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Abstract

Background: Human serum albumin (HSA) is the most abundant protein in blood plasma, having high affinity binding sites
for several endogenous and exogenous compounds. Trimethoxy flavone (TMF) is a naturally occurring flavone isolated from
Andrographis viscosula and used in the treatment of dyspepsia, influenza, malaria, respiratory functions and as an astringent
and antidote for poisonous stings of some insects.

Methodology/Principal Findings: The main aim of the experiment was to examine the interaction between TMF and HSA at
physiological conditions. Upon addition of TMF to HSA, the fluorescence emission was quenched and the binding constant
of TMF with HSA was found to be KTMF= 1.060.016103 M21, which corresponds to25.4 kcal M21 of free energy. Micro-TOF
Q mass spectrometry results showed a mass increase of from 66,513 Da (free HSA) to 66,823 Da (HAS +Drug), indicating the
strong binding of TMF with HSA resulting in decrease of fluorescence. The HSA conformation was altered upon binding of
TMF to HSA with decrease in a-helix and an increase in b-sheets and random coils suggesting partial unfolding of protein
secondary structure. Molecular docking experiments found that TMF binds strongly with HSA at IIIA domain of hydrophobic
pocket with hydrogen bond and hydrophobic interactions. Among which two hydrogen bonds are formed between O (19)
of TMF to Arg 410, Tyr 411 and another one from O (7) of TMF to Asn 391, with bond distance of 2.1 Å, 3.6 Å and 2.6 Å,
respectively.

Conclusions/Significance: In view of the evidence presented, it is imperative to assign a greater role of HSA’s as a carrier
molecule for many drugs to understand the interactions of HSA with TMF will be pivotal in the design of new TMF-inspired
drugs.
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Introduction

Flavonoids are naturally occurring polyphenolic compounds

used as food supplements which has anti-allergic, anti-inflamma-

tory, anti-microbial and anti-cancer activity. Dietary flavonoids

can be detected in plasma as serum albumin-bound conjugates and

are receiving increasing attention as potential prophylactics against

a variety of human diseases, in particular cardiovascular disease

and cancer [1–3]. A large number of mechanisms of action have

been attributed to flavonoids, including antioxidant properties [4–

7] and effects on enzymes and signal transduction pathways. The

anti-oxidative protections are related to their binding modes to

DNA duplex and complexation with free radicals in vivo. However,

flavonoids are known to inhibit the activities of several enzymes

such as calcium phospholipid-dependent protein kinase, tyrosine

protein kinase from rat lung, phosphorylase kinase and DNA

topoisomerases; these cases emphasize the additional importance

of flavonoid-protein interactions [8–10].

Flavonoids display moderate affinities for albumins with binding

constants in the range of 1–156104 M21 [11]. Also, it is known

that flavones and flavonols bind very tightly to albumin. Flavones

are a class of flavonoids based on the backbone of 2-phenyl-1-

benzopyran-4-one. Flavones which are used in anti-depression

treatment are known to inhibit human cytochrome P450 (CYP)

enzyme activities [12]. Hydrophobicity, the presence/absence of

some functional groups, steric hindrance and spatial arrangement

all play important roles in the affinity of natural polyphenols

towards plasmatic proteins [13].

Tri-methoxy flavone (TMF) is a naturally-occurring compound

present in Andrographis viscosula. This plant has been used in

Ayurvedic medicine to cure many diseases. The plant’s extract

exhibits antityphoid and antifungal activities. This extract also

reported to possess antihepatotoxic, anti-HIV, antibiotic, antima-

larial, antihepatitic, antithrombogenic, antiinflammatory, anti-

snake venom, and antipyretic properties to mention a few, besides

its general use as an immuno-stimulant agent. Various species of

Andrographis are used in the treatment of dyspepsia, influenza,

malaria and respiratory functions and as a astringent and antidote

for poisonous stings of some insects [14–16]. Although TMF has

several clinical applications, however, its molecular interaction

with human serum albumin has not been reported.

Human serum albumin is a major extracellular protein with

high affinity for a wide range of metabolites and drugs [17–25]

and its abundance is high in the blood plasma (40 mg ml21)

PLoS ONE | www.plosone.org 1 January 2010 | Volume 5 | Issue 1 | e8834



[26,27]. The most important physiological roles of this protein are

to bring such solutes into the bloodstream and deliver them to the

target organs and to maintain the pH. In addition to its ordinary

clinical applications such as hypovolemic shock treatment, many

investigators have attempted to utilize HSA as carrier to deliver

various drugs to their specific target organs. HSA is a single non-

glycosylated, 67 kDa polypeptide, which folds into a heart shaped

protein with approximately 67% a-helical content [28–34]. It is a

globular protein composed of three structurally similar domains

(I–III), each consisting of two subdomains (A and B) and stabilized

by 17 disulfide bridges. The two primary binding sites (site I and

site II) are hydrophobic cavities located in subdomains IIA and

IIIA, respectively. Most compounds binds to these two sites with

an affinity constant of 104 to 106 M21 [28,34,35]. In addition,

seven binding sites for fatty acids are localized in sub-domains IB,

IIIA and IIIB, and on the sub-domain interfaces [27,32,36]. HSA

also has a high-affinity metal binding site at the N-terminus [27].

There are many reports containing studies on HSA structure and

its interactions with different ligands [18–24]. Very recent reports

from our group [37,38] show that the natural products of

pentacyclic triterpenoids, betulinic acid and feruloyl maslinic acid

isolated from Tephrosia calophylla and Tetracera asiatica form strongly-

bound ligand–HSA complexes. Interactions with plasma proteins,

especially HSA, are important factors to be considered in drug

development. The interactions of TMF with HSA are significant

for understanding its transport and distribution and to clarify its

action mechanism and pharmaceutical dynamics.

In this study, the interactions of TMF with HSA was

investigated by using fluorescence emission, circular dichroism

(CD), micro-TOF Q mass spectrometry and molecular docking

studies.

Materials and Methods

Isolation and Purification of TMF
The whole plant of A. viscosula (2.5 Kg) was shade dried,

powdered, and extracted with n-hexane (5133), Me2CO(5133),

and MeOH(5133), successively. The n-hexane (30 g) was purified by

column chromatography over silica gel, and eluted with a step

gradient of n-hexane and EtOAc. The eluates at n-hexane:EtOAc

ratios of 8:2, 7:3, and 1:1 were purified individually by repeated

silica gel chromatography followed by preparative TLC (developed

with benzene/EtOAc, 9:1) to yield 10 mg of tri-methoxy flavones

[16]. The 13C NMR spectrum shows that the structure of this

fraction was established as 5, 7, 29-trimethoxyflavone [16]. The

molecular mass is 312.31 Da and its molecular formula is C18H16O5

(Figure 1).

Preparation of Stock Solutions
Fat free human serum albumin (a kind gift from Virchow

biotech Pvt Ltd, Hyderabad) was dissolved in physiological

aqueous solution of 0.1 M phosphate buffer pH 7.2 to the final

concentration of 1.5 mM protein according to the previous

procedure [37]. It was observed that HSA is pure without any

contamination. Fluorescent tri-methoxyflavone was prepared

(2 mM) in 20:80 ethanol: water mixture. From our previous work,

a solution containing 20% ethanol has no effect [37,38], on HSA

secondary structure. The optimum physiological pH for HSA was

set to 7.2 as it has the maximum absorption at this pH [37], thus,

for all the experiments, we have used 0.1 M phosphate at pH 7.2

as a physiological buffer. The maximum binding time taken by the

TMF to HSA was also examined via absorption, fluorescence, CD

spectra, from the data it was found to be 10 min is the maximum

binding time taken, hence we used 10 minutes incubation for all

the experiments. All other chemicals are analytical grade

purchased from Sigma Aldrich.

Fluorescence Spectroscopy
The fluorescence emission spectra were recorded on a Jobin-

Yvon, FluoroMax-3 in a 1 cm quartz cell using excitation

wavelength of 285 nm. The excitation and emission slit widths

are 5 nm and 5 nm, respectively. The emission spectra were

recorded from 300 to 550 nm. The final concentrations of the

TMF used for absorption spectra were 0.005, 0.01, 0.02, 0.03,

0.04, 0.05, 0.06, 0.07 and 0.08 mM in 10 mM phosphate buffer

pH 7.2, and with a fixed HSA concentration 0.025 mM. TMF has

fluorescence in the range of 451 nm. However the fluorescence of

TMF has been subtracted from the HSA-TMF spectra.

Electrospray Ionisation Mass Spectrometry (microTOF-Q)
Positive ion mode mass spectra were recorded on a micro-TOF

Q (Bruker Daltonics, Bremen, Germany) equipped with an

electrospray ionization source. For these measurements, the

HSA concentration used was 0.15 mM and the TMF concentra-

tion was 0.2 mM. Free HSA and HSA–TMF were prepared in

5 mM ammonium acetate (pH 7.2) mixed with 20% acetonitrile,

and introduced into the mass spectrometer source with a syringe

pump (KD Scientifics Inc., Hilliston, MA) at 3 mL/min. Electro-

spray was performed by setting the spray voltage at 4.5 kV. The

Time-of-Flight (TOF) pressure was maintained at less than

361027 Torr. Scanning was performed over an m/z range of

50–3000, with collision energy of 10 eV. Data were averaged for

2 min and then smoothed using the Gaussian algorithm in the

Bruker data analysis 3.4 software program. The instrument was

calibrated using ES Tuning Mix (Agilent Technologies, part

No. G2421-60001), diluted 1:60 (v/v) times with 95% acetonitrile

and injected through a divert valve just before sample application.

Circular Dichorism Spectroscopy
Circular dichroism (CD) spectra of HSA and HSA–TMF were

recorded with a Jasco J-810 spectropolarimeter, using a quartz cell

with a path length of 0.02 cm. Five scans were accumulated at a

scan speed of 50 nm min21, with data being collected at every

1 nm from 190 to 300 nm. An ellipticity of CD spectra is

expressed in millidegrees. The protein secondary structure was

calculated using CDNN 2.1 software. For CD studies, the final

Figure 1. Chemical structure of Tri-methoxy flavone. The
molecular mass is 312.31 Da and its molecular formula is C18H16O5.

doi:10.1371/journal.pone.0008834.g001
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concentration of HSA was 0.025 mM and spectra were recorded

at TMF concentrations of 0.01, 0.025 and 0.08 mM. Tempera-

tures of samples were maintained by Jasco J-715 peltier.

Molecular Modeling and Docking
Genetic algorithm. GOLD (Genetic Optimization for

Ligand Docking), a docking program based on genetic algorithm

[39–42] was used to dock the ligands to the protein active sites.

Genetic algorithm is a computer program that mimics the process

of evolution by structures called chromosomes. Each of these

encodes a possible solution (in terms of a possible ligand-receptor

interaction) to the docking problem and may be assigned fitness

score based on the relative merit of that solution. Each

chromosome encodes an internal conformation and protein

active site, and includes a mapping from hydrogen bonding sites

in the ligand and protein. On decoding a chromosome, least-

squares fitting process is employed to position the ligand within the

active site of the protein. The fitness of a decoded chromosome is

then a combination of the number and strength of the hydrogen

bonds that have been formed in this way and of the vander Waals

energy of the bound complex.

Preparation of the protein and the ligand. A crystal

structure of HSA (PDB ID: 1AO6) was obtained from the

Brookhaven Protein Data Bank. A three dimensional structure of

TMF was built and the geometry optimized using the discover3

feature in the InsightII/Builder software package. Water molecules

and ions were removed (including ordered water molecules) and

hydrogen atoms added at appropriate geometry; groups within the

protein were ionized as required at physiological pH. The structure

of HSA was protonated in InsightII (www.accelrys.com). The

genetic algorithm implemented in GOLDv3.2 was applied to

calculate the possible binding conformations of the drug.

Genetic algorithm parameters used. The parameters used

for genetic algorithm were active site radius-30; Population size-

100; Number of Islands-5; Niche size-2; Selection pressure-1.1;

Migrate-10; Number of operators-100,000; Mutate-95; Crossover-

95. The default speed selection was used to avoid a potential

reduction in docking accuracy. Fifty genetic algorithm runs with

default parameter settings were performed without early

termination. To estimate the protein-ligand complexes, scoring

function, GOLD score was employed [41].

During docking process a maximum of 10 different conforma-

tions were considered for the TMF. Among which the best and the

most three energetically favourable conformations with fairly

similar GOLD fitness score of each ligand was selected. The

conformer with the lowest binding free energy with highest fitness

score was used for further analysis [41,43].

Results and Discussion

Fluorescence Spectroscopy
Fluorescence emission spectroscopy was used to find the drug-

protein interactions and measure binding affinity [44]. The

emission fluorescence of HSA comes from tryptophan, tyrosine,

and phenylalanine. Phenylalanine has a very low quantum yield

and the fluorescence of tyrosine is almost totally quenched if it is

ionized or present near to an amino group, a carboxyl group or a

tryptophan. Thus, the fluorescence of HSA is dominated by the

tryptophan emission, and the emission spectrum of HSA is mainly

from a single residue Trp-214 in subdomain IIA. A change in the

intrinsic fluorescence intensity of HSA was due to the tryptophan

residue when small molecules bound to HSA [45].

Figure. 2A shows the fluorescence emission of HSA is obtained

at 362 nm. Different concentrations of TMF were used to study

the interaction with HSA. Our results showed that, with increasing

concentrations of TMF (0.005 to 0.08 mM) and a fixed

concentration of HSA (0.025 mM), the maximum fluorescence

(362 nm) of HSA was quenched upon binding of TMF

(Figure. 2A). This indicates that TMF binding to HSA causes

microenvironment changes in HSA and leads to HSA-TMF

complexes. TMF also shows fluorescence emission at 451 nm (see

Figure. 2A). Similar fluorescence quenching results were reported

for several ligands [46,47].

The binding constant can be calculated from the modified

Stern-Volmer plot according to the following equation [48]

Log F0{Fð Þð Þð Þð Þð Þð Þð Þð Þð Þð Þ=F½ � ~ log KSz n � log Qð Þð Þð Þð Þð Þð Þð Þð Þð Þð Þ ð1Þ

where n is the slope (i.e. the number of binding sites), KS is the

binding constant and Q is the quencher concentration. The result

indicated a good linear relationship (see Figure. 2B), suggesting

that HSA interacts with TMF in a one-to-one ratio. The binding

constant KTMF was calculated from the intercept as

1.060.016103 M21, which indicates an adequate binding of

TMF to the protein. The calculated binding constants show a

comparatively weak ligand-protein interaction, corresponds to

other strong ligand-protein complexes like monoclonal antibodies

with binding constants from 107 M21 to 1010 M21 [49]. It is

important to note that natural products showed binding constants

which are in the order of magnitude smaller than 107 M21 to

1010 M21. Other flavonoids like, quercitin binds with an affinity of

Figure 2. Fluorescence emission spectra of HSA–TMF in 0.1 M
phosphate buffer pH 7.2, lex=285 nm, temperature=2561uC.
A) Free HSA (0.025 mM) and free HSA with different concentrations of
TMF (0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08 mM). B) Plot of log
(dF/F) against log [Q]. lex= 285 nm lem= 362 nm.
doi:10.1371/journal.pone.0008834.g002
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1.466104 M21 [50] and resveratrol a polyphenol binds with an

affinity of 1.646105 M21 [51].

The standard free energy change can be calculated according

to:

DG0
~ {RT ln K ð2Þ

where DG is the free energy, K is the binding constant at the

corresponding temperature (which can be obtained from fluores-

cence data as described above) and R is the gas constant. Thus, the

standard free energy change is calculated to be 25.4 kcal/mol at

25uC upon binding of TMF to HSA. This indicates that the free

energy of binding for the TMF–HSA complex derives mainly from

hydrophobic and possibly hydrogen bond interactions. Our data is

Figure 3. Micro TOF-Q mass spectra. A) free HSA, and B) HSA along with TMF. The concentration of free HSA and TMF were 0.15 mM and 0.2 mM,
respectively.
doi:10.1371/journal.pone.0008834.g003
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in agreement with recently published values for the binding of

silibinin and genistein to HSA [21,52].

Micro TOF-Q Analysis
Mass spectrometry is often used in pharmacokinetic studies due

to its high sensitivity in detecting compounds at low concentra-

tions. Protein–ligand complexation at micro molar levels was

demonstrated here using micro TOF-Q mass spectrometry. The

mass spectra of free HSA and HSA-TMF complexes can be

observed in Figure 3A & 3B. The numbers on dark vertical lines

indicate the matched charge states of HSA and HSA-TMF

complexes. Deconvolution of the multiple charged states resulted

in the mass determinations of HSA and HSA-TMF complexes.

When analyzing the HSA-TMF sample a molecular mass increase

from 66513 Da to 66823 Da was observed, indicating that TMF

was bound to HSA. As the molecular weight of TMF is 312 Da

the additional mass of 310 Da indicated that the interaction of

TMF to HSA is 1:1. These results are in agreement with the above

fluorescence data. Our group recently illustrated the betulinic acid

and feruloyl maslinic acid bound to the HSA in 1:1 and 1:2

showed by micro TOF-Q mass spectrometry [37,38].

CD Spectroscopy Studies
In general the CD spectroscopy used to study the secondary

structure of proteins and their conformational changes. The CD

spectra of HSA exhibits two negative bands in the ultraviolet

region at 208 and 218 nm as shown in Figure 4. The secondary

structure was determined using CDNN 2.1, software for protein

secondary structure analysis. The secondary protein conformation

found to be 57.3% a-helix, 24.9% b-sheet (including parallel and

anti-parallel) and 17.8% random coil, respectively, which is in

close agreement with our previous reports [37,38]. By this method

it was found that upon complexation of HSA with TMF (0.01,

0.025, 0.08 mM), the a-helical content of the protein decreased

from 57.3% to 47% with a increase in b-sheets from 24.9% to

31.5%, and random coils 17.8% to 22%, respectively (Table 1).

Our results suggest that the changes in the secondary structural

components arise from partial unfolding of HSA upon binding of

TMF. Several previous reports also indicate that conformational

changes occur in HSA due to complexation with ligands [11,36–

38,51,53–55]. In our experiment, the near UV-CD shows that

there is no modification in the tertiary structure upon complex-

ation of TMF (data not shown). Thus, the protein conformation in

our experiments arises due to change in the local structural

changes in secondary structural components.

In order to determine the stability of HSA-TMF complexes,

temperature-dependent CD was carried out for HSA alone

(0.025 mM) (Figure 5A) and HSA with 0.08 mM TMF

(Figure 5B), from 25–85uC. The secondary structural conformation

of protein is not significantly changed up to 60uC in both free HSA

alone and HAS+TMF complexes (Figure 5C). Above 65uC, the a-

helical content decreased dramatically, while the b-sheet and

random coil content increased in both HSA and HSA-TMF

complexes. It is interesting to observe that HSA alone exhibits

conformational changes from 65uC (Figure 5A). The previous report

shows that the Tm of the HSA alone was around 65uC, which shows

that the unfolding of protein occurs only after this point [56]. The

secondary structural conformation was noticed in free HSA and

TMF+HSA complexation (0.08 mM) that the a-helical contents

were 57.3% and 47%, b-sheets 24.9% and 31.5%, and random coils

17.8% and 22%, respectively. The temperature dependent CD

conformational changes remained same in both free HSA and

HSA+TMF complexes, which indicate that there is no release of

TMF from its complexation. These results indicate that the HSA-

TMF complexes were not affected by temperature upto 60uC and

thus, HSA-TMF complexes were conformationally and thermody-

namically stable upto 60uC. Further, the protein conformation is

dramatically decreased due to thermal denaturation.

Molecular Docking
Computational molecular docking has been employed to

improve the understanding of the interaction of TMF and HSA.

As described above, the 3D crystal structure of HSA is a monomer

consisting of three homologous domains which assemble to form a

heart shaped molecule. Each of the structurally similar a-helical

domains (I–III) has two subdomains (A and B), with six a-helices in

subdomain A and four a-helices in subdomain B. The fluorescent

tryptophan residue 214 is in subdomain IIA [28]. Several studies

have shown that HSA is able to bind many ligands in several

binding sites [34]. In the present study, the GOLD v3.2, was

chosen to examine the binding mode of TMF at active site of

HSA. The figure 6 shows the location of tryptophan and also the

binding of TMF (Figure 6A & 6B).

The outer surface of the IIA and IIIA subdomains exhibits

several hydrophobic pockets [20] and most ligands bind to this

region. The present study indicates that TMF binds within the

hydrophobic pocket of subdomain IIIA (see Figure 6C). The side

chain of Arg410 is located at the mouth of the pocket while the

hydroxyl group of Tyr411 faces toward the inside of the pocket.

The complexation of HSA-TMF is stabilised primarily by three

hydrogen-bond interactions. The hydrogen bonds are formed with

Figure 4. Circular dichroism of the free HSA and HSA+TMF
complexes. The free HSA and HSA+TMF complexes in aqueous
solution with a protein concentration of 0.025 mM and TMF
concentrations were 0.01, 0.025 and 0.08 mM.
doi:10.1371/journal.pone.0008834.g004

Table 1. Secondary structural analysis of the free HSA and its
interaction with TMF.

HSA

HSA-0.025

mM TMF

HSA-0.05

mM TMF

HSA-0.08

mM TMF

a–Helix (%) 57.362.5 51.162.25 48.162.0 4762.0

Anti-parallel (%) 6.0560.4 6.8960.4 7.160.4 7.160.4

Parallel (%) 6.6560.4 6.960.3 7.260.5 7.460.4

b–Sheet (%) 12.260.8 14.460.75 16.861.0 1761.0

Random coil (%) 17.861.8 20.7161.2 21.461.2 2262.0

Based on the Figure 4, the data analyzed by web based software CDNN 2.1.
doi:10.1371/journal.pone.0008834.t001
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the O(7) of TMF and Asn391 with a hydrogen bond length of

2.6 Å, another two H-bonds between O(19) of TMF and Arg410,

Tyr411 with bond distances of 2.1 Å, 3.6 Å respectively (see

Figure 6B & 6C). The fluorescence quenching occurred due to

Trp-214 in IIA domain, that any perturbation in Trp-214 in

subdomain IIA may induce changes in IIIA domain as well [57].

The results suggest that the formation of new hydrogen bonds

decreased the overall hydrophilicity and increased the hydropho-

Figure 5. Temperature-dependent CD-Spectra of free HSA and HSA+TMF complexes. A) HSA alone and B) CD spectra of HSA+0.08 mM
TMF complexes. C) Secondary structure composition calculated from Figure 5A, HSA alone and Figure 5B, HSA-TMF complexes with temperature
dependent. The temperature dependance for both free HSA and HAS+TMF complexes from 25 to 85 with an interval of 10uC.
doi:10.1371/journal.pone.0008834.g005

Trimethoxy Flavone with HSA
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Figure 6. Molecular docking of HSA with TMF. A) Schematic representation of HSA molecule. Each subdomain is marked with a different colour
(Red for subdomain IA; yellow, IIA; purple IIIA; blue, IIB; orange, IB; green, IIIB) Asn391, Arg410 and Tyr411 involved in Binding of TMF, Trp-214 are
coloured white. B) Graphical representation of HSA-TMF complex (prepared by using SILVERv1.1.1 visualizer), TMF Complex represented as capped sticks,
and the residues as ellipsoid model. Three H-bonds (as highlighted by the dashed lines in green colour) were formed between TMF and HSA. The
hydrogen bond lengths were represented in green colour. C) Graphical representation of HSA showing TMF docked in the binding pocket of HSA using
GOLDv3.2.TMF, depicted in stick model (light green), and HSA, represented in solid (better) with ray model. The image was visualised by using PyMol.
doi:10.1371/journal.pone.0008834.g006
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bicity, stabilizing the TMF–HSA complexes [21,52]. The

computationally calculated free energy change DG0 for TMF-

HSA binding is 26.1 kcal.mol21, and the binding constant is

KTMF 1.26103 M21. These results are very close to the

experimentally-measured values of DG0=25.4 kcal/mol and

KTMF=1.060.016103 M21. Therefore, the molecular docking

and free energy calculation results suggested that TMF bound to

HSA with both hydrophobic and hydrogen bond interactions.

In conclusion, TMF from Andrographis viscosula Nees binds to

HSA with an affinity of KTMF=1.060.016103 M21 and a

binding free energy of25.4 kcal M21 at 25uC. Circular dichroism

results indicate partial unfolding of the protein upon TMF binding

and also indicated that these complexes are conformationally and

thermodynamically stable. Mass spectrometry data reveals the

additional mass increase is due to 1:1 interaction of HSA to TMF.

Further, molecular docking studies concluded that TMF-HSA

complex is stabilised by three hydrogen bonds: one between the

O(7) of the TMF and Asn391 with a bond length of 2.6 Å and two

H-bonds between O(19) of TMF and Arg410 and Tyr411 with

bond distances of 2.1 Å and 3.6 Å respectively. Nonetheless, the

TMF was bound to HSA mainly by hydrogen and hydrophobic

interactions. The biological importance of this study lies in HSA’s

role as a carrier molecule for many drugs–understanding the

interactions of HSA with TMF will be essential in the design of

new TMF-inspired drugs. This approach to drug development

based on natural products and traditional medicine could be a

major development in the pharmaceutical industry, chemistry, life

sciences and clinical medicine.
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