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THE MOLECULAR INTERACTION BETWEEN TYPE II DIABETES AND 

ALZHEIMER’S DISEASE THROUGH CROSS-SEEDING OF PROTEIN 

MISFOLDING 

George Edwards III, B.S. 

Thesis Advisor: Claudio Soto, Ph.D. 

With the population of the world aging, the prominence of diseases such as Type II 

Diabetes (T2D) and Alzheimer’s disease (AD) are on the rise. In addition, patients with 

T2D have an increased risk of developing AD compared to age-matched individuals, 

and the number of AD patients with T2D is higher than among aged-matched non-AD 

patients. AD is a chronic and progressive dementia characterized by amyloid-beta (Aβ) 

plaques, neurofibrillary tangles (NFTs), neuronal loss, brain inflammation, and 

cognitive impairment. T2D involves the dysfunctional use of pancreatic insulin by the 

body resulting in insulin resistance, hyperglycemia, hyperinsulinemia, pancreatic beta 

cell (β-cell) death, and other complications. T2D and AD are considered protein 

misfolding disorders (PMDs). PMDs are characterized by the presence of misfolded 

protein aggregates, such as in T2D pancreas (islet amyloid polypeptide - IAPP) and in 

AD brain (amyloid– Aβ) of affected individuals. The misfolding and accumulation of 

these proteins follows a seeding-nucleation model where misfolded soluble oligomers 

act as nuclei to propagate misfolding by recruiting other native proteins. Cross-seeding 

occurs when oligomers composed by one protein seed the aggregation of a different 

protein. Our hypothesis is that the pathological interactions between T2D and AD may 

in part occur through cross-seeding of protein misfolding. To test this hypothesis, we 

examined how each respective aggregate (Aβ or IAPP) affects the disparate disease 

pathology through in vitro and in vivo studies. Assaying Aβ aggregates influence on 

T2D pathology, IAPP+/+/APPSwe
+/- double transgenic (DTg) mice exhibited exacerbated 
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T2D-like pathology as seen in elevated hyperglycemia compared to controls; in 

addition, IAPP levels in the pancreas are highest compared to controls. Moreover, 

IAPP+/+/APPSwe
+/- animals demonstrate abundant plaque formation and greater plaque 

density in cortical and hippocampal areas in comparison to controls. Indeed, 

IAPP+/+/APPSwe
+/- exhibit a colocalization of both misfolded proteins in cerebral plaques 

suggesting IAPP may directly interact with Aβ and aggravate AD pathology. In 

conclusion, these studies suggest that cross-seeding between IAPP and Aβ may occur, 

and that these protein aggregates exacerbate and accelerate disease pathology, 

respectively. Further mechanistic studies are necessary to determine how these two 

proteins interact and aggravate both pancreatic and brain pathologies. 
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Type II Diabetes and Alzheimer’s disease Prevalence and Characteristics. 

As the life expectancy of the population increases, as well as individuals living 

unhealthy lifestyles so too does the prevalence of age-related diseases such as Type II 

Diabetes (T2D) and Alzheimer’s disease (AD). It is estimated that 25.8 million 

American individuals have diabetes – 90-95% being T2D (1). In addition, the total 

projected cost of diabetes in 2007 was 218 billion dollars (1). It is expected that 5.4 

million individuals currently live with AD; moreover, the socioeconomic burden is 

tremendous costing $200 billion dollars (2). In addition, both diseases present 

complications to effectively diagnose individuals in that nothing is really offered for 

AD, as well as there are T2D affected individuals that go undiagnosed. By 2050, it is 

projected that the prevalence of diabetes and AD will double or even triple (1-2).  

Though these statistics are malicious enough already, recent research posits that having 

T2D can 2-5 fold increase the risk of AD (3-6); moreover, the number of T2D among 

AD patients is significantly augmented in comparison to age-matched non-AD controls 

(4, 7-8).  

Type II Diabetes involves the dysfunctional use of pancreatic insulin by the 

body resulting in insulin resistance, hyperglycemia, hyperinsulinemia, pancreatic β-cell 

death, and other complications. Some of these diabetic complications can ultimately 

lead to cardiovascular disease, kidney disease, neuropathy, and diabetic retinopathy (9-

10). Unlike Type I Diabetes (T1D), insulin is produced, but the body does not use it 

effectively. Insulin is an important hormone, and if the availability is insufficient, 

insulin is faulty, or the cell’s response is defective (referring to sensitivity), then glucose 

will not be absorbed or stored properly by the cells. Thus, the net effect is high blood 
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glucose levels, irregular protein synthesis, and a number of other metabolic 

derangements. Intriguingly, in up to 96% of T2D patients, is the aggregation of an 

amyloidogenic species called islet amyloid polypeptide (IAPP) (3-7, 11) which is 

thought to have deleterious effects to the β-cells (12), yet it is unknown if IAPP is either 

a cause or an effect of the disease (13). 

Characterized by Alois Alzheimer around 1905 from a patient named Auguste 

Deter, Alzheimer’s disease is an age-related, chronic and progressive dementia 

characterized by extracellular amyloid-beta (Aβ) plaques, intracellular neurofibrillary 

tangles (NFTs), neuronal loss, brain inflammation, and cognitive impairment. Some of 

the known risk factors include: age (affecting 65 and up), the female gender, the APOE 

allele, and oxidative stress (2, 14). There is currently no definitive test (other than at 

autopsy) to diagnose AD, and there is no disease-modifying cure. Nowadays, the only 

treatment option is to slow the disease progression and manage the symptoms to ease 

the individual’s life. More than 95% of the cases are considered sporadic, and inherited 

cases with genetic mutations in APP, PS1, and PS2 are less than 5% (2, 10).  

 Numerous studies have proposed diverse explanations for the interaction 

between these maladies such as defects in insulin signaling, anomalous glucose 

metabolism, formation of advanced glycation end products (AGEs), oxidative stress, 

activation of inflammatory pathways, other dysregulations of cellular processes (8, 10, 

14-15), and, importantly for this study, abnormal protein processing. One of the 

important common features between T2D and AD is the presence of misfolded protein 

aggregates, which in the case of T2D consist of the accumulation in pancreas of islet 

amyloid polypeptide – (IAPP) and in AD brain (amyloid-beta - Aβ) (Fig.1) (16-17). 
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Nonetheless, T2D and AD are regarded as protein misfolding disorders (PMDs) due to 

their ability of amyloidogenesis. There are 20 more noted PMDs including Parkinson’s 

disease (PD), Prion diseases, Huntington’s disease (HD), Amyotrophic Lateral Sclerosis 

(ALS), among others. 
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Misfolded Protein Aggregates in Type II Diabetes and Alzheimer’s disease. 

 Islet amyloid polypeptide (IAPP) or amylin is a hydrophobic 37 amino acid 

peptide hormone that is secreted from the β-cells in the pancreatic islets of Langerhans. 

The islets of Langerhans function to control blood sugar levels and glucose metabolism 

throughout the body by secretion of several substances such as glucagon, insulin, 

somatostatin, and amylin. Glucagon is secreted in response to low blood sugar levels, 

and it stimulates the liver to convert glycogen into glucose. Insulin is secreted in 

response to high blood glucose levels, and it also regulates the usage of glucose - 

whether it enters the cells for energy or goes back to the liver for storage. Insulin is an 

important hormone and has multiple functions throughout the body. In the brain, studies 

have shown insulin to regulate neuronal survival, energy metabolism, plasticity of 

neurons, and growth factors (18-19). In addition, it plays a role in learning and memory 

(14, 19). Somatostatin is located in the delta cells of the islet of Langerhans and is 

known to suppress the release of gastrointestinal hormones, inhibiting the release of 

insulin and glucagon.  

IAPP is released as proislet amyloid polypeptide (proIAPP) and depends on 

blood glucose level (BGL) machinery (20-21) (Fig 2.). IAPP is co-secreted with insulin 

(1:100) from the pancreatic β-cells making insulin far more abundant. IAPP function is 

somewhat unclear, yet it is thought to contribute to glycemic control and is an inhibitor 

of the appearance of nutrients (especially glucose) in the plasma by delaying gastric 

emptying, inhibiting digestive secretion, and overall reducing food intake (giving a 

satiated feeling) (21); thus, IAPP is originated in the pancreatic β-cells and circulated 

through the blood crossing the blood-brain barrier (BBB) (21-22). IAPP has also been 
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assumed to have a role in the progression of insulin resistance in T2D patients (22). 

IAPP has been described to regulate bone metabolism and, though controversial, as an 

inhibitor of insulin, under certain conditions (22-24). As for regulation, little is known 

about the regulation of amylin synthesis, yet it is assumed since it has a close link to 

insulin being co-stored and co-secreted that it may follow the same regulatory 

mechanisms of insulin (21). Once IAPP is aggregated as a pancreatic amyloid, it is 

proposed that it contributes to the advancing decline of β-cell number and mass as well 

as later the problems with insulin secretion (4, 6, 12, 25).  As previously stated, autopsy 

reports indicate that up to 96% of T2D patients have pancreatic IAPP aggregation (7, 

9); besides humans, cats and macaques can develop T2D, and time-course studies in 

these animals showed that the accumulation of IAPP aggregates in the pancreas precede 

the symptoms of diabetes (20).  
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Figure 2. IAPP Processing. IAPP is processed from an 89-residue coding sequence

(proIAPP) that is produced in pancreatic β-cells as a 67 amino acid: (1) 11 amino acids

are removed from the N-terminal by enzyme proprotein convertase 2 (PC2); (2) 16

amino acids are removed from the C-terminal by proprotein convertase 1/3 (PC1/3); (3)

at the C-terminus carboxypeptidase E removes the lysine and arginine residues; (4)

peptidylglycine alpha-amidating monooxygenase (PAM) adds an amine group at the C-

terminal glycine.

TPIESHQVEKR KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTYG KR NAVEVLKREPLNYLPL

PC2

PC1/3

Carboxypeptidase E

1

2

3

PAM
4

 

The main component of Aβ plaques, a typical hallmark of AD, is a 39-43 amino 

acid polypeptide engendered by an alternative proteolytic cleavage of amyloid precursor 

protein (APP) by β-secretase 1 (BACE1) and γ-secretase leading to the formation of 

neurotoxic species (Fig. 3). Alpha secretase cleaves the ectodomain at a closer site of 

the transmembrane domain of APP producing a non-amyloidogenic, easily-cleared 

peptide known as P3; besides, BACE1 cleaves within the ectodomain producing a C-

terminal fragment substrate for γ-secretase that becomes the amyloidogenic Aβ (8, 16). 

The most deleterious Aβ form proposed is Aβ-42, but the most abundant form is Aβ-40.  

During many years, researchers focused on the insoluble Aβ fibril deposits as the 

leading cause of memory loss and neurodegeneration in AD, yet recent work has shown 

that the soluble oligomers may be the most toxic species (especially in the early stages), 
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which cause neuronal death and inhibit long term potentiation (LTP) (16-17, 26-29). Aβ 

has an unknown function, but in healthy individuals it is easily cleared from the brain 

unlike in AD affected individuals. Another hallmark of AD is the production of NFTs 

from hyperphosphorylated tau, which is a soluble microtubule associated protein 

localized within the axons and expressed in mature neurons; Aβ is known to interact 

with signaling pathways that control tau phosphorylation (2, 8, 14, 27).  

Both IAPP and Aβ can misfold and aggregate forming large and insoluble 

deposits known as amyloid. The amyloid structures have a β-sheet conformation that is 

detected by Congo Red and Thioflavin dyes, have a characteristic X-ray diffraction 

pattern, and are highly resistant to proteolytic degradation (16, 21, 27). Immunopositive 

ubiquitin staining can normally be detected in amyloid aggregates due to a failed 

attempt by the proteasome to try to clear these deleterious aggregates, which suggests 

the high resistance to proteolytic degradation of the amyloid fibrils due to their complex 

structure, being too large to fit into the protein degrading machinery, and their 

insolubility (8). IAPP and Aβ fibril-like structures also can be recognized by 

transmission electron microscopy (TEM).  



10 

 

Figure 3. Formation of Aβ through APP Cleavage. Beta secretase (BACE1) is a

transmembrane aspartyl protease that cleaves within the ectodomain of APP, leaving the

C-terminal 99-amino acid fragment (C99) containing the single transmembrane domain,

and becomes a substrate for the γ-secretase. Thus, the γ-secretase cleaves C99 at a

variable location creating an amyloidogenic protein (Aβ-40, Aβ-42) to be released to the

extracellular environment. Alpha secretase cleaves the ectodomain at a closer site of the

transmembrane domain of APP and also creates a substrate for γ-secretase producing a

non-amyloidogenic, easily-cleared peptide known as P3.

β -

secretase

α -

secretase

γ -

secretase

Aβ

Aβ

Aβ
AβAβ

p3

  

IAPP and Aβ share several characteristics, including they are both 

amyloidogenic, show 38% sequence similarity (6, 30), are directly toxic (6, 22), can 

activate proinflammatory responses as well as downstream pathways, and can alter Ca2+ 

homeostasis by affecting downstream pathways causing cell death (31). Aβ and IAPP 

are present in blood serum and cerebrospinal fluid (CSF) (30). Potential proof of hetero-

association between Aβ and IAPP was seen when hot spot regions were identified in 
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these amyloids causing a propensity of Aβ and IAPP to interact. The results of this 

study showed that IAPP [8-18] and IAPP [22-28] sequences are hot regions of the IAPP 

and Aβ-40 interaction, and Aβ [27-32] and Aβ [35-40] were identified as the shortest 

sequences that were able to bind to IAPP with nanomolar affinity (Figure 4) (30). 

IAPP’s toxic nature was modeled by synthetic human IAPP aggregates that are able to 

induce β-cell apoptosis (12); in addition, the inhibition of IAPP accumulation or 

synthesis results in the improvement of β-cell life in a human islet culture model (12, 

25) – similarly this is noted with in vitro experiments using Aβ as well (17, 26).

Figure 4. Comparison of Sequences of Aβ and IAPP. In blue are the identical amino

acids with similar residues in green. The shortest sequences with highest similarity are

underlined in yellow. Sequences that are thought to play a role in self-association are

underlined in pink. Image taken from Andreetto E. et. al. 2010

 

The Seeding-Nucleation and Cross-Seeding Model. 

In amyloid formation it is noted the non-toxic, soluble, natively folded protein 

undergoes a conformational transition into a toxic, insoluble, and β-sheet comprising 

aggregate (32). The accumulation of misfolded aggregates (i.e. IAPP, Aβ) is thought to 
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follow a seeding-nucleation model in which a small and soluble misfolded oligomer 

(can range from dimers to decamers) acts as a nucleus to propagate misfolding by 

recruiting the native proteins into polymers (13, 16-17, 27, 33-36). In this model seen in 

Figure 5, misfolded “seeds” are produced during a nucleation or lag phase – a 

thermodynamically unfavorable stage where the folded protein changes its 

conformation to form a misfolded intermediate. The misfolded intermediate is highly 

unstable, but can be stabilized by oligomerization. When the misfolded oligomers are 

stable enough to resist clearance, the polymerization or exponential phase occurs where 

the oligomers rapidly and exponentially enlist native proteins to misfold. As a result of 

these aberrant interactions, protein aggregates have a proclivity to form large 

aggregates, become insoluble, and resistant to proteolysis, thus impervious to cellular 

clearance. Since the limiting step in this process is the formation of misfolded 

oligomeric seeds, the introduction of a pre-formed “seed” can accelerate the reaction by 

attenuating the nucleation phase (Fig. 5) (17, 33). Cross-seeding occurs when oligomers 

composed by one protein seed the aggregation of a different protein (16, 33). This 

heterologous cross-seeding has been demonstrated in vitro and in vivo involving several 

misfolded aggregates by interactions including the prion protein PrPSc and Aβ (37), Aβ 

and α-synuclein (38-40), Aβ and tau (35, 41-42), and others.  
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Figure 5. The Cross-Seeding Model. A) The misfolding and aggregation of proteins

follows a seeding-nucleation model in which the key event is the formation of misfolded

oligomeric seeds during the nucleation phase that acts as a scaffold building up

aggregation and forming the oligomeric and fibril species. Thus, the seed formed in this

nucleation or lag phase shortens the lag phase, and then after in the polymerization

phase, the seeds quickly and exponentially enlist inherent proteins. Moreover, protein

aggregation can be accelerated by the addition of preformed seeds. B) In some cases, the

seed can originate from a different misfolded protein, which can cross-seed the process

of protein misfolding and aggregation. Whether it is a homologous or heterologous

seeding, the nucleation phase is shortened leading to an acceleration of protein

aggregation.
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Hypothesis 

Our hypothesis is that the high coexistence of Type II diabetes and Alzheimer’s 

disease may in part be due to cross-seeding of islet amyloid polypeptide and amyloid 

beta. In this Master Thesis project, we have studied this possibility in vitro and in vivo 

in a mouse model that has been engineered to develop both IAPP and Aβ aggregates 

and analyze whether the addition of IAPP or Aβ “seeds” exacerbates the disease 

pathology of T2D and AD through pathological, immunohistochemical, and 

biochemical analysis. 

 The research presented in this dissertation is analyzing this cross-seeding 

hypothesis as a potential molecular explanation for the synergism known between T2D 

and AD. We believe that an enhancement in disease pathology could be due to a cross-

seeding effect between IAPP and Aβ and could elucidate the high co-existence of T2D 

and AD cases seen in human patients. Therefore, we will study the relationship of the 

protein aggregates IAPP and Aβ and their effect on these maladies by the following 

aims: 

1) Analyze cross-seeding interaction between Aβ and IAPP utilizing in vitro 

studies  

2) Determine the influence of Aβ aggregated “seeds” on T2D pathology in a 

double transgenic mouse model  

3) Evaluate the influence of IAPP aggregated “seeds” on AD pathology in a 

double transgenic mouse model  
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CHAPTER 2 

Analyze cross-seeding interaction between Aβ and IAPP utilizing in vitro studies 
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Rationale 

 The seeding-nucleation model states that protein misfolding and aggregation is a 

nucleation-dependent phenomenon in which a misfolded intermediate is formed during 

the lag phase and once a critical amount of these nuclei are created, the exponential 

phase starts, where the oligomeric species grow and extend producing fibrils. This 

model also states that the introduction of a preformed seed in the system is able to 

induce and accelerate protein aggregation, thus attenuating the nucleation or lag phase 

in the aggregation curve reaching the polymerization phase at a quicker rate. This can 

occur when the nuclei are of the same nature referring to homologous seeding, which 

shortens the nucleation phase. Cross-seeding or heterologous seeding occurs when the 

seeds of one particular protein accelerate the misfolding of a second particular protein. 

The resulting oligomers and fibrils will be composed by a combination of both proteins. 

Previous work has demonstrated this cross-seeding hypothesis in vitro and in vivo 

involving misfolded aggregates including the misfolded prion protein PrPSc and Aβ 

(37), Aβ and α-synuclein (38-40), Aβ and tau (35, 41-42), and others. The goal of this 

aim is to emulate the potential cross-seeding between Aβ and IAPP within the test tube. 

Seeding kinetic experiments will occur utilizing synthetic peptides (Aβ or IAPP) that 

will be incubated with the opposing aggregate form (so called seeds) at various 

concentrations (i.e. synthetic IAPP with purified Aβ aggregates and vice versa). 

Thioflavin T assay will be used as a method to specifically monitor the formation of 

amyloid aggregates. The ThT fluorescence originates from the dye reacting to amyloid 

fibrils (43). We expect that these in vitro studies will show cross-seeding of IAPP 

misfolding and aggregation induced by Aβ aggregates and that Aβ misfolding and 



17 

 

aggregation induced by IAPP aggregates is accelerated. We anticipate the seeds will 

shorten the nucleation or lag phase for polymerization. 

  



18 

 

Results 

 After running Bichinchoninic acid (BCA) assay to quantify the protein 

concentration of each IAPP and Aβ synthetic peptide and running an aggregation assay 

to check the viability of seed-free material, we began running the homologous and 

heterologous seeding for each specific protein.  

In vitro IAPP Heterologous Cross-Seeding Accelerates Aβ aggregation. 

 With IAPP and Aβ having such close sequence similarities, as well as being 

amyloidogenic, IAPP oligomeric species were used to analyze whether Aβ misfolding 

and aggregation would be accelerated due to addition of these seeds. It would be 

essential to see both homologous and heterologous seeding occur at a faster rate than 

the standard set seeding curve for Aβ by a shortening of the nucleation or lag phase. 

Utilizing the ThT assay, briefly, 10% of IAPP oligomer seeds (heterologous seeding) or 

10% Aβ oligomer seeds (homologous seeding) along with the monomeric Aβ-42 seed-

free was added to a 96 well plate; the control was an insertion of the buffer the oligomer 

was originated. The percentage of seeds corresponds to the monomeric seed-free added 

per well. The fluorescence was read by a fluorometer at excitation 435 and emission 

485 nm with intensity over time.  

First, we needed to illustrate that Aβ misfolding and aggregation is, as 

previously described, induced by homologous Aβ oligomers. In Figure 6, the results 

demonstrate a speeding up of Aβ aggregation by the shortening of the lag phase due to 

the introduction of homologous seeds compared to the control. Regarding homologous 

seeding there is an acceleration of Aβ fibrillogenesis shown by the 10% homologous Aβ 
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seeding reaching 100% aggregation at about 40 hours faster than the control, 

respectively. These results corroborate the fact that Aβ misfolding was accelerated by 

the addition of homologous Aβ seeds by attenuation of the nucleation/lag phase 

accelerating Aβ misfolding and aggregation.  

The results illustrate that the heterologous seeding of IAPP was able to reduce 

the lag phase. Figure 6 displays the heterologous seeding where there is an acceleration 

of Aβ aggregation and polymerization due to IAPP oligomeric seeds - 10% 

heterologous IAPP seeding reached 100% aggregation at about 25 hours, 10%  

homologous Aβ seeding reached 100% aggregation at about 40 hours, and the control 

reached 100% aggregation at about 72 hours, respectively. Both seeding curves were 

statistically significant from the control seeding curve. A reason that the heterologous 

IAPP seeding aggregated earlier than the homologous could be due to the higher 

amyloidogenicity of IAPP compared to Aβ allowing misfolding and accumulation to 

occur at a faster pace (44-47); in addition, the heterologous IAPP seeding could present 

more available oligomeric and/or fibrillogenic species for a faster reaction. The results 

elucidate that IAPP is an effective, viable seed for Aβ-42 aggregation by decreasing the 

lag phase for Aβ misfolding and aggregation and, thereby, inducing a faster Aβ 

aggregation. As expected, there is a cross-seeding effect in Aβ aggregation in the 

presence of IAPP oligomers.  
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Aβ Heterologous Cross-Seeding Increases IAPP aggregation In vitro. 

 Aβ-42 oligomeric seeds were used to test whether IAPP misfolding and 

aggregation would be accelerated. It would be essential to see both homologous and 

heterologous seeding occur at a faster rate than the standard set seeding curve for IAPP 

by an attenuation of the nucleation or lag phase. To analyze cross-seeding, ThT Assay 

was performed by adding 1% homologous IAPP oligomeric seeds or 1% heterologous 

Aβ oligomeric seeds, and the fluorescence read by a fluorometer at excitation 435 and 

emission 485 nm with intensity over time. One major deterrent in which several studies 
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have noted is that IAPP can essentially have a very short or even no lag phase upon 

incubation at a neutral pH, even more so with the addition of homologous seeds (44-

47). In order to confirm IAPP seeding in vitro, we needed to exemplify that IAPP 

misfolding and aggregation would be accelerated by adding homologous IAPP 

oligomers. Our results show that the homologous IAPP aggregate was able to speed up 

IAPP misfolding and aggregation, as reported before (34, 44-45, 48). Figure 7 

demonstrates an acceleration of IAPP fibrillogenesis due to the concentration of 

homologous IAPP oligomeric seeds with the 1% IAPP oligomer seeding curve reaching 

100% aggregation at about 1 hour. This evidence elucidates that IAPP does follow the 

seeding-nucleation model; IAPP aggregates are able to decline the nucleation phase, 

thus accelerating IAPP misfolding and aggregation. Following the same procedure as 

above, 1% heterologous Aβ oligomeric seeds were added to accelerate the aggregation 

reaction of IAPP. The results show that the heterologous seeding with Aβ was able to 

shorten the lag phase accelerating IAPP aggregation. Figure 7 exhibits both seedings of 

IAPP where there is an acceleration of IAPP aggregation due to heterologous or 

homologous seeds - 1% heterologous Aβ seeding reached 100% aggregation at about 4 

hours, 1% homologous IAPP seeding reached 100% aggregation at about 1 hour, and 

the control reached 100% aggregation over 13 hours, respectively. Both seeding curves 

were statistically significant from the control seeding curve. We are able to confirm that 

the addition of a seed, whether IAPP or Aβ, that there is a very short lag phase, yet the 

standard IAPP control takes hours to elevate.  
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Summary 

 In this section, we wanted to determine a cross-seeding interaction between 

IAPP and Aβ in vitro. This was done by utilizing the ThT assay incubating IAPP 

oligomeric species on synthetic Aβ-42 peptides and vice versa with different quantities 

(10 and 1%) to acquire a shortened nucleation phase from the standard seeding curve. 

Both heterologous seedings, IAPP oligomers into Aβ aggregation and Aβ oligomers 

into IAPP aggregation, demonstrated quicker kinetics by reacting to the auxiliary seed, 

by misfolding and aggregating at accelerated rates compared to the controls. Further 

work is necessary such as addition of controls - incubation with the opposing 

monomeric seed-free or incubation with a different proteins aggregate (i.e. albumin). 
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CHAPTER 3 

Determine the influence of Aβ aggregated “seeds” on T2D pathology in a double 

transgenic mouse model 
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Rationale 

After obtaining the DTg IAPP+/+/APPSwe
+/- mice expressing both human IAPP 

and human Aβ and appropriate genotypic controls - heterozygous IAPP+/-/APPSwe
+/-, 

huIAPP+/+, and huIAPP+/- on the double background- we assessed the effect of Aβ 

aggregates cross-seeding IAPP on T2D pathology (i.e. aggregation of IAPP in the 

pancreas) by analyzing the clinical symptoms and pancreatic histopathology of these 

animals. We plan to emulate what is found in affected individuals of these two PMDs – 

T2D and AD. A putative clinical symptom of T2D is hyperglycemia. We expect that the 

presence of Aβ oligomers will act as a seed increasing IAPP deposition in the β-cells. 

The augmentation of aggregated IAPP could induce β-cell death, decreasing insulin 

production and aggravating hyperglycemia in DTg animals in comparison with control 

animals. Moreover, we will analyze the difference of pancreatic amylin deposition in 

these mice by employing immunohistochemical measurements. We expect to observe 

augmented immunopositive IAPP accumulation in the pancreas as well as intensified 

BGLs in the DTg IAPP+/+/APPSwe
+/- animals to support our cross-seeding hypothesis.  



26 

 

Results 

DTg IAPP+/+/APPSwe
+/- Demonstrate Accentuated Blood Glucose Levels (BGLs). 

 In order to analyze Aβ aggregates acting as a “seed” on T2D pathology as well 

as the interaction of these associated protein aggregates, we developed DTg 

IAPP+/+/APPSwe
+/- mice that engender both IAPP and Aβ aggregates and analyzed BGLs. 

An anomalous increase of blood glucose levels is a common symptom of diabetes. The 

American Diabetes Association currently describes diabetes as having fasted blood 

glucose levels at >126 mg/dL, which is lower than the previous fasted glucose >140 

mg/dL (10, 49). Mice showing hyperglycemia are regarded having a >150 mg/dL fasted 

blood glucose levels while normal mammals are said to be <110 mg/dL (50). To analyze 

the effect of the coexistence of both amyloidogenic proteins on hyperglycemia, we 

verified the BGLs of the animals by a tail vein nick using Contour blood glucose test 

strips (Bayer Healthcare) upon sacrificing the animals at about 250 days of age to 

analyze the auxiliary effect of Aβ on this typical clinical symptom seen in T2D. Figure 

8 shows the DTg IAPP+/+/APPSwe
+/- mice had an average BGL at 171.2 mg/dL, while the 

Het IAPP+/-/APPSwe
+/- had an average of 134.27 mg/dL, IAPP+/+ of 108.67 mg/dL, and 

IAPP+/- of 100.13 mg/dL. The DTg IAPP+/+/APPSwe
+/- mice demonstrated significantly 

elevated BGLs in comparison to the control Het IAPP+/-/APPSwe
+/+, IAPP+/+, and IAPP+/-

as demonstrated by one-way ANOVA statistical analysis. The significant elevation in 

BGLs posits an exacerbation of hyperglycemia in animals harboring both Aβ and IAPP 

human proteins in comparison with animals that express just human IAPP. 
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Figure 8. DTg IAPP+/+/APPSwe+/- Demonstrate Significantly Elevated BGLs. One of

the canonical T2D pathological traits is high blood glucose levels (BGLs). The auxiliary

effect of Aβ on this typical T2D clinical symptom shows that the DTg

IAPP+/+/APPSwe+/- animals have higher BGLs than their appropriate genotypic controls.

In addition, Het IAPP+/-/APPSwe+/- have significantly higher BGLs than the IAPP+/+ and

IAPP+/-. IAPP+/+/APPSwe+/- mice show an exacerbation of hyperglycemia by displaying

an increase of BGLs in comparison to their controls. Statistical analysis was done with

GraphPad Prism 5.0; One-way ANOVA; Tukey’s: *p<0.05; ***p<0.001
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DTg IAPP+/+/APPSwe
+/- Exhibit Elevated IAPP Burden Levels. 

 To analyze whether the presence of Aβ increases the deposition of IAPP in the 

pancreas, we quantified the amount of pancreatic IAPP through immunohistochemistry, 

using an antibody that recognizes the human sequence of IAPP. As shown in Figure 9, 

the DTg IAPP+/+/APPSwe
+/- mice exhibit a higher amount of pancreatic IAPP staining 

than the controls - heterozygous IAPP+/-/APPSwe
+/- and huIAPP+/+. The DTg 

IAPP+/+/APPSwe
+/- pancreas demonstrates an intense reactivity to the human amylin 

antibody compared to controls; in addition, the areas with more intense staining likely 

correspond to protein aggregates deposited in the tissue, although at this stage we 

cannot rule out that they represent higher production of the protein. Visually, it seems 

that the IAPP accumulation occurs intracellularly and then, once when there is a 

proliferation of misfolded protein, may expel out of the cell becoming extracellular due 

to cellular death (12-13). In addition, we quantified the IAPP pancreatic burden as seen 

in Figure 10. Intriguingly; we could see that the DTg IAPP+/+/APPSwe
+/- mice exhibit a 

statistically significant increase of pancreatic amylin levels compared to their controls. 

The DTg IAPP+/+/APPSwe
+/-  had around a 1.1 fold augmentation in pancreatic IAPP 

levels compared to the Het IAPP+/-/APPSwe
+/-  as well as a 2.4 fold increase compared to 

the huIAPP+/+. Further immunohistochemical analyses by double labeling the mouse 

pancreas utilizing a permutation of antibodies with IAPP and/or different antibodies 

used for islets (i.e. insulin) may give further information about the exact cellular 

location and colocalization of various proteins (7). Thus, with the additive effect of Aβ 

being introduced as a seed, the T2D characteristics of these mice seem to be aggravated 

compared to the age-matched controls. 
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Figure 9. DTg IAPP+/+/APPSwe
+/- Exhibit Elevated IAPP Burden Levels.

Representative pictures of Langerhans islets IAPP immunostained in experimental and

control animals. DTg IAPP+/+/APPSwe+/- demonstrate augmented huIAPP pancreatic

burden as seen by immunopositive reaction to anti-huIAPP antibody compared to their

genotypic controls - heterozygous huIAPP/ APPSwe and huIAPP. Scale bar 100 um.

DTg huIAPP+/+/APPSwe
+/-

huIAPP+/+

Het huIAPP+/+/APPSwe
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Heterozygous IAPP
+/-

/APPSwe
+/- Mice Have T2D-like Pathology. 

 It is noted that even up to 2 years of age the regular heterozygous transgenic 

huIAPP mice have not been reported to develop any islet amyloid deposits nor any 

diabetic-like pathology, at any age (25, 51-54). However, in Figures 8 to 10, 

heterozygous IAPP+/-/APPSwe
+/- have a diabetic-like phenotype at 20 weeks of age, even 

greater than that of the huIAPP+/+ mice – significantly more elevated BGLs and high 

pancreatic IAPP levels, though not significant. Thus, the seeding presence of Aβ is seen 

to bring on T2D-like phenotype in these heterozygous IAPP+/-/APPSwe
+/- which would 
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normally not be present in huIAPP+/- mice. To further verify these findings, the 

huIAPP+/- mice are planning to be immunohistochemically quantified. We expect that 

the huIAPP+/- animals will present lower amounts of pancreatic IAPP burden than the 

DTg IAPP+/+/APPSwe
+/- and Het IAPP+/-/APPSwe

+/- mice. 
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Summary 

 In this section, we investigated a T2D-like/AD mouse model, the DTg 

huIAPP+/+/APPSwe
+/-, that is able to generate both IAPP and Aβ emulating what is noted 

in human patients affected by the coexistence of these two diseases. Here, we wanted to 

determine the effect of Aβ seeds upon T2D pathology by analyzing the clinical (BGLs) 

and phenotypical (aggregation of IAPP) traits that are putatively recognized in T2D 

patients. The DTg huIAPP+/+/APPSwe
+/- had augmented BGLs compared to the 

heterozygous huIAPP+/-/APPSwe
+/- and huIAPP+/+ mice, thus emphasizing an aggravation 

of this clinical symptom. The DTg huIAPP+/+/APPSwe
+/- significantly displayed copious 

pancreatic IAPP burden levels in comparison to controls. Strikingly, the heterozygous 

huIAPP+/-/APPSwe
+/- were able to show T2D-like pathology with elevated BGLs and 

pancreatic IAPP deposition, which is normally not plausible in the huIAPP+/- mice. 

Taken together, with the elevation of both BGLs and pancreatic IAPP burden levels, the 

presence of Aβ is seen to exacerbate T2D symptoms in the DTg huIAPP+/+/APPSwe
+/- in 

comparison to the controls. 
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CHAPTER 4 

Evaluate the influence of IAPP aggregate “seeds” on AD pathology in a double 

transgenic mouse model 
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Rationale 

 Utilizing the DTg IAPP+/+/APPSwe
+/- mice expressing both human IAPP and 

human Aβ and appropriate genotypic controls - Het IAPP+/-/APPSwe
+/-, APPSwe

+/- 

injected with STZ (T1D control), and APPSwe
+/- on the double background - we assessed 

the effect of IAPP aggregates acting as a “seed” on AD pathology by analyzing 

accumulation of Aβ plaques in the brain of these animals. Analyzing 

immunohistochemically stained cortical and hippocampal slices, we expect that the co-

expression of endogenous Aβ and IAPP will cause higher Aβ plaque burden and number 

of plaques per area in comparison to controls. We analyzed the hippocampus and cortex 

due to the extensive reports of AD pathology affecting these regions in the transgenic 

mice and human patients, as well as their role in learning and memory (16, 27). We 

expect to observe augmented immunopositive Aβ accumulation in the brain in the DTg 

IAPP+/+/APPSwe
+/- animals, and a colocalization of both proteins in the brain to support 

our cross-seeding hypothesis.  
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Results 

DTg IAPP+/+/APPSwe
+/- Exhibit Increased Cortical and Hippocampal Aβ Burden 

Levels. 

 It has been established that IAPP secreted in the pancreas can cross the blood 

brain barrier and target different brain areas. We hypothesize that the presence of 

aggregated IAPP in the DTg animals will induce a higher aggregation and deposition of 

Aβ in the brain by a cross-seeding mechanism. The animals previously mentioned were 

studied to examine if there is an augmentation of AD pathology (cerebral and 

hippocampal Aβ plaques) due to the presence of IAPP aggregates. We expect to see an 

elevated Aβ plaque burden in these areas in the DTg IAPP+/+/APPSwe
+/- animals to 

confirm acceleration in pathology in comparison to the Het IAPP+/-/APPSwe
+/-, APPSwe

+/- 

injected with streptozotocin (STZ) (T1D model), and APPSwe
+/-.  

Figure 11 displays representative images of the Aβ plaques reactive to 82E1 

antibody (green). Visually we can see a difference in the size with the DTg 

IAPP+/+/APPSwe
+/- in comparison to the Het IAPP+/-/APPSwe

+/-, APPSwe
+/- injected with 

STZ as T1D control, and APPSwe
+/-. To prove that the augmented AD pathology is due 

to aggregated IAPP and not to the hyperglycemic environment or the reduction of 

insulin levels that also happen in the huIAPP animal model, STZ was injected into 

APPSwe
+/- acting as a T1D control.  The diabetogenic drug STZ is known to be toxic to 

the β-cells when injected and ultimately destroys them; it is thought to work by having a 

similar glucose moiety that enables STZ to enter β-cells and causes toxicity by 

alkylation of DNA (55). We are seeing that the DTg IAPP+/+/APPSwe
+/- animals have a 

more vigorous effect on AD pathology than STZ injected APPSwe
+/- animals.  
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In addition, in Figure 12 cortical and hippocampal Aβ quantifications illustrate 

that the DTg IAPP+/+/APPSwe
+/- have augmented Aβ burden in comparison to their 

genotypic controls. Moreover, the Het IAPP+/-/APPSwe
+/- have greater cortical Aβ burden 

levels compared to the APPSwe
+/-, representing a dose-dependence of the alleles. Cortical 

and hippocampal Aβ calculations were done by utilizing the percent of the area stained 

divided by the total area analyzed for Aβ load. Normally, the APPSwe
+/- or Tg2576 do 

not display AD-like pathology until a later age (56), yet the DTg IAPP+/+/APPSwe
+/- are 

demonstrating this exacerbated pathology at 250 days of age; in addition, the larger 

plaques are displayed more in the DTg IAPP+/+/APPSwe
+/- than any of the controls.  

Thus, these results indicate that the DTg IAPP+/+/APPSwe
+/- have exacerbated AD 

pathology compared AD and AD/T1D transgenic animal models, suggesting that IAPP 

“seeds” bring elevated and earlier onset of Aβ burden in comparison to the controls. 
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DTg IAPP+/+/APPSwe
+/- Reveal Increased Cortical and Hippocampal Aβ Density 

Levels. 

As noted above, the DTg IAPP+/+/APPSwe
+/-, Het IAPP+/-/APPSwe

+/-, APPSwe
+/- 

injected with STZ, and APPSwe
+/- animal groups were assessed for Aβ plaques density. 

Density refers to number of plaques per mm2 using scaled measurements in the brain. 

We expect to see an elevated Aβ plaque number in cortical and hippocampal areas in the 

DTg IAPP+/+/APPSwe
+/- animals in comparison to control groups. Figure 13 displays the 

number of plaques per mm2 in cortical with a difference in the DTg IAPP+/+/APPSwe
+/- in 

comparison to all controls. Moreover, for cortical density the Het IAPP+/-/APPSwe
+/- have 

greater Aβ density compared to the APPSwe
+/-. This suggests that these animals 

demonstrate a dose-dependence of the alleles. Observing the hippocampal density, the 

DTg IAPP+/+/APPSwe
+/- have more Aβ plaques per area in comparison to the APPSwe

+/- 
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injected with STZ as T1D control and APPSwe
+/-. The numbers of plaques in the DTg 

IAPP+/+/APPSwe
+/- are elevated at earlier time indicating an acceleration of the AD 

pathology; thus, these results posit that the DTg IAPP+/+/APPSwe
+/- once again have a 

more intensified AD pathology possibly due to the presence of IAPP “seeds”. 
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Colocalization of IAPP and Aβ in Cerebral Plaques in the DTg IAPP+/+/APPSwe
+/- 

 Very recently, it has been shown that patients affected by T2D and AD display 

brain Aβ plaques that colocalize with IAPP (57). To analyze the coexistence of both 

misfolded proteins in the brain of DTg animals, we performed a double 

immunofluoresce staining to label brain amyloid plaques using antibodies that 

recognize specifically Aβ and IAPP proteins. In our study, the DTg IAPP+/+/APPSwe
+/- 

demonstrated a colocalization between IAPP and Aβ plaques emulating what was 

recently discovered in human patients. This suggests that IAPP may directly interact 

with Aβ, acting as a seed, and increasing AD pathology. In Figure 14, immunoreactive 

IAPP to the anti-IAPP antibody is localized in fluorescent red, and the immunoreactive 

Aβ to the 82E1 anti-Aβ antibody is seen as fluorescent green. Further confirmation is 

necessary to validate this co-localization by confocal microscopy. Additionally, looking 

at Figure 15, there is also a fairly strong linear correlation with the DTg 
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IAPP+/+/APPSwe
+/- and the Het IAPP+/-/APPSwe

+/- that the more pancreatic IAPP 

deposition determines more cortical Aβ burden and vice versa (Figure 15, Pearson 

Correlation, r = 0.779). Thus, it can be posited that the more IAPP deposition in the 

mice, the more aggravation in AD pathology. This indicates that IAPP aggregates may 

directly interact by cross-seeding with Aβ and thereby exacerbate AD pathology. 
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Figure 14. Colocalization of IAPP and Aβ in Cerebral Plaques in the DTg

IAPP+/+/APPSwe
+/-. The two following representative images show a colocalization of

IAPP (red) and Aβ (green) in the brain parenchyma of the DTg IAPP+/+/APPSwe
+/-

through double immunohistochemistry. IAPP seems to be surrounded by (A) or adjacent

to (B) Aβ; nevertheless, IAPP aggregates may interact (yellow) by cross-seeding with Aβ

and thereby exacerbate AD pathology. Scale bar: 50 um (A), 100 um (B).

A

B

 

 

 

 



45 

 

 

 

 

0

4

8

12

16

20

24

28

32

P
a

n
cr

ea
ti

c 
IA

P
P

 B
u

rd
en

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cortical Aβ Burden

Het IAPP+/-/APPSwe
+/-

DTg IAPP+/+/APPSwe
+/-

Figure 15. Pancreatic IAPP Burden Correlates with Cortical Aβ Burden in

the DTg huIAPP+/+/APPSwe
+/- and Het IAPP+/-/APPSwe

+/-. This bivariate

scatterplot with regression suggests a fairly strong positive linear relationship between

pancreatic IAPP burden and cerebral Aβ burden. Thus, if one is heightened, the other is

as well. Animals with augmented levels of pancreatic IAPP will cause an increase in

cerebral Aβ burden and vice versa. Pancreatic IAPP Burden = 2.602 + 1.916 * Cortical

Aβ Burden; R2= 0.606; Pearson Correlation, r = 0.779
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Summary 

 In this section, we analyzed the effect of IAPP seeds on AD pathology through 

immunohistochemistry and quantification of cerebral Aβ plaques in the cortex and 

hippocampus of the DTg IAPP+/+/APPSwe
+/-, Het IAPP+/-/APPSwe

+/-, APPSwe
+/- injected 

with STZ (T1D) and APPSwe
+/- mice. We found that the DTg IAPP+/+/APPSwe

+/- exhibit a 

proliferation of Aβ burden levels as well as number of Aβ plaques per area in cortical 

and hippocampal tissue compared to Het IAPP+/-/APPSwe
+/-, APPSwe

+/- injected with STZ 

(T1D), and APPSwe
+/- mice.  In addition, the heterozygous IAPP+/-/APPSwe

+/- animals had 

significant cortical Aβ burden levels and Aβ density in comparison to the APPSwe
+/- 

suggesting a dose-dependence of the IAPP expression. Markedly, we were also able to 

show a colocalization of IAPP and Aβ in cerebral plaques in the DTg IAPP+/+/APPSwe
+/- 

animals corroborating with what was found in T2D-AD patients and non-diabetic AD 

patients. Analzying the DTg IAPP+/+/APPSwe
+/-and Het IAPP+/-/APPSwe

+/-, we are able to 

see a fairly strong linear correlation between pancreatic IAPP deposition and cortical Aβ 

corresponding to the more pancreatic IAPP, the more Aβ plaques, confirming that IAPP 

acting as a seed can intensify AD pathology in vivo. 
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CHAPTER 5 

Discussion 
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Cross-seeding Evidences in T2D and AD. 

With pancreatic IAPP aggregation being present in up to 96% autopsied T2D 

patients (4, 7, 11) and Aβ plaques constantly present in the brain of AD individuals, the 

importance of exploring these two amyloids cannot be stressed enough. IAPP and Aβ 

are concomitant as amyloids in PMDs yet implemented in two different diseases 

affecting disparate areas of the body. IAPP and Aβ both have the propensity to 

aggregate, have 38% sequence homology (6, 30), and induce cell death (31). 

Prominently, IAPP and Aβ follow the seeding-nucleation hypothesis, yet with the many 

similarities they have, we hypothesize that they are able to interrelate with each other 

and act as a seed to propagate protein misfolding. Our study has shown that cross-

seeding of IAPP and Aβ can occur through in vitro and in vivo methods. Within the test 

tube, we were able to show that one oligomeric species is able to diminish the 

nucleation phase, thus speeding up misfolding of the opposite monomeric species. This 

suggests that these amyloidogenic proteins are able to work both ways to assist each 

other in the start of misfolding. Our DTg IAPP+/+/APPSwe
+/- exhibited an exacerbation in 

pathology for both diseases – escalation of BGLs, significantly higher pancreatic IAPP, 

and elevated Aβ burden and density in the cortex and hippocampus.  

A plethora of supporting epidemiological and post-mortem studies exists 

relating T2D and AD in humans, yet it is not well known how one of these diseases 

could exacerbate the other malady. An epidemiological report studied almost 2,000 

individuals without mild cognitive impairment (MCI) and dementia at baseline; 

however, after a follow-up, a total of 334 individuals had some type of MCI with 

diabetes being a key player suggesting diabetes is related to a higher risk of amnestic 
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MCI in a population with an elevated prevalence of this disorder (seen in minorities) 

(60). Another studies of 65 year and older individuals noted that individuals with T2D 

were at a higher risk to develop AD (3-4, 22, 61). Our research intended to explain this 

close association between T2D and AD by a cross-seeding hypothesis, and we 

demonstrated that animals harboring both amyloidogenic proteins, Aβ and IAPP, 

showed an early onset and exacerbated development of both diseases, as demonstrated 

by increased hyperglycemia and higher misfolding protein loads. In vitro studies 

showed that there is acceleration in the aggregation ratio of one protein when the other 

misfolded protein is present in the system. These results could explain the high 

incidence of both diseases in the same individuals due to the interaction of Aβ and 

IAPP. 

Histopathological analyses also posit a role of cross-seeding between T2D and 

AD. It is reported that Aβ and tau are present in the pancreas tissue and in β-cells and 

Aβ being colocalized with IAPP in islet amyloid aggregates of T2D patients (7, 12 30, 

58). Moreover, T2D patients display increased amounts of NFTs and Aβ in the 

hippocampus (7, 14). In AD patients, there is an extensive prevalence of pancreatic 

amyloid compared to non-AD (14, 33, 58). In addition, human T2D/AD brains 

demonstrate an augmented number of cortical Aβ plaques and tau-positive cells 

compared to affected AD brains suggesting that unified T2D/AD patients have an AD 

pathology that is more severe with much more of a rapid progression (23). We have 

observed an increased amount of IAPP load in the pancreas and Aβ load in the brain of 

double transgenic animals. Indeed, the increase of both burdens is correlated. 

Furthermore, in Figure 14A, it appears that IAPP is located in the core of this plaque 
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with an Aβ “halo” surrounding the core. We know that our DTg animals do develop 

IAPP deposition first, so perhaps, IAPP could be generated in the pancreas, circulate 

through the blood crossing the BBB, and going to the brain to become our “first seed.” 

These results go along with the observations made in human tissue, indicating that the 

presence of one of the amyloidogenic proteins raises the aggregation and deposition of 

the other one, indication a possible cross-seeding effect. Recently, IAPP deposition in 

the brain was analyzed in T2D/AD patients and AD subjects. IAPP deposition was 

encountered in the blood vessels and brain parenchyma, and there was a co-localization 

between IAPP and Aβ in the cortex. This co-localization was higher in affected T2D-

AD than AD patients (57). Moreover, we were able to identify a co-localization of Aβ 

and IAPP in cerebral plaques in the double transgenic animal, very similar to what was 

described in humans.  

Relevance of Study for Novel Therapeutics 

Numerous diseases are produced by the accumulation of misfolded aggregated 

proteins including AD, prion diseases, Parkinson’s disease (PD), T2D, and more (16). 

AD and T2D are so prevalent in our society and with the quantity of elderly and 

insalubrious lifestyle of individuals increasing in our future, so too does the severity of 

these diseases. In this study, we are able to emulate in a mouse model the coexistence of 

both T2D and AD that is reported in affected humans. Moreover, cross-seeding may 

perhaps explain in part why there is a co-existence of two PMDs in a single patient in a 

higher prevalence than just by chance as well as the enhanced clinical features in some 

individuals (15, 33). Cross-seeding processes may explicate why certain disease-

affiliated protein aggregates are located in aberrant areas of the affected body (i.e. Aβ 
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colocalizing with IAPP in the pancreas and IAPP-Aβ co-localization in the brain) (33). 

These studies allow analyzing the relationship of these diseases and, therefore, aid in 

developing novel therapeutic strategies by discovering individual disease mechanisms 

by unlocking knowledge from the relationship between T2D and AD. The advantage of 

IAPP and Aβ both being amyloids and, therefore, having common structural features, 

will allow developing new therapeutic interventions to target both proteins, providing 

more effective drugs. Further information from the synergism of these diseases can 

possibly alleviate the number of both T2D and AD affected individuals, decrease the 

prevalence of both of these diseases, and ameliorate the economic burden these diseases 

place on the world. 
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CHAPTER 6 

Conclusions and Future Directions 

  



53 

 

Conclusions 

 In this project, we intended to explore the striking possibility of molecular 

interaction between two amyloidogenic proteins –IAPP and Aβ- through cross-seeding 

of protein misfolding by in vitro and in vivo means. We believe that an enhancement in 

disease pathology could be due to a cross-seeding effect between IAPP and Aβ and 

could elucidate the co-existence of T2D and AD cases seen in human patients (3-4, 15, 

33, 58-59). We planned to examine how each respective aggregate (Aβ or IAPP) affects 

the disparate disease pathology through in vitro aggregation assays, as well as in vivo by 

immunohistochemcial technique utilizing a novel, double transgenic mouse model that 

generates both Aβ and IAPP aggregates. Though further investigations are necessary, 

we can conclude through our preliminary results that: 

 We were able to exhibit that protein misfolding and aggregation can be 

advanced through homologous and heterologous seeding by utilizing synthetic 

peptides for both diseases where IAPP oligomeric species incubated with 

synthetic Aβ-42 and Aβ-42 oligomers incubated with synthetic IAPP were able 

to accelerate protein misfolding and aggregation. Each of these heterologous 

seeds, were able to shorten the lag phase for polymerization indicating the 

existence of a cross-seeding mechanism between Aβ and IAPP in both 

directions in vitro. 

 To determine the influence of Aβ aggregate “seeds” on T2D pathology in a 

double transgenic mouse model, the DTg IAPP+/+/APPSwe
+/- mice have 

significantly elevated BGLs in comparison to the control Het IAPP+/-/APPSwe
+/+, 
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IAPP+/+, and IAPP+/-. This indicates that the presence of Aβ peptide is able to 

aggravate T2D symptoms (hyperglycemia) in an in vivo model. 

 IAPP burden levels in the pancreas are highest in DTg IAPP+/+/APPSwe
+/- 

animals in comparison to the Het IAPP+/-/APPSwe
+/+ and IAPP+/+ by 

immunohistochemical and quantification analysis. The heterozygous IAPP+/-

/APPSwe
+/- mice have T2D-like pathology, although heterozygous IAPP+/- do not 

develop any diabetic-like pathology at any age. Thus, the mere presence of Aβ 

peptide in the diabetic animals induces a higher deposition of IAPP in the 

pancreas confirming a possible close relationship between Aβ and IAPP 

aggregation. 

 To evaluate the influence of IAPP aggregate “seeds” on AD pathology in a 

double transgenic mouse model, the DTg IAPP+/+/APPSwe
+/- exhibit increased 

cortical and hippocampal Aβ burden levels; and Aβ plaque density compared to 

controls through Aβ immunostaining. These results indicate that the presence of 

misfolded IAPP in the brain exacerbates AD pathology in DTg animals. In 

addition, colocalization between IAPP and Aβ was seen in DTg 

IAPP+/+/APPSwe
+/- cerebral plaques. Moreover, there is also a fairly strong linear 

correlation with the DTg IAPP+/+/APPSwe
+/- and the Het IAPP+/-/APPSwe

+/- that 

the more pancreatic IAPP deposition determines more cortical Aβ burden and 

vice versa. This indicates that IAPP aggregates may directly interact by cross-

seed with Aβ and thereby exacerbate AD pathology.  
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Future directions 

Characterization and Quantification of In Vitro Cross-seeding. 

 Currently, after obtaining putative homologous and heterologous seeding in 

vitro assay, we plan to characterize and quantify the cross-seeding assay through use of 

immunogold labeling and TEM which will allow us to contrast the two proteins, as well 

as dot blot after fractionation and/or sedimentation assay to quantify the soluble and 

insoluble peptide for both IAPP and Aβ seeding assays. Utilizing immunogold labeling 

will result in colloidal gold particles binding to these proteins, and due to gold’s high 

electron density, it escalates electron scatter resulting in high contrast allowing us to use 

TEM to conjugate by IAPP and Aβ’s different size. For the immunogold labeling plus 

TEM, we want to prove that IAPP and Aβ are localized in the same polymer. There is 

difficulty in quantifying these assays; thus, we can attempt a sedimentation assay. 

Briefly, in the sedimentation assay, two reactive antibodies to recognize IAPP and Aβ 

will be incubated with the fractionated proteins with different time points taken in order 

to quantify the protein concentration of both proteins. In addition, further work is 

necessary such as addition of more controls - incubation with the opposing monomeric 

seed-free or incubation with a different proteins aggregate (i.e. albumin).  

  Biochemical Quantification of Amyloids in Brain and Pancreas. 

 Additionally, we will perform biochemical analysis of the brain and pancreas 

homogenates to quantify the IAPP and Aβ levels in each tissue. We will utilize enzyme-

linked immunosorbent assay (ELISA) measurements of Aβ-42 (in brain) and IAPP 

(pancreas) from the animal groups. For our case, we will use a two-step fractionation in 
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which we will centrifuge brain or pancreatic homogenate to obtain a PBS solvent 

soluble fraction that will measure soluble monomers/oligomers, and a formic acid 

solvent insoluble fraction measuring insoluble aggregates which refer to aggregated 

forms. Then, we will run brain and pancreas through both ELISAs 1) recognizing 

human Aβ and 2) recognizing human IAPP. Briefly, to make each tissue homogenate, 

mouse brain/pancreas will be weighed and calculated to add 10% of the weight/volume 

of PBS containing protease inhibitor. The brain/pancreas will be homogenized and 

frozen in liquid nitrogen and stored at -80 °C until use. Homogenate will be placed in 

Beckman centrifuge tubes and centrifuged at 32,600 rpm at 4°C for 1 hour. The PBS 

supernatant will be collected and frozen in liquid nitrogen. The insoluble pellet will be 

transferred and resuspended in formic acid solution. The sample is then sonicated to 

obtain an apt homogenous solution. After sonication, the samples are once again 

centrifuged. The formic acid fraction is collected, diluted in EC buffer, frozen in liquid 

nitrogen, and stored at -80 °C until use for ELISA quantification.  

Exogenous Cross-seeding of Aβ on T2D and IAPP on AD. 

To further investigate our cross-seeding hypothesis between in Aβ in AD and 

IAPP in T2D, we plan to exogenously induce cross-seeding in vivo by adding external 

seeds (peripherally and intracerebrally). The idea is to introduce exogenously 

heterologous IAPP seeds in Tg animals of AD (APPSwe
+/- or Tg2576) and Aβ seeds in 

T2D (huIAPP+/+) and exacerbate the disease’s pathology. It has been reported that in 

vivo amyloidogenic heterologous oligomers can be injected and are able to accelerate 

the seeding process. In our laboratory, Tg2576 animals and WT littermates were 

injected intra-peritoneally (i.p.) with RML prions at 45 and 365 days old. The Tg2576 



57 

 

mice developed clear clinical signs of prion disease quicker than the non-Tg controls; in 

addition, misfolded prion protein (PrPSc) formation was accelerated in prion-injected 

Tg2576, as well (33). Aβ is proven to generate AD under experimental conditions, yet 

IAPP is unknown.  Another example, amyloid beta-derived diffusible ligands (ADDLs) 

were injected into the brain and diffused throughout the brain - even in newly formed 

aggregated plaques (19, 26). Our lab has recapitulated this by injecting different tissues 

(brain, blood, pancreas), models (Tg2576, APP/PS1, huIAPP), and different proteins 

(synthetic Aβ, IAPP). In this future experiment to demonstrate the cross-seeding effect 

of Aβ on IAPP aggregates, we will take the previously described huIAPP+/+ mice and 

inject by i.p. route human AD patient or aged Tg2576 brain homogenates, as well as 

healthy human and aged non-transgenic littermates brain homogenates in huIAPP+/+ 

mice for controls. Other control groups will likely be implemented including another 

PMD inoculum such as PD in order to see if one is a stronger seed than the other, as 

well as a non-PMD brain disease, such as hydrocephalus or schizophrenia.  The animals 

will be injected at 3 weeks of age, and the progression of a diabetes-like pathology will 

be followed overtime by taking BGL overtime; insulin resistance will be measured at 

the age of 16 weeks. The animals will be sacrificed at 20 weeks of age (Figure 16). This 

is the age when T2D pathological actions start to appear in the huIAPP+/+ mice; thus, we 

will be able to analyze the additive effect of exogenously introduced Aβ deposits in the 

development in T2D. The pancreatic tissue will be assayed by utilizing 

immunohistochemical and biochemical techniques. We expect to see a more robust 

acceleration of IAPP deposition in the pancreas and more severe T2D clinical signs in 
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the AD homogenate i.p. injected animals compared to the healthy homogenate injected 

animals with both human and mouse inocula. 

Figure 16. Exogenous Cross-seeding of Aβ on T2D. This figure shows the timeframe

of this experiment to introduce Aβ seeds through i.p. injection 100 μL of AD human or

aged Tg2576 in huIAPP+/+ mice (n=7/group). Animals will be injected at 3 weeks of age,

insulin resistance will be assessed at 16 weeks and will be sacrificed at 20 weeks

checking BGLs monthly overtime.

n = 7 each, huIAPP+/+ injected with AD human brain or with normal human brain
n = 7 each, huIAPP+/+ injected with aged Tg2576 brain or aged non-transgenic brain
n = 7 each, huIAPP +/+ injected with alternate PMD or non-PMD

Inject 3 weeks Sacrifice 20 weeks

Blood Glucose Levels Check Analyze pancreas

 

To demonstrate the cross-seeding effect of IAPP on AD pathology, we will 

introduce IAPP seeds exogenously by injecting human T2D pancreas or aged huIAPP+/+ 

pancreas homogenate through intra-cerebral (i.c.) route into the previously described 

Tg2576 AD model. Tg2576 (n=7/group) will be injected at 2 months of age with either 

human: T2D pancreas, T1D pancreas, and healthy pancreas; or mouse: aged huIAPP+/+ 

pancreas, or aged–matched WT pancreas treated with STZ (T1D), and non-diabetic WT 
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pancreas will be injected. A group of WT animals will be injected i.p. with 

Streptozotocin (STZ) to create a T1D mouse model, and the pancreas homogenate of 

these animals will be injected i.c. in order to create a Type 1 diabetic control injected 

group. This is a relevant control in that it will help elucidate the role of amylin and 

create a homogenate to be injected with a paucity of amylin without aggregates. 

Behavior will be assessed at 8.5 months by the hippocampal dependent Barnes maze, 

before any AD pathology would normally occur in these animals, and sacrificed at 9 

months (Figure 17). TopScan 2.0 tracking software will be used to track the animal’s 

movements, as well as data will be analyzed utilizing GraphPad Prism. The brain will 

be assayed by utilizing immunohistochemical and biochemical techniques to analyze 

any anomalies in the disease-like pathology of these Tg2576 animals. We expect to see 

a more robust acceleration in the T2D homogenate i.c. injected animals compared to the 

healthy homogenate and T1D induced. 
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Figure 17. Exogenous Cross-seeding of IAPP on AD and Aβ Aggregates. This figure

shows the timeframe of this experiment to introduce IAPP seeds through i.c. injection 10

μL of aged huIAPP+/+ pancreas in Tg2576 mice (n=7/group). Animals will be injected at

2 months of age and will be sacrificed at 9 months. Behavior will be assessed at 8.5

months by Barnes maze.

Inject 2 months Barnes maze 8.5 months Sacrifice 9 months

n = 7/each group, Tg2576 injected human T2D , T1D, and 

healthy pancreas

n = 7/each group, Tg2576 injected  aged huIAPP+/+, T1D, 

and non-diabetic WT mouse pancreas

Analyze brain 
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CHAPTER 7 

Materials and Methods 
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In Vitro Aβ-42 and IAPP Preparation and Aggregation. 

Aβ (1-42) synthetic peptide powder (Yale University) was dissolved (1 mg/mL) 

in 50/50 acetonitrile and water, frozen in liquid nitrogen, and lyophilized overnight. 

Next, the lyophilized Aβ was then dissolved 400 µl/mg in 10 mM NaOH (~pH 12) and 

vortexed. The high pH is away from Aβ’s isoelectric point (~pH 5.5) which will prevent 

Aβ from aggregating (62). Using a 30 KDa cut-off filter, the material was centrifuged 

for 12 min. at 14,000 X g at 4°C. This guarantees the solution will contain just be 

monomeric Aβ form, but not oligomers, so called “seed-free”. To quantify the protein 

concentration, BCA assay (Micro BCA Protein Assay, ThermoScientific) was used. 

Small aliquots were made and stored at -80 °C until use. Next, we ran an aggregation 

assay to test the quality of our Aβ seeds. Our Aβ seeds were diluted at different 

concentrations (1 μM, 2 μM, and 5 μM) in 10 mM NaOH (~pH 12) to determine the 

impeccable concentration to use for establishing a practical standard curve with an 

appropriate lag phase; thus, when we added the IAPP aggregates for the cross-seeding 

assay, we would see an acceleration in the lag phase demonstrating quicker amyloid 

accumulation compared to the standard curve. 100 µl of Tris-Cl (200 mM, pH 7.4) 

buffer was added to each well of a 96-well standard opaque plate on ice as well as 20 µg 

of monomeric Aβ-42 seed-free in each well. 10% and 1% of IAPP oligomers of the 20 

µg of Aβ-42 seed-free was added; the control was an insertion of the buffer the 

oligomer was originated with the final volume brought to 180 µl by adding sterile 

filtered water. 20 µl of 50 µM Thioflavin T (ThT) was added, and the fluorescence read 

by a fluorometer at excitation 435 and emission 485 nm with intensity over time. The 

ThT assay is a well-established in vitro staining for amyloid that recognizes and binds 
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amyloid fibrils; thus, when bound, the ThT emission peak changes allowing us to 

monitor amyloid formation (55). The plate was covered and shaken with cyclic 

agitation (500 rpm x 1 minute / no shaking 29 minutes) at 20°C while reading 

fluorescence every 24 hours or so.  

IAPP synthetic peptide powder (Yale University) was dissolved (1 mg/mL) in 

50/50 acetonitrile and water, frozen in liquid nitrogen, and lyophilized overnight. Next, 

the lyophilized IAPP was then dissolved 400 µl/mg in 2 mM HCl (~pH 2) and vortexed. 

As previously described, a 30 KDa cut-off filter was used to filter and then the material 

was centrifuged for 12 min. at 14,000 X g at 4°C. To quantify the protein concentration, 

BCA assay was used. Small aliquots were made and stored at -80 °C until use. Next, we 

ran an aggregation assay to test the quality of our IAPP seeds following the same reason 

as above – to establish a template standard curve. One deterrent is the fact that IAPP is 

known to aggregate much quicker than Aβ; thus, it would be challenging to obtain a 

standard curve with a suitable lag phase. This was accomplished by the ThT Assay was 

done by adding 8 µg of prepared IAPP seed-free and buffer per well in a 96-well 

standard opaque plate on ice in sextuplicates. 10% and 1% of Aβ oligomers from the 8 

µg of IAPP seed-free was added for the heterologous oligomeric seeds with the control 

being supplemented with the buffer the oligomer was originated (100 mM Tris-Cl). 20 

µl of 50 µM ThT was added, and the plate was covered and shaken with cyclic agitation 

(450 rpm x 1 minute / no shaking 29 minutes) at 20°C while reading fluorescence over 

time by a fluorometer at excitation 435 and emission 485 nm every hour or so. 
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In vitro Aβ and IAPP Oligomer Preparation. 

The aliquoted Aβ and IAPP seed-free peptide was diluted to a final 

concentration of 0.05 µg/µL in 100 mM Tris-Cl, pH 7.4. 400-500 µL of the diluted 

solution was placed in an Eppendorf low-binding tube and thermomixed at 25°C, 450 

rpm for 5 hours. After the 5 hours, small aliquots (20-30 μL) were made and stored at -

80°C until further use for the seeding experiments. For IAPP oligomer preparation, the 

aliquoted IAPP seed-free peptide was diluted to a final concentration of 0.04 µg/µL in 

100 mM Tris-Cl buffer. 400-500 µL of the diluted solution was placed in an Eppendorf 

low-binding tube and mixed at room temperature for 450 rpm for 90 minutes. After the 

90 minutes, small aliquots (20-30 μL) were made and stored at -80°C until further use 

for the seeding experiments. For both peptides, the concentration of oligomers was 

measured by BCA. 

Animal Models. 

The AD transgenic mouse model Tg2576 (Jackson Laboratories) are 

heterozygous animals on a S129 background over-expressing the 695 amino acid 

isoform of human APP harboring a double mutation (Lys670Asn, Met671  Leu) 

found in a large Swedish family with early-onset AD. These animals have a 5-fold Aβ-

40 and 14-fold Aβ-42 production and have behavioral impairments and amyloid 

accumulation around 9-10 months (56). The generation and initial characterization of 

these mice has been reported previously (56). The human IAPP (huIAPP) homozygous 

transgenic mouse (Ins2-IAPP1) is a T2D animal model that over-expresses human IAPP 

on a FVB background. These animals are characterized as developing diabetic-like 

traits such as high BGLs, impaired insulin secretion, β-cell death, and aggregation of 
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IAPP at around 20 weeks of age. Important to note, the heterozygous have not been 

reported to develop islet amyloid deposits or spontaneous T2D (25). The generation and 

initial characterization of these mice has been previously reported (25). To study the 

possibility of cross-seeding of protein misfolding on the synergistic interaction between 

T2D and AD, we generated T2D/AD DTg mice by breeding these transgenic models of 

both maladies. We crossed the T2D-like huIAPP/FVB mouse with the Tg2576/S129 

AD model in which the founders gave us a set of viable heterozygotes that were then 

backcrossed with the parental homozygous transgenic huIAPP to yield a F2 generation 

of varied genetic constructs, including the DTg IAPP+/+/APPSwe
+/-

 model that harbors 2 

copies of human IAPP and one copy of human mutant APP. From the F2 generation, we 

also obtained the Het huIAPP+/-/APPSwe
+/-, huIAPP+/-, and the huIAPP+/- mice. The exact 

huIAPP genetic load of the DTg animals and non-transgenic littermates for controls was 

reassured by quantitative PCR (Jackson Laboratories). All groups are composed by 5-7 

animals. Since amyloid plaques start to appear around 9 months old, the transgenic 

animals were sacrificed at 8 months and 20 days to be able to analyze the acceleration 

of brain amyloidosis before their regular pattern of deposition. Before sacrificing the 

animals, BGLs were measured by a tail vein nick using Contour blood glucose test 

strips (Bayer Healthcare) after 16 hours of fasting. The animals were then sacrificed by 

CO2 inhalation and intracardially perfused with 5 μM anticoagulant 

Ethylenediaminetertraacetic acid (EDTA) PBS buffer at 250 days old extracting the 

brain and pancreas to analyze through immunohistochemistry. One half of each tissue 

was post-fixed in formalin while the other half was snap-frozen and kept at -80 °C. 

Animals were housed in groups of up to 5 in individually ventilated cages under 
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standard conditions (22 °C, 12 hour light–dark cycle) receiving food and water ad 

libitum. All animal experiments were approved by the Institutional Animal Care and 

Use Committee at The University of Texas Health Science Center in Houston Medical 

School and accordance with NIH regulations. 

Generation of STZ Injected APPSwe
+/-

 (T1D Control). 

For a T1D control we had a set of animals that develop clinical signs of diabetes 

(hyperglycemia and low insulin production by β-cell death) but without over-expression 

of human IAPP. This would prove that the augmented AD pathology is due to 

aggregated IAPP and not to the hyperglycemic environment or the reduction of insulin 

levels that also happen in the huIAPP animal model. STZ is known to be toxic to 

insulin-producing β-cells when injected and ultimately destroys them, resulting in a 

diabetic model with increased hyperglycemia. STZ (Sigma-Aldrich) was diluted in 

sodium citrate buffer (10mM, pH 4.5) and injected intraperitoneally at 110 mg/kg per 

day during two consecutive days to the overnight fasted APPSwe
+/-. Animals were 

sacrificed at 8 months and 20 days of age. 

Immunohistochemistry (IHC). 

Brain and pancreas were removed, post-fixed into fixative solution (10% 

formalin) and embedded in paraffin. Briefly, after one week post-fixation in formalin, 

tissues were dehydrated in serial graded alcohol, immersed in xylene and embedded in 

paraffin. Serial 10 μm-thick sections from all animal groups (5 sections/stain/animal) 

were processed in parallel for immunostaining using the same solutions to minimize 

variability in staining conditions. Tissue was paraffin embedded and sliced by 

microtome mid-sagitally at 10μm. Sample slides were then deparaffinized and hydrated. 
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Briefly, slides were immersed in xylene for 15 min, in 100% ethanol, 95% ethanol, 90% 

ethanol, 80% ethanol, 70% ethanol, and dH2O for about 5 min each followed by three 

PBS for 5 min. After blocking the endogenous peroxidase activity with 3% H2O2 - 10% 

methanol in PBS, pH 7.4, for 20 min and washed, slides were incubated overnight in 

primary antibody mouse IgG anti-human Aβ 82E1 1:1000 (IBL) and/or rabbit anti-

amylin [25-37] 1:1000 (Peninsula Laboratories) in PBS Triton Buffer 0.2%. After 

washing, primary antibody was detected by incubating 1 hour at room temperature in 

PBS Triton Buffer 0.2% and Alexa Fluor 488 goat anti-mouse (to visualize Aβ) and/or 

594 goat anti-rabbit (to visualize IAPP). Finally, after washing, slides were covered 

with mounting medium with DAPI (Vector) and visualized under an epifluorescent 

microscope (DMI6000B, Leica) and analyzed in Image J software. 

Image Analysis. 

 Images were taken using a Leica DMI600 microscope at 20X objective for 

pancreas and 5X for hippocampus and cortex with threshold intensity remaining 

constant. We analyzed the hippocampus and cortex due to the extensive reports of AD 

pathology affecting chiefly these regions in transgenic mice and human patients (16, 

27). Photomicrographs were taken and imported to Image J 1.45s software and 

converted into black and white images. Pancreas and brain areas are outlined and the 

number of pixels is enumerated, and those units converted into um2 for quantification. 

For pancreatic IAPP burden calculations, we use the percentage of area stained to total 

area for IAPP load. In the brain, we quantify Aβ burden and Aβ plaque number and 

density. Aβ burden/load is quantified by the percentage of area stained to total area 

analyzed. Aβ plaque density is measured as how many plaques per area analyzed 
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utilizing scaled measurements. Each analysis was done by a single examiner blinded to 

sample identities. 

Statistical Analysis.  

Graphs are expressed as means ± standard error of the mean (s.e.m.). After 

confirming normal distribution with Skewness and Kurtosis statistic test, one way 

analysis of variance (ANOVA) followed by a post-hoc Tukey's multiple comparisons 

test were used to analyze differences among groups. For linear correlation, Pearson 

correlation coefficient was used. Statistical differences for all tests were considered 

significant at the p<0.05 level. Statistical analysis was performed using GraphPad Prism 

5.0 software (GraphPad Software Inc).  
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