
REPRODUCTIONREVIEW

Molecular interactions of the aryl hydrocarbon receptor and
its biological and toxicological relevance for reproduction

P Pocar, B Fischer, T Klonisch1 and S Hombach-Klonisch1

Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg,
Grosse Steinstrasse 52, D-06097, Halle (Saale), Germany and 1Department of Human Anatomy and Cell Science,
Faculty of Medicine, University of Manitoba, Winnipeg (MB) R3E0W3 Canada

Correspondence should be addressed to P Pocar; Email: paola.pocar@medizin.uni-halle.de

Abstract

The dioxin/aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor responsive to both natural and

man-made environmental compounds. AhR and its nuclear partner ARNT are expressed in the female reproductive tract in a

variety of species and several indications suggest that the AhR might play a pivotal role in the physiology of reproduction.

Furthermore, it appears to be the mediator of most, if not all, the adverse effects on reproduction of a group of highly potent

environmental pollutants collectively called aryl hydrocarbons (AHs), including the highly toxic compound 2,3,7,8-tetrachlor-

odibenzo-p-dioxin (TCDD). Although a large body of recent literature has implicated AhR in multiple signal transduction

pathways, the mechanisms of action resulting in a wide spectrum of effects on female reproduction are largely unknown.

Here we summarize the major types of molecular cross-talks that have been identified for the AhR and linked cell signaling

pathways and that are relevant for the understanding of the role of this transcription factor in female reproduction.
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Introduction

The aryl hydrocarbon receptor (AhR) is a member of the
basic helix–loop–helix (bHLH)-Per-ARNT-Sim (PAS)
family of transcriptional regulators that control a variety of
developmental and physiological events, including neuro-
genesis, tracheal and salivary duct formation, toxin metab-
olism, circadian rhythms, response to hypoxia, and
hormone receptor function. The unique feature of all
bHLH-PAS proteins is the PAS domain, named after the
first three proteins identified with this motif, the Droso-
phila Per, human ARNT and Drosophila Sim (Nambu et al.
1991). The PAS domain consists of 260–310 amino acids
(Crews et al. 1988) and incorporates two well-conserved
hydrophobic repeats, termed PAS-A and PAS-B, separated
by a poorly conserved spacer. Overall, the PAS domain is
not well conserved and, given its size and diversity in
sequence, can mediate a number of diverse biochemical
functions. Facilitating partner selection during formation
of bHLH-PAS heterodimers (Huang et al. 1993), binding
small molecules (Dolwick et al. 1993), and conferring tar-
get gene specificity of bHLH-PAS heterodimers are import-
ant functions of PAS-domains (Zelzer et al. 1997).

The AhR and its nuclear partner ARNT are two founding
members of the bHLH-PAS family and their dimerization
to form an active transcription factor complex has become

a paradigm in studying mechanisms of bHLH-PAS protein
function. Unliganded AhR is located in the cytoplasm
associated with heat shock protein 90 (hsp90) (Denis et al.
1988, Perdew 1988) and a 38 kDa, immunophilin-related
protein (XAP2) (Carver & Bradfield 1997, Ma & Whitlock
1997, Meyer et al. 1998). Ligand binding to the AhR is
presumed to produce conformational changes in the AhR
protein which result in the exposure of an AhR nuclear
localization signal and the translocation of the whole
complex into the nucleus (Pollenz et al. 1994). Within the
nucleus, the AhR–ligand complex dissociates from associ-
ated proteins and dimerizes with ARNT (Reyes et al.
1992), to reconstitute an active transcription factor which
binds defined DNA sequences with high affinity. Binding
of the ligand-activated AhR–ARNT transcriptionally active
complex to its specific DNA recognition site, the xeno-
biotic-responsive element (XRE), within the promoter
region of AhR-regulated genes results in their increased
transcription (Denison et al. 1988). Much of our under-
standing of AhR function derives from analyses of the
mechanisms by which its prototypical ligand 2,3,7,8-tetra-
chlorodibenzo-p-dioxin (TCDD) induces the transcription
of CYP1A1. This gene encodes the microsomal enzyme
cytochrome P4501A1 which oxygenates various xeno-
biotics as part of their stepwise detoxification (Conney
1982). Although the transcriptional activation of P450
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family members by AhR ligands is well known, additional

routes of AhR-mediated actions have been proposed. For
instance, TCDD causes a rise in Ca2þ uptake within 5 min

in Hepa-1 cells which can not be explained on the basis
of transcriptional changes (Puga et al. 1992). Furthermore,

Enan and Matsumura (1995) demonstrated that TCDD
induces changes in protein phosphorylation through the

activation of protein tyrosine kinases within 10 min. This
rapid effect is AhR dependent and occurs under cell-free

conditions in the absence of a nucleus. On the basis of
these observations a TCDD-induced protein phosphoryl-

ation pathway may be considered as a separate route of
AhR signaling from the well-established nuclear transloca-

tion-dependent pathway. A scheme of the two different
signaling pathways of the AhR upon ligand binding is

shown in Fig. 1.
AhR ligands such as TCDD, coplanar polychlorinated

biphenyls (PCBs) and dibenzo[a ]antracene (DBMA), are

widespread in the environment, potent toxicants and
resistant to metabolic breakdown (examples of AhR

ligands are shown in Fig. 2). The latter property is respon-
sible for the accumulation of these compounds in the food

chain and their sustained effects on animal and human

health, including reproductive functions (Fischer 2000,
Stapleton & Baker 2003). The induction of xenobiotic-

metabolizing enzymes is considered an adaptive cellular
response aimed at detoxifying lipophilic foreign com-

pounds. Other responses to AhR ligands include altera-
tions in endocrine homeostasis, cellular proliferation and

tissue differentiation; these responses are associated with

adverse health effects (Poland & Knutson 1982, Safe 1986,
Peterson et al. 1993, Huff et al. 1994).

Reproduction and developmental processes reflect an
intricate and highly regulated chain of events and require
the precise integration of a functional endocrine system.
Exogenous environmental chemicals that mimic, inhibit or
modulate endogenous endocrine messengers may inevita-
bly disturb reproductive functions. TCDD and related
compounds have been demonstrated to alter cell growth
and differentiation, and to affect homeostasis and hor-
mone balance by modulating the induction of enzymes,
growth factors and hormones as well as their cognate
receptors (DeVito & Birnbaum 1995). In addition, these
xenobiotic compounds can act in an estrogenic or anti-
estrogenic manner (Safe & Krishnan 1995), alter the levels
of thyroxin (Van Birgelen et al. 1995) and several growth
factors – including their cognate receptors (Abbott & Birn-
baum 1990, Dohr et al. 1994) – or modulate the
expression of glucocorticoids (Abbott 1995).

This review summarizes AhR-mediated cellular
responses in the female reproductive tract, particularly
focusing on the molecular cross-talk identified between
AhR and other cell signaling pathways.

AhR cross-talk with steroid hormone receptors

Most AhR/steroid receptor interactions have been studied
in human breast cancer and endometrial carcinoma cell
lines. The liganded AhR targets specific genomic core
inhibitory dioxin/xenobiotic responsive elements (iDRE/
iXRE). Functional iXREs are present within the promoter

Figure 1 Binding of the ligand to the AhR results in the release of associated proteins and translocation to the nucleus followed by dimerization
with ARNT. The AhR–ARNT complex binds the XRE promoting target gene transcription. Ligands can also exert their effects in the cytoplasm
through AhR-associated protein kinases to alter the function of a variety of proteins through a cascade of protein phosphorylation.

380 P Pocar and others

Reproduction (2005) 129 379–389 www.reproduction-online.org

Downloaded from Bioscientifica.com at 08/25/2022 09:56:08AM
via free access



regions of the estrogen-inducible pS2, cathepsin D and

c-fos genes (Safe et al. 2000). In HEC-1A human endo-

metrial carcinoma cells, AhR–ARNT complexes competi-

tively inhibit the binding of ER-alpha to imperfect Estrogen

response element (ERE) sites adjacent to or overlapping

with XRE sites (Klinge et al. 1999). TCDD-activated AhR

inhibits estradiol (E2)-induced cathepsin D expression in

MCF-7 breast cancer adenocarcinoma cells by binding to

an iXRE within the promoter of the cathepsin D gene, thus

preventing the formation of a transcriptionally active ER-

SP1 complex (Duan et al. 1999, Wang et al. 2001). A simi-

lar AhR-mediated inhibitory AhR/ER cross-talk was demon-

strated for the c-fos proto-oncogene promoter in MCF-7

(Safe et al. 2000). Liganded AhR–ARNT and ligand-acti-

vated ER-alpha do not directly interact but both ligand-

activated transcription factor complexes can physically

interact with and compete for SP1 protein (Kobayashi et al.

1996, Wang et al. 1998a). The liganded AhR was also

shown to inhibit binding of ER-alpha to an ERE in the pS2

promoter by interaction with Activator protein-1 (AP-1)

proteins (Gillesby et al. 1997). AP-1 consists of a heterodi-

mer of c-jun and c-fos and promotes the binding of

liganded ER-alpha to AP-1 DNA binding sites. Interaction

of liganded AhR with AP-1 proteins promotes binding to a

XRE/AP-1-like motif and, at the same time, prevents bind-

ing of ER-alpha to a neighboring ERE. Thus, AhR can func-

tion as a ligand-activated transcriptional repressor by

binding to iXRE overlapping or neighboring ERE/AP-1 sites

or ERE/SP1 sites respectively, quenching transcriptionally

active ER/SP1 or ER/AP-1 complexes (Fig. 3A).
A rapid proteasome-mediated degradation of AhR and

ER-alpha by activated AhR as another facette of an inhibi-

tory AhR-ER-alpha cross-talk has been demonstrated in

T47D human breast cancer cells (Fig. 3B). The extent of

AhR-mediated activation of proteasomal degradation is

ligand dependent with the classical AhR ligand TCDD dis-

playing stronger effects as compared with AhR ligands such

as benzo[a ]pyrene (BaP) or 6-methyl-1,3,8-trichlorodiben-

zofuran (MCDF) (Wormke et al. 2000). In ECC-1 endo-

metrial carcinoma cells exposed to TCDD, Ricci et al.

(1999) also described an AhR-mediated reduction in ER-

alpha protein and ER-alpha-mediated transcriptional

activity. By contrast, TCDD-activated AhR did not reduce

ER-alpha protein in the endometrial carcinoma cells KLE

Figure 2 Molecular structure of some AhR ligands.

AhR role in female reproduction 381

www.reproduction-online.org Reproduction (2005) 129 379–389

Downloaded from Bioscientifica.com at 08/25/2022 09:56:08AM
via free access



and RL95-2, suggesting that proteasomal degradation
varies according to the specific cellular background (Sone
& Yonemoto 2002). Reduced ER-alpha protein levels
have been described for several human endometrial path-
ologies. For example, down-regulation of ER-alpha is
an important finding in human endometriosis tissues (Bran-
denberger et al. 1999, Fujimoto et al. 2000, 2002), in
human endometrial adenocarcinomas and also in poorly

differentiated mixed mullerian tumors (Jazaeri et al. 2001).
Reducing ER-alpha protein or ER-alpha transcriptional
activity within the endometrium via inhibitory AhR/ER-
alpha cross-talk might have a severe impact on endometrial
physiology. It may result in decreased PR expression, an
important E2-target molecule within the endometrium,
diminishing the actions of progesterone (P4) on endo-
metrial differentiation during the secretory phase of the
cycle. TCDD has been shown to decrease P4-induced and
transforming growth factor (TGF)-beta-mediated reduction
of matrix metalloproteinase (MMP)-3 and MMP-7 during
the secretory phase thus promoting experimental endome-
triosis (Bruner-Tran et al. 1999). TCDD causes increased
expression of interleukin-1(IL-1)beta and plasminogen acti-
vator-inhibitor-2 (PAI-2) mRNA and a dose-dependent
decrease in AhR gene activity in cultured human endo-
metrial stromal cells (Yang 1999). Although the role of PAI-
2 in promoting migration of tumor cells is well established
(Morita et al. 1999), a definitive function of TCDD in the
progression of endometrial carcinoma is unclear.

In human MCF-7 breast cancer cells, agonist-activated
AhR–ARNT complexes have been shown to associate
directly with ER-alpha and ER-beta in the absence of
estrogen resulting in transcriptional activation of ERE-
dependent genes (Ohtake et al. 2003). This ERE-depen-
dent estrogenic effect of liganded AhR requires direct
interaction of the nuclear AhR–ARNT complex with unli-
ganded ER and the cofactor p300/CBP (Fig. 3C). By con-
trast, in the presence of estrogen, liganded AhR exhibits
anti-estrogenic effects by suppressing estrogen-bound ER-
mediated DNA binding. These results strongly indicate
that the AhR-mediated regulation of estrogenic effects
depends on the concentration of estrogens. This may par-
tially explain the weak estrogenic effects of PCB 126 in
the uterus of ovariectomized, as opposed to normal, rats
(Lind et al. 1999).

Figure 3 (A) Mechanisms of genomic inhibition of steroid-mediated
transcription by ligand-activated AhR. Transcriptional inhibition
depends on iXREs within promoter regions of estrogen-regulated
genes which prevent ER transcriptional activity by: (a) being located
close by to neighboring EREs; (b) disrupting the formation of ER–SP-1
or ER–AP-1 DNA complexes; and (c) competing for limited cofactors
(e.g. NF-1). These mechanisms apply to interactions of the AhR with
all sex steroid hormone receptors interactions and are shown here for
the estrogen receptor (ER). (B) Activation of AhR by exogenous
ligands can rapidly reduce the levels of ER protein by proteasomal
degradation. The exact mechanism by which liganded AhR initiates
that degradation is presently unknown. (C) AhR-mediated mechan-
isms leading to the activation of sex steroid hormone signaling in the
absence of estrogen. (a) Upon binding of the ligand, a conformational
change causes the release of active c-Src from the cytoplasmic AhR–
protein complex. c-Src activates several protein kinases leading to
phosphorylation and activation of ER. (b) A direct association of
AhR–ARNT complexes with nuclear ER and the cofactor p300/CBP
in the absence of E2. (c) Activation of steroid hormone receptor by
direct protein interaction with the AhR–ARNT complex in the
absence of hormone has so far only been observed for the ER.

R
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Apart from its transcriptional activity and independent
of its nuclear localization, ligand-bound AhR appears to
act via a second pathway which is located in the cyto-
plasm. Unliganded AhR in the cytoplasm is associated
with HSP90, XAP2, p23 and the tyrosine kinase c-Src
(pp60src). Upon ligand binding, active c-Src appears to be
released from this aggregate resulting in the stimulation of
other protein kinases (Perdew 1988, Hutchison et al.
1992, Matsumura 1994, Vogel & Matsumura 2003).
Active c-Src may phosphorylate and activate steroid
receptors such as ER resulting in estrogenic effects in the
absence of estrogens. Thus, by triggering protein kinases
ligand-activated AhR may elicit multiple and unpredicted
cellular responses (see reviews of Matsumura 1994, and
Carlson and Perdew 2002).

Apart from the studies mentioned above, to date there
have been only a few reports on the cross-talk between
AhR and ER in reproductive-related cells. In porcine fol-
licular cells, recent studies indicate a TCDD-induced
decrease in estrogen synthesis and that the exposure to
the action of AhR or ER blockers (alpha naphthoflavone
and 4-OH-tamoxifen respectively) is able to completely
reverse the inhibitory effect (Gregoraszczuk 2002). A
further report indicates a potentiation of TCDD activity
through contemporary exposure to estradiol in mouse
ovarian cells, and that this effect can be reversed through
exposure to specific ER blockers (Son et al. 2002).
Despite the fact that the precise molecular mechanisms
involved in these phenomena have not been yet further
investigated, these studies strongly suggest that a positive
cross-talk between the two signaling pathways exists in
ovarian cells.

Investigations on the interaction of AhR with other ster-
oid hormone receptors have revealed a bi-directional
cross-talk. Recently, an anti-androgenic effect of ligand-
activated AhR was described in LNCaP prostate cancer
cells. Interaction of the AhR ligand complex with AP-1
proteins resulted in diminished induction of prostate-
specific-antigen (PSA) by testosterone. However, this was
not caused by a decrease in intracellular levels of the
androgen receptor (AR) or concentrations of intracellular
dihydrotestosterone (DHT) (Kizu et al. 2003). Although this
interaction was shown in LNCaP human prostate cancer
cells, the presence of AR within the ovary (Pelletier et al.
2000) and endometrium (Slayden et al. 2001, Apparao
et al. 2002, Brenner et al. 2002) would suggest the pre-
sence of a potential AhR/AR cross-talk to also be effective
within female reproductive organs.

On the other hand, steroid hormone receptors can also
inhibit AhR signal transduction and this inhibitory nuclear
receptor cross-talk is caused by competition of AhR and
ER for the rate-limiting co-regulators ERAP140 and SMRT
(Nguyen et al. 1999). In the human endometrial carci-
noma cell line ECC-1, competition was described for
nuclear factor-1 (NF-1), a transcription factor capable of
binding both ER-alpha and AhR. Competitive binding of
NF-1 by estrogen-activated ER resulted in diminished

TCDD-mediated CYP1A1 transcriptional activation (Ricci
et al. 1999). A unidirectional inhibitory progesterone
receptor (PR)/AhR cross-talk involves both PR isoforms,
PR-A and PR-B, and repression of AhR–ARNT transcrip-
tional activity requires the active progesterone responsive
element (PRE)-binding form of PR-B, but not PR-A (Kuil
et al. 1998).

In conclusion, AhR activation can result in the inhi-
bition or promotion of steroid hormone signaling in repro-
ductive tissues and this may, in part, explain the
contradictory results of estrogenic or anti-estrogenic
effects mediated by AhR ligands. Environmental AhR
ligands have been implicated in promoting endometriosis
and endometrial cancer in various species (Cummings
et al. 1996, Johnson et al. 1997, Mann 1997, Mayani et al.
1997, Rier 2002). Yet, epidemiological data from the acci-
dental exposure to TCDD in Seveso, Italy (1976), have
revealed a decrease in the incidence of endometrial carci-
noma in TCDD-exposed women (Bertazzi et al. 1997).
Similarly, TCDD appears to have a breast cancer protec-
tive function (Greenlee et al. 2001). The molecular mech-
anisms by which TCDD exerts these anti-tumorigenic
effects are unknown.

Cell cycle and apoptosis

It is now clear that the AhR plays a pivotal role in cell
cycle regulation (Ma & Whitlock 1996, Vaziri & Faller
1997, Puga et al. 2002) and apoptosis (Zaher et al. 1998,
Reiners & Clift 1999). The inhibition of estrogen-mediated
induction of cell cycle activators such as cyclin D1 and
the activation by liganded AhR of CDK2, CDK4 and
CDK7 (Wang et al. 1998b) suggest a supportive role for
AhR in E2-dependent tumor growth in the female repro-
ductive tract (Bertazzi et al. 1997). However, the AhR also
has a direct influence on the cell cycle by induction of the
cyclin/cdk inhibitor p27 (Kip1) as demonstrated in rat 5L
hepatoma cells (Ge & Elferink 1998). Upon nuclear trans-
location, liganded AhR engages in a protein–protein inter-
action with retinoblastoma protein (pRb) via two binding
motifs: a high-affinity LXCXE motif located within the
N-terminal 364 amino acids and a low-affinity binding
site located within the glutamine-rich transactivation
domain of the AhR. Ligand-activated AhR binds preferen-
tially to hypo-phosphorylated Rb (pRb) which represents
the active form of Rb leading to G1 arrest in rat L5 hepa-
toma cells (Ge & Elferink 1998). AhR synergizes with pRb
in potentiating the repression of E2F-dependent transcrip-
tion inducing cell cycle arrest (Puga et al. 2000). As hypo-
phosphorylated Rb is limited to G0 and G1 phases of the
cell cycle, so is pRb-dependent AhR action (Elferink et al.
2001). In MCF-7 cells, the direct interaction of liganded
AhR with hypo-phosphorylated Rb was shown to be
independent of ARNT and therefore does not require
XRE-mediated transcriptional activity. This non-genomic
function of AhR deserves further investigation, since
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alterations in cell cycle progression in exposed tissues by
potential endogenous (Carlson & Perdew 2002) and
environmental AhR ligands may contribute significantly to
the physiological roles of this bHLH transcription factor.

At or near the G1/S boundary lays the point of diver-
gence between continuation of the cell cycle and apopto-
sis. Apoptosis plays a critical role in reproduction, during
development and in the maintenance of tissue and organ
homeostasis (Scott et al. 1996, Jacobson et al. 1997) and
many toxicants exert their cytotoxic effects by virtue of
apoptosis. Several studies implicate the fine-tuned balance
between the levels of AhR battery enzymes and the AhR
as an important factor in aiding the cell to choose
between apoptosis and continued cell proliferation.
Immunohistochemical analysis of embryonic tissues
showed that AhR expression is developmentally regulated
and occurs in regions undergoing tissue remodeling pro-
cesses (Abbott et al. 1995). Up-regulation of AhR and
ARNT expression was observed during early outgrowth
and elevation of palatal shelves. In addition, altered rela-
tive expression of these two bHLH transcription factor
genes was observed after exposure to TCDD and this cor-
related with a higher incidence of cleft palate in develop-
ing mice (Abbott et al. 1999). Furthermore, stimulation of
resting T cells with mitogens resulted in a marked increase
of AhR expression paralleled by an increase in apoptosis
(Crawford et al. 1997). Comparisons of the sensitivities of
AhR þ /þ and AhR 2 /2 mice to the exposure of TCDD
revealed thymic atrophy as a result of T-cell apoptosis in
wild-type mice, but not in TCDD-resistant AhR 2 /2
mice (Fernandez-Salguero et al. 1996, Kamath et al.
1997). Also, reduced liver size in AhR null mice was
associated with incidence of apoptosis (Zaher et al. 1998).
Several other studies have demonstrated the ability of a
variety of AhR ligands – such as DMBA, BaP and TCDD
– to induce apoptosis in various cell types of non-repro-
ductive tissues, including pre-B cells (Jyonouchi et al.
1999), Hepa1c1c7 murine hepatoma cells (Lei et al.
1998) and mouse epidermis (Miller et al. 1996). However,
the molecular mechanisms by which these chemical com-
pounds induce programmed cell death remain unclear.

In the ovary, apoptosis is the principal mechanism by
which oocyte depletion is mediated under both normal
and pathologic conditions (Perez & Tilly 1997, Morita &
Tilly 1999, Pru & Tilly 2001). It has been known for over
two decades now that exposure of female mice to AhR
ligands causes a rapid depletion of primordial and primary
oocytes (Mattison et al. 1989) and these ovotoxic effects
can be prevented by selective AhR antagonists (Shiromizu
& Mattison 1985). Thus, it is tempting to suggest that in
the ovary genes involved in the regulation of cell death
are prime targets for the transcriptional regulation by the
activated AhR. This hypothesis is supported by Heimler
et al. 1998 who demonstrated that TCDD not only dis-
rupts ovarian steroid production but, at the same time, is
able to induce apoptosis in human follicular granulosa
cells. Moreover, Matikainen and co-workers (2001) have

recently reported two XRE binding sites for the AhR–
ARNT complex in the promoter of the pro-apoptotic gene,
Bax. Production of Bax protein and subsequent Bax-
dependent increase in apoptosis are increased in murine
oocytes upon exposure to the AhR ligand DMBA, but not
with TCDD (Matikainen et al. 2001). Further analyses
have shown that substitution of the existing guanine or
cytosine to an adenine three bases downstream of the
core XRE sequence renders the Bax promoter inducible by
TCDD. These data elegantly demonstrate the ligand-
dependent discrimination of DNA response elements
(Matikainen et al. 2001).

There are only a few studies investigating the impact of
AhR-mediated apoptosis in female reproductive tissues
other than the ovary. Flaws et al. (1997) demonstrated that
in utero exposure to TCDD induces cleft clitoris and vagi-
nal threads of mesenchymal tissue in female rat offspring,
indicating a disturbed balance between proliferation and
apoptosis during the development of female genitalia.

AhR and the regulation of the hypothalamo-
pituitary–gonadal (HPG) axis

AhR-mediated actions can affect the regulation of the
HPG axis by altering the secretion pattern of preovulatory
follicle-stimulating hormone (FSH) and luteinizing hor-
mone (LH) secretion in primed female rats exposed to
TCDD or related AhR ligands (Li et al. 1995, Gao et al.
1999). Exposure to environmentally relevant concen-
trations of TCDD induces a significant reduction of FSH
and LH during the preovulatory period in rats (Gao et al.
1999), strongly suggesting that the reproductive toxicity of
TCDD can in part be related to a dysregulation of the
hypothalamo-hypophyseal axis by mechanism(s) not yet
completely understood. The observation that treatment
with exogenous gonadotropin-releasing hormone (GnRH)
partially overcomes the blockage of preovulatory surges of
LH and FSH after TCDD exposure (Gao et al. 2000) may
indicate insufficient production in and/or release of GnRH
from the hypothalamus as a result of TCDD action to the
central nervous system (CNS). This TCDD-induced inhi-
bition of gonadotropin surges has been explained by a
decreased responsiveness of the hypothalamus to the posi-
tive feedback of estrogens, without affecting preovulatory
serum estrogen levels (Gao et al. 2001). This hypothesis is
confirmed by the observation that tenfold higher than
physiological serum concentrations of estrogens comple-
tely reverse the TCDD effects on gonadotropin secretion
(Gao et al. 2001). This latter effect can be blocked by the
partial estrogen antagonist tamoxifen providing further evi-
dence for a functional relationship between both the aryl
hydrocarbon- and estrogen-mediated signaling pathways.

Members of the AhR signaling pathway are expressed in
the preoptic area of the brain (POA), a region known to
control reproductive functions (Petersen et al. 2000).
The distribution pattern of AhR gene expression closely
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overlaps with that of glutamic acid decarboxylase (GAD)
67, the enzyme necessary for gamma-aminobutyric acid
(GABA) synthesis. Interestingly, the GAD 67 gene contains
multiple canonical XRE sequences (Erlander et al. 1991,
Pinal et al. 1997). GAD 67 mRNA levels in the rostral
POA/anteroventral periventricular nucleus (rPOA/AVPV)
and in the rostral portion of the medial preoptic nucleus
(MPN) are higher in females than in males (Hays et al.
2002). GABAergic neurons in the AVPV play a role in
onset of puberty, the E2-dependent gonadotropin surge
and in ovulation. Developmental exposure to TCDD can
specifically down-regulate GAD 67 expression in the
rPOA/AVPV in female rats resulting in abolished sexual
differentiation of this area. In utero exposure of female rats
to TCDD induces delayed onset of puberty and increases
the time required to achieve pregnancy in a continuous
mating situation (Gray & Ostby 1995, Gray et al. 1997).
Thus, sex- and region-specific suppression of GABA syn-
thesis in the CNS adds to the multiple cellular actions by
which TCDD can disrupt female reproductive functions.

Evidence for a physiological role of AhR in
reproduction

Many attempts have been made to identify endogenous
ligands that could trigger AhR-dependent signaling under
physiological conditions. However, with the exception of
the tryptophane analogs indirubin and indigo, which have
been recently identified in human urine (Adachi et al.
2001), and 2-(10H-indole-30-carbonyl)-thiazole-4-car-
boxylic acid methyl ester in the porcine lung (Song et al.
2002), the nature of endogenous AhR ligands remains elu-
sive. The attempt to assess the role of the AhR in the
absence of activation by xenobiotic compounds led to the
production of AhR-deficient mice from three independent
research groups (Fernandez-Salguero et al. 1995, Schmidt
et al. 1996, Mimura et al. 1997). Those AhR-knockout ani-
mal models demonstrated a range of complex reproductive
deficiencies in female mice in the absence of AhR gene
expression. These adverse reproductive parameters
included deaths of the 2 /2 females during pregnancy and
lactation, small litter size at birth, poor survival of pups
during the first 2 weeks after birth, and death of 2 /2 pups
after weaning. The poor reproductive success in these AhR-
null animals possibly reflects the disruption of multiple bio-
logical processes. A more extensive analysis of older
AhR 2 /2 animals showed hypertrophic uteri displaying
thrombosis and mineralization of the serosal vessels
coinciding with a reduction of the litter size (Fernandez-
Salguero et al. 1997). In addition, increased numbers of
primordial follicles were detected in 2- to 3- or 4-day-old
AhR 2 /2 females (Benedict et al. 2000, Robles et al.
2000). Female AhR-null mice at 53 days of age displayed a
decreased number of antral follicles (Benedict et al. 2000)
and a resistance of germ cells to undergo apoptosis
(Robles et al. 2000). These results indicate that the

decreased number of antral follicles observed in the
AhR 2 /2 mice may be insufficient to support the hor-
mone synthesis needed during pregnancy and lactation.
Furthermore, a recent study by Benedict et al. (2003)
suggested that AhR deletion impairs follicular growth and,
concomitantly, reduces the number of follicles that ovulate
and become corpora lutea. This would implicate AhR as a
novel regulator of ovulation. In agreement with this
hypothesis, the ovulatory gonadotropin surge has been
shown to induce the expression of AhR gene activity in the
macaque ovary (Chaffin et al. 1999) and we have recently
demonstrated the AhR-mediated induction of CYP1A1 in
the absence of exogenous ligands in in-vitro matured
bovine oocytes, suggesting a direct role of the AhR signal-
ing pathway in the resumption of meiosis in mammalian
oocytes (Pocar et al. 2004).

Thus, the bHLH transcription factor AhR appears to
have a prominent functional role in female reproduction
that deserves further attention.

Conclusions

It is clear now that the many complex reproductive effects
of dioxins and related compounds observed in mammals
reflect four important findings:

1. Although the biological effects of dioxin-like
compounds require the AhR, the role of this bHLH
transcription factor extends beyond the activation of
the AhR gene battery and includes also non-genomic
pathways.

2. There exists an intricate network of interactions, direct
and indirect, between sex steroid receptors and the
AhR–ARNT system which can modify reproductive
processes.

3. AhR-mediated actions affect all levels of a reproductive
system, from the HPG axis to the reproductive organs
themselves, causing adaptive short-term and irrevers-
ible long-term effects on the reproductive system.

4. Developmental and transgenic mouse studies have
clearly demonstrated that the AhR transcription factor
is more than just a xenobiotic sensor but potentially
an integral key component of normal reproductive
physiology.

The complex role of the AhR in female reproduction is
still largely elusive. A multidisciplinary approach with
areas of expertise in toxicology, pathology, endocrinology
and molecular/developmental biology will be required to
further unveil the secrets of the role of AhR in reproduc-
tion of the female.
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