atom layer (A → A) as

(2)

or pair layer from the previous pair layer (P → P) as

(3)

Since we apply the same function for every atom/pair, we refer to this as a convolution. All 

the transformations we develop below will have this convolution nature of applying the same 

operation to every atom/pair, maintaining Property 2.

When operating on pairs of atoms, instead of putting all pairs through this function, you 

could select a subset. In the “Distance-dependent pair features” section we show 

experiments for restricting the set of pairs to those that are less than some graph distance 

away.

Next, consider an operation that takes a pair layer x and constructs an atom layer y (P → 
A). The operation is depicted in Fig. 2. Formally:

(4)

In other words, take all pairs of which a is a part, run them through f, and combine them 

with g. Note that Property 3 means we can choose an arbitrary one of  or .

The most interesting construction is making a pair layer from an atom layer (A → P). The 

operation is graphically depicted in Fig. 3 and formally as

(5)

Note that just applying g to  and  would maintain Properties 2 and 3 but we use this 

more complex form. While commutative operators (such as max pooling) are common in 

neural networks, commutative operators with learnable parameters are not common. 

Therefore, we use f to give learnable parameters while maintaining the desired properties.

Once we have all the primitive operations on atom and pair layers (A → A, P →P, P → A, 
A → P), we can combine these into one module. We call this the Weave module (Fig. 4) 
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because the atoms and pair layers cross back and forth to each other. The module can be 

stacked to an arbitrary depth similar to the Inception module that inspired it [37]. Deep 

neural networks with many layers (e.g. for computer vision) learn progressively more 

general features—combinations of lower-level features—in a hierarchical manner [15]. By 

analogy, successive Weave modules can produce more informative representations of the 

original input. Additionally, stacked Weave modules with limited maximum atom pair 

distance progressively incorporate longer-range information at each layer.

Molecule-level features

The construction of the Weave module maintains Properties 2 and 3. What about overall 

order invariance (Property 1)? At the end of a stack of Weave modules we are left with an n-

dimensional vector associated with every atom and an m-dimensional vector associated with 

every pair. We need to turn this into a molecule-level representation with some commutative 

function of these vectors.

In related work [9, 16, 21], a simple unweighted sum is often used to combine order-

dependent atom features into order-independent molecule-level features. However, reduction 

to a single value does not capture the distribution of learned features. We experimented with 

an alternative approach and created “fuzzy” histograms for each dimension of the feature 

vector.

A fuzzy histogram is described by a set of membership functions that are functions with 

range [0, 1] representing the membership of the point in each histogram bin [42]. A standard 

histogram has membership functions which are 1 in the bin and 0 everywhere else. For each 

point, we normalize so that the total contribution to all bins is 1. The value of a bin in the 

histogram over all points is just the sum of the normalized contributions for all the points.

Figure 5 gives an example of a fuzzy histogram composed of three Gaussian bins. A 

histogram is constructed for each dimension of the feature vectors and the concatenation of 

those histograms is the molecule-level representation.

In this work we used Gaussian membership functions (which are unnormalized versions of 

the standard Gaussian PDF) with eleven bins spanning a Gaussian distribution with mean of 

zero and unit standard deviation, shown in Fig. S10. These bins were chosen somewhat 

arbitrarily to cover the expected distribution of incoming features and were not optimized 

further (note that the incoming features were batch normalized; see “Model training and 

evaluation” section).

Throughout this paper, we construct the molecule-level features only from the top-level atom 

features and not the pair features. This is to restrict the total number of feature vectors that 

must be summarized while still providing information about the entire molecule. Note, 

however, that the initial and intermediate pair features can influence the final atom features 

through Weave module operations.

Before the molecule-level featurization, we do one final convolution on the atoms. Since 

molecule-level featurization can be a major bottleneck in the model, this convolution 

expands the depth so that each dimension of the atom feature vector contains less 
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information and therefore less information is lost during the molecule-level featurization. On 

this convolution, we do not use a ReLU activation function to avoid the histogram having 

many points at zero.

Once you have a molecule-level representation, this becomes a more standard multitask 

problem. We follow the common approach [17, 19, 29] of a small number of fully connected 

layers on top of the molecule-level features followed by standard softmax classification.

The overall architecture is depicted in Fig. 6. Table 1 lists hyperparameters and default 

values for graph convolution models. In models with multiple Weave modules it is 

conceivable to vary the convolution depths in a module-specific way. However, the models 

in this work used the same settings for all Weave modules.

Our current implementation imposes an upper limit on the number of heavy atoms 

represented in the initial featurization. For molecules that have more than the maximum 

number of atoms, only a subset of atoms (and therefore atom pairs) are represented in the 

input encoding. This subset depends on the order in which the atoms are traversed by the 

featurization code and should be considered arbitrary. In this work we set the maximum 

number of atoms to 60, and only 814 of the 1,442,713 unique molecules in our datasets (see 

“Datasets” section) exceed this limit.

Input featurization

The initial atom and pair features are summarized in Tables 2 and 3, respectively. The 

features are a mix of floating point, integer, and binary values (all encoded as floating point 

numbers in the network). The feature set is intended to be broad, but not necessarily 

exhaustive, and we recognize that some features can potentially be derived from or 

correlated to a subset of the others (e.g. atom hybridization can be determined by inspecting 

the bonds that atom makes). We performed experiments using a “simple” subset of these 

features in an effort to understand their relative contributions to learning (“Input 

featurization” section), but many other questions about specifics of the input featurization 

are left to future work.

All features were generated with RDKit [14], including Gasteiger atomic partial charges 

[10]. Although our featurization includes space for hydrogen atoms, we did not use explicit 

hydrogens in any of our experiments in order to conserve memory and emphasize 

contributions from heavy atoms.

Other deep learning applications with more “natural” inputs such as computer vision and 

speech recognition still require some input engineering; for example, adjusting images to a 

specific size or scale, or transforming audio into the frequency domain. Likewise, the initial 

values for the atom and pair layers describe these primitives in terms of properties that are 

often considered by medicinal chemists and other experts in the field, allowing the network 

to use or ignore them as needed for the task at hand. One of the purposes of this work is to 

demonstrate that learning can occur with as little preprocessing as possible. Accordingly, we 

favor simple descriptors that are more or less “obvious”.
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Datasets

We used a dataset collection nearly identical to the one described by Ramsundar et al. [29] 

except for some changes to the data processing pipeline (including the duplicate merging 

process for the Tox21 dataset) and different cross-validation fold divisions. Briefly, there are 

259 datasets divided into four groups indicating their source: PubChem BioAssay [41] 

(PCBA, 128 datasets), the “maximum unbiased validation” datasets constructed by Rohrer 

and Baumann [31] (MUV, 17 datasets), the enhanced directory of useful decoys [24] (DUD-

E, 102 datasets), and the training set for the Tox21 challenge (see Mayr et al. [19]) (Tox21, 

12 datasets). The combined dataset contained over 38 M data points and included targets 

from many different biological classes.

Model training and evaluation

Graph convolution and traditional neural network models were implemented with 

TensorFlow [1], an open-source library for machine learning. Models were evaluated by the 

area under the receiver operating characteristic curve (ROC AUC, or simply AUC) as 

recommended by Jain and Nicholls [13]. We used fivefold stratified cross-validation, where 

each fold-specific model used 60 % of the data for training, 20 % for validation (early 

stopping/model selection), and 20 % as a test set.

Graph convolution models were trained for 10–20 M steps using the Adagrad optimizer [8] 

with learning rate 0.003 and batch size 96, with periodic checkpointing. All convolution and 

fully-connected layer outputs were batch normalized [12] prior to applying the ReLU 

nonlinearity. Training was parallelized over 96 CPUs (or 96 GPUs in the case of the W4N2 

model) and required several days for each model. Adding additional Weave modules 

significantly increased training time. However, models trained on smaller datasets (see 

“Comparisons to other methods” section) trained much faster.

To establish a baseline, we also trained pyramidal (2000, 100) multitask neural network 

(PMTNN) [29], random forest (RF), and logistic regression (LR) models using Morgan 

fingerprints with radius 2 (essentially equivalent to ECFP4) generated with RDKit [14]. As a 

very simple baseline, we also computed Tanimoto similarity to all training set actives and 

used the maximum similarity score as the active class probability (MaxSim).

The PMTNN had two hidden layers (with 2000 and 100 units, respectively) with rectified 

linear activations, and each fold-specific model was trained for 40–50 M steps using the 

SGD optimizer with batch size 128 and a learning rate of 0.0003, with periodic 

checkpointing. Additionally, this model used 0.25 dropout [35], initial weight standard 

deviations of 0.01 and 0.04 and initial biases of 0.5 and 3.0 in the respective hidden layers. 

This model did not use batch normalization.

Logistic regression (LR) models were trained with the LogisticRegression class in scikit-

learn [27] using the ‘lbfgs’ solver and a maximum of 10,000 iterations. Values for the 

regularization strength (C) parameter were chosen by grid search, using the held-out 

validation set for model selection. Random forest (RF) models were trained using the scikit-

learn RandomForestClassifier with 100 trees.
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In graph convolution and PMTNN models, active compounds were weighted in the cost 

function such that the total active weight equalled the total inactive weight within each 

dataset (logistic regression and random forest models also used these weights as the 

sample_weight argument to their fit methods). Furthermore, graph convolution and PMTNN 

models were evaluated in a task-specific manner by choosing the training checkpoint with 

the best validation set AUC for each task. We note that some fold-specific models had a 

small number of tasks were not “converged” in the sense that their validation set AUC scores 

were still increasing when training was halted, and that the specific tasks that were not 

converged varied from model to model.

To statistically compare graph convolution and baseline models, we report three values for 

each dataset group: (1) median fivefold mean AUC over all datasets, (2) median difference 

in per-dataset fivefold mean AUC (ΔAUC) relative to the PMTNN baseline, and (3) a 95 % 

Wilson score interval for the sign test statistic relative to the PMTNN baseline. The sign test 

estimates the probability that a model will achieve a higher fivefold mean AUC than the 

PMTNN baseline; models with sign test confidence intervals that do not include 0.5 are 

considered significantly different in their performance (the median ΔAUC can be used as a 

measure of effect size). To calculate these intervals, we used the proportion_confint function 

in statsmodels [34] version 0.6.1 with method=‘wilson’ and alpha=0.05, counting only non-

zero differences in the sign test. We do not report values for the DUD-E dataset group since 

all models achieved >0.98 median fivefold mean AUC.

As a general note, confidence intervals for box medians were computed as 

 [20] and do not necessarily correspond to sign test confidence intervals.

Comparisons to other methods

In addition to the baseline models described in the “Model training and evaluation” section, 

there are many other methods that would be interesting to compare to our graph convolution 

models. In particular, Duvenaud et al. [9] described “neural fingerprints” (NFP), a related 

graph-based method. The original publication describing NFP reported mean squared errors 

(MSE) on datasets for aqueous solubility, drug efficacy, and photovoltaic efficiency. We 

trained multitask graph convolution models on these datasets using fivefold cross-validation 

(note that the published NFP models were single-task).

Additionally, we report results on a dataset used to validate the influence relevance voter 

(IRV) method of Swamidass et al. [36], which is a hybrid of neural networks and k-nearest 

neighbors. The original publication reported results for two datasets, HIV and DHFR, but 

the latter was no longer available from its original source. We trained graph convolution 

models on the HIV dataset using tenfold stratified cross-validation. In each cross-validation 

round, onefold each was used for testing and validation (early stopping), and the remaining 

folds were used for training. We note that RDKit was only able to process 41,476 of the 

42,678 SMILES strings in the HIV dataset. We report performance on this dataset using both 

ROC AUC and BEDROC [39] with α = 20.
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Although we expect our results on these datasets to provide reasonable comparisons to 

published data, differences in fold assignments and variations in dataset composition due to 

featurization failures mean that the comparisons are not perfect.

Results

Proof of concept

With so many hyperparameters to adjust, we sought to establish a centerpoint from which to 

investigate specific questions. After several experiments, we settled on a simple model with 

two Weave modules, a maximum atom pair distance of 2, Gaussian histogram molecule-

level reductions, and two fully-connected layers of size 2000 and 100, respectively. 

Notationally, we refer to this model as W2N2. Table 4 shows the performance of the W2N2 

model and related models derived from this centerpoint by varying a single hyperparameter. 

Additionally, Table 4 includes results for several baseline models: MaxSim, logistic 

regression (LR), random forest (RF), and pyramidal (2000, 100) multitask neural network 

(PMTNN) models trained on Morgan fingerprints.

Several graph convolution models achieved performance comparable to the baseline 

PMTNN on the classification tasks in our dataset collection, which is a remarkable result 

considering the simplicity of our input representation. For example, the centerpoint W2N2 

model is statistically indistinguishable from the PMTNN for the PCBA, MUV, and Tox21 

dataset groups (we do not report results for the DUD-E dataset group because all models 

achieved extremely high median AUC scores). Additionally, many of the graph convolution 

models with worse performance than the PMTNN (i.e. sign test confidence intervals 

excluding 0.5) had very small effective differences as measured by median ΔAUC.

As an additional measure of model performance, we also calculated ROC enrichment [13] 

scores at the following false positive rates: 1, 5, 10, and 20 %. Enrichment scores are 

reported in Section B (in the supplementary material) and show that graph convolution 

models generally performed worse than or comparable to the PMTNN. We note that the 

analysis of model performance and hyperparameter optimization that follows is based only 

on ROC AUC scores.

We also trained graph convolution models on some additional datasets in order to compare 

to the “neural fingerprints” (NFP) of Duvenaud et al. [9] and the influence relevance voter 

(IRV) method of Swamidass et al. [36] (see “Comparisons to other methods” section). Table 

5 compares graph convolution models to published results on these datasets under similar 

cross-validation conditions. Graph convolution results were comparable to published NFP 

models, with significant improvement on the photo-voltaic efficiency task (note that the 

graph convolution results are from multitask models trained on all three NFP datasets while 

Duvenaud et al. [9] report values for single-task models). The tenfold mean AUC and 

BEDROC scores on the HIV dataset were slightly lower than the published IRV values. 

However, we held out 10 % of the data (one fold) in each cross-validation round as a 

validation set for checkpoint selection, meaning that the graph convolution models were 

trained with fewer examples than the published IRV models.
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Input featurization

As a further proof of concept and to address the importance of the initial featurization, we 

trained a model using a subset of features that match typical 2D structural diagrams seen in 

chemistry textbooks: only atom type, bond type, and graph distance are provided to the 

network. Figure 7 compares a model trained with this “simple” input featurization to the 

“full” featurization containing all features from Table 2 and Table 3. Both featurizations 

achieve similar median fivefold mean AUC scores, suggesting that the additional features in 

the “full” representation are either mostly ignored during training or can be derived from a 

simpler representation of the molecular graph. Further work is required to understand the 

importance of individual features, perhaps with datasets that are sensitive to particular 

components of the input representation (such as hydrogen bonding or formal charge).

Figure 8 gives examples of how the initial atom features for a single molecule (ibuprofen) 

evolve as they progress through graph convolution Weave modules. The initial atom and pair 

feature encodings for the “full” featurization are depicted in Panel A. Comparing the initial 

atom features to their source molecular graph, the aromatic carbons in the central ring are 

clearly visible (and nearly identical in the featurization). The pair features are more difficult 

to interpret visually, and mostly encode graph distance. As the atom features are transformed 

by the Weave modules (Panel B), they become more heterogeneous and reflective of their 

unique chemical environments. “Simple” features behave similarly, beginning with rather 

sterile initial values and quickly diverging as neighborhood information is included by 

Weave module operations (Panel C). Comparison of the “full” and “simple” atom features 

after the second Weave module shows that both featurizations lead to similarly diverse 

feature distributions. Fig. S8 and Fig. S9 show similar behavior for pair features.

Hyperparameter sensitivity

Number of Weave modules—In relatively “local” models with limited atom pair 

distance, successive Weave modules update atom features with information from 

progressively larger regions of the molecule. This suggests that the number of Weave 

modules is a critical hyperparameter to optimize, analogous to the number of hidden layers 

in traditional neural networks. Figure 9 compares models with 2–4 Weave modules to a 

model with a single Weave module. As expected, models with a single Weave layer were 

outperformed by deeper architectures. For the PCBA and Tox21 datasets, there was not 

much benefit to using more than two Weave modules (Fig. S5), but using three Weave 

modules gave the best median AUC for the MUV datasets (in exchange for significantly 

increased training time).

Alternative feature reductions—The reduction of atom features from the final Weave 

module to an order-invariant, molecule-level representation is a major information 

bottleneck in graph convolution models. In related work, a simple unweighted sum [9, 16, 

21] or root-mean-square (RMS) [7] reduction is used. Using a consistent base architecture 

with two Weave modules and a maximum atom pair distance of 2, we compared these 

traditional reduction strategies with our Gaussian histogram approach.
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Figure 10 shows that Gaussian histogram models had consistently improved scores relative 

to sum reductions. RMS reductions were not as robust as Gaussian histograms in terms of 

per-dataset differences relative to sum reductions, although RMS and Gaussian histogram 

reductions had similar distributions of absolute AUC values (Fig. S6). Additionally, RMS 

reductions achieved a slightly higher median AUC than Gaussian histogram reductions on 

the MUV datasets.

Distance-dependent pair features—In Weave modules, atoms are informed about their 

chemical environment by mixing with pair features in the P → A operation. Recall that 

during this operation, pair features are combined for pairs that contain a given atom, yielding 

a new representation for that atom. A critical parameter for this operation is the maximum 

distance (in bonds) allowed between the atoms of the pairs that are combined. If only 

adjacent atoms are combined, the resulting atom features will reflect the local chemical 

environment. As an alternative to increasing the number of Weave modules, longer-range 

interactions can be captured by increasing the maximum atom pair distance. However, our 

implementation of the P → A operation uses a simple sum to combine pair features, such 

that a large amount of information (possibly including every pair of atoms in the molecule) 

is combined in a way that could prevent useful information from being available in later 

stages of the network.

Figure 11 shows the performance of several models with different maximum pair distances 

relative to a model that used only adjacent atom pairs (N1). For the PCBA datasets, a 

maximum distance of 2 (N2) improves performance to relative the N1 model, and N∞ (no 

maximum distance) is clearly worse. However, the N1 model achieves the best median AUC 

score for the MUV and Tox21 datasets (Table 4 and Fig. S7). These results suggest that 

graph convolution models do not effectively make use of the initial graph distance features 

to preserve or emphasize distance-dependent information.

To further investigate the effect of distance information in Weave modules, we experimented 

with models that use distance-specific weights for operations involving pair features in order 

to maintain distance information explicitly throughout the network. However, results for 

these models are preliminary and were not included in this report.

Discussion

Graph convolutions are a deep learning architecture for learning directly from undirected 

graphs. In this work, we emphasize their application to small molecules—undirected graphs 

of atoms connected by bonds—for virtual screening. Starting from simple descriptions of 

atoms, bonds between atoms, and pairwise relationships in a molecular graph, we have 

demonstrated performance that is comparable to state of the art multitask neural networks 

trained on traditional molecular fingerprint representations, as well as alternative methods 

including “neural fingerprints” [9] and influence relevance voter [36].

Our experiments with the adjustable parameters in graph convolution models indicate a 

relatively minor sensitivity to the number of Weave modules and the maximum distance 

between atom pairs (at least for our datasets). These results suggest that a model with two 
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Weave modules, a maximum atom pair distance of 2, and Gaussian histogram reductions is a 

good starting point for further optimization. Remarkably, graph convolution models perform 

well with a “simple” input featurization containing only atom type, bond type, and graph 

distances—essentially the information available from looking at Fig. 1.

Flexibility is a highlight of the graph convolution architecture: because we begin with a 

representation that encodes the complete molecular graph, graph convolution models are 

free to use any of the available information for the task at hand. In a sense, every possible 

molecular “fingerprint” is available to the model. Said another way, graph convolutions and 

other graph-based approaches purposefully blur the distinction between molecular features 

and predictive models. As has been pointed out elsewhere [9], the ability to use 

backpropagation to tune parameters at every stage of the network provides greater 

representational power than traditional descriptors, which are inflexible in the features they 

encode from the initial representation. Accordingly, it is not appropriate to think of graph-

based methods as alternative descriptors; rather, they should be viewed as fully integrated 

approaches to virtual screening (although future work could investigate the utility of the 

learned molecule-level features for additional tasks or other applications such as molecular 

similarity).

Looking forward, graph convolutions (and related graph-based methods; see “Related work” 

section) present a “new hill to climb” in computer-aided drug design and cheminformatics. 

Although our current graph convolution models do not consistently outperform state-of-the-

art fingerprint-based models, we emphasize their flexibility and potential for further 

optimization and development. In particular, we are aware of several specific opportunities 

for improvement, including (1) additional optimization of model hyperparameters such as 

Weave module convolution depths; (2) fine-tuning of architectural decisions, such as the 

choice of reduction in the P → A operation (currently a sum, but perhaps a Gaussian 

histogram or distance-dependent function); and (3) improvements in memory usage and 

training performance, such as not handling all pairs of atoms or implementing more efficient 

versions of Weave module operations. With these and other optimizations, we expect that 

graph convolutions could exceed the performance of the best available fingerprint-based 

methods.

Finally, we note that much (or most) of the information required to represent biological 

systems and the interactions responsible for small molecule activity is not encapsulated in 

the molecular graph. Biology takes place in a three-dimensional world, and is sensitive to 

shape, electrostatics, quantum effects, and other properties that emerge from—but are not 

necessarily unique to—the molecular graph (see, for example, Nicholls et al. [25]). 

Additionally, most small molecules exhibit 3D conformational flexibility that our graph 

representation does not even attempt to describe. The extension of deep learning methods 

(including graph convolutions) to three-dimensional biology is an active area of research 

(e.g. Wallach et al. [40]) that requires special attention to the added complexities of 

multiple-instance learning in a relatively small-data regime.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 

Molecular graph for ibuprofen. Unmarked vertices represent carbon atoms, and bond order 

is indicated by the number of lines used for each edge
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Fig. 2. 

P → A operation. Px is a matrix containing features for atom pairs ab, ac, ad, etc. The vi are 

intermediate values obtained by applying f to features for a given atom pair. Applying g to 

the intermediate representations for all atom pairs involving a given atom (e.g. a) results in a 

new atom feature vector for that atom
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Fig. 3. 

A → P operation. Ax is a matrix containing features for atoms a, b, etc. The vi are 

intermediate values obtained by applying f to features for a given pair of atoms concatenated 

in both possible orderings (ab and ba). Applying g to these intermediate ordered pair 

features results in an order-independent feature vector for atom pair ab
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Fig. 4. 

Weave module. This module takes matrices Ak and Pk (containing atom and pair features, 

respectively) and combines A → A, P → P, P → A, and A → P operations to yield a new 

set of atom and pair features (Ak+1 and Pk+1, respectively). The output atom and pair 

features can be used as input to a subsequent Weave module, which allows these modules to 

be stacked in series to an arbitrary depth
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Fig. 5. 

Fuzzy histogram with three Gaussian “bins”. Each curve represents the membership function 

for a different bin, indicating the degree to which a point contributes to that bin. The vertical 

blue line represents an example point which contributes normalized densities of <0:01, 

~0:25, and ~0:75 to the bins (from left to right)
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Fig. 6. 

Abstract graph convolution architecture. In the current implementation, only the final atom 

features are used to generate molecule-level features

Kearnes et al. Page 23

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 

Comparison of models with “simple” and “full” input featurizations. The simple 

featurization only encodes atom type, bond type, and graph distance. The full featurization 

includes additional features such as aromaticity and hydrogen bonding propensity (see 

“Molecule-level features” section for more details). Confidence intervals for box plot 

medians were computed as  [20]
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Fig. 8. 

Graph convolution feature evolution. Atoms or pairs are displayed on the y-axis and the 

dimensions of the feature vectors are on the x-axis. a Conversion of the molecular graph for 

ibuprofen into atom and (unique) atom pair features. b Evolution of atom features after 

successive Weave modules in a graph convolution model with a W3N2 architecture and 

depth 50 convolutions in Weave modules. c Evolution of “simple” atom features (see “Input 

featurization” section) starting from initial encoding and progressing through the Weave 

modules of a W2N2 architecture. The color bar applies to all panels
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Fig. 9. 

Comparison of models with different numbers of Weave modules with a model containing a 

single Weave module. All models used a maximum atom pair distance of two. The y-axis is 

cropped to emphasize differences near zero
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Fig. 10. 

Comparison of root-mean-square (RMS) and Gaussian histogram reductions versus sum 

reduction. The y-axis reports difference in fivefold mean AUC relative to sum reduction. All 

models used two Weave modules and a maximum atom pair distance of two. The y-axis is 

cropped to emphasize differences near zero
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Fig. 11. 

Comparison of models with different maximum atom pair distances to a model with a 

maximum pair distance of one (bonded atoms). All models have two Weave modules. The y-

axis is cropped to emphasize differences near zero
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Kearnes et al. Page 29

Table 1

Graph convolution model hyperparameters

Group Hyperparameter Default value

Input Maximum number of atoms per molecule 60

Maximum atom pair graph distance 2

Weave Number of Weave modules 1

(A → A)0 convolution depth 50

(A → P)0 convolution depth 50

(P → P)0 convolution depth 50

(P → A)0 convolution depth 50

(A → A)1 convolution depth 50

(P → P)1 convolution depth 50

Reduction Final atom layer convolution depth 128

Reduction to molecule-level features Gaussian histogram

Post-reduction Fully-connected layers (number of units per layer) 2000, 100

Training Batch size 96

Learning rate 0.003

Optimization method Adagrad
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Table 2

Atom features

Feature Description Size

Atom type
a H, C, N, O, F, P, S, Cl, Br, I, or metal (one-hot or null) 11

Chirality R or S (one-hot or null) 2

Formal charge Integer electronic charge 1

Partial charge Calculated partial charge 1

Ring sizes For each ring size (3–8), the number of rings that include this atom 6

Hybridization sp, sp2, or sp3 (one-hot or null) 3

Hydrogen bonding Whether this atom is a hydrogen bond donor and/or acceptor (binary values) 2

Aromaticity Whether this atom is part of an aromatic system 1

27

a
Included in the “simple” featurization (see “Input featurization” section)
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Table 3

Atom pair features

Feature Description Size

Bond type
a Single, double, triple, or aromatic (one-hot or null) 4

Graph distance
a For each distance (1–7), whether the shortest path between the atoms in the pair is less than or equal to that number 

of bonds (binary values)
7

Same ring Whether the atoms in the pair are in the same ring 1

12

a
Included in the “simple” featurization (see “Input featurization” section)
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Table 4

Median fivefold mean AUC values for reported models

Model PCBA (n = 128) MUV (n = 17) Tox21 (n = 12)

Median AUC Median ∆AUC Sign Test 
95% CI

Median AUC Median ∆AUC Sign Test 
95% CI

Median AUC Median ∆AUC Sign Test 
95% CI

MaxSim 0.754 −0.137 (0.00, 0.04) 0.638 −0.136 (0.01, 0.27) 0.728 −0.131 (0.00, 0.24)

LR 0.838 −0.059 (0.04, 0.13) 0.736 −0.070 (0.10, 0.47) 0.789 −0.073 (0.01, 0.35)

RF 0.804 −0.092 (0.02, 0.10) 0.655 −0.135 (0.01, 0.27) 0.802 −0.047 (0.01, 0.35)

PMTNN 0.905 0.869 0.854

W2N2-simple 0.905 −0.003 (0.27, 0.44) 0.849 0.012 (0.36, 0.78) 0.866 0.003 (0.39, 0.86)

W2N2-sum 0.898 −0.011 (0.16, 0.31) 0.818 −0.014 (0.17, 0.59) 0.848 −0.010 (0.09, 0.53)

W2N2-RMS 0.902 −0.007 (0.20, 0.35) 0.851 −0.026 (0.13, 0.53) 0.854 −0.007 (0.05, 0.45)

W1N2 0.905 −0.007 (0.20, 0.35) 0.840 −0.002 (0.26, 0.69) 0.849 −0.009 (0.09, 0.53)

W2N1 0.908 −0.003 (0.30, 0.46) 0.858 −0.016 (0.17, 0.59) 0.867 −0.002 (0.19, 0.68)

W2N2 0.909 0.000 (0.42, 0.59) 0.847 −0.004 (0.22, 0.64) 0.862 0.004 (0.32, 0.81)

W2N3 0.906 −0.001 (0.38, 0.55) 0.838 −0.013 (0.26, 0.69) 0.861 0.000 (0.25, 0.75)

W2N4 0.908 −0.001 (0.37, 0.54) 0.836 −0.008 (0.17, 0.59) 0.858 0.001 (0.39, 0.86)

W2N∞ 0.897 −0.008 (0.12, 0.25) 0.841 −0.025 (0.10, 0.47) 0.846 −0.006 (0.14, 0.61)

W3N2 0.906 0.000 (0.44, 0.61) 0.875 0.010 (0.31, 0.74) 0.859 0.004 (0.47, 0.91)

W4N2 0.907 −0.001 (0.33, 0.50) 0.856 −0.007 (0.22, 0.64) 0.862 0.004 (0.32, 0.81)

Graph convolution models are labeled as WxNy, where x and y denote the number of Weave modules and the maximum atom pair distance, 

respectively (see the text for descriptions of the simple, sum, and RMS models). All graph convolution models fed into a Pyramidal (2000, 100) 
MTNN after the molecule-level feature reduction step. MaxSim, logistic regression (LR), random forest (RF), and pyramidal (2000, 100) multitask 
neural network (PMTNN) baselines used Morgan fingerprints as input. For each model, we report the median ΔAUC and the 95 % Wilson score 
interval for a sign test estimating the probability that a given model will outperform the PMTNN baseline (see “Model training and evaluation” 
section). Bold values indicate sign test confidence intervals that do not include 0.5
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Table 5

Comparison of graph convolution to neural fingerprint (NFP) and influence relevance voter (IRV) models

Model Dataset Metric Original Graph convolution

NFP Solubility (log M) MSE 0.52 ± 0.07 0.46 ± 0.08

Drug efficacy (nM EC50) MSE 1.16 ± 0.03 1.07 ± 0.06

Photovoltaic efficiency (%) MSE 1.43 ± 0.09 1.10 ± 0.06

IRV HIV AUC 0.845 0.838 ± 0.027

BEDROC (α = 20) 0.630 0.613 ± 0.048

Section “Comparisons to other methods” provides details for datasets and experimental procedures. Note that the NFP comparisons were 
performed using multitask graph convolution models, and that graph convolution models for the HIV dataset were trained with fewer examples than 
IRV since one cross-validation fold was used as a held-out validation set
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