
Molecular Insights into Reprogramming-Initiation Events
Mediated by the OSKM Gene Regulatory Network

Nancy Mah1., Ying Wang2., Mei-Chih Liao2, Alessandro Prigione2, Justyna Jozefczuk2, Björn Lichtner2,
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Abstract

Somatic cells can be reprogrammed to induced pluripotent stem cells by over-expression of OCT4, SOX2, KLF4 and c-MYC
(OSKM). With the aim of unveiling the early mechanisms underlying the induction of pluripotency, we have analyzed
transcriptional profiles at 24, 48 and 72 hours post-transduction of OSKM into human foreskin fibroblasts. Experiments
confirmed that upon viral transduction, the immediate response is innate immunity, which induces free radical generation,
oxidative DNA damage, p53 activation, senescence, and apoptosis, ultimately leading to a reduction in the reprogramming
efficiency. Conversely, nucleofection of OSKM plasmids does not elicit the same cellular stress, suggesting viral response as
an early reprogramming roadblock. Additional initiation events include the activation of surface markers associated with
pluripotency and the suppression of epithelial-to-mesenchymal transition. Furthermore, reconstruction of an OSKM
interaction network highlights intermediate path nodes as candidates for improvement intervention. Overall, the results
suggest three strategies to improve reprogramming efficiency employing: 1) anti-inflammatory modulation of innate
immune response, 2) pre-selection of cells expressing pluripotency-associated surface antigens, 3) activation of specific
interaction paths that amplify the pluripotency signal.
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Introduction

Human embryonic stem (ES) cell research has been fuelled by

the potential of using their regenerative properties in cell

replacement therapies. To date, only three clinical trials using

embryonic stem cell therapy have been approved by the U.S. Food

and Drug Administration (FDA) for spinal cord injury patients [1])

and two forms of macular degeneration (ClinicalTrials.gov

Identifiers NCT01345006 and NCT01344993).

Scientific, ethical and regulatory issues exclude the widespread

use of embryonic stem cells as therapeutic transplantation

material. In contrast, induced pluripotent stem (iPS) cells offer

advantages over ES cells. iPS cells can be derived from somatic

cells, such as fibroblasts, thus bypassing the need for blastocyst-

derived ES cells. Furthermore, because iPS cells are derived from

the patient’s own cells, they are thought to represent a renewable

and immunologically compatible cell source for cell replacement

therapy, though recent publications have questioned the validity of

this general assumption [2,3,4], highlighting the need to

investigate differences between iPS and ES cells.

Since the landmark discovery that somatic cells can be

reprogrammed to an embryonic-like state to create iPS cells by

over-expressing a combination of four core transcription factors,

consisting of OCT4, SOX2, with either KLF4 and c-MYC

(OSKM) or LIN28 and NANOG (OSLN) [5,6], many variations

of the induction protocol have been developed, including the

replacement of some of the core factors by others (Nr5a2, Esrrb,

Prmt5 [7,8,9]) or chemicals (PD0325901, A-83-01, E-616452,

AMI-5, kenpaullone [10,11,12,13,14]), and different methods of

delivery into cells, such as non-integrating adenoviruses, episomal-

based plasmids, protein delivery, and transfection of in vitro

generated mRNAs [15,16,17,18].

Despite the abundance of publications on the derivation of iPS

cells, we still have a limited knowledge on how the core factors

induce pluripotency at the molecular level [17,19,20,21,22]. To

gain insights into this, we profiled transcriptional changes

occurring during the early (24, 48 and 72 h post-transduction)

stages of reprogramming of somatic human fibroblasts (HFF1),

employing the Yamanaka factors (OCT4, SOX2, KLF4 and c-

MYC). We observed activated expression of a number of

pluripotency-associated genes at these early time points. Finally,

we assessed the effect of the reprogramming protocol on reactive

oxygen species (ROS) levels, induced DNA damage, activation of

p53 and senescence. Based on these findings, we propose three
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complementary strategies for enhancing the efficiency of repro-

gramming based on initiating pluripotency amplification path-

ways, pre-selecting cells expressing pluripotency-associated cell

surface antigens, and transiently suppressing innate immune

response triggered by the perturbation of cells by the exogenous

reprogramming factors.

Results

Transcriptional changes accompanying retroviral
transduction of the reprogramming factors- OSKM into
HFF1 cells
In order to gain molecular insights into the processes operative

during the early stages of reprogramming, we profiled genome-

wide transcriptional changes in HFF1 cells at 24, 48, and 72 h

post-transduction of OSKM encoding viruses. The transcriptomes

of these cells were compared to two HFF1-derived iPS cell lines

(iPS2, iPS4) and the ES cell lines (H1, H9) as references of

pluripotency. We detected exogenous protein expression of the

OSKM factors as early as 24 h with successive increases at 48 and

72 h (Figure 1A). Of the reprogramming factors, endogenous

forms of KLF4, and c-MYC could be detected on the microarrays

(Figure 1B) and distinguished from exogenous transcripts, based

on transcribed 39UTR regions. Expression of endogenous OCT4/

POU5F1 could not be differentiated from its exogenous counter-

part, as the Illumina probe is located exclusively within the coding

region of this gene. Endogenously expressed SOX2 was not

detected at these time points.

The transcriptomes of viral transduced cells become less
fibroblast-like and more pluripotent-like over time
The microarray expression profiles distinctly separate the donor

HFF1 cells and the OSKM-transduced HFF1 cells from the ES

and iPS cell lines (Figure 2A, PCA plot), demonstrating that the

OSKM-transduced cells in these early time points still retain a

high level of transcriptional similarity to their donor cell-type. The

expression profiles of the duplicate samples clustered similarly,

exemplifying low variability between replicates (Figures 2A and

2B). The arrangement of the time series samples in these plots

indicates changes in gene expression leading to the transcriptomes

of these OSKM-transduced cells gradually diverging away from

the parental HFF1 cells. Accordingly, based on regulated

transcripts (padj,0.05) with a fold change greater than 1.5, the

number of regulated transcripts (with respect to HFF1) increased

with time, from 250 transcripts at 24 h, 853 at 48 h and

culminating at 1280 transcripts at 72 h (Figure 2C). The majority

of the gene expression changes of earlier time points are

maintained at the successive time points, as indicated by the

inclusion of the sets in the Venn diagram.

To assess the extent to which the transcriptomes of OSKM-

transduced HFF1 cells had transformed to that of a pluripotent

cell, we defined a set of pluripotency-associated genes (794

transcripts; e.g. DNMT3B, GDF3, LEFTY2, PDK1 and PROM1)

as those that are "present" (microarray pdetection,0.01) in both

HFF1-derived iPS and ES cells but "absent" (pdetection $0.01) in

non-transduced HFF1 cells. Similarly, we defined a set of

fibroblast-associated genes that are "present" in non-transduced

HFF1 cells but "absent" in both HFF1-derived iPS and ES cells

(510 transcripts; e.g. CD59, CD68 and CD109). The proportion of

pluripotency-associated genes that are expressed at each time

point increases with time, whilst the proportion of fibroblast-

associated genes decreases (Figure 2D; Data S2). Moreover, Gene

Ontology enrichment in cellular component terms showed that

29% of the pluripotency-associated genes were ‘integral to

membrane’ or ‘cell surface’ proteins (e.g. CD83, CD24, PDPN),

which were increasingly ‘switched on’ over time (Figure 2E; Data

S2). Five of these genes (HAS3, SLCO4A1, PODXL, PDPN, and

F11R) encode proteins that have been identified as cell surface

markers of undifferentiated human ES cells [23] and therefore

could serve as antigens for fluorescence activated cell sorting

(FACS) enrichment in order to pre-select OSKM-transduced cells

that already express human ES cell markers, prior to plating onto

feeder cells and further culturing under conditions that support the

undifferentiated propagation of human ES cells.

Gene Ontology enrichment of regulated transcripts
identifies functions operative in early reprogramming
We looked for enrichment in Gene Ontology (GO) biological

process terms of regulated transcripts (padj,0.05) between HFF1

cells and the three time points (see Data S3). ‘‘Response to virus’’

and ‘‘immune response’’ GO categories were prominently over-

represented in all time points (Figure 3A), consistent with the stress

induced by viral infection. Many of the transcripts regulated in

these categories are acutely and specifically induced within the first

72 h of transduction but not in the HFF1-derived iPS (Figure 3B)

suggesting that this is a transient effect. Following the initial

immune response, there are strong regulations in GO groups

related to response to physiological oxygen (‘‘response to reactive

oxygen species’’, ‘‘oxidative stress’’ and ‘‘response to hypoxia’’;

Figure 3B), apoptosis, cell proliferation, cell cycle, cellular

morphological changes and aging (Figure S1).

We then examined whether particular pathways were activated

or repressed during the time series. To achieve this we clustered

the genes by their expression pattern (fuzzy c-means; Figure S2)

and then examined the clusters for KEGG pathway enrichment

and perturbation using signalling pathway impact analysis (SPIA;

[24]; Data S4). The most significant result was obtained for a

cluster of 195 genes that describes transcripts highly up-regulated

in the time series but down-regulated in HFF1-derived iPS and ES

cells. This cluster suggests three perturbed pathways: the pathway

‘‘Focal adhesion’’ (pGFDR,0.05 at 48 and 72 h; Figure S3),

reflecting the nature of adherent cell culture and the potential

establishment of cell-cell contact conducive for inducing pluripo-

tency; the ‘‘TGF-beta signaling pathway’’ (pGFDR,0.1 at 72 h),

which is active in epithelial-to-mesenchymal transition; and the

‘‘Malaria’’ pathway (pGFDR,0.1 at 24 h; pGFDR,0.05 at 48 and

72 h), which encompasses genes involved in innate immune

response such as STAT1, STAT2 and MX2 (see Figure S5).

Specific functional groups pertinent to reprogramming
show minimal changes during the first three days of
reprogramming
In the subsequent paragraphs we describe changes in expression

of genes related to the process of reprogramming. We observed

that the number of pluripotency-associated genes expressed is

moderate. However, we noted genes that are already differentially

expressed and could be targets for optimizing the reprogramming

protocol. Here we focus on genes with functions related to

epigenetic modification, senescence and epithelial-to-mesenchy-

mal transition (Figure 3C).

Epigenetic modification
Previous studies related to the epigenetic control of repro-

grammed cells, either by somatic cell nuclear transfer (SCNT) or by

factor-induced pluripotency, revealed that global inhibition of DNA

methylation activity and inhibition of histone deacetylation in-

crease reprogramming efficiency [25,26,27,28,29,30]. In particular,

Initiation Events during OSKM-Based Reprogramming
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treatment of OSKM-transduced mouse embryonic fibroblasts

(MEF) with the DNA methylase inhibitor 59azaC for one week

post-infection, increased reprogramming efficiency [31]. Therefore,

gene regulation leading to DNA de-methylation during the early

stages of reprogramming favours the induction of pluripotency.

Consistent with this, we observed that the SET and MYND

Figure 1. Exogenous OSKM is expressed in transfected HFF1 cells. A. Retrovirus-based expression of OSKM was detected by
immunofluorescence at four different time points (HFF1, 24 h, 48 h, 72 h). For reference, nuclear DNA is stained with DAPI (49,6-diaminidino-2-
phenylindole). B. Heat map of microarray hybridization values (log scale). ‘absent’ values were set to zero in this heatmap. Samples are HFF1 (-a and -b
denote duplicates), 24, 48, 72 h, two HFF1-derived iPS cells (iPS2, iPS4) and two human ES cell lines (H1, H9). Illumina Ref-8 V3 microarrays detect the
exogenous and endogenous forms of OCT4 (POU5F1), since the microarray probe was located within the coding region of the OCT4 transcript.
Illumina probes for SOX2, KLF4 and c-MYC were designed to the 39UTR end, and therefore do not detect the virally expressed transcripts of these
genes.
doi:10.1371/journal.pone.0024351.g001
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domain-containing protein 3 (SMYD3), a histone methyltransferase

that can specifically methylate histone H3 at lysine 4 and activate

the transcription of a set of downstream genes [32] is down-

regulated at 48, 72 h and also in iPS and ES. Likewise, C17orf79

(which modulates the histone H4 methylation activity of PRMT5

[33]) and histone H2AFY are also down-regulated at 72 h and also

in iPS and ES.

The pluripotency factor LIN28 and let-7 miRNA negatively

regulate each other. ZCCHC11 is a terminal uridylase that is

recruited to let-7 miRNA by LIN28, leading to uridylation of pre-

let-7 and its inactivation [34,35], thereby de-repressing LIN28. We

see an up-regulation of ZCCHC11 at 72 h, which could support

expression of LIN28.

Methylation of the imprinted Dlk1-Dio3 locus (DLK1, MEG3,

DIO3) has been associated with impaired pluripotency in mouse

iPS cells [36]. We observed that DLK1 is a pluripotency-associated

gene (Data S2) that is already switched on at 72 h (present;

microarray pdetection,0.01), although not detected as differentially

expressed at 72 h according to our cut-offs. Both DLK1 and DIO3

are up-regulated in ES cells, although MEG3 is down-regulated

(Figure 3C).

Senescence
The activation of senescence presents a roadblock during the

reprogramming process [37], therefore we investigated whether

genes related to senescence were differentially expressed during

the time series. Only a minor fraction of senescence related genes

(18 from a total of 117 as defined in [21]) were differentially

expressed during the time series (Figure 3C), suggesting that

senescence is not favoured within the early reprogramming stages.

Genes known to trigger senescence such as mTOR [38] or pro-

inflammatory cytokine TNF-alpha [39] were not differentially

expressed within the time series.

Most of these genes adopt gene expression changes coherent to

their expression in the pluripotent samples and therefore their

differential expression is likely to be positive for reprogramming.

For example, we see the up-regulation within the time series and in

the pluripotent cell lines of DKC1 and ZNF146, which are involved

in telomere maintenance [40,41], and down-regulation of

SERPINE1, a p53 target gene that is up-regulated in senescent

compared to non-senescent cells [42]. Overall, the senescence

expression profile of the time series and iPS cells is mostly coherent

with that of the ES cells.

Interestingly, we observe a few senescence-related genes that are

up-regulated in the time series but not in the ES cells (Figure 3C).

Such genes may represent problematic spurious remnants of the

reprogramming procedure and could be triggering senescence

events happening at later stages in the reprogramming. The most

conspicuous one is GDF15, which is also highly up-regulated in the

virally transduced iPS and already at 72 h, but not in ES cells.

GDF15 encodes a member of the transforming growth factor-beta

(TGF-beta) superfamily, has pro-apoptotic activity and is induced

by p53 [43].

Epithelial-to-Mesenchymal Transition
Reversal of EMT, i.e., mesenchyme-to-epithelial transition

(MET), also plays a major role in reprogramming somatic cells.

ES cells are epithelial in nature whereas fibroblasts are of

mesenchyme origin. In the process of reprogramming fibroblasts

to iPS cells, fibroblasts must be converted into a more epithelial-

phenotype via MET. MET can be promoted by suppressing the

opposite process, EMT. The process of EMT is essential for

gastrulation to occur and is driven by TGFB1, which ultimately

inhibits the expression of E-Cadherin, through SMAD signaling.

Initial inklings implicating MET in fibroblast reprogramming were

demonstrated by Lin and co-workers [11], who showed that TGF-

beta inhibited OSKM reprogramming of human fibroblasts, while

use of a TGF-beta receptor inhibitor (SB431542) increased

reprogramming efficiency. Further studies have shown that the

endpoint of MET, E-Cadherin (CDH1), is required for establish-

ing cell-cell contacts critical for the iPS phenotype [44]. Finally,

two independent groups definitively showed that MET was

required for initiating and maintaining the reprogramming of

MEF cells, and that OSKM factors played a role in this transition

by suppressing Snail (Sox2/Oct4) or TGF-beta receptors (c-Myc)

or up-regulating epithelial genes, including E-Cadherin (CDH1)

[45,46]. Additionally, BMP signaling was shown to contribute to

reprogramming of MEF cells by enhancing expression of miRNAs

that either promote expression of epithelial-associated genes (Cdh1,

Epcam, Ocln) or repress inhibitors of EMT (Zeb1/Zeb2, Snail, Slug)

[46].

The results from the time series show that although some EMT-

related genes are down-regulated in the time series (Figure 3C), the

endpoint of MET activation, as indicated by the up-regulation of

CDH1 (evident in iPS and ES cells; Figure 3C), had not yet

occurred within the first three days of OSKM-mediated fibroblast

reprogramming. Given that reprogrammed mouse fibroblasts first

show CDH1 expression after six days of OSKM induction and that

the total reprogramming time is ,20 days in mouse [45] and ,30

days in human, it is reasonable that we do not yet see CDH1 up-

regulation after three days in human fibroblasts. However, within

the first three days, we do observe changes in CDH2 (N-Cadherin),

which is activated during EMT and proposed to be a functional

switch between focal adhesion and cell-cell adhesion during EMT

[47]. CDH2 is down-regulated in our dataset (at 24, 48, 72 h

compared to HFF1; Figure 3C), which could indicate the start of

switching to a cell-cell adhesion morphology.

The lysyl oxidase family (LOX, LOXL1-4) oxidizes the side

chain of lysine to its aldehyde, releasing NH4
+ and H2O2 [48].

Originally shown to be involved in stabilizing the extracellular

matrix by catalysing covalent links between collagen and elastin,

other functions for lysyl oxidases have since been discovered.

During EMT, LOXL2 and LOXL3 synergise with Snail to repress

E-cadherin expression [49]. In this regard, we observe the down-

regulation of LOXL3 at 48 h, 72 h, and in iPS and ES cells,

supporting a move towards de-repression of E-Cadherin in favour

of MET.

Figure 2. Contrasting transcriptomes of somatic, OSKM transduced HFF1 and pluripotent cell types. Expression profiles were obtained
from donor cells (HFF1; human foreskin fibroblasts), donor cells transduced with OSKM at 24 h, 48 h and 72 h, HFF1-derived iPS cell lines (iPS2, iPS4)
and ES cell lines (H1, H9). A. Principal component analysis shows the projection of the vectors of hybridization values (24526 probes) on the first two
principal components. B. Differential regulation between HFF1 cells and each of the three timepoints (24, 48, and 72 h), iPS and ES cells was
determined using the Bioconductor package limma (see Methods). The normalized expression values (z-score) of 6179 transcripts (Data S1) regulated
at any timepoint or in iPS/ES cells with respect to HFF1 cells (padj,0.05; fold change .1.5) are shown. C. Venn diagram depicting the overlap
between regulated transcripts (1476) at each timepoint. D. Alterations in the number of pluripotency- and fibroblast-associated transcripts during the
time-course towards an increasing pluripotent and decreasing somatic (HFF1) transcriptome. E. Increasing numbers of pluripotency-associated
transcripts linked to the GO terms ‘integral to membrane’ or ‘cell surface’ are detected in the time series.
doi:10.1371/journal.pone.0024351.g002
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Signature of EMT suppression
In summary, many pluripotency-associated genes are not yet

active between 24 to 72 h post transduction but we find traces of

expression changes related to pluripotency. We wondered if we

could detect a larger signature involving genes triggering

reprogramming by suppression of EMT, which might be

transiently up-regulated during reprogramming and silent in

pluripotent cells. Such a signature is supported by the comparison

of the genome-wide EMT-ranked list with the down-regulated

genes at each time point. Rank correlation analysis (see Methods

for details; [50]) revealed that EMT is increasingly suppressed

during reprogramming towards iPS and in ES cells (Table 1). A

very similar result was obtained for an alternative approach using

the binomial test to assess the over-representation of EMT-related

genes in the down-regulated genes during reprogramming

(Table 1; Figure S4).

Integration of OSKM interaction networks reveals
potential avenues for improving the reprogramming
protocol
We hypothesize the existence of pluripotency amplification

pathways whose activation would be required for successful

reprogramming. To identify key components of these pathways,

we generated an interaction network that connected the OSKM

factors to genes specifically expressed in iPS and human ES cells

and included upstream regulators of OSKM (Figure 4; see

Methods for details).

As a highly connected hub in the interaction subnetwork,

GSK3B was closely examined for relevance to reprogramming.

GSK3B is involved as an intermediate in four different paths from

the sources to sinks, starting from c-MYC or POU5F1 and ending

at MYCN or OTX2. GSK3B itself is a kinase, whose activity is

dependent on phosphorylation on Ser-21. Its substrates include c-

MYC, MYCN and CTNNB1; their phosphorylated forms lead to

their degradation [51,52]. We focus on the following path:

POU5F1-FRAT2-GSK3B-MYCN. In the first step, viral trans-

duction of POU5F1 positively regulates FRAT2 expression by

binding to its promoter [53]. Next, FRAT2 promotes Wnt

signaling by competing with GSK3B for binding to AXIN, thereby

interfering with the destruction complex required to phosphorylate

CTNNB1 and mark it for proteomic degradation [54]. In the next

step, GSK3 inhibition exhibits multiple roles. Inhibiting GSK3

activity appears to antagonize differentiation in ES cells and

promote reprogramming of somatic cells. The use of a GSK3

inhibitor, 6-bromo-indirubin-39-oxime (BIO), under feeder-free

conditions, supports the maintenance of human ES cells in an

undifferentiated state [55,56]. Additionally, human hair follicle

outer root sheath cells treated with BIO appear to be more

undifferentiated in comparison to untreated cells [57]. It is thought

that GSK3 inhibition maintains human ES cells in an undiffer-

entiated state by preventing EMT [58], which is essential for

gastrulation and subsequent formation of the three germ layers.

Moreover, in the context of reprogramming by somatic cell fusion

with embryonic cells (mouse), activation of the WNT pathway in

fused hybrid cells by either GSK3 inhibitor or WNT3A ligand

increased reprogramming efficiency [59]. The final target of WNT

signaling, CTNNB1, is stabilized upon GSK3B inhibition, leading

to a cytoplasmic accumulation of CTNNB1 and translocation to

the nucleus, where it initiates transcription of target genes. In the

context of reprogramming, there are presumably CTNNB1 targets

that drive reprogramming [59]. Finally, in the last step, MYCN is

a target for protein degradation by GSK3-dependent phosphor-

ylation [52], however, in the absence of GSK3 kinase activity,

MYCN accumulates and is able to activate transcription of

DNMT3A [60].

In support of this path, we observed up-regulation of FRAT2 in

iPS and ES cells (log2FC =1.5 and 2.3, respectively) and the

down-regulation of GSK3B transcript at 48 h, 72 h and in iPS and

ES cells (log2FC =20.54, 20.55, 21.1, and 20.45, respectively).

Although we cannot ascertain the concentration of active GSK3B

kinase present at these time points from microarray data, the

observed decrease in transcript limits de novo protein synthesis of

GSK3B protein and possibly impacts GSK3B function by

restricting protein availability. We also observe a strong up-

regulation of MYCN in iPS and ES cells compared to HFF1 cells

(log2FC =1.6 and 2.7, respectively) and a weak up-regulation of

DNMT3A in ES cells (log2FC =0.36).

In summary, POU5F1 targets FRAT2 transcription. FRAT2, in

turn, promotes WNT signaling. Additionally, diminished kinase

activity of GSK3B promotes reprogramming by: 1) antagonizing

differentiation and promoting the undifferentiated state by

inhibiting EMT; 2) activating WNT pathway, leading to

transcription of yet unknown CTNNB1 target genes that promote

reprogramming; 3) stabilizing MYCN protein levels, which drives

expression of DNMT3A, a de novo methyltransferase that is highly

expressed in iPS and ES cells. Together, this path supports

epigenomic changes mediated through WNT signaling.

We also note a path in our network through two highly

connected genes, including an activator of NANOG, another

pluripotency factor, therefore constituting yet another pluripoten-

cy amplification path: KLF4-CREBBP-GLI3-ZIC3 (Figure 4).

KLF4 can be acetylated by CREBBP, which then enhances

transcription of KLF4 target genes [61]. CREBBP, GLI3 and

ZIC3 are all transcription co-activators/repressors. In particular,

ZIC3 is known to be specifically and highly expressed in

Figure 3. GO categories enriched in regulated transcripts. A. For selected GO categories, the fraction of transcripts in each GO category
compared to the number of regulated transcripts is depicted as a heatmap. Colours indicate no enrichment (white) or proportion of enriched
transcripts (shades of black to white), as a percentage of regulated transcripts at each timepoint. B. Regulated transcripts (fold change .1.5;
padj,0.05) in selected GO categories are shown. Colours indicate the log2 fold change, either up-regulated (red), down-regulated (blue), or not
regulated (white) with respect to HFF1 cells. Heatmaps shown are transcripts from stress-related GO categories (panel B) or groups of genes known to
have an influence on reprogramming (panel C). Other categories are shown in Figure S1.
doi:10.1371/journal.pone.0024351.g003

Table 1. Rank correlation and binomial test shows
suppression of positive EMT-related genes during
reprogramming.

Spearman rank correlation Binomial test

Cell type rho p-value p-value

24 h 0.187 0.54 0.582

48 h 0.197 0.049 1.17e-05

72 h 0.219 0.005 3.98e-08

iPS 0.349 2.78e-14 7.82e-05

ES 0.367 3.71e-15 0.020

doi:10.1371/journal.pone.0024351.t001
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undifferentiated ES cells, and represses endodermal differentiation

by activating NANOG [62]. Based on binary interactions between

CREBBP-GLI3 [63,64] and GLI3-ZIC3 [65,66], it seems

plausible that they could act co-ordinately to promote pluripoten-

cy. In support of this, we observed the up-regulated expression of

CREBBP, GLI3, and ZIC3 in iPS and ES cells.

Viral transduction of HFF1 cells initiates a cascade of
events that ultimately leads to the activation of p53
Irrespective of the reprogramming favouring events we

observed at 72 h, such as the activation of some pluripotency

amplification paths and partial suppression of EMT, the cells are

far from a pluripotent state. At this early phase of reprogramming,

the most evident gene expression signature is related to the adverse

effects of viral transduction (Figure 3). Since this response might

affect the effectiveness of reprogramming, we hypothesize that

characterization of this response might lead to improvements in

the reprogramming protocol based on limiting the negative effects

of the reprogramming protocol itself.

In relation to this, we observed the early and progressive

activation of genes related to anti-viral responses, response to ROS

and DNA damage. We propose that the viral response results in

the generation of ROS, which ultimately triggers DNA damage

and p53 activation, leading to an apoptotic response with the

result of a reduced efficiency of the reprogramming process.

First, we confirmed by real time-PCR the significant up-

regulation of genes involved in innate immunity in response to

viral infection (e.g. CCL5, IRF7, STAT2, TRIM5, DDX58, MX2,

IL12A, EIF2AK2 and ISG20) and induction of apoptosis (e.g. IL19,

NGEF, STAT1 and CASP1) in cells transduced with virus in

comparison to untreated fibroblasts (Figure S5).

Next, we tested the effect of viral transduction on ROS

production. HFF1 cells were transduced with the Yamanaka

factors (OSKM) or a vector expressing GFP. As a negative control,

cells were treated with polybrene, an additive that is used as part of

the viral transduction protocol.

We then analyzed ROS production at 24 h post-transduction.

ROS levels in polybrene-treated HFF1 cells were similar to that in

untreated HFF1 cells. On the contrary, retroviral transduction

resulted in significantly increased levels of ROS. In addition, we

did not observe a significant difference in ROS levels between

OSKM-transduced HFF1 cells and GFP-transduced HFF1 cells

(Figure 5A). To test the possibility that the exogenous DNA could

also trigger ROS production, we simultaneously performed

nucleofection-based transfections using the same vectors. Nucleo-

fection reactions without vector DNA (mock control), with four

vectors each expressing OSKM, and a vector expressing GFP did

Figure 4. Integrated network of the reprogramming process. An integrated network was constructed by joining subnetworks of the OSKM
regulators and downstream interaction networks. The OSKM upstream regulator subnetwork (light blue nodes connected by black lines) consisted of
OSKM (red coloured nodes) and included regulators of OSKM (see Methods for details). The downstream interaction network was assembled using
the reprogramming factors as sources (OSKM; red coloured nodes) and a list of regulated genes between fibroblasts and iPS or ES cells, obtained
from a meta-analysis of five iPS studies as sinks (purple coloured nodes; [17]). Connections between sources and sinks were determined by protein-
protein interactions and regulatory interactions from the POU5F1 and SOX2. Nodes were scored for their centrality and labeled accordingly, green:
high-scoring nodes; pink, low scoring nodes (see Methods for details). Blue and green edges represent regulatory interactions and protein-protein
interactions, respectively. Genes that are regulated at one or more time points (24 h, 48 h, 72 h) are circled in gray and labels for genes that are
regulated in iPS or ES cells are in boldface italics.
doi:10.1371/journal.pone.0024351.g004
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Figure 5. Cellular responses to retroviral transduction. A. Quantitative analysis of reactive oxygen species (ROS) production in HFF1 cells,
polybrene-treated HFF1 cells, OSKM (4 factor)-transduced HFF1 cells, and GFP-transduced HFF1 cells under retroviral transduction conditions. We
measured ROS production 24 h after transduction by flow cytometry using 29,79-dichlorofluorescin diacetate (H2-DCFDA) in two independent
experiments. Values are presented as relative changes compared to HFF1 cells without H2-DCFDA treatment. ROS levels from 4 factor-transduced
HFF1 cells and GFP-transduced HFF1 cells are significantly up-regulated compared to HFF1 cells (significant changes: *, p,0.05). B. Quantification of
ROS levels in HFF1 cells, mock cells, 4 factor-transduced HFF1 cells, and GFP-transduced HFF1 cells under nucleofection conditions. Measurements are
as described in 5A. C. DNA damage in HFF1 fibroblasts. HFF1 cells were either left untreated or exposed to polybrene only, or to GFP- or OSKM-
encoding virus. DNA damage was assayed by 8OHdG immuno-staining and monitored at three different time points (24 h, 48 h, and 72 h). Untreated
fibroblasts or fibroblasts exposed to polybrene only, did not show any accumulation of DNA damage. In contrast, HFF1 transduced with GFP or 4
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not significantly affect the production of ROS as compared to

HFF1 cells (Figure 5B). However, we must point out that the

efficiency of nucleofection was slightly lower than viral transduc-

tion (Figure S6), so it cannot be completely excluded that the

nucleofection reactions did not modulate the levels of ROS.

We further tested the effect of viral transduction on DNA

damage. Nuclear and mitochondrial DNA damage was monitored

over time using 8OHdG immuno-staining (Figure 5C). Untreated

HFF1 cells or HFF1 cells exposed to polybrene only, did not show

accumulation of DNA damage. On the other hand, HFF1

transduced with viruses expressing GFP or OSKM (4F) exhibited

foci of nuclear and mitochondrial DNA damage at 24 h post-

transduction. At this time point, we also observed the presence of

small DAPI-positive dots in all transduced fibroblasts, which may

correspond to viral DNA. Over time, the foci of DNA damage

appeared to increase in both GFP and OSKM-transduced HFF1

cells. Overall, HFF1 transduced with OSKM, which showed a

tendency to cluster in cellular aggregates over time, exhibited the

highest level of DNA damage.

As our experiments demonstrated viral transduction-induced

DNA damage, we next investigated if this leads to the activation of

p53. At the mRNA level, real-time PCR confirmed an increasing

expression of TP53 transcript from 24 to 72 h (Figure 5D). We

additionally analyzed protein expression levels of phosphorylated

p53 and non-phosphorylated p53 within the same cells used for

measuring ROS levels. As shown in Figure 5E and 5F, untreated

and polybrene-treated HFF1 cells had similar levels of phosphor-

ylation of p53. In contrast, phosphorylation of p53 was more

pronounced in OSKM- and GFP-transduced HFF1 cells than in

untreated HFF1 cells. We did not observe significant differences in

the levels of phosphorylated p53 between OSKM- and GFP-

transduced HFF1 cells.

Following up on our results demonstrating the production of

ROS and activation of p53 upon viral transduction, we asked if

senescence had also been activated at the cellular level. We

previously observed the early regulation of some senescence-

related genes at the transcriptional level (Figure 3C), which

parallel the changes seen in pluripotent cells. Indeed, the cellular

senescence assays confirm the transcription results from Figure 3C.

Although senescence was detectable in the analyzed HFF1

samples, as indicated by weak blue b-gal staining, the intensity

of the staining and the proportion of stained cells were much lower

compared to senescence-prone amniotic fluid cells, which served

as the positive control (Figure 6A). The percentage of senescent

cells in the viral transduced HFF1 samples (GFP, 4 factors/

OSKM) gradually increased between 24 h to 72 h post-

transduction (Figure 6B). However, these differences were not

significant when compared to untreated HFF1 cells. Owing to the

weak overall staining intensities, which should most probably be

considered as background noise, the observed differences appear

negligible. Potentially, it was too early in the reprogramming

process to detect senescence.

We reasoned that suppressing innate immune response to viral

transduction could have a positive impact on reprogramming by

modulating ROS production, DNA damage and subsequent p53

activation. B18R is a recombinant protein derived from vaccinia

virus that binds Type I interferons and has been shown to

neutralize anti-viral responses in cells [67]. To this end, we

investigated the effect of B18R supplementation on reprogram-

ming efficiency.

We observed that the concentration (200 ng/ml) of B18R used

in our experiment yielded NANOG-positive iPS cells; i.e.

supplementation of this reagent was not toxic to the cells.

However, adding B18R did not result in an increase in the

number of NANOG-positive iPS colonies as compared to non-

supplemented OSKM-transduced HFF1 cells (Figure 7). There

might be innumerable reasons for the lack of success of this

application. We believe that testing other modulators of innate

immune responses would be a promising avenue for improving the

efficiency of inducing pluripotency in somatic cells.

Discussion

Viral transduction of reprogramming factors remains the most

robust method to introduce immediate and high level expression

of exogenous OSKM factors for deriving iPS cells from somatic

cells. Despite this, we do not fully understand the mechanisms

underlying the molecular, immunological and biochemical

pathways leading to the induction of pluripotency. To this end,

we have used microarray-based transcriptome analysis to identify

crucial events occurring within the first 72 h of initiating

reprogramming. On the one hand, we find that processes known

to play a role in reprogramming appear to be partially initiated

(MET, epigenetic modification), some ES cell surface antigens are

expressed, and a pathway involving pluripotency-associated factors

and GSK3B is activated. On the other hand, we found that the

dominating effect observed at the time points analyzed is

activation of innate immunity in response to viral transduction.

Somatic cell reprogramming by viral transduction is a double-

edged sword. Despite the protocol’s robustness, the host cell viral

response acts as a roadblock to efficient reprogramming by

initiating a damaging and repressive chain of events, namely ROS

production, DNA damage, activation of p53 and senescence.

Following our finding from the gene expression analysis that the

viral response is highly up-regulated within the first three days of

the reprogramming protocol, we then demonstrated that the mere

process of viral transduction elicits the expression of genes involved

in innate immunity, whereas this effect is minimal upon the

transfection of plasmids into HFF1 cells. Furthermore, HFF1 cells

subjected to viral transduction, as opposed to nucleofection of

plasmids encoding OSKM, exhibited increased concentrations of

ROS. DNA damage also ensued in viral-transduced cells

compared to control cells. We also observed that anti-oxidant

genes were not up-regulated during viral transduction, which may

indicate that the cells are vulnerable to ROS-induced damage.

Curbing elevated ROS levels could be beneficial for repro-

gramming because ROS has been shown to promote differenti-

ation of ES cells [68]. Moreover, the use of ROS scavengers, along

with hypoxic growth conditions has been shown to promote de-

differentiation in human adipose stromal cells [69]. Additionally, a

factors exhibited foci of nuclear and mitochondrial DNA damage (white arrows). HFF1 transduced with OSKM tended to cluster in cellular aggregates
over time and showed a higher level of DNA damage. At 24 h, we observed the presence of small DAPI-positive dots in all transduced fibroblasts,
which may correspond to viral DNA (green arrowheads). Magnification used was 63X, scale bar corresponds to 10 mm. D. Level of TP53 expression at
24, 48, and 72 h post-expression transduction of OSKM as measured by hybridization of the array of in real-time PCR confirmation. E. Western blot
showing expression levels of phosphorylated p53 and non-phosphorylated p53 in untreated HFF1 cells, or HFF1 cells treated with polybrene,
transduced with viruses expressing OSKM or GFP at 24 h post-transduction in two independent experiments. F. The ratio of expression values of
phospho-p53 versus total p53 is presented as relative changes compared to untreated HFF1 cells for polybrene-treated cells, 4 factor-transduced
HFF1 cells, and GFP-transduced HFF1 cells (significant changes: *, p,0.05).
doi:10.1371/journal.pone.0024351.g005
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metabolomic study of ES cells suggests that intracellular redox

state and hypoxia regulate differentiation and self-renewal [70].

Furthermore, the anti-oxidant vitamin C has been shown to

enhance the efficiency of inducing pluripotency in somatic cells

[71]. Therefore, buffering rapid increases in ROS by using an

anti-oxidant may be beneficial in the early stages of reprogram-

ming by counteracting differentiation and preventing ROS-

induced damage, thereby increasing the efficiency of reprogram-

ming.

It has been demonstrated that viral infection elicits DNA

damage in host cells [72]. This might be deleterious to

reprogramming. Previous studies have shown that the efficiency

of iPS derivation can be improved by inhibiting p53, which

inactivates the host cell’s natural repair response to DNA damage.

However, iPS cells obtained in this manner are susceptible to

chromosomal aberrations [73]. We suggest that upstream

intervention to avoid p53 activation in the first place can be

beneficial to the reprogramming progress. Conceivably, dampen-

ing the initial and rapid host cell response to viral infection could

be an effective means to achieve this.

The role of immune response is becoming an important

consideration during the reprogramming process. A previous

study has shown that anti-inflammatory molecules promote self-

renewal in ES cells [74], which may also apply to iPS cells.

Furthermore, recent developments in RNA transfection protocols

have used immune suppression to increase RNA transfection

efficiency [15]. Interferon inhibition, combined with synthetic

RNA that has been modified to evade host defense mechanisms

against ssRNA, yield iPS cells in an efficient manner [18].

Together, these studies suggest that attenuation of the donor cell’s

immune response is beneficial to the reprogramming process.

However, supplementing OSKM encoding viruses with 200 ng/

ml of the interferon inhibitor B18R did not increase the efficiency

of reprogramming but also did not have an adverse effect on the

induction of pluripotency in HFF1 cells. Despite this, we believe

that transient suppression of innate immunity could be a step

towards modulating ROS and ultimately p53 levels, resulting in

increased reprogramming efficiency. This coupled to activation of

pluripotency amplification pathways and EMT suppressors and

pre-selecting for cells expressing ES cell surface antigens such as

PODXL are complementary strategies (Figure 8) for increasing the

efficiency of deriving iPS cells as suggested by this study.

Materials and Methods

Cell culture and viral transduction
Human neonatal foreskin fibroblast-HFF1 cells (ATCC) and

PhoenixTM Ampho cells (Orbigen, Inc.) were maintained in

Dulbecco’s modified Eagle medium (DMEM, Gibco) containing

10% fetal bovine serum (Invitrogen) and 0.5% penicillin and

streptomycin (Invitrogen). Human ES and iPS cells were

maintained on irradiated mouse embryonic fibroblasts (MEF)

cells in KnockOut DMEM (Invitrogen) supplemented with 20%

KnockOut serum replacement (Invitrogen), 0.1 mM non-essential

amino acids (Invitrogen), 1 mM L-glutamine (Invitrogen), 0.1 mM

b-mercaptoethanol (Sigma), 0.5% penicillin and streptomycin and

Figure 6. Detection of cellular senescence. A. Bright-field images of HFF1 cells after staining for senescence beta-galactosidase activity (scale
bar: 200 mm). B. Summary of the quantification of blue-stained senescent cells as a percentage of the total number of cells analyzed.
doi:10.1371/journal.pone.0024351.g006
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4 ng/ml basic fibroblast growth factor (bFGF, Invitrogen) as

described by [21]. The human ESC line was purchased from

WiCell Research Institute (Madison, WI, USA, www.wicell.org).

pMX-based retroviral vectors each encoding the transcription

factors OCT4, SOX2, KLF4, and c-MYC were transfected into

PhoenixTM Ampho cells using the Fugene transfection reagent

(Roche). Viral supernatants were collected 48 and 72 h post-

transduction. HFF1 cells were incubated with virus supernatants

supplemented with 4 mg/ml polybrene (Sigma) in duplicate and

then centrifuged at 800 rcf for 99 min. The transduced cells were

harvested 24, 48, and 72 h post-transduction.

To investigate the effect of type I interferon inhibition on the

efficiency of reprogramming, we incubated HFF1 cells with virus

supernatants supplemented with 200 ng/ml B18R protein

(eBioscience, San Diego, CA, http://www.ebioscience.com,

#14-8185). After 24 h, the cells were incubated with virus

supernatants supplemented with B18R protein once more and

then 24 h later, the infected cells were re-seeded onto irradiated

MEF feeder layers (16104 cells/well, 12-well plate) in HFF1 cell

culture medium supplemented with B18R protein. On the

following day, the medium was changed to human ES cell culture

medium, supplemented B18R protein. The medium was changed

every other day. The chemical treatment was continued for 10 d.

Following 10 days of treatment, the medium was replaced with

MEF-conditioned medium supplemented with 4 ng/ml bFGF. On

day 20 post-transduction, the cells were fixed and the number of

NANOG positive ES cell-like colonies was counted.

Immunofluorescence based staining
For immunofluorescence-based detection of expression of

OSKM, cells were fixed in 4% paraformaldehyde (Science

Services) in PBS for 20 min, permeabilized by 0.1% Triton X-

100 (Sigma) for 10 min at room temperature and blocked with

10% chicken serum (Vector Laboratories) for 30 min. Thereafter,

Figure 7. Effect of B18R protein on reprogramming. A. NANOG-positive iPS colonies as shown by immunofluorescence staining with and
without B18R. Scale bars represent 100 mm. B. Comparison of the total number of NANOG-positive iPS colonies obtained with and without B18R
supplementation.
doi:10.1371/journal.pone.0024351.g007
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the cells were incubated with the specified primary antibodies

overnight at 4uC. The primary antibodies included monoclonal

antibodies against OCT4 (1:100, Santa Cruz Biotechnology Inc.,

Santa Cruz, CA, http://www.scbt.com, #sc-8629), SOX2 (1:100,

Santa Cruz Biotechnology Inc., #sc-17320), KLF4 (1:100, Santa

Cruz Biotechnology Inc., #sc-20691), c-MYC (1:100, Santa Cruz

Biotechnology Inc., #sc-764), and NANOG (1:500, Abcam,

Cambridge, U.K., http://www.abcam.com, #ab62734). Second-

ary antibodies used were conjugated with either Alexa 488 or

Alexa 594 (1:300, Invitrogen, #A11055, A21442), which were

incubated with the cells for 1 h at room temperature in the dark.

Nuclei were counter-stained with DAPI (200 ng/ml, Invitrogen #

H3570). Samples were analyzed on a Zeiss fluorescence

microscope (Carl Zeiss, Oberkochen, Germany, www.zeiss.de).

For immunofluorescence-based detection of DNA damage, cells

were fixed with 4% paraformaldehyde in PBS for 20 min at room

temperature, washed twice with PBS and blocked with 10%

chicken serum and 0.1% Triton X-100. Nuclei were counter-

stained with DAPI. Primary antibody was 8-OHdG (1:100,

Millipore #AB5830) and the secondary antibody used was

conjugated with Alexa 594 (1:300, Invitrogen, #A21468).

Coverslips were mounted using Dako fluorescent mounting

medium (Dako #S3023) and visualized using a confocal

microscope LSM 510 (Zeiss) at 63X magnification. The same

parameters were applied to all samples. DAPI and 8OHdG images

were always representative of the same single layer.

Microarray-based transcriptome analysis
Total RNA was extracted using the MiniRNeasy Kit (Qiagen,

Hilden, Germany), digested with DNase I (RNase-free DNase set,

Qiagen, Hilden, Germany) following the manufacturer’s instruc-

tions and quality checked by Nanodrop analysis (Nanodrop

Technologies) and agarose gel electrophoresis. Approximately 500

ng of DNase I-treated RNA served as input for biotin-labeled

cRNA production using a linear amplification kit (Ambion).

Hybridizations, washing, Cy3-streptavidin staining, and scanning

were performed on the Illumina BeadStation 500 platform

(Illumina), according to manufacturer’s instruction. cRNA samples

were hybridized onto Illumina human-8 BeadChips version 3. The

intensity values for each probe were derived by the Illumina

software. The microarray data is available at Gene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under the acces-

sion number GSE28688.

Raw data were further processed using tools available from

Bioconductor (version 2.6) [75]. Background correction and

normalization were carried out using the lumi package [76].

Illumina probes were then filtered by the detection p-value,

considering probes with p-value ,0.01 as ‘present’ and all others

‘absent’. Illumina probes which were ‘present’ in at least both

duplicates of one sample were used for further analysis. Differential

expression with respect to HFF1 samples was determined using the

limma package [77] in Bioconductor. Gene annotations were based

on human genome version 19 (illuminaHumanv3 package), Gene

Figure 8. Model for improving the OSKM-based reprogramming protocol. A. Standard protocol results in relatively few iPS cells. B.
Suppression of the initial viral response, combined with FACS-based enrichment of cells expressing ES-specific cell surface receptors and inhibition of
GSK3 and EMT, could increase reprogramming efficiency.
doi:10.1371/journal.pone.0024351.g008
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Ontology enrichment was carried out using the topGO package

[78], and enrichment in KEGG pathways was performed using the

SPIA package in Bioconductor [24].

We found the fuzzy-c-means (FCM) clustering method to be

most suitable for our analysis compared to hard partitioning

algorithms. Unlike commonly used approaches like k-means and

hierarchical clustering, FCM is a soft partitioning method. FCM

can assign genes to more than one cluster and represent the

closeness of genes to specific clusters by membership values. It

provides a very robust clustering as it reduces the effect of noise on

the clustering process by a fuzzyfication parameter m which we set

to 1.7. Clustering was performed by the mfuzz Bioconductor

package [79].

To characterize the impact of reprogramming on key genes of

EMT, we performed the following analysis. A list of key up-

regulated genes involved in EMT was obtained from http://www.

sabiosciences.com (AHNAK, BMP1, CALD1, CAMK2N1, CDH2,

COL1A2, COL3A1, COL5A2, FN1, FOXC2, GNG11, GSC, IGFBP4,

ITGA5, ITGAV, MMP2, MMP3, MMP9, MSN, SERPINE1, SNAI1,

SNAI2, SNAI3, SOX10, SPARC, STEAP1, TCF4, TIMP1, TMEFF1,

TMEM132A, TWIST1, VCAN, VIM, VPS13A, WNT5A, WNT5B).

These genes were used as input for the web interface TargetFinder

(www.targetfinder.org) [50], which uses a seed-based sorting

algorithm [80] to rank all genes in the human genome according

to their similarity to a given input set of genes. The sorted list of all

genes showed a strong enrichment with regard to positive EMT

genes as indicated by a recovery test (p,10e-20). The genes of that

list were rank correlated (Spearman rank correlation) with the

most significantly down-regulated genes at each time point

(starting with the most down-regulated). Furthermore, a binomial

test was performed to test for over-representation of the top

positive EMT-related genes in the list of the most down-regulated

genes at each time point.

Construction of an OSKM interaction network
A large integrated network was constructed consisting of

protein-protein interaction (PPI) data selected according to

collective experimental evidence (Schaefer et al, submitted) and

gene regulatory information for OCT4/POU5F1 and SOX2 from

experiments of chromatin immunoprecipitation in human ES cells

[53]. A set of source and sink proteins were specified. Source nodes

were defined to be the four reprogramming factors (OCT4,

SOX2, KLF4, c-MYC), and sink nodes were a set of 28 genes

found to be differentially regulated between fibroblasts and iPS or

ES cells, taken from a meta-analysis of five published studies [17].

A sub-network connecting the two protein sets was determined by

merging all shortest paths between the source and the sink

proteins. High-scoring nodes in this subnetwork were identified by

applying a variant of the network betweenness centrality notion:

for each protein the number of passing shortest paths connecting

the source with the sink nodes was counted. This number was

weighted by the inverse of the average shortest path length passing

through the node favouring a large number of short shortest paths.

OSKM upstream network reconstruction
Based on literature, gene regulatory networks were defined for

OCT4, SOX2, KLF4 and c-MYC respectively, including upstream

regulators of these transcription factors. Literature mining was

executed via the Genomatix Pathway System (GePS) (www.

genomatix.de/en/produkte/genomatix-software-suite.html). Net-

works were defined by analyzing the regulatory impact of the most

frequently co-cited genes on abstract level, i.e., two genes are

deemed interacting when co-cited within one abstract. These data

are accessible as an interactive graphml-format under http://www.

genomatix.de/OSKM/. Next, we selected the subnetwork of genes

differentially expressed at any point of the time series. The resulting

network was manually curated to remove false positives and

contained one large component of 27 connected genes and 7

unconnected genes. Finally, we added back all genes that directly

connected the unconnected genes (BMP4, STAT3, EHMT2, and

TGFB1).

Nucleofections
All nucleofections were performed by using the Nucleofector II

(Lonza, Basel, Switzerland) and Nucleofector Kit R / program U-

20. HFF1 cells were harvested by trypsinization and counted cell

pellets consisting of 56105 cells were resuspended in 100 ml

Nucleofector Solution (including supplement) plus DNA. 4-factor

nucleofection: 1.5 mg of each plasmid pMXs-hOCT3/4, pMXs-

hSOX2 pMXs-hKLF4 and pMXs-hc-MYC. GFP control nucleo-

fection: 1.5 mg of a plasmid expressing GFP (Lonza) adjusted to

6 mg by empty vector pcDNA3.1 (to allow an estimation of the

nucleofection efficiency for a single factor). For the mock control,

nucleofection was carried out using Nucleofector Solution

(including supplement) without plasmids. In order to ensure equal

conditions in terms of dilution of the Nucleofector Solution, the

different concentrations of the individual plasmid stocks were

considered by adjusting all nucleofection reactions to the same

volume with distilled water. The mixtures were transferred to a

cuvette and immediately nucleofected. Immediately upon nucleo-

fection, 500 ml of pre-warmed cell culture medium was added to

the cuvette and the whole suspension then gently transferred into

pre-warmed cell culture medium. Cells from nucleofections of the

same kind were pooled together and seeded for incubation in

duplicates into 12-well-plates (cells in 2.5 ml culture medium/well;

for ROS measurement). Approximately 24 h later, dead cells were

removed from the attached cells by washing once with PBS

(Gibco/Invitrogen, USA) and replacing the cell culture medium.

Measurement of reactive oxygen species
Intracellular ROS production was measured by flow cytometry

using 29,79-dichlorofluorescin diacetate (H2-DCFDA, Sigma, St.

Louis, http://www.sigmaaldrich.com, D6883). Cells were loaded

with 15 mM H2-DCFDA in PBS for 30 min. After washing twice

with PBS, cells were trypsinized by phenol-red-free-trypsin

(Invitrogen, Carlsbad, CA, http://www.invitrogen.com, 15400-

054). The cells were washed with PBS twice and analyzed on a

FACS Aria (Becton Dickinson). The data was analyzed using

FlowJo (www.flowjo.com, Tree Star Inc., Ashland, OR). At least

10,000 cells of each sample were analyzed.

Western blotting
Total cell protein extracts were obtained using a modified RIPA

buffer (50 mM Tris pH 7.4, 100 mM NaCl, 10 mM EDTA, 1 mM

PMSF, 1% IGEPAL) supplemented with a complete protease

inhibitor cocktail (Roche Diagnostics) prior to use. Protein

concentration was determined according to the Bradford method.

Proteins (20 mg) were resolved by electrophoresis on 7 % sodium

dodecyl sulphate-polyacrylamide gel and transferred to nitrocel-

lulose membrane (GE Healthcare Life Sciences, Piscataway, NJ,

http://www.gelifesciences.com). The membranes were incubated

with the specified primary antibodies at 4uC overnight. Primary

antibodies include anti-phospho-p53 (1:1,000, Cell Signaling,

Danvers, MA, http://www.cellsignal.com, #9281), anti-p53

(1:400, Santa Cruz Biotechnology Inc., Santa Cruz, CA, http://

www.scbt.com, #sc-6243) and anti-GAPDH (1:5,000, Ambion,

Austin, TX, Ambion, Austin, TX, www.ambion.com, #4300).

After washing with TBST, the membrane was respectively
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incubated with secondary antibody ECL anti-rabbit IgG or anti-

mouse IgG (GE Healthcare Life Sciences) for 1 h at room

temperature. Signals were detected with ECL plus western blotting

detection system (GE Healthcare Life Sciences).

RNA isolation and reverse transcription-polymerase chain
reaction
Total RNA was isolated using the RNeasy Mini Kit

incorporating DNase I as suggested by the manufacturer. Reverse

transcription was carried out as follows: 2 mg of RNA and random

primers (3 mg/ml) were incubated for 3 min in 70uC and cooled on

ice. Next, the master mix was added, consisting of following

components: 5.0 ml of 5x reaction buffer (Promega), 0.5 ml of (25

mM) dNTP, 0.1 ml of M-MLV (Moloney murine leukemia virus)

reverse transcriptase (200 U/ml; USB) and 9.4 ml of dH2O. The

reaction was stopped at 65uC for 10 min after 1 h incubation at

42uC. The cDNA was used as template for real-time PCR in order

to confirm the Illumina array-derived data.

Real-time PCR
Real-time polymerase chain reaction (PCR) was carried out on

the Applied Biosystems 7900 instrument, in 96-Well Optical

Reaction Plates (Applied Biosystems, Foster City, CA, United

States). The following program was applied: stage 1: 50uC for 2

min, stage 2: 95uC for 10 min, stage 3: 95uC for 15 s and 60uC for

1 min, for 40 cycles and, stage 4: 95uC for 15 s, 60uC for 15 s and

95uC for 15 s. Additional dissociation curves of the products were

created. The final reaction volume of 20 ml consisted of 10 ml of

SYBR Green PCR Master Mix (Applied Biosystems), 2.5 mM of

each primer (3 ml), and 7 ml of cDNA (1:8 dilution). Each gene was

analyzed in triplicate. One biological replicate was used for HFF1

cells transduced with four factors (4F)-OSKM, GFP and

polybrene-treated cells. Confirmation of the Illumina array results

for HFF1 cells after 24, 48 and 72 h post-transduction with viruses

was investigated. Relative mRNA levels were calculated using the

comparative Ct method [81] and presented as a percentage of the

biological controls (untreated HFF1 cells). mRNA levels of GAPDH

was used as control for normalisation.

Detection of cellular senescence
For the staining of senescent cells, the Senescence beta-

Galactosidase Staining Kit (Cell Signaling, Danvers, MA, USA,

www.cellsignal.com) was used following the manufacturer’s

protocol. Briefly, 24, 48 or 72 h post-transduction, HFF1 cells

were washed, fixed and incubated overnight with the staining

solution. Finally, the nuclei were counter stained using DAPI/PBS

(100 ng/ml) for 12 min at room temperature. Nuclei and senescent

cells (blue cytoplasmatic beta-galactosidase staining) were visual-

ized and images were acquired using the confocal microscope

LSM 510 Meta (Zeiss). Processing of images was carried out using

AxioVision V4.6.3.0 (Zeiss) and Adobe Photoshop CS version 8.0

(Adobe, Munich, Germany, www.adobe.com) software. Quantifi-

cation of nuclei was performed using the ImageJ software (version

1.43), whereas senescent cells were manually counted for three

snap shots of each duplicate.

Supporting Information

Figure S1 Additional GO categories enriched in regu-
lated transcripts. Data is represented as in Figure 3. Panel A.

GO categories related to apoptosis, cell proliferation and cell cycle

are shown. Panel B. GO categories related to morphological

changes and aging are shown.

(TIF)

Figure S2 Time series clusters. Transcripts regulated at any

time point (24 h, 48 h or 72 h; 2636 transcripts; padj ,0.05) were

divided into nine clusters by fuzzy-c-means clustering. Each trace

is color coded according to the membership value of the gene to

the respective cluster. The number of genes in the 0.5 alpha-core

of the cluster is detailed in Data S4.

(TIF)

Figure S3 Regulated transcript enrichment within
KEGG focal adhesion pathway overlaid with transcrip-
tional changes of the differentially expressed genes in
the pathway. Each rectangle is divided into segments repre-

senting changes at 24, 48, 72 hours and iPS state compared to

untreated HFF1.

(TIF)

Figure S4 EMT suppression signature. Panel A. Recovery
Test for EMT gene ranking: This distribution shows the

performance of the EMT ranking and may also be used to

estimate the quality of the seed. Ten percent of the EMT genes

(seed) are repeatedly taken out and the position of this left out

group in the rank is determined. A good performance results in a

clear tendency to show high frequencies for top positions (left side).

A random seed would result in a uniform distribution (flat

histogram). Statistics: p-value: p,10–20. The Null-Hypothesis for

this test is that the relative probability to be in the most left bin is

not larger in comparison with the relative probability in the rest of

the histogram. The p-value is obtained from the cumulative

binomial distribution. Panel B. EMT Suppression: Spearman’s

rank correlation rho of the genes of an EMT enriched genome

wide list were rank correlated (Spearman rank correlation) with

the significant most down regulated genes at each time point

(starting with the most down regulated with the rank). A high rho

corresponds to a down-regulation of positive EMT genes. The

results indicate a progressive down regulation of positive EMT

associated genes during the reprogramming process.

(TIF)

Figure S5 Quantitative real-time PCR validation. Quan-

titative real-time PCR analysis of the genes involved in innate

immune response to viruses (e.g. CCL5, IRF7, STAT2, TRIM5,

DDX58, MX2, IL12A, EIF2AK2, ISG20; panel A) and induction

of apoptosis (e.g. IL19, NGEF; STAT1, CASP1; panel B) in HFF1

cells transduced with OSKM in comparison with HFF1 cells at 24

h, 48 h and 72 h post-transduction. Expression values were

normalized over the expression of GAPDH and presented as

relative changes compared to HFF1 cells. Blue bars: QRT-PCR.

Red bars: array values.

(TIF)

Figure S6 Transduction efficiency of retroviral trans-
duction and nucleofection. GFP vector was transduced into

HFF1 cells using retroviral transduction or nucleofection proce-

dure. Percentages of GFP positive cells were measured by flow

cytometry 24 h post-transduction.

(TIF)

Data S1 6179 transcripts regulated at any time point or
in ES/iPS. Column descriptions: pid (Illumina probe identifier);

profile.id (text string describing its regulation in the following groups

with respect to HFF1: 24 h, 48 h, 72 h, iPS, ES; 1= regulated (padj

,0.05), 0 = not regulated); t.24 h.logFC, t48 h.logFC, t72 h.logFC,

diPS.logFC, dES.logFC (log2 fold changes with respect to HFF1;

log2FC is set to zero if padj,0.05 and log2FC ,log2(1.5); entrez

(Entrez Gene ID), symbol (Entrez Gene Symbol); gene.name

(Entrez Gene Name). Filename: Suppl_Data_S1.txt.

(TXT)
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Data S2 Pluripotency- and fibroblast-associated tran-

scripts and potential pluripotent cell markers. Filename:

Suppl_Data_S2.xls.

(XLS)

Data S3 GO categories enriched in regulated tran-

scripts at 24 h, 48 h, 72 h post-transduction and in iPS

and ES cells compared to HFF1 cells. Filename: Suppl_Da-

ta_S3.xls.

(XLS)

Data S4 Transcripts in Fuzzy c-means clusters and
KEGG pathways enriched per cluster. Cluster #7 was the

one described in the main text. Filename: Suppl_Data_S4.xls.

(XLS)
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