
Molecular graph convolutions: moving beyond fingerprints

Steven Kearnes1, Kevin McCloskey2, Marc Berndl2, Vijay Pande1, and Patrick Riley2

1 Stanford University, 318 Campus Dr. S296, Stanford, CA 94305, USA

2 Google Inc., 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA

Abstract

Molecular “fingerprints” encoding structural information are the workhorse of cheminformatics

and machine learning in drug discovery applications. However, fingerprint representations

necessarily emphasize particular aspects of the molecular structure while ignoring others, rather

than allowing the model to make data-driven decisions. We describe molecular graph
convolutions, a machine learning architecture for learning from undirected graphs, specifically

small molecules. Graph convolutions use a simple encoding of the molecular graph—atoms,

bonds, distances, etc.—which allows the model to take greater advantage of information in the

graph structure. Although graph convolutions do not outperform all fingerprint-based methods,

they (along with other graph-based methods) represent a new paradigm in ligand-based virtual

screening with exciting opportunities for future improvement.

Keywords

Machine learning; Virtual screening; Deep learning; Artificial neural networks; Molecular
descriptors

Introduction

Computer-aided drug design requires representations of molecules that can be related to

biological activity or other experimental endpoints. These representations encode structural

features, physical properties, or activity in other assays [28, 38]. The recent advent of “deep

learning” has enabled the use of very raw representations that are less application-specific

when building machine learning models [15]. For instance, image recognition models that

were once based on complex features extracted from images are now trained exclusively on

the pixels themselves—deep architectures can “learn” appropriate representations for input

data. Consequently, deep learning systems for drug screening or design should benefit from

molecular representations that are as complete and general as possible rather than relying on

application-specific features or encodings.

Steven Kearnes, kearnes@stanford.edu.
Kevin McCloskey, mccloskey@google.com
Marc Berndl, marcberndl@google.com
Vijay Pande, pande@stanford.edu
Patrick Riley, pfr@google.com

Electronic supplementary material The online version of this article (doi:10.1007/s10822-016-9938-8) contains supplementary
material, which is available to authorized users.

HHS Public Access
Author manuscript
J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

Published in final edited form as:
J Comput Aided Mol Des. 2016 August ; 30(8): 595–608. doi:10.1007/s10822-016-9938-8.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

First-year chemistry students quickly become familiar with a common representation for

small molecules: the molecular graph. Figure 1 gives an example of the molecular graph for

ibuprofen, an over-the-counter non-steroidal anti-inflammatory drug. The atoms and bonds

between atoms form the nodes and edges, respectively, of the graph. Both atoms and bonds

have associated properties, such as atom type and bond order. Although the basic molecular

graph representation does not capture the quantum mechanical structure of molecules or

necessarily express all of the information that it might suggest to an expert medicinal

chemist, its ubiquity in academia and industry makes it a desirable starting point for machine

learning on chemical information.

Here we describe molecular graph convolutions, a deep learning system using a

representation of small molecules as undirected graphs of atoms. Graph convolutions extract

meaningful features from simple descriptions of the graph structure—atom and bond

properties, and graph distances—to form molecule-level representations that can be used in

place of fingerprint descriptors in conventional machine learning applications.

Related work

The history of molecular representation is extremely diverse [38] and a full review is outside

the scope of this report. Below we describe examples from several major branches of the

field to provide context for our work. Additionally, we review several recent examples of

graph-centric approaches in cheminformatics.

Much of cheminformatics is based on so-called “2D” molecular descriptors that attempt to

capture relevant structural features derived from the molecular graph. In general, 2D features

are computationally inexpensive and easy to interpret and visualize. One of the most

common representations in this class is extended-connectivity fingerprints (ECFP), also

referred to as circular or Morgan fingerprints [30]. Starting at each heavy atom, a “bag of

fragments” is constructed by iteratively expanding outward along bonds (usually the

algorithm is terminated after 2–3 steps). Each unique fragment is assigned an integer

identifier, which is often hashed into a fixed-length representation or “fingerprint”.

Additional descriptors in this class include decompositions of the molecular graph into sub-

trees or fixed-length paths (OpenEye GraphSim Toolkit), as well as atom pair (AP)

descriptors that encode atom types and graph distances (number of intervening bonds) for all

pairs of atoms in a molecule [4].

Many representations encode 3D information, with special emphasis on molecular shape and

electrostatics as primary drivers of interactions in real-world systems. For example, rapid

overlay of chemical structures (ROCS) aligns pairs of pre-generated conformers and

calculates shape and chemical (“color”) similarity using Gaussian representations of atoms

and color features defined by a simple force field [11]. ROCS can also be used to generate

alignments for calculation of electrostatic field similarity [23]. Ultrafast shape recognition

(USR) calculates alignment-free 3D similarity by comparing distributions of intramolecular

distances [2].

Kearnes et al. Page 2

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The Merck Molecular Activity Challenge [5] catalyzed interest in deep neural networks

trained on fingerprints and other molecular descriptors. In particular, multitask neural

networks have produced consistent gains relative to baseline models such as random forest

and logistic regression [6, 17, 19, 29].

Other approaches from both the cheminformatics and the machine learning community

directly operate on graphs in a way similar to how we do here. The “molecular graph

networks” of Merkwirth and Lengauer [21] iteratively update a state variable on each atom

with learned weights specific to each atom type–bond type pair. Similarly, Micheli [22]

presents a more general formulation of the same concept of iterated local information

transfer across edges and applies this method to predicting the boiling point of alkanes.

Scarselli et al. [33] similarly defines a local operation on the graph. They demonstrate that a

fixed point across all the local functions can be found and calculate fixed point solutions for

graph nodes as part of each training step. In another vein, Lusci et al. [16] convert undirected

molecular graphs to a directed recursive neural net and take an ensemble over multiple

conversions.

Recently, Duvenaud et al. [9] presented an architecture trying to accomplish many of the

same goals as this work. The architecture was based on generalizing the fingerprint

computation such that it can be learned via backpropagation. They demonstrate that this

architecture improves predictions of solubility and photovoltaic efficiency but not binding

affinity.

Bruna et al. [3] introduce convolutional deep networks on spectral representations of graphs.

However, these methods apply when the graph structure is fixed across examples and only

the labeling/features on individual nodes varies.

Convolutional networks on non-Euclidean manifolds were described by Masci et al. [18].

The problem addressed was to describe the shape of the manifold (such as the surface of a

human being) in such a way that the shape descriptor of a particular point was invariant to

perturbations such as movement and deformation. They also describe an approach for

combining local shape descriptors into a global descriptor and demonstrate its use in a shape

classification task.

Methods

Deep neural networks

Neural networks are directed graphs of simulated “neurons”. Each neuron has a set of inputs

and computes an output. The neurons in early neural nets were inspired by biological

neurons and computed an affine combination of the inputs followed by a non-linear

activation function. Mathematically, if the inputs are x1. . .xN, weights w1. . .wN and bias b
are parameters, and f is the activation function, the output is

Kearnes et al. Page 3

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(1)

Popular activation functions include the sigmoid function and rectified linear

unit (ReLU) (f(z) = 0 if z ≤ 0 else z).

Any mostly differentiable function can be used as the unit of computation for a neuron and

in recent years, many other functions have appeared in published networks, including max

and sum.

Convolution in neural networks refers to using the same parameters (such as the wi in Eq. 1)

for different neurons that are attached to different parts of the input (or previous neurons). In

this way, the same operation is computed for many different subsets of the input.

At the “top” of the neural network you have node(s) whose output is the value you are trying

to predict (e.g. the probability that this molecule binds to a target or the binding affinity).

Many output nodes for different tasks can be added and this is commonly done [17, 29]. In

this way, different output tasks can share the computation and model parameters in lower

parts of the network before using their own parameters for the final output steps.

The architecture of a neural network refers to the choice of the number of neurons, the type

of computation each one does (including what learnable parameters they have), which

parameters are shared across neurons, and how the output of one neuron is connected to the

input of another.

In order to train the network, you first have to choose a loss function describing the penalty

for the network producing a set of outputs which differ from the outputs in the training

example. For example, for regression problems, the L2 distance between the predicted and

actual values is commonly used. The objective of training is then to find a set of parameters

for the network that minimizes the loss function. Training is done with the well known

technique of back-propagation [32] and stochastic gradient descent.

Desired invariants of a model

A primary goal of designing a deep learning architecture is to restrict the set of functions

that can be learned to ones that match the desired properties from the domain. For example,

in image understanding, spatial convolutions force the model to learn functions that are

invariant to translation.

For a deep learning architecture taking a molecular graph as input, some arbitrary choice

must be made for the order that the various atoms and bonds are presented to the model.

Since that choice is arbitrary, we want:

Property 1 (Order invariance) The output of the model should be invariant to the

order that the atom and bond information is encoded in the input.

Kearnes et al. Page 4

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Note that many current procedures for fingerprinting molecules achieve Property 1. We will

now gradually construct an architecture which achieves Property 1 while making available a

richer space of learnable parameters.

The first basic unit of representation is an atom layer which contains an n-dimensional

vector associated with each atom. Therefore the atom layer is a 2 dimensional matrix

indexed first by atom. Part of the original input will be encoded in such an atom layer and

the details of how we construct the original input vector are discussed in the “Input

featurization” section. The next basic unit of representation is a pair layer which contains an

n-dimensional vector associated with each pair of atoms. Therefore, the pair layer is a 3

dimensional matrix where the first two dimensions are indexed by atom. Note that the pair

input can contain information not just about edges but about any arbitrary pair. Notably, we

will encode the graph distance (length of shortest path from one atom to the other) in the

input pair layer. The order of the atom indexing for the atom and pair layer inputs must be

the same.

We will describe various operations to compute new atom and pair layers with learnable

parameters at every step. Notationally, let Ax be the value of a particular atom layer x and Py

be the value of a particular pair layer y. The inputs that produce those values should be clear

from the context. refers to the value of atom a in atom layer x and refers to the

value of pair (a, b) in pair layer y.

In order to achieve Property 1 for the overall architecture, we need a different type of

invariance for each atom and pair layer.

Property 2 (Atom and pair permutation invariance) The values of an atom layer and

pair permute with the original input layer order. More precisely, if the inputs are

permuted with a permutation operator Q, then for all layers x, y, Ax and Py are

permuted with operator Q as well.

In other words, Property 2 means that from a single atom's (or pair's) perspective, its value in

every layer is invariant to the order of the other atoms (or pairs).

Since molecules are undirected graphs, we will also maintain the following:

Property 3 (Pair order invariance) For all pair layers y,

Property 3 is easy to achieve at the input layer and the operations below will maintain this.

Properties 2 and 3 make it easy to construct a molecule-level representation from an atom or

pair such that the molecule-level representation achieves Property 1 (see “Molecule-level

features” section).

Invariant-preserving operations

We now define a series of operations that maintain the above properties.

Throughout, f represents an arbitrary function and g represents an arbitrary commutative
function (g returns the same result regardless of the order the arguments are presented). In

Kearnes et al. Page 5

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

this work, f is a learned linear operator with a rectified linear (ReLU) activation function and

g is a sum.

The most trivial operation is to combine one or more layers of the same type by applying the

same operation to every atom or pair. Precisely, this means if you have layers x1, x2, . . ., xn
and function f, you can compute a new atom layer from the previous atom layer (A → A) as

(2)

or pair layer from the previous pair layer (P → P) as

(3)

Since we apply the same function for every atom/pair, we refer to this as a convolution. All

the transformations we develop below will have this convolution nature of applying the same

operation to every atom/pair, maintaining Property 2.

When operating on pairs of atoms, instead of putting all pairs through this function, you

could select a subset. In the “Distance-dependent pair features” section we show

experiments for restricting the set of pairs to those that are less than some graph distance

away.

Next, consider an operation that takes a pair layer x and constructs an atom layer y (P →
A). The operation is depicted in Fig. 2. Formally:

(4)

In other words, take all pairs of which a is a part, run them through f, and combine them

with g. Note that Property 3 means we can choose an arbitrary one of or .

The most interesting construction is making a pair layer from an atom layer (A → P). The

operation is graphically depicted in Fig. 3 and formally as

(5)

Note that just applying g to and would maintain Properties 2 and 3 but we use this

more complex form. While commutative operators (such as max pooling) are common in

neural networks, commutative operators with learnable parameters are not common.

Therefore, we use f to give learnable parameters while maintaining the desired properties.

Once we have all the primitive operations on atom and pair layers (A → A, P →P, P → A,
A → P), we can combine these into one module. We call this the Weave module (Fig. 4)

Kearnes et al. Page 6

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

because the atoms and pair layers cross back and forth to each other. The module can be

stacked to an arbitrary depth similar to the Inception module that inspired it [37]. Deep

neural networks with many layers (e.g. for computer vision) learn progressively more

general features—combinations of lower-level features—in a hierarchical manner [15]. By

analogy, successive Weave modules can produce more informative representations of the

original input. Additionally, stacked Weave modules with limited maximum atom pair

distance progressively incorporate longer-range information at each layer.

Molecule-level features

The construction of the Weave module maintains Properties 2 and 3. What about overall

order invariance (Property 1)? At the end of a stack of Weave modules we are left with an n-

dimensional vector associated with every atom and an m-dimensional vector associated with

every pair. We need to turn this into a molecule-level representation with some commutative

function of these vectors.

In related work [9, 16, 21], a simple unweighted sum is often used to combine order-

dependent atom features into order-independent molecule-level features. However, reduction

to a single value does not capture the distribution of learned features. We experimented with

an alternative approach and created “fuzzy” histograms for each dimension of the feature

vector.

A fuzzy histogram is described by a set of membership functions that are functions with

range [0, 1] representing the membership of the point in each histogram bin [42]. A standard

histogram has membership functions which are 1 in the bin and 0 everywhere else. For each

point, we normalize so that the total contribution to all bins is 1. The value of a bin in the

histogram over all points is just the sum of the normalized contributions for all the points.

Figure 5 gives an example of a fuzzy histogram composed of three Gaussian bins. A

histogram is constructed for each dimension of the feature vectors and the concatenation of

those histograms is the molecule-level representation.

In this work we used Gaussian membership functions (which are unnormalized versions of

the standard Gaussian PDF) with eleven bins spanning a Gaussian distribution with mean of

zero and unit standard deviation, shown in Fig. S10. These bins were chosen somewhat

arbitrarily to cover the expected distribution of incoming features and were not optimized

further (note that the incoming features were batch normalized; see “Model training and

evaluation” section).

Throughout this paper, we construct the molecule-level features only from the top-level atom

features and not the pair features. This is to restrict the total number of feature vectors that

must be summarized while still providing information about the entire molecule. Note,

however, that the initial and intermediate pair features can influence the final atom features

through Weave module operations.

Before the molecule-level featurization, we do one final convolution on the atoms. Since

molecule-level featurization can be a major bottleneck in the model, this convolution

expands the depth so that each dimension of the atom feature vector contains less

Kearnes et al. Page 7

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

information and therefore less information is lost during the molecule-level featurization. On

this convolution, we do not use a ReLU activation function to avoid the histogram having

many points at zero.

Once you have a molecule-level representation, this becomes a more standard multitask

problem. We follow the common approach [17, 19, 29] of a small number of fully connected

layers on top of the molecule-level features followed by standard softmax classification.

The overall architecture is depicted in Fig. 6. Table 1 lists hyperparameters and default

values for graph convolution models. In models with multiple Weave modules it is

conceivable to vary the convolution depths in a module-specific way. However, the models

in this work used the same settings for all Weave modules.

Our current implementation imposes an upper limit on the number of heavy atoms

represented in the initial featurization. For molecules that have more than the maximum

number of atoms, only a subset of atoms (and therefore atom pairs) are represented in the

input encoding. This subset depends on the order in which the atoms are traversed by the

featurization code and should be considered arbitrary. In this work we set the maximum

number of atoms to 60, and only 814 of the 1,442,713 unique molecules in our datasets (see

“Datasets” section) exceed this limit.

Input featurization

The initial atom and pair features are summarized in Tables 2 and 3, respectively. The

features are a mix of floating point, integer, and binary values (all encoded as floating point

numbers in the network). The feature set is intended to be broad, but not necessarily

exhaustive, and we recognize that some features can potentially be derived from or

correlated to a subset of the others (e.g. atom hybridization can be determined by inspecting

the bonds that atom makes). We performed experiments using a “simple” subset of these

features in an effort to understand their relative contributions to learning (“Input

featurization” section), but many other questions about specifics of the input featurization

are left to future work.

All features were generated with RDKit [14], including Gasteiger atomic partial charges

[10]. Although our featurization includes space for hydrogen atoms, we did not use explicit

hydrogens in any of our experiments in order to conserve memory and emphasize

contributions from heavy atoms.

Other deep learning applications with more “natural” inputs such as computer vision and

speech recognition still require some input engineering; for example, adjusting images to a

specific size or scale, or transforming audio into the frequency domain. Likewise, the initial

values for the atom and pair layers describe these primitives in terms of properties that are

often considered by medicinal chemists and other experts in the field, allowing the network

to use or ignore them as needed for the task at hand. One of the purposes of this work is to

demonstrate that learning can occur with as little preprocessing as possible. Accordingly, we

favor simple descriptors that are more or less “obvious”.

Kearnes et al. Page 8

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Datasets

We used a dataset collection nearly identical to the one described by Ramsundar et al. [29]

except for some changes to the data processing pipeline (including the duplicate merging

process for the Tox21 dataset) and different cross-validation fold divisions. Briefly, there are

259 datasets divided into four groups indicating their source: PubChem BioAssay [41]

(PCBA, 128 datasets), the “maximum unbiased validation” datasets constructed by Rohrer

and Baumann [31] (MUV, 17 datasets), the enhanced directory of useful decoys [24] (DUD-

E, 102 datasets), and the training set for the Tox21 challenge (see Mayr et al. [19]) (Tox21,

12 datasets). The combined dataset contained over 38 M data points and included targets

from many different biological classes.

Model training and evaluation

Graph convolution and traditional neural network models were implemented with

TensorFlow [1], an open-source library for machine learning. Models were evaluated by the

area under the receiver operating characteristic curve (ROC AUC, or simply AUC) as

recommended by Jain and Nicholls [13]. We used fivefold stratified cross-validation, where

each fold-specific model used 60 % of the data for training, 20 % for validation (early

stopping/model selection), and 20 % as a test set.

Graph convolution models were trained for 10–20 M steps using the Adagrad optimizer [8]

with learning rate 0.003 and batch size 96, with periodic checkpointing. All convolution and

fully-connected layer outputs were batch normalized [12] prior to applying the ReLU

nonlinearity. Training was parallelized over 96 CPUs (or 96 GPUs in the case of the W4N2

model) and required several days for each model. Adding additional Weave modules

significantly increased training time. However, models trained on smaller datasets (see

“Comparisons to other methods” section) trained much faster.

To establish a baseline, we also trained pyramidal (2000, 100) multitask neural network

(PMTNN) [29], random forest (RF), and logistic regression (LR) models using Morgan

fingerprints with radius 2 (essentially equivalent to ECFP4) generated with RDKit [14]. As a

very simple baseline, we also computed Tanimoto similarity to all training set actives and

used the maximum similarity score as the active class probability (MaxSim).

The PMTNN had two hidden layers (with 2000 and 100 units, respectively) with rectified

linear activations, and each fold-specific model was trained for 40–50 M steps using the

SGD optimizer with batch size 128 and a learning rate of 0.0003, with periodic

checkpointing. Additionally, this model used 0.25 dropout [35], initial weight standard

deviations of 0.01 and 0.04 and initial biases of 0.5 and 3.0 in the respective hidden layers.

This model did not use batch normalization.

Logistic regression (LR) models were trained with the LogisticRegression class in scikit-

learn [27] using the ‘lbfgs’ solver and a maximum of 10,000 iterations. Values for the

regularization strength (C) parameter were chosen by grid search, using the held-out

validation set for model selection. Random forest (RF) models were trained using the scikit-

learn RandomForestClassifier with 100 trees.

Kearnes et al. Page 9

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In graph convolution and PMTNN models, active compounds were weighted in the cost

function such that the total active weight equalled the total inactive weight within each

dataset (logistic regression and random forest models also used these weights as the

sample_weight argument to their fit methods). Furthermore, graph convolution and PMTNN

models were evaluated in a task-specific manner by choosing the training checkpoint with

the best validation set AUC for each task. We note that some fold-specific models had a

small number of tasks were not “converged” in the sense that their validation set AUC scores

were still increasing when training was halted, and that the specific tasks that were not

converged varied from model to model.

To statistically compare graph convolution and baseline models, we report three values for

each dataset group: (1) median fivefold mean AUC over all datasets, (2) median difference

in per-dataset fivefold mean AUC (ΔAUC) relative to the PMTNN baseline, and (3) a 95 %

Wilson score interval for the sign test statistic relative to the PMTNN baseline. The sign test

estimates the probability that a model will achieve a higher fivefold mean AUC than the

PMTNN baseline; models with sign test confidence intervals that do not include 0.5 are

considered significantly different in their performance (the median ΔAUC can be used as a

measure of effect size). To calculate these intervals, we used the proportion_confint function

in statsmodels [34] version 0.6.1 with method=‘wilson’ and alpha=0.05, counting only non-

zero differences in the sign test. We do not report values for the DUD-E dataset group since

all models achieved >0.98 median fivefold mean AUC.

As a general note, confidence intervals for box medians were computed as

 [20] and do not necessarily correspond to sign test confidence intervals.

Comparisons to other methods

In addition to the baseline models described in the “Model training and evaluation” section,

there are many other methods that would be interesting to compare to our graph convolution

models. In particular, Duvenaud et al. [9] described “neural fingerprints” (NFP), a related

graph-based method. The original publication describing NFP reported mean squared errors

(MSE) on datasets for aqueous solubility, drug efficacy, and photovoltaic efficiency. We

trained multitask graph convolution models on these datasets using fivefold cross-validation

(note that the published NFP models were single-task).

Additionally, we report results on a dataset used to validate the influence relevance voter

(IRV) method of Swamidass et al. [36], which is a hybrid of neural networks and k-nearest

neighbors. The original publication reported results for two datasets, HIV and DHFR, but

the latter was no longer available from its original source. We trained graph convolution

models on the HIV dataset using tenfold stratified cross-validation. In each cross-validation

round, onefold each was used for testing and validation (early stopping), and the remaining

folds were used for training. We note that RDKit was only able to process 41,476 of the

42,678 SMILES strings in the HIV dataset. We report performance on this dataset using both

ROC AUC and BEDROC [39] with α = 20.

Kearnes et al. Page 10

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Although we expect our results on these datasets to provide reasonable comparisons to

published data, differences in fold assignments and variations in dataset composition due to

featurization failures mean that the comparisons are not perfect.

Results

Proof of concept

With so many hyperparameters to adjust, we sought to establish a centerpoint from which to

investigate specific questions. After several experiments, we settled on a simple model with

two Weave modules, a maximum atom pair distance of 2, Gaussian histogram molecule-

level reductions, and two fully-connected layers of size 2000 and 100, respectively.

Notationally, we refer to this model as W2N2. Table 4 shows the performance of the W2N2

model and related models derived from this centerpoint by varying a single hyperparameter.

Additionally, Table 4 includes results for several baseline models: MaxSim, logistic

regression (LR), random forest (RF), and pyramidal (2000, 100) multitask neural network

(PMTNN) models trained on Morgan fingerprints.

Several graph convolution models achieved performance comparable to the baseline

PMTNN on the classification tasks in our dataset collection, which is a remarkable result

considering the simplicity of our input representation. For example, the centerpoint W2N2

model is statistically indistinguishable from the PMTNN for the PCBA, MUV, and Tox21

dataset groups (we do not report results for the DUD-E dataset group because all models

achieved extremely high median AUC scores). Additionally, many of the graph convolution

models with worse performance than the PMTNN (i.e. sign test confidence intervals

excluding 0.5) had very small effective differences as measured by median ΔAUC.

As an additional measure of model performance, we also calculated ROC enrichment [13]

scores at the following false positive rates: 1, 5, 10, and 20 %. Enrichment scores are

reported in Section B (in the supplementary material) and show that graph convolution

models generally performed worse than or comparable to the PMTNN. We note that the

analysis of model performance and hyperparameter optimization that follows is based only

on ROC AUC scores.

We also trained graph convolution models on some additional datasets in order to compare

to the “neural fingerprints” (NFP) of Duvenaud et al. [9] and the influence relevance voter

(IRV) method of Swamidass et al. [36] (see “Comparisons to other methods” section). Table

5 compares graph convolution models to published results on these datasets under similar

cross-validation conditions. Graph convolution results were comparable to published NFP

models, with significant improvement on the photo-voltaic efficiency task (note that the

graph convolution results are from multitask models trained on all three NFP datasets while

Duvenaud et al. [9] report values for single-task models). The tenfold mean AUC and

BEDROC scores on the HIV dataset were slightly lower than the published IRV values.

However, we held out 10 % of the data (one fold) in each cross-validation round as a

validation set for checkpoint selection, meaning that the graph convolution models were

trained with fewer examples than the published IRV models.

Kearnes et al. Page 11

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Input featurization

As a further proof of concept and to address the importance of the initial featurization, we

trained a model using a subset of features that match typical 2D structural diagrams seen in

chemistry textbooks: only atom type, bond type, and graph distance are provided to the

network. Figure 7 compares a model trained with this “simple” input featurization to the

“full” featurization containing all features from Table 2 and Table 3. Both featurizations

achieve similar median fivefold mean AUC scores, suggesting that the additional features in

the “full” representation are either mostly ignored during training or can be derived from a

simpler representation of the molecular graph. Further work is required to understand the

importance of individual features, perhaps with datasets that are sensitive to particular

components of the input representation (such as hydrogen bonding or formal charge).

Figure 8 gives examples of how the initial atom features for a single molecule (ibuprofen)

evolve as they progress through graph convolution Weave modules. The initial atom and pair

feature encodings for the “full” featurization are depicted in Panel A. Comparing the initial

atom features to their source molecular graph, the aromatic carbons in the central ring are

clearly visible (and nearly identical in the featurization). The pair features are more difficult

to interpret visually, and mostly encode graph distance. As the atom features are transformed

by the Weave modules (Panel B), they become more heterogeneous and reflective of their

unique chemical environments. “Simple” features behave similarly, beginning with rather

sterile initial values and quickly diverging as neighborhood information is included by

Weave module operations (Panel C). Comparison of the “full” and “simple” atom features

after the second Weave module shows that both featurizations lead to similarly diverse

feature distributions. Fig. S8 and Fig. S9 show similar behavior for pair features.

Hyperparameter sensitivity

Number of Weave modules—In relatively “local” models with limited atom pair

distance, successive Weave modules update atom features with information from

progressively larger regions of the molecule. This suggests that the number of Weave

modules is a critical hyperparameter to optimize, analogous to the number of hidden layers

in traditional neural networks. Figure 9 compares models with 2–4 Weave modules to a

model with a single Weave module. As expected, models with a single Weave layer were

outperformed by deeper architectures. For the PCBA and Tox21 datasets, there was not

much benefit to using more than two Weave modules (Fig. S5), but using three Weave

modules gave the best median AUC for the MUV datasets (in exchange for significantly

increased training time).

Alternative feature reductions—The reduction of atom features from the final Weave

module to an order-invariant, molecule-level representation is a major information

bottleneck in graph convolution models. In related work, a simple unweighted sum [9, 16,

21] or root-mean-square (RMS) [7] reduction is used. Using a consistent base architecture

with two Weave modules and a maximum atom pair distance of 2, we compared these

traditional reduction strategies with our Gaussian histogram approach.

Kearnes et al. Page 12

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10 shows that Gaussian histogram models had consistently improved scores relative

to sum reductions. RMS reductions were not as robust as Gaussian histograms in terms of

per-dataset differences relative to sum reductions, although RMS and Gaussian histogram

reductions had similar distributions of absolute AUC values (Fig. S6). Additionally, RMS

reductions achieved a slightly higher median AUC than Gaussian histogram reductions on

the MUV datasets.

Distance-dependent pair features—In Weave modules, atoms are informed about their

chemical environment by mixing with pair features in the P → A operation. Recall that

during this operation, pair features are combined for pairs that contain a given atom, yielding

a new representation for that atom. A critical parameter for this operation is the maximum

distance (in bonds) allowed between the atoms of the pairs that are combined. If only

adjacent atoms are combined, the resulting atom features will reflect the local chemical

environment. As an alternative to increasing the number of Weave modules, longer-range

interactions can be captured by increasing the maximum atom pair distance. However, our

implementation of the P → A operation uses a simple sum to combine pair features, such

that a large amount of information (possibly including every pair of atoms in the molecule)

is combined in a way that could prevent useful information from being available in later

stages of the network.

Figure 11 shows the performance of several models with different maximum pair distances

relative to a model that used only adjacent atom pairs (N1). For the PCBA datasets, a

maximum distance of 2 (N2) improves performance to relative the N1 model, and N∞ (no

maximum distance) is clearly worse. However, the N1 model achieves the best median AUC

score for the MUV and Tox21 datasets (Table 4 and Fig. S7). These results suggest that

graph convolution models do not effectively make use of the initial graph distance features

to preserve or emphasize distance-dependent information.

To further investigate the effect of distance information in Weave modules, we experimented

with models that use distance-specific weights for operations involving pair features in order

to maintain distance information explicitly throughout the network. However, results for

these models are preliminary and were not included in this report.

Discussion

Graph convolutions are a deep learning architecture for learning directly from undirected

graphs. In this work, we emphasize their application to small molecules—undirected graphs

of atoms connected by bonds—for virtual screening. Starting from simple descriptions of

atoms, bonds between atoms, and pairwise relationships in a molecular graph, we have

demonstrated performance that is comparable to state of the art multitask neural networks

trained on traditional molecular fingerprint representations, as well as alternative methods

including “neural fingerprints” [9] and influence relevance voter [36].

Our experiments with the adjustable parameters in graph convolution models indicate a

relatively minor sensitivity to the number of Weave modules and the maximum distance

between atom pairs (at least for our datasets). These results suggest that a model with two

Kearnes et al. Page 13

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Weave modules, a maximum atom pair distance of 2, and Gaussian histogram reductions is a

good starting point for further optimization. Remarkably, graph convolution models perform

well with a “simple” input featurization containing only atom type, bond type, and graph

distances—essentially the information available from looking at Fig. 1.

Flexibility is a highlight of the graph convolution architecture: because we begin with a

representation that encodes the complete molecular graph, graph convolution models are

free to use any of the available information for the task at hand. In a sense, every possible

molecular “fingerprint” is available to the model. Said another way, graph convolutions and

other graph-based approaches purposefully blur the distinction between molecular features

and predictive models. As has been pointed out elsewhere [9], the ability to use

backpropagation to tune parameters at every stage of the network provides greater

representational power than traditional descriptors, which are inflexible in the features they

encode from the initial representation. Accordingly, it is not appropriate to think of graph-

based methods as alternative descriptors; rather, they should be viewed as fully integrated

approaches to virtual screening (although future work could investigate the utility of the

learned molecule-level features for additional tasks or other applications such as molecular

similarity).

Looking forward, graph convolutions (and related graph-based methods; see “Related work”

section) present a “new hill to climb” in computer-aided drug design and cheminformatics.

Although our current graph convolution models do not consistently outperform state-of-the-

art fingerprint-based models, we emphasize their flexibility and potential for further

optimization and development. In particular, we are aware of several specific opportunities

for improvement, including (1) additional optimization of model hyperparameters such as

Weave module convolution depths; (2) fine-tuning of architectural decisions, such as the

choice of reduction in the P → A operation (currently a sum, but perhaps a Gaussian

histogram or distance-dependent function); and (3) improvements in memory usage and

training performance, such as not handling all pairs of atoms or implementing more efficient

versions of Weave module operations. With these and other optimizations, we expect that

graph convolutions could exceed the performance of the best available fingerprint-based

methods.

Finally, we note that much (or most) of the information required to represent biological

systems and the interactions responsible for small molecule activity is not encapsulated in

the molecular graph. Biology takes place in a three-dimensional world, and is sensitive to

shape, electrostatics, quantum effects, and other properties that emerge from—but are not

necessarily unique to—the molecular graph (see, for example, Nicholls et al. [25]).

Additionally, most small molecules exhibit 3D conformational flexibility that our graph

representation does not even attempt to describe. The extension of deep learning methods

(including graph convolutions) to three-dimensional biology is an active area of research

(e.g. Wallach et al. [40]) that requires special attention to the added complexities of

multiple-instance learning in a relatively small-data regime.

Kearnes et al. Page 14

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Bharath Ramsundar, Brian Goldman, and Robert McGibbon for helpful discussion. We also acknowledge
Manjunath Kudlur, Derek Murray, and Rajat Monga for assistance with TensorFlow. S.K. was supported by
internships at Google Inc. and Vertex Pharmaceuticals Inc. Additionally, we acknowledge use of the Stanford
BioX3 cluster supported by NIH S10 Shared Instrumentation Grant 1S10RR02664701. S.K. and V.P. also
acknowledge support from from NIH 5U19AI109662-02.

References

1. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, GS.; Davis, A.; Dean,
J.; Devin, M., et al. TensorFlow: large-scale machine learning on heterogeneous systems.. Software.
2015. http://tensorflow.org

2. Ballester PJ, Richards WG. Ultrafast shape recognition to search compound databases for similar
molecular shapes. J Comput Chem. 2007; 28(10):1711–1723. [PubMed: 17342716]

3. Bruna J, Zaremba W, Szlam A, LeCun Y. Spectral networks and locally connected networks on
graphs. arXiv. 2013:1312–6203.

4. Carhart RE, Smith DH, Venkataraghavan R. Atom pairs as molecular features in structure-activity
studies: definition and applications. J Chem Inf Comput Sci. 1985; 25(2):64–73.

5. Dahl, G. Deep learning how I did it: Merck 1st place interview. 2012. http://blog.kaggle.com/
2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview

6. Dahl GE, Jaitly N, Salakhutdinov R. Multi-task neural networks for QSAR predictions. 2014 arXiv:
1406.1231.

7. Dieleman, S. Classifying plankton with deep neural networks. Mar 17. 2015 2015. http://
benanne.github.io/2015/03/17/plankton.html

8. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic
optimization. J Mach Learn Res. 2011; 12:2121–2159.

9. Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP.
Convolutional networks on graphs for learning molecular fingerprints. Advances in neural
information processing systems. 2015:2224–2232.

10. Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity–a rapid access to
atomic charges. Tetrahedron. 1980; 36(22):3219–3228.

11. Hawkins PCD, Skillman AG, Nicholls A. Comparison of shape-matching and docking as virtual
screening tools. J Med Chem. 2007; 50(1):74–82. [PubMed: 17201411]

12. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal
covariate shift. 2015 arXiv:1502.03167.

13. Jain AN, Nicholls A. Recommendations for evaluation of computational methods. J Comput Aided
Mol Des. 2008; 22(3–4):133–139. [PubMed: 18338228]

14. Landrum, G. RDKit: open-source cheminformatics. 2014. http://www.rdkit.org

15. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436–444. [PubMed:
26017442]

16. Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: the
prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 2013; 53(7):1563–
1575. [PubMed: 23795551]

17. Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep neural nets as a method for quantitative
structure–activity relationships. J Chem Inf Model. 2015; 55(2):263–274. [PubMed: 25635324]

18. Masci J, Boscaini D, Bronstein M, Vandergheynst P. Geodesic convolutional neural networks on
riemannian manifolds. Proceedings of the IEEE international conference on computer vision
workshops. 2015:37–45.

Kearnes et al. Page 15

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://tensorflow.org
http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview
http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview
http://benanne.github.io/2015/03/17/plankton.html
http://benanne.github.io/2015/03/17/plankton.html
http://www.rdkit.org

19. Mayr A, Klambauer G, Unterthiner T, Hochreiter S. Deeptox: toxicity prediction using deep
learning. Front Environ Sci. 2015; 3:80.

20. McGill R, Tukey JW, Larsen WA. Variations of box plots. Am Stat. 1978; 32(1):12–16.

21. Merkwirth C, Lengauer T. Automatic generation of complementary descriptors with molecular
graph networks. J Chem Inf Model. 2005; 45(5):1159–1168. [PubMed: 16180893]

22. Micheli A. Neural network for graphs: a contextual constructive approach. IEEE Trans Neural
Netw. 2009; 20(3):498–511. [PubMed: 19193509]

23. Muchmore SW, Souers AJ, Akritopoulou-Zanze I. The use of three-dimensional shape and
electrostatic similarity searching in the identification of a melanin-concentrating hormone receptor
1 antagonist. Chem Biol Drug Des. 2006; 67(2):174–176. [PubMed: 16492165]

24. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E):
better ligands and decoys for better benchmarking. J Med Chem. 2012; 55(14):6582–6594.
[PubMed: 22716043]

25. Nicholls A, McGaughey GB, Sheridan RP, Good AC, Warren G, Mathieu M, Muchmore SW,
Brown SP, Grant JA, Haigh JA, et al. Molecular shape and medicinal chemistry: a perspective. J
Med Chem. 2010; 53(10):3862–3886. [PubMed: 20158188]

26. OpenEye GraphSim Toolkit. OpenEye Scientific Software; Santa Fe, NM.: http://
www.eyesopen.com

27. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R, Dubourg V, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;
12:2825–2830.

28. Petrone PM, Simms B, Nigsch F, Lounkine E, Kutchukian P, Cornett A, Deng Z, Davies JW,
Jenkins JL, Glick M. Rethinking molecular similarity: comparing compounds on the basis of
biological activity. ACS Chem Biol. 2012; 7(8):1399–1409. [PubMed: 22594495]

29. Ramsundar B, Kearnes S, Riley P, Webster D, Konerding D, Pande V. Massively multitask
networks for drug discovery. 2015 arXiv:1502.02072.

30. Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model. 2010; 50(5):742–754.
[PubMed: 20426451]

31. Rohrer SG, Baumann K. Maximum unbiased validation (MUV) data sets for virtual screening
based on pubchem bioactivity data. J Chem Inf Model. 2009; 49(2):169–184. [PubMed:
19434821]

32. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors.
Nature. 1986; 323:533–536.

33. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model.
IEEE Trans Neural Netw. 2009; 20(1):61–80. [PubMed: 19068426]

34. Seabold S, Perktold J. Statsmodels: econometric and statistical modeling with python. Proceedings
of the 9th Python in science conference. 2010:57–61.

35. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to
prevent neural networks from overfitting. J Mach Learn Res. 2014; 15(1):1929–1958.

36. Swamidass JS, Azencott C-A, Lin T-W, Gramajo H, Tsai S-C, Baldi P. Influence relevance voting:
an accurate and interpretable virtual high throughput screening method. J Chem Inf Model. 2009;
49(4):756–766. [PubMed: 19391629]

37. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A.
Going deeper with convolutions. CVPR 2015. 2015 arxiv.org/abs/1409.4842.

38. Todeschini, R.; Consonni, V. Molecular descriptors for chemoinformatics. Vol. 41. Wiley; New
York: 2009. volume 41 (2 volume set)

39. Truchon J-F, Bayly CI. Evaluating virtual screening methods: good and bad metrics metrics for the
âĂIJearly recog nitionâĂİ problem. J Chem Inf Model. 2007; 47(2):488–508. [PubMed:
17288412]

40. Wallach I, Dzamba M, Heifets A. AtomNet: a deep convolutional neural network for bioactivity
prediction in structure-based drug discovery. 2015 arXiv:1510.02855.

Kearnes et al. Page 16

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.eyesopen.com
http://www.eyesopen.com

41. Yanli W, Xiao J, Suzek TO, Zhang J, Wang J, Zhou Z, Han L, Karapetyan K, Dracheva S,
Shoemaker BA, et al. Pub-Chem's BioAssay database. Nucl Acids Res. 2012; 40(D1):D400–D412.
[PubMed: 22140110]

42. Zadeh LA. Fuzzy sets. Inf Control. 1965; 8(3):338–353.

Kearnes et al. Page 17

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.

Molecular graph for ibuprofen. Unmarked vertices represent carbon atoms, and bond order

is indicated by the number of lines used for each edge

Kearnes et al. Page 18

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.

P → A operation. Px is a matrix containing features for atom pairs ab, ac, ad, etc. The vi are

intermediate values obtained by applying f to features for a given atom pair. Applying g to

the intermediate representations for all atom pairs involving a given atom (e.g. a) results in a

new atom feature vector for that atom

Kearnes et al. Page 19

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.

A → P operation. Ax is a matrix containing features for atoms a, b, etc. The vi are

intermediate values obtained by applying f to features for a given pair of atoms concatenated

in both possible orderings (ab and ba). Applying g to these intermediate ordered pair

features results in an order-independent feature vector for atom pair ab

Kearnes et al. Page 20

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.

Weave module. This module takes matrices Ak and Pk (containing atom and pair features,

respectively) and combines A → A, P → P, P → A, and A → P operations to yield a new

set of atom and pair features (Ak+1 and Pk+1, respectively). The output atom and pair

features can be used as input to a subsequent Weave module, which allows these modules to

be stacked in series to an arbitrary depth

Kearnes et al. Page 21

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.

Fuzzy histogram with three Gaussian “bins”. Each curve represents the membership function

for a different bin, indicating the degree to which a point contributes to that bin. The vertical

blue line represents an example point which contributes normalized densities of <0:01,

~0:25, and ~0:75 to the bins (from left to right)

Kearnes et al. Page 22

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.

Abstract graph convolution architecture. In the current implementation, only the final atom

features are used to generate molecule-level features

Kearnes et al. Page 23

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.

Comparison of models with “simple” and “full” input featurizations. The simple

featurization only encodes atom type, bond type, and graph distance. The full featurization

includes additional features such as aromaticity and hydrogen bonding propensity (see

“Molecule-level features” section for more details). Confidence intervals for box plot

medians were computed as [20]

Kearnes et al. Page 24

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.

Graph convolution feature evolution. Atoms or pairs are displayed on the y-axis and the

dimensions of the feature vectors are on the x-axis. a Conversion of the molecular graph for

ibuprofen into atom and (unique) atom pair features. b Evolution of atom features after

successive Weave modules in a graph convolution model with a W3N2 architecture and

depth 50 convolutions in Weave modules. c Evolution of “simple” atom features (see “Input

featurization” section) starting from initial encoding and progressing through the Weave

modules of a W2N2 architecture. The color bar applies to all panels

Kearnes et al. Page 25

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.

Comparison of models with different numbers of Weave modules with a model containing a

single Weave module. All models used a maximum atom pair distance of two. The y-axis is

cropped to emphasize differences near zero

Kearnes et al. Page 26

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10.

Comparison of root-mean-square (RMS) and Gaussian histogram reductions versus sum

reduction. The y-axis reports difference in fivefold mean AUC relative to sum reduction. All

models used two Weave modules and a maximum atom pair distance of two. The y-axis is

cropped to emphasize differences near zero

Kearnes et al. Page 27

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11.

Comparison of models with different maximum atom pair distances to a model with a

maximum pair distance of one (bonded atoms). All models have two Weave modules. The y-

axis is cropped to emphasize differences near zero

Kearnes et al. Page 28

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kearnes et al. Page 29

Table 1

Graph convolution model hyperparameters

Group Hyperparameter Default value

Input Maximum number of atoms per molecule 60

Maximum atom pair graph distance 2

Weave Number of Weave modules 1

(A → A)0 convolution depth 50

(A → P)0 convolution depth 50

(P → P)0 convolution depth 50

(P → A)0 convolution depth 50

(A → A)1 convolution depth 50

(P → P)1 convolution depth 50

Reduction Final atom layer convolution depth 128

Reduction to molecule-level features Gaussian histogram

Post-reduction Fully-connected layers (number of units per layer) 2000, 100

Training Batch size 96

Learning rate 0.003

Optimization method Adagrad

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kearnes et al. Page 30

Table 2

Atom features

Feature Description Size

Atom type
a H, C, N, O, F, P, S, Cl, Br, I, or metal (one-hot or null) 11

Chirality R or S (one-hot or null) 2

Formal charge Integer electronic charge 1

Partial charge Calculated partial charge 1

Ring sizes For each ring size (3–8), the number of rings that include this atom 6

Hybridization sp, sp2, or sp3 (one-hot or null) 3

Hydrogen bonding Whether this atom is a hydrogen bond donor and/or acceptor (binary values) 2

Aromaticity Whether this atom is part of an aromatic system 1

27

a
Included in the “simple” featurization (see “Input featurization” section)

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kearnes et al. Page 31

Table 3

Atom pair features

Feature Description Size

Bond type
a Single, double, triple, or aromatic (one-hot or null) 4

Graph distance
a For each distance (1–7), whether the shortest path between the atoms in the pair is less than or equal to that number

of bonds (binary values)
7

Same ring Whether the atoms in the pair are in the same ring 1

12

a
Included in the “simple” featurization (see “Input featurization” section)

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kearnes et al. Page 32

Table 4

Median fivefold mean AUC values for reported models

Model PCBA (n = 128) MUV (n = 17) Tox21 (n = 12)

Median AUC Median ∆AUC Sign Test
95% CI

Median AUC Median ∆AUC Sign Test
95% CI

Median AUC Median ∆AUC Sign Test
95% CI

MaxSim 0.754 −0.137 (0.00, 0.04) 0.638 −0.136 (0.01, 0.27) 0.728 −0.131 (0.00, 0.24)

LR 0.838 −0.059 (0.04, 0.13) 0.736 −0.070 (0.10, 0.47) 0.789 −0.073 (0.01, 0.35)

RF 0.804 −0.092 (0.02, 0.10) 0.655 −0.135 (0.01, 0.27) 0.802 −0.047 (0.01, 0.35)

PMTNN 0.905 0.869 0.854

W2N2-simple 0.905 −0.003 (0.27, 0.44) 0.849 0.012 (0.36, 0.78) 0.866 0.003 (0.39, 0.86)

W2N2-sum 0.898 −0.011 (0.16, 0.31) 0.818 −0.014 (0.17, 0.59) 0.848 −0.010 (0.09, 0.53)

W2N2-RMS 0.902 −0.007 (0.20, 0.35) 0.851 −0.026 (0.13, 0.53) 0.854 −0.007 (0.05, 0.45)

W1N2 0.905 −0.007 (0.20, 0.35) 0.840 −0.002 (0.26, 0.69) 0.849 −0.009 (0.09, 0.53)

W2N1 0.908 −0.003 (0.30, 0.46) 0.858 −0.016 (0.17, 0.59) 0.867 −0.002 (0.19, 0.68)

W2N2 0.909 0.000 (0.42, 0.59) 0.847 −0.004 (0.22, 0.64) 0.862 0.004 (0.32, 0.81)

W2N3 0.906 −0.001 (0.38, 0.55) 0.838 −0.013 (0.26, 0.69) 0.861 0.000 (0.25, 0.75)

W2N4 0.908 −0.001 (0.37, 0.54) 0.836 −0.008 (0.17, 0.59) 0.858 0.001 (0.39, 0.86)

W2N∞ 0.897 −0.008 (0.12, 0.25) 0.841 −0.025 (0.10, 0.47) 0.846 −0.006 (0.14, 0.61)

W3N2 0.906 0.000 (0.44, 0.61) 0.875 0.010 (0.31, 0.74) 0.859 0.004 (0.47, 0.91)

W4N2 0.907 −0.001 (0.33, 0.50) 0.856 −0.007 (0.22, 0.64) 0.862 0.004 (0.32, 0.81)

Graph convolution models are labeled as WxNy, where x and y denote the number of Weave modules and the maximum atom pair distance,

respectively (see the text for descriptions of the simple, sum, and RMS models). All graph convolution models fed into a Pyramidal (2000, 100)
MTNN after the molecule-level feature reduction step. MaxSim, logistic regression (LR), random forest (RF), and pyramidal (2000, 100) multitask
neural network (PMTNN) baselines used Morgan fingerprints as input. For each model, we report the median ΔAUC and the 95 % Wilson score
interval for a sign test estimating the probability that a given model will outperform the PMTNN baseline (see “Model training and evaluation”
section). Bold values indicate sign test confidence intervals that do not include 0.5

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kearnes et al. Page 33

Table 5

Comparison of graph convolution to neural fingerprint (NFP) and influence relevance voter (IRV) models

Model Dataset Metric Original Graph convolution

NFP Solubility (log M) MSE 0.52 ± 0.07 0.46 ± 0.08

Drug efficacy (nM EC50) MSE 1.16 ± 0.03 1.07 ± 0.06

Photovoltaic efficiency (%) MSE 1.43 ± 0.09 1.10 ± 0.06

IRV HIV AUC 0.845 0.838 ± 0.027

BEDROC (α = 20) 0.630 0.613 ± 0.048

Section “Comparisons to other methods” provides details for datasets and experimental procedures. Note that the NFP comparisons were
performed using multitask graph convolution models, and that graph convolution models for the HIV dataset were trained with fewer examples than
IRV since one cross-validation fold was used as a held-out validation set

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 August 24.

	Abstract
	Introduction
	Related work
	Methods
	Deep neural networks
	Desired invariants of a model
	Invariant-preserving operations
	Molecule-level features
	Input featurization
	Datasets
	Model training and evaluation
	Comparisons to other methods

	Results
	Proof of concept
	Input featurization
	Hyperparameter sensitivity
	Number of Weave modules
	Alternative feature reductions
	Distance-dependent pair features

	Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

