MOLECULAR LINE SURVEY OF ORION A FROM 215 TO 247 GHz

E. C. Sutton, ${ }^{1,2}$ Geoffrey A. Blake, ${ }^{3}$ C. R. Masson, ${ }^{1}$ and T. G. Phillips ${ }^{1}$
Received 1984 September 13; accepted 1984 December 17

Abstract

Molecular line emission from the core of the Orion molecular cloud has been surveyed from 215 to 247 GHz to an average sensitivity of about 0.2 K . A total of 544 resolvable lines were detected, of which 517 are identified and attributed to 25 distinct chemical species. A large fraction of the lines are partially blended with other identified transitions. Because of the large line width in the Orion core, the spectrum is near the confusion limit for the weakest lines identified ($\approx 0.2 \mathrm{~K}$).

The most abundant complex molecules present are $\mathrm{HCOOCH}_{3}, \mathrm{CH}_{3} \mathrm{OCH}_{3}$, and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$, with beam-averaged column densities of about $3 \times 10^{25} \mathrm{~cm}^{-2}$. Together with the simpler species $\mathrm{SO}_{2}, \mathrm{CH}_{3} \mathrm{OH}$, and $\mathrm{CH}_{3} \mathrm{CN}$, they account for approximately 70% of the lines in the spectrum. Relatively few unidentified lines are present. There are 27 lines clearly present in the spectrum which are currently unidentified. However, many of these are thought to be high-lying transitions of complex asymmetric rotors such as $\mathrm{CH}_{3} \mathrm{OH}$. Present spectroscopic data are inadequate to predict the frequencies of such transitions with sufficient accuracy.

Subject headings: interstellar: molecules - line identifications - radio sources: lines

I. INTRODUCTION

Studies of molecular line emission have provided much of our understanding about conditions in molecular clouds. One area of investigation has been the chemistry of these regions. Progressively more complex molecules have been found over the past dozen years. We are only beginning to understand the reactions leading to the formation of these species and why in many cases they are favored over some much simpler chemical species. Other information available from the strengths of molecular lines includes indications of densities and excitation conditions present in these clouds. Further information is provided on the gas kinematics, particularly in regions such as Orion A where line widths and central velocities have helped identify several distinct components of the gas, the so-called "spike," "hot core," and "plateau" components.

To date relatively few systematic surveys of molecular line emission have been undertaken. Lovas, Snyder, and Johnson (1979) summarized the literature through 1978. Most of the observations reported were isolated studies of at most a few transitions in one or two sources. Subsequently, Hollis et al. (1981) among others have reported a number of additional transitions of several species. The most extensive published spectral-line survey is that which has been recently completed at the Onsala Space Observatory (Johansson et al. 1984). The Onsala group surveyed Orion A and IRC+10216 from 73 to 91 GHz , detecting a total of 170 and 45 lines respectively from these two sources. Also Linke, Cummins, and Thaddeus (1985) have made an extensive survey of Sgr B2 from 70 to 145 GHz .

This current survey has been conducted at much higher frequencies, where previously observations were hindered by a lack of suitable telescopes and sufficiently sensitive receivers.

[^0]There are certain advantages to high-frequency studies. For observations with similar-sized telescopes, lines are generally more intense, particularly optically thin lines from spatially unresolved sources. Thus high-frequency surveys are especially sensitive to emission from compact high-excitation regions, such as the cores of hot molecular clouds. In this survey we have covered the frequency range from 215 to 247 GHz in Orion A. We detect a total of 517 resolved identifiable lines from a total of 25 molecular species. Almost half these lines are characterized by central velocities of $v_{\text {LSR }} \approx 5 \mathrm{~km} \mathrm{~s}^{-1}$ and widths of about $10 \mathrm{~km} \mathrm{~s}^{-1}$, typical of the dense ($n \approx 10^{7}$ cm^{-3}) high-temperature ($T \approx 250 \mathrm{~K}$) region known as the hot core of Orion (Morris, Palmer, and Zuckerman 1980; Genzel et al. 1982). Most of the remaining lines are narrower, $\sim 5 \mathrm{~km}$ s^{-1} wide lines with central velocities of $v_{\mathrm{LSR}}=9 \mathrm{~km} \mathrm{~s}^{-1}$ representative of the spike component of the gas, a cooler, less dense, and spatially more extended region in the molecular cloud. The majority of the line flux from the Orion core is emitted in a moderately small number of lines from gas associated with the plateau source (Zuckerman and Palmer 1975; Sutton et al. 1984). Here the combination of large velocity widths and large column densities of molecules, such as SO_{2}, which are less abundant in other parts of Orion makes this region the dominant source of flux.

II. OBSERVATIONS

The observations were obtained using the 1.3 mm spectroscopy system of the Owens Valley Radio Observatory. The 10.4 m diameter telescope gave a FWHM beamwidth of 0.5 averaged over the 215 to 247 GHz frequency range. The superconducting tunnel junction (SIS) receiver (Sutton 1983) had a noise temperature varying from 300 to 700 K (single sideband) throughout the observing band. The receiver operated in a double-sideband mode with an IF center frequency
of 1388 MHz . Single-sideband spectra were reconstructed from the observed double-sideband spectra using a procedure described below in § III. The back end of the system was a 512 channel broad-band AOS similar to that described by Masson (1982). The AOS channel width of 1.03 MHz gave a spectral resolution of $1.3 \mathrm{~km} \mathrm{~s}^{-1}$ in this frequency band. The observations were centered on a nominal source position of $\alpha(1950)=05^{\mathrm{h}} 32^{\mathrm{m}} 47^{\mathrm{s}}, \delta(1950)=-05^{\circ} 24^{\prime} 21^{\prime \prime}$.

Data were obtained on nights scattered throughout the 1982-1983 and 1983-1984 winter observing seasons. Observations from a total of 20 nights were included in the final data set. Since the requirements for atmospheric transparency were less critical than for other observing programs, some of the data were from nights of moderately high opacity ($\tau \approx 0.5$). A total of 79 double-sideband spectra comprise the data base. Integration times were typically 1000 s per spectrum for an rms noise level of about 0.2 K per resolution element.

Absolute calibration of the double-sideband spectra was done using standard "chopper wheel" techniques. Uncertainties in calibration are caused by imperfections in the sideband balance and higher-order corrections in the chopper-wheel technique. Such uncertainties amount to $\pm 15 \%$. Because the emission lines arise from different-sized regions in Orion, it is not possible to correct for beam efficiency in a way which will treat all lines properly. Consequently the temperature scale has been corrected for the efficiency on extended sources (main beam plus inner sidelobes), $\eta \approx 0.85$. The brightness temperatures for spatially compact line emission are therefore systematically underestimated.

The procedure for separating sidebands (§ III) improves the accuracy of the calibration. Since each line is observed in several spectra, the observed line strengths are used to correct the relative calibration. In general the relative calibration is much better ($\leq 5 \%$) over small $\sim 1 \mathrm{GHz}$ intervals in the spectrum and deteriorates to the original $\pm 15 \%$ uncertainty over intervals greater than about 5 GHz .

III. ANALYSIS

a) Reduction to Single-Sideband Information

Each double-sideband (DSB) spectrum, considered by itself, has an unavoidable confusion as to the sideband in which each feature falls and hence its frequency. However, with a more extensive data set it is possible to avoid this ambiguity. For example, if a line is seen in one spectrum, its assignment as a lower sideband feature can be determined by whether it appears (e.g., in the upper sideband) in other appropriate spectra.

This type of analysis was automated using an algorithm similar to that used for "cleaning" aperture-synthesis maps. First the strongest feature in the entire spectrum was found, based on the naive assumption that the observed DSB temperatures were due to equal contributions from the two sidebands. Then a small fraction (~ 0.3) of the strength of this feature was subtracted from all the DSB spectra in which it should have been seen. This procedure, applied on a channel-by-channel basis (1 MHz channels), was then repeated 35,000 times until the noise level in the data was reached. A few special precautions were taken. It was necessary to treat the ends of the spectral range somewhat differently, since some frequencies there were observed in only one sideband. Also, it
was necessary to treat the ${ }^{12} \mathrm{CO}$ line at 230538 MHz in a special way because of its great strength and breadth. As a result, the image sidebands of the ${ }^{12} \mathrm{CO}$ observations (approximately $227497-227543 \mathrm{MHz}$ and $233453-233497 \mathrm{MHz}$) have somewhat worse signal to noise since the data folded into the ${ }^{12} \mathrm{CO}$ line have been ignored.

In order for this procedure to work it is necessary to know precisely the gains of the individual spectra. Relative gains were determined by comparing the observed strengths of the ~ 100 strongest lines in all the spectra in which they appear. Incorrect gain settings would leave false peaks (ghosts) in the image sidebands. A few false peaks as strong as about 0.5 K remain in the spectrum, implying a dynamic range of about $15-20 \mathrm{~dB}$ for this "cleaning" procedure.

As with any deconvolution procedure, the results are not unique. However, we have several reasons to trust the results obtained here. The convolving function is particularly simple, corresponding to a set of delta functions. Each sky frequency will appear in precisely defined places in a small number of spectra. The deconvolution is similarly straightforward, assuming the gains are well known. Ambiguities arise primarily from the treatment of the ends of the spectrum. The algorithm converges to the same result with moderate variations in parameters such as the loop gain (the amount subtracted each iteration). The vast majority of the resulting features can be identified with transitions of molecules known to exist in the interstellar medium. A few unidentified lines are present, and the strongest of these have been individually examined to confirm their presence in the original DSB data. In general, the single-sideband spectrum is thought to be trustworthy down to about 0.3 K .

b) Line Assignments

Identifications of the observed lines were made using several sources of information. Initial assignments were made using a catalog of frequencies, quantum numbers, and line strengths provided by F. J. Lovas (private communication). Also used was a revised version of the JPL catalog (Poynter and Pickett 1981). In a number of cases the existing laboratory data and predictions were insufficient for our purposes. In support of these astronomical observations, F. C. De Lucia, E. Herbst, and G. M. Plummer of Duke University undertook additional laboratory measurements of several molecules and made frequency predictions for our spectral range. Their work is the primary source of frequency data for several cases, particularly for HCOOCH_{3}.

The resulting set of line identifications and temperatures showed great uniformity. That is, the observed temperatures were consistent with the known line strengths and excitation energies. When a molecule was seen in a weak transition, it was also detected in all stronger ones.

IV. RESULTS

The reduced single-sideband spectrum is presented in Figure 1. All identified lines are indicated on the plots. Counting the components of blends separately if they can be at least partially resolved in the spectra, a total of 517 separate identified lines are present. These lines arise from 25 distinct species of interstellar molecules, not counting isotopic variants. Discussion of the results on individual molecules is contained in § V.

Fig. 1.-Spectrum of Orion A from 215 to 247 GHz . Antenna temperature has been corrected for an extended source efficiency of 0.85 . Frequency scale is in terms of rest frequency, assuming emission from material at $v_{\text {LSR }}=8 \mathrm{~km} \mathrm{~s}$. Identified lines are individually marked.

Fig. 1-Continued

Fig. 1-Continued

Fig. 1-Continued

Fig. 1-Continued

Fig. 1-Continued

Fig. 1-Continued

Fig. 1-Continued

Fig. 1-Continued

Fig. 1-Continued

Fig. 1-Continued

Fig. 1-Continued

Fig. 1-Continued

Fig. 1-Continued

Fig. 1-Continued

Fig. 1-Continued

TABLE 1
Transitions Detected from 215 to 247 GHz

Frequency (MHz)	Species	Frequency (MHz)	Species	Frequency (MHz)	Species	$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	Species
215041	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	220399	${ }^{19} \mathrm{CO}$	223119	HCOOCH_{3}	227028	HCOOCH_{3}
215059	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	220476	$\mathrm{CH}_{5} \mathrm{CN}$	223125	HCOOCH_{3}	227032	${ }^{34} \mathrm{SO}_{2}$
215088	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	220539	$\mathrm{CH}_{3} \mathrm{CN}$	223135	HCOOCH_{3}	227095	unidentified
215109	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	220561	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$	223163	HCOOCH_{9}	227419	$\mathrm{HC}_{9} \mathrm{~N}$
215119	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	220585	HNCO	223202	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	227562	HCOOCH_{3}
215127	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	220594	$\mathrm{CH}_{3} \mathrm{CN}$	223385	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	227781	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
215173	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	220621	$\mathrm{CH}_{3}{ }^{18} \mathrm{CN}$	223434	SO_{2}	227815	unidentified
215221	SO	220634	$\mathrm{CH}_{3}{ }^{19} \mathrm{CN}$	223554	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	227898	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$
215302	$\mathrm{CH}_{3} \mathrm{OH}\left(\nu_{t}=1\right)$	220641	$\mathrm{CH}_{3} \mathrm{CN}$	223650	$\mathrm{CH}_{3} \mathrm{CHO}$	227907	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$
215401	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	220661	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	223661	$\mathrm{CH}_{3} \mathrm{CHO}$	227919	$\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{CN}$
215428	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	220679	$\mathrm{CH}_{3} \mathrm{CN}$	223884	SO_{2}	227963	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$
215820	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	220709	$\mathrm{CH}_{3} \mathrm{CN}$	223916	HCOOH	227977	$\mathrm{HC}_{3} \mathrm{~N}\left(\nu_{7}=1\right)$
215840	${ }^{34} \mathrm{SO}$	220730	$\mathrm{CH}_{3} \mathrm{CN}$	223934	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	228091	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$
215886	unidentifled	220743	$\mathrm{CH}_{9} \mathrm{CN}$	224002	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	228105	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$
215986	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	220747	$\mathrm{CH}_{3} \mathrm{CN}$	224018	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	228303	$\mathrm{HC}_{3} \mathrm{~N}\left(\nu_{7}=1\right)$
218000	${ }^{34} \mathrm{SO}_{2}$	220812	HCOOCH_{3}	224023	HCOOCH_{3}	228483	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
216077	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	220815	HCOOCH_{3}	224028	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	228544	HCOOH
218110	HCOOCH_{3}	220889	HCOOCH_{3}	224046	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	228629	HCOOCH_{3}
216116	HCOOCH_{3}	220926	HCOOCH_{3}	224086	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	228651	HCOOCH_{3}
216211	HCOOCH_{3}	220978	HCOOCH_{3}	224132	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	228798	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
216217	HCOOCH_{3}	221048	HCOOCH_{3}	224186	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	228911	DNC
216569	$\mathrm{H}_{2} \mathrm{CO}$	221066	HCOOCH_{3}	224207	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	228979	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$
216643	SO_{2}	221124	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$	224265	SO_{2}	228983	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$
216710	$\mathrm{H}_{2} \mathrm{~S}$	221141	HCOOCH_{3}	224313	HCOOCH_{3}	229087	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$
218830	HCOOCH_{3}	221158	HCOOCH_{3}	224327	$\mathrm{CH}_{2} \mathrm{CO}, \mathrm{HCOOCH}_{3}$	229265	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
216839	HCOOCH_{3}	221199	$\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{\mathrm{B}}=1\right)$	224420	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	229348	SO_{2}
216937	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$	221252	$\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}=1\right)$	224459	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	229405	HCOOCH_{3}
216946	$\mathrm{CH}_{3} \mathrm{OH}$	221261	HCOOCH_{3}	224469	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	229420	HCOOCH_{3}
216966	HCOOCH_{3}	221268	HCOOCH_{3}	224493	unidentified	228475	HCOOCH_{3}
217105	SiO	221281	HCOOCH_{3}	224583	HCOOCH_{3}	229505	HCOOCH_{3}
217239	DCN	221300	$\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}=1\right)$	224809	HCOOCH_{3}	229590	unidentified
217300	unidentified	221312	$\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{\mathrm{a}}=1\right)$	224640	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	229648	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$
217817	SiS ?	221338	$\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{\mathrm{e}}=1\right)$	224699	unidentified	229759	$\mathrm{CH}_{3} \mathrm{OH}$
217823	unidentified	221350	$\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}=1\right)$	224714	$\mathrm{C}^{17} 0$	229858	${ }^{34} \mathrm{SO}_{2}$
217830	${ }^{\text {33 }}$ SO	221368	$\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}=1\right)$	224895	unidentified	229864	$\mathrm{CH}_{3} \mathrm{OH}$
217887	unidentified	221381	$\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}=1\right)$	225154	SO_{2}	229939	$\mathrm{CH}_{3} \mathrm{OH}$
218199	$\mathrm{O}^{18} \mathrm{CS}$	221387	$\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}=1\right)$	225236	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	230027	$\mathrm{CH}_{9} \mathrm{OH}$
218222	$\mathrm{H}_{2} \mathrm{CO}$	221394	$\mathrm{CH}_{9} \mathrm{CN}\left(\nu_{8}=1\right)$	225413	$\mathrm{OC}^{34} \mathrm{~S}$	230233	unidentified
218281	HCOOCH_{3}	221404	$\mathrm{CH}_{8} \mathrm{CN}\left(\nu_{8}=1\right)$	225513	HCOOH	230318	$\mathrm{O}^{13} \mathrm{CS}$
218298	HCOOCH_{3}	221425	$\mathrm{CH}_{3} \mathrm{CN}\left(\nu \nu_{9}=1\right), \mathrm{HCOOCH}_{3}$	225599	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	230369	$\mathrm{CH}_{3} \mathrm{OH}$
218325	$\mathrm{HC}_{9} \mathrm{~N}$	221433	HCOOCH_{3}	225609	HCOOCH_{9}	230468	$\mathrm{CH}_{9} \mathrm{OCH}_{3}$
218390	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	221446	HCOOCH_{3}	225619	HCOOCH_{s}	230538	CO
218422	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$	221626	$\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}=1\right)$	225625	unidentified	230738	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$
218440	$\mathrm{CH}_{3} \mathrm{OH}$	221650	HCOOCH_{3}	225698	$\mathrm{H}_{2} \mathrm{CO}$	231061	0 CS
218452	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$	221660	HCOOCH_{3}	225897	HDO	231199	HCOOCH_{3}
218476	$\mathrm{H}_{2} \mathrm{CO}$	221671	HCOOCH_{3}	225929	HCOOCH_{s}	231221	${ }^{13} \mathrm{CS}$
218574	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$	221675	HCOOCH_{3}	226257	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$	231239	HCOOCH_{3}
218585	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$	221736	${ }^{34} \mathrm{SO}_{2}$	226300	SO_{2}	231281	$\mathrm{CH}_{3} \mathrm{OH}$
218615	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$	221766	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$	226333	CN	231312	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
218760	$\mathrm{H}_{2} \mathrm{CO}$	221985	SO_{2}	226342	CN	231506	HCOOH
218861	$\mathrm{HC}_{9} \mathrm{~N}\left(\nu_{7}=1\right)$	222099	$\mathrm{CH}_{3} \mathrm{CCH}$	226347	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	231854	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
218903	OCS	222129	$\mathrm{CH}_{3} \mathrm{CCH}$	226360	CN	231901	H30 ${ }^{\text {a }}$
218981	HNCO	222150	$\mathrm{CH}_{3} \mathrm{CCH}$	226384	unidentifled	231952	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$
219174	$\mathrm{HC}_{3} \mathrm{~N}\left(\nu_{7}=1\right)$	222154	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$	226436	unidentified	231967	HCOOCH_{3}
219276	SO_{24}	222163	$\mathrm{CH}_{3} \mathrm{CCH}$	226552	$\mathrm{CH}_{3} \mathrm{CHO}$	231988	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$
219355	${ }^{34} \mathrm{SO}_{2}$	222167	$\mathrm{CH}_{3} \mathrm{CCH}$	226593	$\mathrm{CH}_{3} \mathrm{CHO}$	231990	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
219464	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	222177	unidentified	226617	CN	232163	${ }_{13}{ }^{\text {andidentified }}$
219506	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	222229	$\mathrm{CH}_{2} \mathrm{CO}$	226660	CN	232230	${ }^{18} \mathrm{CH}_{3} \mathrm{CN}$
219547	HNCO	22R239	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	226664	CN	232234	${ }^{13} \mathrm{CH}_{3} \mathrm{CN}$
219560	$\mathrm{C}^{18} 0$	222248	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	226679	CN	232419	$\mathrm{CH}_{5} \mathrm{OH}$
219657	HNCO	222255	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	226713	HCOOCH_{3}	232784	$\mathrm{CH}_{3} \mathrm{OH}$
219734	HNCO	222259	unidentified	226719	HCOOCH_{9}	232790	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
219737	HNCO	222314	$\mathrm{CH}_{2} \mathrm{CO}$	226773	HCOOCH_{3}	232945	$\mathrm{CH}_{3} \mathrm{OH}$
219798	HNCO	222422	HCOOCH_{3}	226779	HCOOCH_{3}	232965	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
219909	$\mathrm{H}_{2}{ }^{19} \mathrm{CO}$	222427	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	226857	HCOOCH_{3}	232976	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
219949	SO	222435	$\mathrm{CH}_{3} \mathrm{OCH}_{3}$	226862	HCOOCH_{3}	233000	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
220038	HCOOH	222439	HCOOCH_{3}	226875	CN	233041	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
220079	$\mathrm{CH}_{3} \mathrm{OH}$	222707	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	226887	CN	233069	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
220167	HCOOCH_{3}	222723	unidentified	226892	CN	233089	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
220178	$\mathrm{CH}_{2} \mathrm{CO}$	222918	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$	226905	CN	233145	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
220190	HCOOCH_{3}	223038	HCOOCH_{3}	227020	HCOOCH_{3}	233207	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$

TABLE 1 - Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Frequency (MHz) \& Species \& $$
\begin{gathered}
\text { Frequency } \\
(\mathrm{MHz})
\end{gathered}
$$ \& Species \& $$
\begin{gathered}
\text { Frequency } \\
(\mathrm{MHz}) \\
\hline
\end{gathered}
$$ \& Species \& Frequency
$$
(\mathrm{MHz})
$$ \& Species

\hline 233227 \& HCOOCH_{3} \& 238810 \& HCOOCH_{3} \& 240021 \& HCOOCH_{3} \& 242425 \& $\mathrm{CH}_{2} \mathrm{CO}$

\hline 233310 \& HCOOCH_{3} \& 236936 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 240035 \& HCOOCH_{3} \& 242446 \& $\mathrm{CH}_{3} \mathrm{OH}$

\hline 233395 \& HCOOCH_{3} \& 236977 \& unidentified \& 240090 \& $\mathrm{CH}_{9} \mathrm{CN}\left(\nu_{8}=1\right)$ \& 242470 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$

\hline 233443 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 237049 \& $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ \& 240186 \& $\mathrm{CH}_{2} \mathrm{CO}$ \& 242490 \& $\mathrm{CH}_{3} \mathrm{OH}$

\hline 233498 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 237069 \& SO_{2} \& 240242 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 242536 \& $\mathrm{CH}_{2} \mathrm{CO}$

\hline 233507 \& HCOOCH_{3} \& 237093 \& $\mathrm{HC}_{3} \mathrm{~N}\left(\nu_{7}=1\right)$ \& 240266 \& $\mathrm{H}_{2} \mathrm{CS}$ \& 242547 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$

\hline 233524 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}, \mathrm{HCOOCH}_{3}$ \& 237131 \& unidentifled \& 240319 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 242640 \& HNCO

\hline 233628 \& HCOOCH_{3} \& 237170 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 240331 \& $\mathrm{H}_{2} \mathrm{CS}$ \& 242665 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$

\hline 233650 \& HCOOCH_{3} \& 237267 \& HCOOCH_{3} \& 240381 \& $\mathrm{H}_{2} \mathrm{CS}$ \& 242872 \& HCOOCH_{3}

\hline 233655 \& $\mathrm{HCOOCH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 237273 \& $\mathrm{OC}^{34} \mathrm{~S}$ \& 240393 \& $\mathrm{H}_{2} \mathrm{CS}$ \& 242896 \& HCOOCH_{3}

\hline 233671 \& HCOOCH_{3} \& 237298 \& HCOOCH_{3} \& 240429 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 242914 \& ${ }^{\text {C }} 3$

\hline 233754 \& HCOOCH_{3} \& 237308 \& HCOOCH_{3} \& 240548 \& $\mathrm{H}_{2} \mathrm{CS}$ \& 243088 \& SO_{2}

\hline 233778 \& HCOOCH_{3} \& 237315 \& HCOOCH_{3} \& 240861 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 243218 \& OCS

\hline 233796 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 237345 \& HCOOCH_{3} \& 240876 \& HNCO \& 243398 \& $\mathrm{CH}_{3} \mathrm{OH}$

\hline 233845 \& HCOOCH_{3} \& 237350 \& HCOOCH_{3} \& 240943 \& SO_{2} \& 243413 \& $\mathrm{CH}_{3} \mathrm{OH}$

\hline 233854 \& HCOOCH_{3} \& 237405 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ \& 240961 \& $\mathrm{CH}_{5} \mathrm{OH}\left(\nu_{t}=1\right)$ \& 243523 \& $\mathrm{SO}_{2}\left(\nu_{2}=1\right)$

\hline 233867 \& HCOOCH_{3} \& 237432 \& $\mathrm{HC}_{3} \mathrm{~N}\left(\nu_{7}=1\right)$ \& 240978 \& $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ \& 243643 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$

\hline 234011 \& $\mathrm{HCOOCH}_{3}{ }^{19} \mathrm{CH}_{3} \mathrm{OH}$ \& 237456 \& $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ \& 240984 \& $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ \& 243740 \& unidentified

\hline 234112 \& HCOOCH_{3} \& 237484 \& $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ \& 240990 \& $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ \& 243747 \& unidentified

\hline 234125 \& HCOOCH_{3} \& 237591 \& $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ \& 241016 \& $\mathrm{C}^{34} \mathrm{~S}$ \& 243916 \& $\mathrm{CH}_{3} \mathrm{OH}$

\hline 234135 \& HCOOCH_{3} \& 237621 \& $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ \& 241146 \& HCOOH \& 244048 \& $\mathrm{H}_{2} \mathrm{CS}$

\hline 234187 \& SO_{2} \& 237712 \& $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{CN}$ \& 241159 \& $\mathrm{CH}_{3} \mathrm{OH}\left(\nu_{t}=1\right)$ \& 244254 \& SO_{2}
$\mathrm{CH}_{3} \mathrm{OH}$

\hline 234291 \& unidentified \& 237808 \& HCOOCH_{3} \& 241167 \& $\mathrm{CH}_{3} \mathrm{OH}\left(\nu_{t}=1\right)$ \& 244331 \& $\mathrm{CH}_{3} \mathrm{OH}$
$\mathrm{CH}_{3} \mathrm{OH}\left(\nu_{t}=1\right)$

\hline 234329 \& HCOOCH_{3} \& 237830 \& HCOOCH_{s} \& 241179 \& $\mathrm{CH}_{3} \mathrm{OH}\left(\nu_{t}=1\right)$ \& 244338 \& ${ }_{34} \mathrm{CH}_{3} \mathrm{OH}\left(\mathrm{S}_{2}=1\right)$

\hline 234422 \& $\mathrm{SO}_{2}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 237852 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 241184 \& $\mathrm{CH}_{3} \mathrm{OH}\left(\nu_{t}=1\right)$ \& 244482 \& ${ }^{34} \mathrm{SO}_{2}{ }^{\text {HCOOCH3}}$

\hline 234486 \& HCOOCH_{3} \& 237983 \& ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ \& 241187 \& $\mathrm{CH}_{3} \mathrm{OH}\left(\nu_{t}=1\right)$ \& 244580 \& HCOOCH_{3}

\hline 234502 \& $\mathrm{HCOOOCH}_{3}$ \& 238017 \& unidentified \& 241193 \& $\mathrm{CH}_{3} \mathrm{OH}\left(\nu_{t}=1\right)$ \& 244594 \& HCOOCH_{3}

\hline 234509 \& HCOOCH_{3} \& 238156 \& HCOOCH_{3} \& 241197 \& $\mathrm{CH}_{3} \mathrm{OH}\left(\nu_{t}=1\right)$ \& 244712
244857 \& $\mathrm{CH}_{2} \mathrm{CO}$

\hline 234683 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 238190 \& HCOOCH_{3} \& 241205 \& $\mathrm{CH}_{3} \mathrm{OH}\left(\nu_{t}=1\right)$ \& 244857 \& CS $2 \mathrm{H}_{3} \mathrm{CN}$

C

\hline 234698 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 238727 \& $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ \& 241211 \& $\mathrm{CH}_{3} \mathrm{OH}\left(\nu_{t}=1\right)$ \& 244936 \& $$
{ }^{54} \mathrm{SO}_{2}
$$

\hline 234739 \& HCOOCH_{3} \& 238766 \& $\mathrm{CH}_{3} \mathrm{CN}$ \& 241238 \& $\mathrm{CH}_{3} \mathrm{OH}\left(\nu_{t}=1\right)$ \& 245179 \& [4 SO_{2}
CH 0 H

\hline 234936 \& PN ? \& 238796 \& $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ \& 241268 \& $\mathrm{CH}_{3} \mathrm{OH}\left(\nu_{t}=1\right)$ \& 245223 \& ${ }_{34} \mathrm{CH}_{3} \mathrm{SO}$

\hline 235030 \& HCOOCH_{3} \& 238844 \& $\mathrm{CH}_{3} \mathrm{CN}$ \& 241441 \& $\mathrm{CH}_{34} \mathrm{OH}\left(\nu_{t}=1\right)$ \& 245302 \& 34
SO_{2}

\hline 235047 \& HCOOCH_{3} \& 238913 \& $\mathrm{CH}_{3} \mathrm{CN}$ \& 241509 \& ${ }^{34} \mathrm{SO}_{2}$ \& 245563 \&

\hline 235051 \& HCOOCH_{5}
SO_{2} \& 238927 \& HCOOCH
$\mathrm{CH}_{3} \mathrm{CN}$ \& 241524 \& $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
$\mathrm{CH}_{3} \mathrm{OCH}_{3}$ \& 245563 \& SO_{2}
$\mathrm{HC}_{3} \mathrm{~N}$

\hline 235261 \& unidentified \& 238993 \& SO_{2} \& 241562 \& HDO \& 245651 \& HCOOCH_{3}

\hline 235564 \& $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ \& 239001 \& $\mathrm{CH}_{3}{ }^{19} \mathrm{CN}$ \& 241816 \& SO_{2} \& 245752 \& HCOOCH_{3}

\hline 235845 \& HCOOCH_{3} \& 239015 \& $\mathrm{CH}_{3}{ }^{13} \mathrm{CN}$ \& 241700 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 245772 \& HCOOCH_{3}

\hline 235866 \& HCOOCH_{3} \& 239023 \& $\mathrm{CH}_{4} \mathrm{CN}$ \& 241767 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 245883 \& HCOOCH_{3}

\hline 235881 \& ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ \& 239064 \& $\mathrm{CH}_{3} \mathrm{CN}$ \& 241774 \& HNCO \& 245885 \& HCOOCH_{3}

\hline 235887 \& HCOOCH_{3} \& 239097 \& $\mathrm{CH}_{3} \mathrm{CN}$ \& 241791 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 245904 \& HCOOCH_{3}

\hline 235928 \& ${ }^{34} \mathrm{SO}_{2}$ \& 239120 \& $\mathrm{CH}_{3} \mathrm{CN}$ \& 241807 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 246055 \& HCOOCH_{3}

\hline 235932 \& HCOOCH_{3} \& 239133 \& $\mathrm{CH}_{3} \mathrm{CN}$ \& 241813 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 248061
246075 \& $\mathrm{CHCOOCH}_{3}$

\hline 235938 \& ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ \& 239138 \& $\mathrm{CH}_{3} \mathrm{CN}$ \& 241831 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 246075 \& $\mathrm{CH}_{3} \mathrm{OH}$
HCOOH

\hline 235952 \& ${ }^{34} \mathrm{SO}_{2}$ \& 239179 \& $\mathrm{CH}_{3} \mathrm{CCH}$ \& 241843 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 246106 \& $\mathrm{HCOOH}^{\text {C }}$

\hline 235960 \& ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ \& 239211 \& $\mathrm{CH}_{3} \mathrm{CCH}$ \& 241852 \& $\mathrm{CH}_{5} \mathrm{OH}$ \& 246269
246285 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
HCOOCH

\hline 235971 \& ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ \& 239234 \& $\mathrm{CH}_{3} \mathrm{CCH}$ \& 241879 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 246285 \& HCOOCH_{3}

\hline 235997 \& ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ \& 239248 \& $\mathrm{CH}_{3} \mathrm{CCH}$ \& 241888 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 246295 \& HCOOCH_{3}

\hline 236006 \& ${ }^{19} \mathrm{CH}_{3} \mathrm{OH}$ \& 239252 \& $\mathrm{CH}_{3} \mathrm{CCH}$ \& 241904 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 246308 \& HCOOCH_{3}

\hline 236008 \& ${ }^{19} \mathrm{CH}_{3} \mathrm{OH}$ \& 239627 \& $\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}=1\right)$ \& 241923 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 246422 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$

\hline 238017 \& ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ \& 239683 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 241933 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 246549 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
$\mathrm{HC}_{3} \mathrm{~N}\left(\nu_{7}=1\right)$

\hline 236041 \& ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ \& 239708 \& $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$ \& 241947 \& $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ \& 246561 \& $\mathrm{HC}_{3} \mathrm{~N}\left(\nu_{7}=1\right)$
HCOOCH

\hline 236050 \& ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ \& 239732 \& unidentifled \& 241959 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 246600 \& HCOOCH
HCOOCH

\hline 236082 \& ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ \& 239746 \& $\mathrm{CH}_{3} \mathrm{OH}$ \& 241970 \& $\mathrm{C}_{2} \mathrm{CH}_{5} \mathrm{CN}$ \& 246613 \& HCOOCH
HCOOCH

\hline 238217 \& SO_{2} \& 239777 \& $\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}=1\right)$ \& 241988 \& ${ }^{34} \mathrm{SO}_{2}{ }_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 246623 \& ${ }_{\mathbf{3 4}} \mathrm{HCO}^{\text {SO}}$

\hline 236356 \& HCOOCH_{3} \& 239792 \& $\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}=1\right)$ \& 241997 \& $\mathrm{C}_{2} \mathrm{C}_{5} \mathrm{H} \mathrm{CN}$ \& 246683 \&

\hline 236366 \& HCOOCH_{3} \& 239809 \& $\mathrm{CH}_{3} \mathrm{CN}\left(\nu \nu_{8}=1\right)$ \& 242048
242077 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 246873 \& ${ }_{\text {CH3 }}{ }^{\text {HCOOCH }}$

\hline 236513
236717 \& $\mathrm{HC}_{3} \mathrm{~N}$
HCOOH \& 239816 \& $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$
$\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{\mathrm{a}}=1\right)$ \& 242077 \& ${ }_{\text {unidentified }} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 246891
246897 \& CCOOCH_{3}

\hline 236717 \& HCOOH
$\mathrm{H}_{2} \mathrm{CS}$ \& 239825 \& $\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}=1\right)$
$\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}=1\right)$ \& 242102 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 246897 \& $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$
HCOOCH

\hline 236744 \& HCOOCH_{3} \& 239836 \& $\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}=1\right)$ \& 242209 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ \& 246918 \& $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$

\hline 236760 \& HCOOCH_{3} \& 239850 \& $\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{\mathrm{B}}=1\right)$ \& 242376 \& $\mathrm{CH}_{2} \mathrm{CO}$ \& 246925 \& HDCO

\hline 236801 \& HCOOCH_{3} \& 239872 \& $\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}=1\right)$ \& 242399 \& $\mathrm{CH}_{2} \mathrm{CO}$ \& 246952 \& $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$

\hline
\end{tabular}

A tabulation of the lines detected, presented in frequency order, is contained in Table 1. Listed are the appropriate rest frequencies and the molecules to which the emission is assigned. Further information on the exact line frequencies, the quantum numbers of the transitions, and the strengths of the astronomical emission is contained in the following sections on the individual molecules.

V. DISCUSSION OF INDIVIDUAL SPECIES

a) $\mathrm{CO}, \mathrm{CS}, \mathrm{SiO}, \mathrm{SiS}$, and SO

Many of the strongest individual lines in the spectrum are from diatomic molecules of the most abundant elements. Carbon monoxide (CO) provides the strongest line in the spectrum, its $J=2-1$ transition at 230538 MHz . The species CS and SiO are isoelectronic with CO , yet have qualitatively different characteristics because of the very different abundances and dipole moments of these forms.

Emission from carbon monoxide (CO) and its isotopic forms is described in Table 2. The $J=2-1$ line of the principal isotopic form, ${ }^{12} \mathrm{C}^{16} \mathrm{O}$, is dominated by plateau emission.

The full width to zero intensity of the line is approximately $150 \mathrm{MHz}\left(200 \mathrm{~km} \mathrm{~s}^{-1}\right)$. The high-velocity wings of the line are particularly strong in these observations because of the small 0.5 beamwidth which emphasizes emission from the compact plateau source. The ${ }^{13} \mathrm{CO}$ line is also extremely strong but with less pronounced wings. The variation in the ${ }^{12} \mathrm{CO} /{ }^{13} \mathrm{CO}$ intensity ratio across the line profile indicates that the transition in ${ }^{12} \mathrm{CO}$ is quite optically thick at line center but becomes optically thin at velocities of approximately $\pm 25 \mathrm{~km} \mathrm{~s}^{-1}$ relative to the line center. The intensities of the rarer isotopic forms $\mathrm{C}^{18} \mathrm{O}$ and $\mathrm{C}^{17} \mathrm{O}$ are consistent with optically thin emission at the velocity of the ambient molecular cloud (v_{LSR} $\approx 8.5 \mathrm{~km} \mathrm{~s}^{-1}$). Emission from ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ in the first vibrationally excited state was looked for but not detected.

CS is detected through its intense $J=5-4$ line at 244936 MHz . This line also has a line shape with a strong plateau component, as expected due to the known concentration of sulfur-containing molecules in the plateau source. Several rarer isotopic forms are detected in ratios indicating that the parent line is optically thick and the isotopic lines optically thin. The isotopic lines, seen at $v_{\mathrm{LSR}}=8.4 \mathrm{~km} \mathrm{~s}^{-1}$ with 7.3

TABLE 2
Transitions of CO, CS, SiO, and SiS

Species	$\stackrel{\nu}{(\mathrm{MHz})}$	J	$\begin{gathered} T_{a}^{*}(\text { peak }) \\ (\mathrm{K}) \end{gathered}$	$\begin{gathered} \int T_{a}^{*} d v \\ \left(\mathrm{Km} \mathrm{~s}^{-1}\right) \end{gathered}$	Notes
CO	230538.0	2-1	111.	2242.	
${ }^{13} \mathrm{CO} \ldots$.	220398.7		37.6	319.	
$\mathrm{C}^{18} \mathrm{O} \ldots \ldots .$.	219560.3		5.7	39.4	
$\mathrm{C}^{17} \mathrm{O} \ldots \ldots .$.	224714.4		1.5	6.7	
$\mathrm{CO}(\nu=1) \ldots$	228439.2		nd	\ldots	
CS............	244935.6	5-4	21.1	291.	
${ }^{13} \mathrm{CS}$	231220.8		2.5	16.0	
$\mathrm{C}^{34} \mathrm{~S} \ldots$.	241016.2		3.9	33.5	
$\mathrm{C}^{33} \mathrm{~S} \ldots \ldots \ldots$	242913.7		1.5	11.0	
$\operatorname{CS}(\nu=1) \ldots$	243160.8		nd	\ldots	
SiO	217104.9	5-4	8.1	278.	
$\mathrm{SiO}(\nu=1) \ldots$	215596.0		nd	\ldots	
SiS	217817.3	12-11	0.5 ?	$4.5 ?$	a
	235961.1	13-12	...	\ldots	b

${ }^{\text {a }}$ Unusual $v_{\text {LSR }}$.
${ }^{\mathrm{b}}$ Lost under ${ }^{13} \mathrm{CH}_{3} \mathrm{OH} 235960$.
$\mathrm{km} \mathrm{s}^{-1}$ width, are dominated by the spike component, although the $\mathrm{C}^{34} \mathrm{~S}$ line clearly shows broad plateau-type wings.

Silicon monoxide (SiO) is detected through a single line of the dominant isotopic species. Again, the line shape is very broad ($34.7 \mathrm{~km} \mathrm{~s}^{-1}$), as is characteristic of the plateau source.

Silicon sulfide (SiS) has been reported in Orion A by Dickinson and Rodriguez-Kuiper (1981). Their detection of the $J=6-5$ line gave an LSR velocity of $14 \mathrm{~km} \mathrm{~s}^{-1}$, rather different from the $5-9 \mathrm{~km} \mathrm{~s}^{-1}$ range of most molecular components of Orion. Two transitions of SiS fall within the range of this survey. The $J=13-12$ line at 235961 MHz falls in a band of ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ lines and is inaccessible. The $J=12-11$ line at 217817 MHz is in a clear region. There is no line
evident at "normal" velocities, $\sim 8 \mathrm{~km} \mathrm{~s}^{-1}$. There is, however, an otherwise unidentified line which could be interpreted as SiS at $v_{\text {LSR }} \approx 14 \mathrm{~km} \mathrm{~s}^{-1}$. Similarly, though, there is an even stronger line on the other side of the expected position which could be SiS at $v_{\mathrm{LSR}} \approx 2 \mathrm{~km} \mathrm{~s}^{-1}$. In principle either or both of these velocities could be right, since such velocities are clearly present in Orion. However, it is hard to see why SiS should have such a different velocity structure from all the other molecules present. The $14 \mathrm{~km} \mathrm{~s}^{-1}$ velocity is perhaps more likely, since it is in coincidence with the previously reported detection. However, the detection of SiS at all in Orion still seems rather tentative.

Sulfur monoxide (SO) has a more complicated spectrum
due to the presence of electronic angular momentum. The lines detected are listed in Table 3. There is a pair of strong lines from SO seen in the spectrum. Several other transitions in this frequency range are not detectable here because of their reduced line strengths. Two lines of ${ }^{34} \mathrm{SO}$ and one of ${ }^{33} \mathrm{SO}$ are also seen, but there is no clear detection of $\mathrm{S}^{18} \mathrm{O}$. All the lines detected exhibit the broad (average width $25.1 \mathrm{~km} \mathrm{~s}^{-1}$) plateau lineshape often seen in sulfur-containing molecules.

b) CN

Emission from CN is seen in the $N=2-1$ spin multiplet centered near 227 GHz . The spin splitting, which is of the order of a few hundred megahertz, is further split by hyperfine structure. Emission from OMC-1 in this band was previously studied by Wootten et al. (1982). The current results are listed in Table 4, where the frequencies are taken from Skatrud et al. (1983). The results are consistent with those of Wootten et al., showing central velocities of $v_{\mathrm{LSR}}=9 \mathrm{~km} \mathrm{~s}^{-1}$, widths of 4
$\mathrm{km} \mathrm{s} \mathrm{s}^{-1}$, and a peak antenna temperature in the blended 226875 MHz transition of 9.1 K . The relative strengths of the hyperfine components show that the emission is just beginning to saturate in the strongest components ($\tau=1.4 \pm 0.1$ at 226875 MHz), indicating a CN column density of around 1.5×10^{16} cm^{-2}.

c) PO and PN

Phosphorus-containing compounds have not been seen in the interstellar medium. Recent laboratory studies have shown that two of the most likely forms are the diatomics PO and PN (Thorne et al. 1984). Transition frequencies for the PO radical have been calculated (Pickett, private communication) based on the measurements of Kawaguchi, Saito, and Hirota (1983). Although four lines are predicted to fall in this frequency region, as shown in Table 5, there is no good evidence for emission at any of the expected frequencies. An upper limit of roughly $2 \times 10^{14} \mathrm{~cm}^{-2}$ can be deduced from these data.

TABLE 3
Transitions of so

	ν (MHz)	N_{J}	T_{a}^{*} $(\mathrm{~K})$	$\int T_{a}^{*} d v$ $\left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right)$	Notes
Species	SO \ldots	215220.6	$5_{5}-4_{4}$	20.0	562.
	219949.4	$6_{5}-5_{4}$	24.7	680.	
${ }^{34} \mathrm{SO} \ldots$	236452.3	$1_{2}-2_{1}$	$0.4 ?$	\ldots	
	215839.9	$6_{5}-5_{4}$	3.9	93.9	
${ }^{33} \mathrm{SO} \ldots$	2178630.4	$5_{6}-4_{5}$	2.9	65.4	
$\mathrm{~S}^{18} \mathrm{O} \ldots$	232265.9	$6_{5}-5_{4}$	0.9	21.2	a
	239128.5	$5_{6}-4_{5}$	$0.3 ?$	\ldots	
	243039.3	$6_{6}-5_{5}$	\ldots	\ldots	b
		$7_{6}-6_{5}$	$0.4 ?$	\cdots	

${ }^{\text {a }}$ Blend of hyperfine components.
${ }^{\text {b }}$ Lost under $\mathrm{CH}_{3} \mathrm{CN} 239120$ and 239133.

TABLE 4
Transitions of CN

ν (MHz)	N, J, F	T_{a}^{*} $(\mathrm{~K})$	$\int T_{a}^{*} d v$ $\left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right)$	Notes
$226287.4 \ldots$	$2,3 / 2,1 / 2-1,3 / 2,1 / 2$	\ldots	\ldots	a
$226298.9 \ldots$	$2,3 / 2,1 / 2-1,3 / 2,3 / 2$	\ldots	\ldots	a
$226303.0 \ldots$	$2,3 / 2,3 / 2-1,3 / 2,1 / 2$	\ldots	\ldots	a
$226314.6 \ldots$	$2,3 / 2,3 / 2-1,3 / 2,3 / 2$	\ldots	\ldots	a
$226332.5 \ldots$	$2,3 / 2,3 / 2-1,3 / 2,5 / 2$	0.3	1.1	
$226341.9 \ldots$	$2,3 / 2,5 / 2-1,3 / 2,3 / 2$	0.3	1.3	
$226359.9 \ldots$	$2,3 / 2,5 / 2-1,3 / 2,5 / 2$	1.2	4.2	
$226616.5 \ldots$	$2,3 / 2,1 / 2-1,1 / 2,3 / 2$	0.2	1.1	
$226632.2 \ldots$	$2,3 / 2,3 / 2-1,1 / 2,3 / 2$	1.4	7.8	
$226659.5 \ldots$	$2,3 / 2,5 / 2-1,1 / 2,3 / 2$	4.3	15.4	
$226663.7 \ldots$	$2,3 / 2,1 / 2-1,1 / 2,1 / 2$	1.5	9.4	
$226679.3 \ldots$	$2,3 / 2,3 / 2-1,1 / 2,1 / 2$	1.9	7.2	
$226874.2 \ldots$	$2,5 / 2,5 / 2-1,3 / 2,3 / 2$			
$226874.8 \ldots$	$2,5 / 2,7 / 2-1,3 / 2,5 / 2\}$	9.1	51.6	
$226875.9 \ldots$	$2,5 / 2,3 / 2-1,3 / 2,1 / 2)$			
$226887.4 \ldots$	$2,5 / 2,3 / 2-1,3 / 2,3 / 2$	1.4	7.5	
$226892.2 \ldots$	$2,5 / 2,5 / 2-1,3 / 2,5 / 2$	1.7	6.9	
$226905.4 \ldots$	$2,5 / 2,3 / 2-1,3 / 2,5 / 2$	0.2	0.5	

[^1]TABLE 5
Transitions of PO and PN

	ν (MHz)	J, F	T_{a}^{*} $(\mathrm{~K})$	$\int T_{a}^{*} d v$ $\left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right)$
Species	PO $\ldots .$.	239948.9	$11 / 2,6-9 / 2,5 e$	nd
	239958.1	$11 / 2,5-9 / 2,4 e$	nd	\ldots
	240141.0	$11 / 2,6-9 / 2,5 f$	nd	\ldots
	240152.5	$11 / 2,5-9 / 2,4 f$	nd	\ldots
PN $\ldots \ldots$.	234935.7	$5-4$	0.4	1.5

PN has no electronic angular momentum and hence has a single rotational transition accessible. There is a weak line clearly present at the $J=5-4$ frequency (Wyse, Manson, and Gordy 1972) which is not currently identified as due to any other molecular species. However, its identification as PN must await detection of some other transition in another frequency band, due to the number of weak lines of well-known species (e.g., $\mathrm{CH}_{3} \mathrm{OH}$) whose frequencies are currently unknown. If the line seen is due to PN, its $v_{\text {LSR }}$ of $8 \mathrm{~km} \mathrm{~s}^{-1}$ and width of $4 \mathrm{~km} \mathrm{~s}^{-1}$ indicates it arises in the spike component. The column density of PN would be roughly $3 \times 10^{12} \mathrm{~cm}^{-2}$ for an assumed rotational temperature of 100 K .

$$
\text { d) } \mathrm{OCS}
$$

Carbonyl sulfide (OCS) is detected through emission in its $J=18-17,19-18$, and $20-19$ lines. The results are presented in Table 6. The difference in line strengths is somewhat larger than expected, possibly indicating a calibration problem for the lowest frequency line. Line shapes clearly indicate the presence of both spike and plateau components. The isotope $\mathrm{OC}^{34} \mathrm{~S}$ is detectable in our band through the $J=19-18$ and 20-19 lines. The former is convincingly detected but at a level rather stronger than expected on the basis of an OCS / OC ${ }^{34}$ S integrated intensity ratio of ~ 16 (Johansson et al. 1984). This is possibly the result of a coincidence with a currently unidentified line at this frequency. The $J=20-19$ line of $O C^{34} S$ is marginally detected at about the level expected from the above ratio. $\mathrm{O}^{13} \mathrm{CS}$ may be detected, since there are indications of lines at the $J=18-17,19-18$, and 20-19 frequencies, although this would not be expected for an $\mathrm{OCS} / \mathrm{O}^{13} \mathrm{CS}$ ratio of ~ 40.

$$
\text { e) } \mathrm{DCN}, \mathrm{DNC} \text {, and } \mathrm{HC}_{3} \mathrm{~N}
$$

The $J=3-2$ line of hydrogen cyanide (HCN) lies at higher frequency than the range presently searched. The only isotopic form accessible is deuterated hydrogen cyanide (DCN) and its isomer DNC. Both are detected here and the results shown in Table 7. DCN is the stronger line with a $v_{\text {LSR }}$ of $9.3 \mathrm{~km} \mathrm{~s}^{-1}$ and a width of $7.9 \mathrm{~km} \mathrm{~s}^{-1}$, not consistent with just spike component emission. DNC is weaker and seems to have just the narrower ($8.7 \mathrm{~km} \mathrm{~s}^{-1} v_{\mathrm{LSR}}, 3.3 \mathrm{~km} \mathrm{~s}^{-1}$ width) spike component.

Protonated hydrogen cyanide (HCNH^{+}) has not been seen in the interstellar medium. It is of considerable importance chemically as a precursor to both HCN and HNC. Molecular constants have recently been determined by Altman, Crofton,

TABLE 6
Transitions of OCS

Species	ν (MHz)	J	T_{a}^{*} $(\mathrm{~K})$	$\int T_{a}^{*}{ }^{\circ} d v$ $\left(\mathrm{~K} \mathrm{~km} \mathrm{~s} \mathrm{~s}^{-1}\right)$
$\mathrm{OCS} \ldots \ldots$	218903.4	$18-17$	3.9	40.0
	231061.0	$19-18$	5.2	50.1
$\mathrm{OC}^{34} \mathrm{~S} \ldots$	243218.0	$20-19$	4.9	59.3
	225413.0	$19-18$	0.7	3.9
$\mathrm{O}^{13} \mathrm{CS} \ldots$	237272.9	$20-19$	0.5	1.9
	230317.5	$18-17$	0.5	2.5
	242435.4	$19-18$	0.5	1.6
		$20-19$	$0.4 ?$	\cdots

TABLE 7

Species	$\stackrel{\nu}{(\mathrm{MHz})}$	J	T_{a}^{*} (K)	$\begin{gathered} \int T_{a}^{*} d v \\ \left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$
DCN	217238.5	3-2	2.9	21.8
DNC	228910.5	3-2	0.6	2.0
HCNH^{+}	222323.	3-2	nd	\ldots
$\mathrm{HC}_{3} \mathrm{~N}$	218324.8	24-23	4.0	62.1
	227419.0	25-24	3.5	41.5
	236512.8	26-25	3.5	53.6
	245606.4	27-26	4.8	81.6
$\mathrm{HC}_{3} \mathrm{~N}\left(\nu_{7}\right)$	218860.6	24-23 1e	0.6	7.6
	219173.6	24-23 1f	0.6	9.2
	227977.1	25-24 1e	0.7	8.4
	228303.0	25-24 $1 f$	0.8	10.8
	237093.2	26-25 1e	0.8	7.5
	237432.0	26-25 $1 f$	0.7	9.9
	246208.9	27-26 1e	0.4 ?	\ldots
	246560.7	27-26 $1 f$	1.1	8.0

and Oka (1984), allowing prediction of the $J=3-2$ frequency to a precision of about 10 MHz . This is sufficient to show that emission in this transition is not present in the spectrum of Orion A to a limit of $T_{a}^{*}<0.2 \mathrm{~K}(3 \sigma)$.

Cyanoacetylene $\left(\mathrm{HC}_{3} \mathrm{~N}\right)$ is seen in four of its pure rotational transitions, also shown in Table 7. The line shapes indicate the presence of spike, hot core, and plateau components. Isotopic forms ($\mathrm{H}^{13} \mathrm{CCCN}, \mathrm{HC}^{13} \mathrm{CCN}$, and $\mathrm{HCC}^{13} \mathrm{CN}$) were looked for but not convincingly detected. The ν_{7} bending mode at $222 \mathrm{~cm}^{-1}$ is well excited under hot core conditions and the four pairs of vibrationally excited lines corresponding to the four ground-state lines are easily seen. Their average velocities ($v_{\mathrm{LSR}}=4.7 \mathrm{~km} \mathrm{~s}^{-1}$) and widths ($11.3 \mathrm{~km} \mathrm{~s}^{-1}$) confirm that this emission is from the hot core. More highly excited vibrational states (ν_{6} and $2 \nu_{7}$) are not detected.

Cyanodiacetylene $\left(\mathrm{HC}_{5} \mathrm{~N}\right)$ is not detected in any of the twelve pure rotational transitions which fall in this frequency band. This is consistent with the results of Johansson et al. (1984), who report a tentative detection of $\mathrm{HC}_{5} \mathrm{~N}$ with an integrated line strength of approximately 0.015 of the nearby $\mathrm{HC}_{3} \mathrm{~N}$ lines.

[^2]$$
\text { f) } \mathrm{DCO}^{+}, \mathrm{N}_{2} \mathrm{D}^{+} \text {, and } \mathrm{HCS}^{+}
$$

Two remaining deuterated linear molecules DCO^{+}and $\mathrm{N}_{2} \mathrm{D}^{+}$were looked for but not detected, as shown in Table 8. Also, HCS^{+}was detected in observations just outside this frequency band. It exhibited a narrow line width of ~ 6 $\mathrm{km} \mathrm{s}^{-1}$, similar to the ${ }^{13} \mathrm{CS}$ line but without evidence of broad wings as seen in the ${ }^{12} \mathrm{CS}$ and OCS emission.

g) $\mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{CH}_{3} \mathrm{NC}\right)$ and $\mathrm{CH}_{3} \mathrm{CCH}$

The $J=13-12$ and $J=12-11$ bands of the symmetric top methyl cyanide $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ were included within the spectral range covered here. The observed lines in the ground vibrational state are listed in Table 9. As discussed by Loren, Mundy, and Erickson (1981) and Loren and Mundy (1984), the low K lines ($K \leq 3$) are seen to be blends of hot core and spike components, with the higher K lines being almost entirely from the hot core. Excitation analysis of the two bands yields excitation temperatures of 285 K and 100 K for the hot core and spike methyl cyanide respectively. Column densities are approximately $2 \times 10^{15} \mathrm{~cm}^{-2}$ and $2 \times 10^{14} \mathrm{~cm}^{-2}$ for the two components.

Vibrationally-excited (ν_{8}) methyl cyanide, seen at lower J by Goldsmith et al. (1983), is seen here in a total of 23 lines. The lines detected are listed in Table 9. The average $v_{\text {LSR }}$ of the ν_{8} lines is $6.5 \mathrm{~km} \mathrm{~s}^{-1}$ and the average width is $8.0 \mathrm{~km} \mathrm{~s}^{-1}$, corresponding to hot-core emission. The strengths of these lines are consistent with an extrapolation of the high K ground state lines at $T_{\mathrm{ex}}=285 \mathrm{~K}$.

Isotopic methyl cyanide is detected in the form of ${ }^{13} \mathrm{CH}_{3} \mathrm{CN}$. This species has a significantly different moment of inertia and its lines are well separated from the parent species. The bands of $\mathrm{CH}_{3}{ }^{13} \mathrm{CN}$, on the other hand, are intermingled with the parent species and the evidence is less certain. The evidence for these isotopic forms is presented in Table 10.

Methyl isocyanide $\left(\mathrm{CH}_{3} \mathrm{NC}\right)$ has not been convincingly detected in the interstellar medium. If its abundance were as great as is suggested by the DCN/DNC ratio, it should be easily detected here. The $J=13-12$ and $J=12-11$ bands fall within this frequency range. The former, unfortunately; is partly obstructed by lines of $\mathrm{CH}_{3} \mathrm{OH}$ in the $J=5-4 \nu_{t}=1$ band. The $J=12-11$ band is relatively clear except for a competing line of HCOOCH_{3}. There is no clear evidence for emission from $\mathrm{CH}_{3} \mathrm{NC}$ in the data, and its abundance relative
to $\mathrm{CH}_{3} \mathrm{CN}$ must be down by a factor of at least 10 . This is in close agreement with the limit set by Irvine and Schloerb (1984) for TMC-1 based on 1.6 cm observations. It is at the low end of the range in the abundance of $\mathrm{CH}_{3} \mathrm{NC}$ predicted by DeFrees, McLean, and Herbst (1984).

Methyl acetylene ($\mathrm{CH}_{3} \mathrm{CCH}$) is also seen in its $J=14-13$ and $J=13-12$ bands. This molecule shows spike component lineshapes ($v_{\mathrm{LSR}}=8.8 \mathrm{~km} \mathrm{~s}^{-1}$, width $=4.5 \mathrm{~km} \mathrm{~s}^{-1}$) with a fairly low excitation temperature ($T_{\text {ex }} \approx 60 \mathrm{~K}$). The lines detected are shown in Table 11. The inferred column density of this species is $10^{15} \mathrm{~cm}^{-2}$.

h) $\mathrm{CH}_{3} \mathrm{OH}$

Emission from methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right.$, Table 12) is concentrated in the strong $J=5-4 a$-type band between 239 and 244 GHz . However, higher and lower $J b$-type $(\Delta K=1)$ transitions are sprinkled throughout the spectrum. Because of the large perturbations caused by the intermediate-height torsional barrier in methanol, frequency predictions are difficult and the available data often inadequate. Many of the high- J methanol lines were identified as such only long after they were first seen astronomically. Many more, currently unidentified, are probably due to methanol. The strong line at 232945 MHz was identified as due to methanol only after its laboratory detection in methanol vapor. The assignment of quantum numbers is still lacking.

The strongest of the methanol lines are clearly saturated. From the weaker lines a column density of around 5×10^{16} cm^{-2} can be derived. Excitation analysis reveals a trend toward higher rotational temperatures for the high-energy transitions, as noted by Hollis et al. (1983). The mean rotational temperature using all the lines is $\sim 120 \mathrm{~K}$, consistent with the narrow spike-component lineshapes and the $v_{\text {LSR }}$ of $8 \mathrm{~km} \mathrm{~s}^{-1}$. However, broad wings can clearly be seen on the strongest lines, indicating a methanol component in the hotter gas as well.

This warm, relatively quiescent gas is most easily seen in the torsionally excited a-type band at 241200 MHz . The lines are quite strong, indicating that the torsionally excited lines (as well as the high-energy ground-state lines) arise from optically thin and spatially compact material. Two torsionally excited b-type lines are also detected, but laboratory data at present are insufficient to accurately predict the frequencies of other such transitions in this frequency range. For the nonblended a-type and b-type lines the average $v_{\text {LSR }}$ is $7.1 \mathrm{~km} \mathrm{~s}^{-1}$ and the average width is $5.5 \mathrm{~km} \mathrm{~s}^{-1}$. This is clearly not emission from the hot core as seen in $\mathrm{CH}_{3} \mathrm{CN}$. Rather, it seems to be warm material in the compact ridge source (Oloffson 1984; Johansson et al. 1984).

Carbon- 13 methanol $\left({ }^{13} \mathrm{CH}_{3} \mathrm{OH}\right)$ has been seen in a total of 15 lines (Table 13). Its interpretation is discussed separately (Blake et al. 1984). The derived column density for ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ is $\sim 1.3 \times 10^{15} \mathrm{~cm}^{-2}$. Several lines previously identified as due to other chemical species are seen to be due instead to ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$. In addition to the lines listed here, several b-type transitions of ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ should be strong enough to be detected. However, at the moment there are no adequate frequency predictions for these lines. Identification of the b-type ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$ lines will await further laboratory and computational work.

TABLE 9

Transitions of $\mathrm{CH}_{3} \mathrm{CN}$					
ν (MHz)	T_{a}^{*} $(\mathrm{~K})$	$\int_{T_{a}^{*} d v}$ $\left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right)$	Notes		

220403.9	$12{ }_{9}-11_{9}$			a
220475.8	$12_{8}-11_{8}$	0.5	2.9	
220539.3	$12{ }_{7}-11_{7}$	0.9	5.3	
220594.4	$12_{6}-11_{6}$	1.9	22.9	
220641.1	$12_{5}-11_{5}$	2.1	20.1	
220679.3	$12_{4}-11_{4}$	2.5	19.0	
220709.0	$12{ }_{3}-11_{3}$	4.9	48.2	
220730.3	$122_{2}-11_{2}$	4.4	60.3	
220743.0	$12_{1}-11_{1}$	~ 4.6	~ 67.	
220747.3	$12_{0}-11_{0}$	~ 5.3	~ 75.	
238766.1	$13_{9}-12_{9}$	0.4	2.4	
238843.9	$13_{8}-12_{8}$	0.6	5.8	
238912.7	$13_{7}-12_{7}$	0.7	5.4	
238972.4	$13_{6}-12_{6}$	1.7	15.6	
239022.9	$13_{5}-12_{5}$	1.7	23.4	
239064.3	$13_{4}-12{ }_{4}$	2.3	28.0	
239096.5	$13_{3}-12{ }_{3}$	3.9	46.1	
239119.5	$13_{2}-12_{2}$	3.7	35.3	
239133.3	$13_{1}-12_{1}$	~ 4.0	~ 40.	
239137.9	$13_{0}-12_{0}$	-4.5	~ 45.	

$\mathrm{CH}_{3} \mathrm{CN}\left(\boldsymbol{\nu}_{8}\right)$					
$221199.0 \ldots \ldots$	$12_{1}-11_{1}(1)$	0.7	10.9	b	
$221252.3 \ldots \ldots$	$12_{5}-11_{5}(-1)$	0.3	1.8		

$221252.3 \ldots \ldots$	$12_{5}-11_{5}(-1)$	0.3	1.8	c
$221265.1 \ldots \ldots$	$12_{7}-11_{7}(1)$	\ldots	\cdots	0.8

221311.9	$12_{6}-11_{6}(1)$	0.2	1.9	
221338.0	$12_{3}-11_{3}(-1)$	0.3	1.7	
221350.3	$12_{5}-11_{5}$ (1)	0.2	1.6	
221367.5	$12_{2}-11_{2}(-1)$	0.6	6.2	
221380.6	$12_{4}-11_{4}$ (1)	0.6	4.1	
221387.3	$12_{1}-11_{1}(-1)$	0.4	2.5	
221394.1	$12_{0}-11_{0}(1)$	0.5	3.0	
221403.5	$12_{3}-11_{3}(1)$	0.3	2.4	
221422.3	$12_{2}-11_{2}(1)$	0.3	2.4	d
221626.0	$12_{1}-11_{1}(1)$	0.4	2.9	
239627.2	$13_{1}-12_{1}(1)$	0.4	3.5	
239684.6	$13_{5}-12_{5}(-1)$...	e
239699.3	$13_{7}-12_{7}$ (1)	nd	\ldots	
239735.7	$13_{4}-12_{4}(-1)$	\ldots	\ldots	f
239750.0	$13_{6}-12_{6}(1)$		\ldots	f
239777.2	$13_{3}-122_{3}(-1)$	0.3	2.1	
239791.7	$13_{5}-12_{5}$ (1)	0.2	2.0	
239808.9	$13_{2}-12_{2}(-1)$	0.6	6.4	
239824.8	$13_{4}-12_{4}$ (1)	0.8	8.2	
239830.0	$13_{1}-12_{1}(-1)$	0.5	4.6	
239836.1	$13_{0}-12_{0}(1)$	0.5	5.0	
239850.0	$13_{3}-12_{3}(1)$	0.7	6.2	
239871.7	$13_{2}-12_{2}$ (1)	0.4	2.3	
240089.8	$13_{1}-12_{1}(1)$	0.6	5.8	

${ }^{\mathrm{a}}$ Lost under ${ }^{13} \mathrm{CO} 220399$.	${ }^{\mathrm{d}}$ Blend with $\mathrm{HCOOCH}_{3} 221425$.
${ }^{\mathrm{b}}$ Emission to broad to be entirely	${ }^{\mathrm{c}}$ Lont under $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}_{3} 39689$.
$\mathrm{CH}_{3} \mathrm{CN}$.	

i) $\mathrm{H}_{2} \mathrm{CO}, \mathrm{HDCO}, \mathrm{H}_{2} \mathrm{CS}, \mathrm{HCOOH}$, and $\mathrm{CH}_{3} \mathrm{CHO}$

Formaldehyde $\left(\mathrm{H}_{2} \mathrm{CO}\right)$ is a fairly light asymmetric top with a small handful of lines in this frequency band. The lines detected are shown in Table 14. Line shapes exhibit both narrow spike components and broad plateau emission, as discussed by Wootten, Loren, and Bally (1984). Line-strength
differences for the few lines detected suggest an excitation temperature of $\sim 100 \mathrm{~K}$ and an $\mathrm{H}_{2} \mathrm{CO}$ column density of about $5 \times 10^{15} \mathrm{~cm}^{-2}$. Only two isotopic lines (one of $\mathrm{H}_{2}{ }^{13} \mathrm{CO}$ and one of HDCO) are clearly detected.

Several lines of $\mathrm{H}_{2} \mathrm{CS}$ are detected in the $J=7-6$ band. The lines are predominantly narrow $\left(v_{\text {LSR }}=7.5 \mathrm{~km} \mathrm{~s}^{-1}\right.$, $\Delta v=4.3 \mathrm{~km} \mathrm{~s}^{-1}$) but with some evidence of broad wings. The

TABLE 10

Species	$\stackrel{\nu}{(\mathrm{MHz})}$	J_{K}	$\begin{gathered} T_{\sigma}^{*} \\ (\mathrm{~K}) \end{gathered}$	$\begin{gathered} \int T_{a}^{*} d v \\ \left(\mathrm{Km} \mathrm{~s}^{-1}\right) \end{gathered}$	Notes
${ }^{13} \mathrm{CH}_{3} \mathrm{CN}$	232194.6	$13_{3}-12_{3}$	0.7 ?	5.1 ?	a
	232216.4	$13_{2}-12{ }_{2}$	0.5	4.0	
	232229.5	$13_{1}-12{ }_{1}$	0.5	4.3	
	232233.9	$13_{0}-12{ }_{0}$	0.6	4.7	
$\mathrm{CH}_{3}{ }^{13} \mathrm{CN}$.	220599.9	$12{ }_{3}-11_{3}$			${ }^{\text {b }}$
	220621.1	$12_{2}-11_{2}$	0.5	1.9	
	220633.8	$12_{1}-11_{1}$	0.5	2.2	c
	220638.0	$12_{0}-11_{0}$...	\ldots	d
	238978.3	$13_{3}-12_{3}$			e
	239001.2	$13_{2}-12_{2}$	0.3	1.3	
	239015.0	$13_{1}-12_{1}$	0.5	2.5	f
	239019.5	$13_{0}-120$...	\ldots	g

${ }^{\text {a }}$ Too strong relative to $K=0,1$, and 2 ; possible blend with unidentified line.
${ }^{\mathrm{b}}$ Lost under $\mathrm{CH}_{3} \mathrm{CN} 220594$.
${ }^{\text {c }}$ Blended with $\mathrm{CH}_{3} \mathrm{CN} 220641$.
${ }^{\mathrm{d}}$ Lost under $\mathrm{CH}_{3} \mathrm{CN} 220641$.
${ }^{\mathrm{e}}$ Lost under $\mathrm{CH}_{3} \mathrm{CN} 238972$.
${ }^{f}$ Blended with $\mathrm{CH}_{3} \mathrm{CN} 239023$.
${ }^{g}$ Lost under $\mathrm{CH}_{3} \mathrm{CN} 239023$.

TABLE 11
Transitions of $\mathrm{CH}_{3} \mathrm{CCH}$

Transitions OF $\mathrm{CH}_{3} \mathrm{CCH}$			
ν (MHz)	J_{K}	T_{a}^{*} $(\mathrm{~K})$	$\left(T_{a}^{*} d v\right.$ $\left(\mathrm{K} \mathrm{km} \mathrm{s}^{-1}\right)$
$222099.2 \ldots$	$13_{4}-12_{4}$	0.2	0.9
$222128.8 \ldots$	$13_{3}-12_{3}$	0.9	4.0
$222150.0 \ldots$	$13_{2}-12_{2}$	1.1	6.0
$222162.7 \ldots$	$13_{1}-12_{1}$	1.5	5.8
$222167.0 \ldots$	$13_{0}-12_{0}$	1.6	8.6
$239179.3 \ldots$	$14_{4}-13_{4}$	0.3	1.0
$23921.2 \ldots$	$14_{3}-13_{3}$	0.9	4.3
$239234.0 \ldots$	$14_{2}-13_{2}$	0.7	2.7
$239247.7 \ldots$	$14_{1}-13_{1}$	0.9	4.0
$239252.3 \ldots$	$14_{0}-13_{0}$	1.2	6.3

excitation temperature is similar to that of $\mathrm{H}_{2} \mathrm{CO}$, and the column density is roughly $10^{15} \mathrm{~cm}^{-2}$. No isotopic forms of $\mathrm{H}_{2} \mathrm{CS}$ are seen.

Formic acid (HCOOH) was not detected in Orion in the Onsala line survey (Johansson et al. 1984). Its absence was rather surprising, given the great abundance of the more complicated but structurally similar molecule methyl formate ($\S \mathrm{Vm}$). It seems to be detected here in small amounts, based on the data in Table 15. The average velocity for the emission is $v_{\mathrm{LSR}}=7.8 \mathrm{~km} \mathrm{~s}^{-1}$ and the width is $4.6 \mathrm{~km} \mathrm{~s}^{-1}$. Assuming $T_{\mathrm{ex}} \approx 90 \mathrm{~K}$ as for methyl formate and chemically similar species, the derived column density is $\sim 10^{14} \mathrm{~cm}^{-2}$, which is near the limit set by the Onsala observations.

Acetaldehyde $\left(\mathrm{CH}_{3} \mathrm{CHO}\right)$ is possibly seen here, although the evidence is not completely convincing. As shown in Table 16, there are weak bumps present at all the expected frequencies except at 216581 MHz . As discussed by Blake et al. (1984), the line at 236049 MHz is due primarily to ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$. Acetaldehyde, if present, is certainly not very abundant.

j) $\mathrm{CH}_{2} \mathrm{CO}$ and HNCO

The tentative detection of ketene $\left(\mathrm{CH}_{2} \mathrm{CO}\right)$ in $\mathrm{OMC}-1$ reported by Johansson et al. (1984) is definitely confirmed here with the detection of a total of 10 lines (Table 17). Line shapes are narrow ($4.9 \mathrm{~km} \mathrm{~s}^{-1}$) with a $v_{\mathrm{LSR}}=8.0 \mathrm{~km} \mathrm{~s}^{-1}$ and an excitation temperature of around 120 K suggested, consistent with spike component emission. The column density is estimated to be $5 \times 10^{14} \mathrm{~cm}^{-2}$.

Isocyanic acid (HNCO) has been seen in Orion by Goldsmith et al. (1982) and Johansson et al. (1984). The broad emission component reported by Goldsmith et al. is easily seen here, particularly in the strong 219798 MHz line (Table 18). The average $v_{\mathrm{LSR}}=7.1 \mathrm{~km} \mathrm{~s}^{-1}$ and the average width is $7.2 \mathrm{~km} \mathrm{~s}^{-1}$. Excitation temperatures of $\sim 120 \mathrm{~K}$ and column densities of $5 \times 10^{14} \mathrm{~cm}^{-2}$ are consistent with the data reported here.
k) HDO and $\mathrm{H}_{2} \mathrm{~S}$

Deuterated water (HDO) is detected through two of its

TABLE 12
Transitions of $\mathrm{CH}_{3} \mathrm{OH}$

Species	(MHz)	J_{K}		$\begin{aligned} & \mathrm{T}_{2}^{*} \\ & (\mathrm{~K}) \\ & \hline \end{aligned}$	$\begin{gathered} \int_{\left(K \mathrm{~km} \mathrm{~s}^{-1}\right)}^{T_{\mathrm{z}}^{*} d v} \end{gathered}$	notes
$\mathrm{CH}_{3} \mathrm{OH} \ldots .$.	216945.6	$4{ }_{2}-5_{1}$	E	3.0	17.8	
	218440.0	$4_{2}-3_{1}$	E	8.4	41.1	
	220078.6	$7{ }_{1}-8$	E	6.1	35.2	
	220401.0	$10_{-6}-11_{-4}$	E	a
	229758.7	$8{ }_{-1} 7_{0}$	E	11.0	56.9	
	229864.2	$19_{6}-20_{4}$	A+	0.4	2.3	
	229939.2	$19_{6}-20_{4}$	A-	0.5	1.9	
	230027.1	3-2-4-1	E	5.1	24.2	
	230368.7	$22_{4}-21_{5}$	E	0.2	1.4	
	231281.1	$10_{2}-9_{3}$	A-	3.0	18.6	
	232418.6	$10_{2}-9_{3}$	A+	3.9	27.1	
	232783.5	$18_{3}-17_{4}$	A+	1.4	9.0	
	232945.	unassigned		3.0	20.0	b
	233795.8	$18_{3}-17_{4}$	A-	1.0	4.3	
	234683.2	$4_{2}-5{ }_{1}$	A-	2.6	14.6	
	234698.4	$5{ }_{4}-6{ }_{-3}$	E	1.2	4.6	
	236936.1	$14_{1}-13_{2}$	A-	2.3	15.8	
	239746.3	$5_{1}-\boldsymbol{4}_{1}$	A+	7.4	42.9	
	240241.5	$5_{3}-6_{2}$	E	2.3	15.1	
	241700.2	$5{ }_{0}-4_{0}$	E	9.3	~ 62.	
	241767.2	$5{ }_{-1} \mathbf{4}_{1}$	E	10.4	~ 85.	
	241791.4	$5{ }_{0}-4_{0}$	A	10.7	61.4	
	241806.5	$54-4$	A士	6.5	41.3	
	241813.3	$5{ }_{-4}-4_{4}$	E	5.0	22.8	
	241829.6	$5_{4}-4_{4}$	E	\} 9.6	68.3	
	241833.0	$5_{3}-4_{3}$	$\mathrm{A} \pm$	\} 8.6		
	241842.3	$5_{2}-4_{2}$	A-	10.3	84.6	
	241843.6	$5_{3}-4_{3}$	E		84.6	
	241852.4	$5{ }_{-5} \mathbf{4}_{-3}$	E	6.6	28.6	
	241879.1	$5{ }_{1}-4_{1}$	E	9.2	54.8	
	241887.7	$5{ }_{2}-4_{2}$	A+	7.8	49.4	
	241904.4	5-2-4-2	E	11.8	69.8	
	241904.5	$5_{2}-4_{2}$	E	11.8	69.8	
	242446.2	$13-2-14-1$	E	3.3	22.5	
	242490.3	$24_{3}-24_{+2}$	A	0.7	4.0	
	243397.5	$18_{6}-19_{5}$	A+	1.6	5.1	
	243412.6	$23_{-3}-23_{+2}$	A	0.9	4.0	
	243915.8	$5_{1}-4_{1}$	A-	8.1	50.5	
	244330.5	$22_{-3}-22_{+2}$	A	1.1	6.0	
	245223.0	$21_{-3}-21_{+2}$	A	1.3	7.6	
	246074.7	$20_{-8}-20_{+2}$	A	1.6	11.3	
	246873.3	$19_{-8}-19_{+2}$	A	1.8	10.7	
$\mathrm{CH}_{3} \mathrm{OH}\left(\nu_{\mathrm{t}}=1\right)$	215302.2	$6{ }_{1}-72$	A+	1.3	6.0	
	240960.6	$5_{1}-4_{1}$	A+	0.9	4.9	
	241159.1	$5_{4}-4_{4}$	E	0.7	5.0	
	241166.5	$5_{3}-4_{3}$	E	0.8	4.4	
	241178.4	$5_{4}-4_{4}$	$\mathrm{A}^{\text {土 }}$	\} 1.3	7.9	
	241179.9	$5{ }_{5-3}-4_{3}$	E		7.8	
	241184.1	5-4,4	E	1.1	6.2	
	241187.4	$5{ }_{-2-4}$	E	1.4	8.4	
	241192.8	5_{2} - $_{2}$	A+	1.9	11.4	
	241196.4	$5_{2}-4_{2}$	A-	\} 2.1	12.4	
	241198.3	$5_{3}-4_{3}$	$\mathrm{A}_{ \pm}$		12.4	
	241203.7	$51-41$	E		16.8	
	241206.0	$5_{0}-4_{0}$	E		16.8	
	241210.7	$5_{2}-4_{2}$	E	1.2	7.3	
	241238.2	$5_{-1}-4_{1}$	E	0.7	4.4	
	241267.9	$5{ }_{5}-40$	A	0.4	3.7	
	241441.2	$5_{1}-4_{1}$	A-	1.5	9.3	
	244338.0	$9{ }_{1}-8_{0}$	E	1.2	8.4	

${ }^{2}$ Lost under ${ }^{13}$ CO 220399.
${ }^{\mathrm{b}}$ Rest frequency from laboratory measurement.

TABLE 13

Transitions of ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$				
$\begin{array}{c}\nu \\ (\mathrm{MHz})\end{array}$	J_{K}	$\begin{array}{c}T_{a}^{*} \\ (\mathrm{~K})\end{array}$	$\begin{array}{c}T_{a}^{*} d v \\ \left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right)\end{array}$	Notes
$234011.6 \ldots$	$5_{1}-4_{1} A+$	0.8	3.1	a
$235881.2 \ldots$	$5_{0}-4_{0} E$	0.6	2.5	
$235938.2 \ldots$	$5_{-1}-4_{-1} E$	0.7	2.8	b
$235960.4 \ldots$	$5_{0}-4_{0} A \pm$	0.7	2.9	с
$235971.1 \ldots$	$5_{4}-4_{4} A \pm$	0.3	1.0	
$235978.6 \ldots$	$5-4-4_{-4} E$	$0.1 ?$	\ldots	
$235994.4 \ldots$	$5_{4}-4_{4} E$			
$235997.2 \ldots$	$5_{3}-4_{3} A \pm$	0.7	3.3	
$236006.1 \ldots$	$5_{3}-4_{3} E$	0.4	1.4	
$236008.4 \ldots$	$5_{2}-4_{2} A-$	0.7	2.7	
$236016.6 \ldots$	$5_{-3}-4_{-3} E$	0.4	1.5	
$236041.4 \ldots$	$5_{1}-4_{1} E$	0.6	2.3	
$236049.5 \ldots$	$5_{2}-4_{2} A+$	0.4	1.7	
$236062.0 \ldots$	$5_{-2}-4_{-2} E$			
$236062.9 \ldots$	$5_{2}-4_{2} E$			

${ }^{\text {a }}$ Blend with $\mathrm{HCOOCH}_{3} 234012$.
${ }^{\mathrm{b}}$ Blend with ${ }^{34} \mathrm{SO}_{2} 235928$.
${ }^{\mathrm{c}}$ Blend with ${ }^{34} \mathrm{SO}_{2} 235952$.

TABLE 14
Transitions of $\mathrm{H}_{2} \mathrm{CO}_{\text {and } \mathrm{H}_{2} \mathrm{CS}}$

Species	$\stackrel{\nu}{(\mathrm{MHz})}$	$J_{K_{p} K_{o}}$	$\begin{aligned} & T_{a}^{*} \\ & (\mathbf{K}) \end{aligned}$	$\begin{gathered} \int T_{a}^{*} d v \\ \left(\mathrm{Km} \mathrm{~s}^{-1}\right) \end{gathered}$	Notes
$\mathrm{H}_{2} \mathrm{CO}$	216568.6	$9_{1,8}-9_{1,9}$	1.3	6.1	
	218222.2	$3_{0,3}-2_{0,2}$	12.7	114.4	
	218475.6	$3_{2,2}-2_{2,1}$	6.2	40.9	
	218760.1	$3_{2,1}-2_{2,0}$	6.9	51.0	
	225697.8	$3_{1,2}-2_{1,1}$	21.6	181.5	
	227583.5	$17_{2,15}-17_{2,16}$	nd	\ldots	
$\begin{aligned} & \mathrm{H}_{2}{ }^{13} \mathrm{CO} . \\ & \mathrm{HDCO} . \end{aligned}$	219908.5	$3_{1,2}-2_{1,1}$	2.7	10.3	
	227668.1	$\mathbf{1}_{1,1}-0_{0,0}$	nd	...	
	228866.3	$6_{1,5}-6_{0,6}$	nd	\ldots	
	246924.7	$4_{1,4}-3_{1,3}$	1.8	7.5	
$\mathrm{H}_{2} \mathrm{CS}$	236726.3	$7_{1,7}-6_{1,6}$	2.7	13.2	
	240261.4	$\left.\begin{array}{l}7_{5,3}-6_{5,2} \\ 7_{5,2}-6_{5,1}\end{array}\right\}$	0.2 ?	\ldots	
	240266.2	$7_{0,7}-6_{0,6}$	1.9	9.1	
	240331.4	$\left.\begin{array}{l} 7_{4,4}-6_{4,3} \\ 7_{4,3}-64,2 \end{array}\right\}$	0.5	1.9	
	240381.3	$7_{2,6}-6_{2,5}$	0.7	3.1	
	240392.3	$\left.7_{3,5}-6_{3,4}\right\}$	1.4		
	240393.0	$73,4-6,3$,	1.4	6.5	
	240548.3	$7,{ }_{2,5}-6_{2,4}$	0.7	4.1	
	244047.8	$7_{1,6}-6_{1,5}$	3.9	17.1	
$\mathrm{H}_{2} \mathrm{C}^{34} \mathrm{~S}$	232778.5	$7_{1,7}-6_{1,6}$	nd	...	
	236198.8	$7_{0,7}-6_{0,6}$	\ldots	\ldots	a
	239858.5	$7_{1,6}-6_{1,5}$	nd	\ldots	

${ }^{\text {a }}$ Lost under $\mathrm{SO}_{2} 236217$.
low-lying transitions, as listed in Table 19. A third higher J transition falls in a very crowded region of the spectrum and may be present; however, it is difficult to separate its contribution from that of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ and ${ }^{34} \mathrm{SO}_{2}$. The HDO lines have predominantly hot-core line shapes ($v_{\mathrm{LSR}}=6.8 \mathrm{~km} \mathrm{~s}^{-1}, \Delta v=$ $11.5 \mathrm{~km} \mathrm{~s}^{-1}$), as best illustrated by the 225897 MHz line. Assuming a rotational temperature of 150 K , typical of many
hot-core species, a column density of $4 \times 10^{15} \mathrm{~cm}^{-2}$ is derived.
A single line of $\mathrm{H}_{2} \mathrm{~S}$ was detected. Its line shape seems to indicate both hot-core emission and the broader plateau-source component typical of sulfur-containing molecules.

$$
\text { l) } \mathrm{SO}_{2}
$$

The molecule SO_{2} dominates the appearance of the
millimeter-wave spectrum of Orion. Because of its asymmetric geometry, it has a rich spectrum of lines which are typically very strong because of the large abundance and high dipole moment of the molecule. Emission from SO_{2} accounts for approximately 28% of the total line flux from Orion. The detected lines of SO_{2} and ${ }^{34} \mathrm{SO}_{2}$ are shown in Tables 20 and

TABLE 15
Transitions of HCOOH

ν (MHz)	$J_{K_{p} K_{o}}$	T_{a}^{*} $(\mathrm{~K})$	$\int T_{a}^{*} d v$ $\left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right)$	Notes
$215407.8 \ldots \ldots$	$10_{1,10}-9_{1,9}$	\ldots	\ldots	a
$220038.0 \ldots \ldots$	$10_{0,10}-9_{0,9}$	0.3	1.2	
$223915.6 \ldots \ldots$	$10_{2,9}-9_{2,8}$	0.3	1.0	
$225237.8 \ldots \ldots$	$10_{3,8}-9_{3,7}$	\ldots	\ldots	b
$225512.5 \ldots \ldots$	$10_{3,7}-9_{3,6}$	0.4	2.0	
$228544.1 \ldots \ldots$	$10_{2,8}-9_{2,7}$	0.4	1.2	
$231505.6 \ldots \ldots$	$10_{1,9}-9_{1,8}$	0.8	2.4	
$236717.2 \ldots \ldots$	$11_{1,11}-10_{1,10}$	0.4	1.5	
$241146.2 \ldots \ldots$	$11_{0,11}-10_{0,10}$	0.2	1.6	
$246106.0 \ldots$	$11_{2,10}-10_{2,9}$	0.6	4.8	c

${ }^{\text {a }}$ Lost under $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} 215401$.
${ }^{\text {b }}$ Lost under $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} 225236$.
${ }^{\mathrm{c}}$ Too strong, possible blend with unidentified line.

TABLE 16

$\stackrel{\nu}{(\mathrm{MHz})}$	$J_{K_{p} K_{o}}$	$\begin{aligned} & T_{a}^{*} \\ & (\mathrm{~K}) \end{aligned}$	$\begin{gathered} \int T_{a}^{*} d v \\ \left(\mathrm{~K}_{\mathrm{km} \mathrm{~s}}{ }^{-1}\right) \end{gathered}$	Notes
216580.6...	$11_{1,10}-10_{1,9} E$	nd	\cdots	
216630.0...	$111,10^{10} 101,9 \mathrm{~A}$			a
223650.3.	${ }_{12}^{12,12}-11_{1,11} E$	0.2	0.8	
223660.8.	$12_{1,12}-11_{1,11} A$	0.3	2.4	
226551.5...	$12_{0,12}-11_{0,11} E$	0.3	2.1	
226592.8.	$120_{0,12}-11_{0,11} A$	0.2	1.0	
235997.0.	$12_{1,11}-11_{1,10} E$	\ldots	\ldots	c
236049.1.	$12_{1,11}-11_{1,10} A$	\ldots	\ldots	c

${ }^{\text {a }}$ Lost under $\mathrm{SO}_{2} 216643$.
${ }^{\text {b }}$ Lost under
${ }^{\text {c }}$ Lost under ${ }^{13} \mathrm{CH}_{3} \mathrm{OH} 235997$.
$\mathrm{CH}_{3} \mathrm{OH} 236050$.

TABLE 17

$\stackrel{\nu}{(\mathrm{MHz})}$	$J_{K_{p} K_{o}}$	$\begin{aligned} & T_{\sigma}^{*} \\ & (\mathrm{~K}) \end{aligned}$	$\begin{gathered} \int \mathcal{T}_{a}^{*} d v \\ \left(\mathrm{Km} \mathrm{~s}^{-1}\right) \end{gathered}$	Notes
220177.5	$11_{1,11}-10_{1,10}$	1.0	3.7	
222197.7.	$11_{0,11}-10_{0,10}$	0.6	3.7	
222228.6	$11_{2,10}-10_{2,9}$	0.2	0.6	
222314.4...	$11_{2,9}-10_{2,8}$	0.2	0.6	
224327.2	$11_{1,10}-10_{1,9}$			a
240185.8.	$12_{1,12}-11_{1,11}$	0.5	5.0	
242375.8...	$12_{0,12}-11_{0,11}$	0.5	2.7	
242398.7...	$12_{3,10}-11_{3,9}$,			
242399.2...	12, ${ }_{3,9}-11_{3,8}$ \}	0.6	2.9	
242424.7.	$12_{2,11}-11_{2,10}$	0.2	1.5	
242536.2	$12_{2,10}-11_{2,9}$	0.4	2.5	
244712.2	$12_{1,11}-11_{1,10}$	0.8	3.0	

[^3]21 respectively. The lines have predominantly plateau line shapes with average widths of $23.7 \mathrm{~km} \mathrm{~s}^{-1}$ for SO_{2} and 17.0 $\mathrm{km} \mathrm{s}{ }^{-1}$ for ${ }^{34} \mathrm{SO}_{2}$. The strongest lines are clearly saturated. The weaker lines are fitted with an excitation temperature of about 95 K and inferred column density of $5 \times 10^{16} \mathrm{~cm}^{-2}$, similar to the values given by Schloerb et al. (1983).

Vibrationally excited SO_{2} is probably detected on the basis of the $14_{0,14}-13_{1,13}$ line at 243522.6 MHz , as shown in Table 20. This is the strongest expected vibrationally excited line and has a lower state energy of $\sim 580 \mathrm{~cm}^{-1}$ (Goldsmith et al. 1983). Its intensity is consistent with an extrapolation of the higher energy ground-state lines (e.g., $21_{7,15}-22_{6,16}$) at $T_{\text {rot }}=$ 150 K , the temperature suggested by Schloerb et al. for their highest energy lines. The vibrationally excited emission has a (poorly determined) $v_{\text {LSR }}$ of $6.5 \mathrm{~km} \mathrm{~s}^{-1}$ and a width of ~ 6 $\mathrm{km} \mathrm{s}^{-1}$. This is somewhat suggestive of hot-core emission but not conclusive, due to the weakness of the feature. It is interesting to note that the tentatively detected $27_{8,20}-28_{7,21}$ ground state line at $343 \mathrm{~cm}^{-1}$ also suggests hot-core emission ($v_{\mathrm{LSR}} \approx 4.8 \mathrm{~km} \mathrm{~s}^{-1}, \Delta v \approx 8 \mathrm{~km} \mathrm{~s}^{-1}$).

TABLE 18
Transitions of HNCO

$\begin{array}{c}\nu \\ (\mathrm{MHz})\end{array}$						$J_{K_{p} K_{o}}$	$\begin{array}{c}T_{a}^{*} \\ (\mathrm{~K})\end{array}$	$\begin{array}{c}T_{a}^{*} d v \\ \left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right)\end{array}$	Notes
$218981.0 \ldots \ldots$	$10_{1,10}-9_{1,9}$	1.0	9.8						
$219547.1 \ldots \ldots$	$10_{4,7}-9_{4,6}$								
	$10_{4,6}-9_{4,5}$								

> a Lost under $\mathrm{SO}_{2} 241616$.
> ${ }^{\mathrm{b}}$ Blend with $\mathrm{CH}_{3} \mathrm{OH} 241700$.
> ${ }^{\mathrm{c}}$ Blend with $\mathrm{CH}_{3} \mathrm{OH} 241767$.

TABLE 19
Transitions of HDO and $\mathrm{H}_{2} \mathrm{~S}$

Species	ν (MHz)	$J_{K_{\mathrm{p}} K_{o}}$	T_{a}^{*} $(\mathrm{~K})$	$\int T_{a}^{*} d v$ $\left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right)$	Notes
HDO \ldots	225896.7	$3_{1,2}-2_{2,1}$	2.3	25.0	
	241561.5	$2_{1,1}-2_{1,2}$	1.9	23.1	
$\mathrm{H}_{2} \mathrm{~S} \ldots$	24193.5	216710.4	$2_{2,4}-2_{4,3}$	$?$	\ldots

[^4]TABLE 20
Transitions of SO_{2}

Species	$\stackrel{\nu}{(\mathrm{MHz})}$	$J_{K_{p} K_{0}}$	T_{a}^{*} (K)	$\begin{gathered} \int T_{a}^{*} d v \\ \left(\mathbf{K} \mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$	Notes
$\mathrm{SO}_{2} \ldots \ldots \ldots \ldots$	216643.3	$22_{2,20}-22_{1,21}$	4.6	105.	
	219276.0	$22_{7,15}-23_{6,18}$	0.3 ?		
	221965.2	$11_{1,11}-10_{0,10}$	13.9	348.	
	223434.4	$27_{8,20}-28_{7,21}$	0.3 ?		
	223883.6	$6_{4,2}-7_{3,5}$	1.4	27.1	
	224264.9	$20_{2,18}-19_{3,17}$	2.6	60.8	
	225153.7	$13_{2,12}-13_{1,13}$	6.3	159.	
	226300.0	$14_{3,11}-14_{2,12}$	5.8	143.	
	229347.7	$11_{5,7}-12_{4,8}$	1.9	40.1	
	234187.1	$28_{3,25}-28_{2,26}$	1.6	36.1	
	234421.7	$16_{6,10}-17_{5,13}$	1.5	36.8	a
	235151.7	$4_{2,2}-3_{1,3}$	5.6	145.	
	236216.7	$16_{1,15}-15_{2,14}$	5.3	131.	
	237068.8	123,9-12, ${ }^{2,10}$	5.9	171.	
	238992.6	$21_{7,15}-22_{6,16}$	0.4	6.8	
	240942.8	$18_{1,17}-18_{0,18}$	4.3	111.	
	241615.8	$5_{2,4}-4_{1,3}$	8.9	225.	
	243087.7	$5_{4,2}-6_{3,3}$	1.4	24.5	
	243245.4	$26_{8,18}-27_{7,21}$	nd	...	
	244254.2	$14_{0,14}-13_{1,13}$	9.9	271.	
	245339.4	$26_{3,23}-25_{4,22}$	1.7	31.0	
	245563.4	$10_{3,7}-10_{2,8}$	7.8	220.	
$\mathrm{SO}_{2}\left(\nu_{2}=1\right) \ldots$	243522.6	$14_{0,14}-13_{1,13}$	0.5	3.2	

${ }^{\mathrm{a}}$ Blend with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} 234,424$.

TABLE 21

$\stackrel{\nu}{(\mathrm{MHz})}$	$J_{K_{p} K_{o}}$	$\overline{T_{a}^{*}}$ (K)	$\begin{gathered} \int T_{a}^{*} d v \\ \left(\mathrm{Km} \mathrm{~s}^{-1}\right) \end{gathered}$	Notes
215999.8.	$14_{3,11}-14_{2,12}$	0.7	12.0	
219355.1.	$11_{1,11}-10_{0,10}$	1.3	24.0	
221735.7.	$13_{2,1 z}-13_{1,13}$	1.0	17.5	
227031.9.	12, $3,9-12_{2,10}$	0.7	14.6	,
229857.7.	$4_{2,2}-3_{1,3}$	1.1	21.0	
230933.5	$5_{4,2}-6_{3,3}$	nd		
235927.5...	$5_{2,4}-4,1.3$	0.6	14.8	
235952.0...	$10_{3,7}-10_{2,8}$	0.7	19.1	
$241509.0 \ldots$	$16_{1,15}-15_{2,14}$	0.9	13.8	
241985.5...	$8{ }_{3,5}-8_{2,6}$	1.4	29.2	
243935.9...	$18_{1,17}-18_{0,18}$	0.4 ?		
244481.5...	$14_{0,14}-13_{1,13}$	1.4	19.5	
245178.7...	$15_{2,14}-15_{1,15}$	0.8	14.2	
245302.3...	$6_{3,3}-6_{2,4}$	0.9	14.3	
246686.2.	$4_{3,1}-4_{2,2}$	0.3?	\ldots	

${ }^{\text {a }}$ Blend with $\mathrm{HCOOCH}_{3} 227028$.

m) HCOOCH_{3}

The largest number of lines in the spectrum produced by any one molecule are due to methyl formate $\left(\mathrm{HCOOCH}_{3}\right)$. The 130 lines detected here are listed in Table 22. Methyl formate is a heavy asymmetric rotor with hindered internal rotation of the methyl group. Plummer et al. (1984) have measured transitions for the A symmetry state and have obtained accurate line-frequency predictions from a model which does not explicitly take into account the internal rotation. The E symmetry state has also recently been investigated
by Plummer et al. (1985), using a model incorporating the internal rotation. The predicted frequencies are used here. In addition, Plummer et al. (1985) have measured directly all strongly perturbed transitions in this frequency range to eliminate any uncertainties in the rest frequencies. Measured line intensities for methyl formate imply an excitation temperature of $\sim 90 \mathrm{~K}$ and a column density of $3 \times 10^{15} \mathrm{~cm}^{-2}$. The $v_{\text {LSR }}$ of $7.8 \mathrm{~km} \mathrm{~s}^{-1}$, velocity widths of $\sim 4.3 \mathrm{~km} \mathrm{~s}^{-1}$, and low excitation temperature indicate that methyl formate is spikecomponent material.

TABLE 22
Transitions of HCOOCH_{3}

(MHz)	$\mathrm{J}_{\mathrm{K}_{\mathrm{p}} \mathrm{K} \text { 。 }}$	$\begin{gathered} \mathrm{T}_{\mathbf{2}}^{*} \\ (\mathrm{~K}) \end{gathered}$	$\begin{gathered} \int_{\left(K \mathrm{~km} \mathrm{~s}^{*-1}\right)} \mathrm{T}^{*} \mathrm{dv} \end{gathered}$	notes	(MHz)	$\mathrm{J}_{\mathrm{K}_{\mathrm{p}} \mathrm{K}_{\mathrm{o}}}$	$\begin{gathered} \mathrm{T}_{\mathbf{2}}^{*} \\ (\mathrm{~K}) \\ \hline \end{gathered}$	$\begin{gathered} \int \mathrm{T}_{\mathrm{a}}^{*} \mathrm{dv} \\ \left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right) \\ \hline \end{gathered}$	notes
215972.0...	$19_{1,18}-18_{2,17}$ A	0.2 ?	...		225608.7...	$19_{3,17}-18_{3,16} \mathrm{E}$	1.1	5.0	
216109.7....	$19_{2,18}-18_{2,17} \mathrm{E}$	0.9	4.5		225618.7...	$19_{3,17}-18_{3,16}$ A	1.3	6.3	
216115.5...	$19_{2,18}-18_{2,17} \quad$ A	1.1	5.8		225928.6....	$\mathbf{6}_{6,1}-5_{5,0} \quad \mathbf{A}$	$\} 0.4$	2.2	
216210.9....	$19_{1,18}-18_{1,17} \quad \mathrm{E}$	0.8	4.3			$\mathbf{6}_{6,0}-5_{5,1} \quad$ A	\} 0.4	2.2	
216216.5....	$19_{1,18}-18_{1,17}$ A	0.9	4.3		226635.2...	$20_{1,19^{-}} 19_{2,18}$ A	\ldots	\ldots	f
216360.0....	$19_{2,18}-18_{1,17}$ A	0.2 ?	\ldots		226713.1...	$20_{2,10}-19_{2,18} \quad \mathrm{E}$	0.9	2.6	
216830.1....	$18_{2,10^{-17}} \mathbf{1 7}_{2,15} \mathrm{E}$	1.2	3.9		226718.7...	$20_{2,18}-19_{2,18}$ A	0.5	2.6	
216838.8....	$18_{2,18}-17_{2,15}$ A	1.1	3.8		226773.2...	$20_{1,19}-19_{1,18}$ E	0.9	3.7	
216964.8...	$20_{1,20}-19_{1,19} \mathrm{E}$				226778.7...	$20_{1,18}-19_{1,18}$ A	1.0	3.1	
216965.9....	$20_{1,20}-19_{1,19}$ A	2.0	12.5		226856.5...	$20_{2,19}-19_{1,18}$ E	0.5	2.0	
216966.2....	$20_{0,20}-19_{0,19}$ E	2.0	12.5		226862.2...	$20_{2,18}-19_{1,18}$ A	0.6	1.8	
216967.3....	$20_{0,20}-19_{0,19} \mathrm{~A}$				227019.6....	$19_{2,17}-18_{2,16} \mathrm{E}$	1.0	4.2	
218281.0....	$17_{3,14}-16_{3,13} \mathrm{E}$	1.0	4.2		227028.0...	$19_{2,17}-18_{2,16}$ A	1.2	4.5	g
218297.8....	$17_{3,14}-16_{3,13} \quad \mathrm{~A}$	1.2	4.3		227561.1....	$21_{0,21}-20_{0,20}$ E			
220166.6...	$17_{4,13}-16_{4,12} \mathrm{E}$	1.3	5.8		227561.9...	$21_{1,21}-20_{1,20}$ E	2.1	13.0	
220190.2...	$17_{4,13}-16_{4,12} \mathrm{~A}$	1.3	7.2		227562.0....	$21_{1,21}-20_{1,20}$ A	2.1	13.0	
220811.6....	$18_{3,16}-17_{2,15}$ E	0.4	1.0		227562.8...	$21_{0,21}-20_{0,20}$ A			
220815.2....	$18_{3,16}-17_{2,15}$ A	0.4	2.5		228629.1...	$18_{5,13}-17_{5,12}$ E	1.2	4.0	
220889.0....	1817,2-17 ${ }_{17,1}$ A	0.4	2.3		228651.3....	$18_{5,13}-17_{5,12}$ A	1.2	5.5	
	$18_{17,1}-17_{17,0}$ A	0.4	2.3		229404.9...	$18_{3,15}-17_{3,14} \mathrm{E}$	1.2	5.0	
220926.2....	$\mathbf{1 8}_{10,3}-17_{16,2}$ A	0.5	2.1		229420.3...	$18_{3,15}-17_{3,14}$ A	1.3	4.4	
	$18_{10,2}-17_{16,1}$ A	0.5	2.1		229474.6...	$20_{3,17}-19_{4,16} \mathrm{E}$	0.3	0.9	
220977.8...	18815,3-17 ${ }_{15,2}$ A	0.5	3.2		229504.6...	$20_{3,17}-19_{4,16}$ A	0.3	1.5	
	18 $1_{15,4}-17_{15,3}$ A	\% 0.5	3.2		229590.0...	$19_{3,17}-18_{2,16}$ E	h
221047.7...	$18_{14,4}-17_{14,3} \quad \mathrm{~A}$				229595.0...	$19_{3,17}-18_{2,16}$ A		\cdots	h
	18 $1_{14,5}-17_{14,4}$ A	0.5	4.5		231199.3...	$21_{9,12}-21_{8,13}$ A	0.3	1.8	
221050.0...	18 $1_{14,4}-17_{14,3} \quad \mathrm{E}$				231239.1....	$21_{9,13}-21_{8,14}$ A	0.4	2.8	
221066.3...	$18_{14,5-17}^{14,4}$ E	0.3	2.0		231960.2...	$20_{9,11}-20_{8,12} \mathrm{E}$	nd	\cdots	
221141.0...	18 $1_{13,5}-17_{13,4}$ A				231966.9...	$20_{0,11}-20_{8,12}$ A	0.4	1.6	
	$18_{13,8}-17_{13,4}$ A	0.7	4.0		233212.6...	$19_{4,11^{-}-18} 8_{4,15} \mathrm{E}$			1
	$18_{13,5}-17_{13,4} \mathrm{E}$				233226.7....	$19_{4,18}-18_{4,15}$ A	1.1	4.8	
221158.4...	$18_{13,8}-17_{13,5}$ E	0.2	0.8		233310.0....	$19_{15,4}-18_{15,3}$ A	\} 0.4	2.2	
221260.9...	$18_{12,8}-17_{12,5} \mathrm{E}$	0.4	1.0			19, $9_{15,5}-18_{15,4}$ A	\} 0.4	2.2	
221265.6....	$\begin{aligned} & 18_{12,6}-17_{12,5} \\ & 18_{12,7}-17_{12,6} \end{aligned}$	$\} 0.6$	2.3		233394.6...	$\begin{array}{ll} 19_{14,5}-18_{14,4} & \mathbf{A} \\ 19_{14,6}-18_{14,5} & \mathbf{A} \end{array}$	$\} 0.4$	3.3	
221280.8...	$18_{12,7}-17_{12,6} \mathrm{E}$	0.4	1.6		233505.0....	$19_{13,7}-18_{13,6} \quad \mathrm{E}$	\ldots	\ldots	j
221424.7....	$18_{11,7}-17_{11,6}$ E	0.8	4.4	2	233506.6....	1913, ${ }_{1}-18_{13,5} \quad \mathbf{A}$	$\} 0.8$	7.0	
221433.0...	$\begin{aligned} & \mathbf{1 8} 8_{11,7}-17_{11,6} \\ & \mathbf{1 8} \\ & 11,8 \\ & \mathbf{1 7} \\ & 11,7 \end{aligned}$	$\} 0.9$	3.8		233524.6...	$\begin{array}{ll} 19_{13,7}-18_{13,6} & \mathbf{A} \\ 19_{13,8}-18_{13,5} & \mathbf{E} \end{array}$	0.8 0.4	7.0 3.0	k
221445.5...	$18_{11,8}-17_{11,7} \mathrm{E}$	0.6	2.6		233627.1....	$17_{9,8}-17_{8,9} \quad$ A	$\} 0.4$	7.1	
221649.7....	$18_{10,8}-17_{10,7} \mathrm{E}$	0.5	1.9		233628.4....		\} 0.4	7.1	
221660.4...	$18_{4,15}-17_{4,14} \mathrm{E}$				233649.9....	1912,7-18 12, 1 E	0.5	3.1	
221661.1...	$\begin{aligned} & 18_{10,8}-17_{10,7} \\ & 18_{10,9}-17_{10,8} \end{aligned}$	1.5	6.3		233655.3...	$\begin{aligned} & 19_{12,7}-18_{12,6} \quad \text { A } \\ & 19_{12,8}-18_{12,7} \end{aligned}$	\} 1.1	8.2	I
221670.5...	$18_{10,8}-17_{10,8} \mathrm{E}$	0.4	1.6		233671.0....	$19_{12,8}-18_{12,7} \quad \mathbf{E}$	0.3	2.0	
221674.6...	$18_{4,15-17_{4,14}} \mathrm{~A}$	0.8	4.3		233754.1....	$18_{4,14}-17_{4,13} \quad \mathrm{E}$	0.8	4.5	
221979.3...	$189,10-17_{9,9}$ A	b	233777.5....		0.8	3.0	
221979.4....	189,9-17 $\mathbf{1 8 , 8}^{8}$ A	\ldots	\ldots	b	233845.3....	$19_{11,8}-18_{11,7} \quad \mathbf{E}$	0.5	3.1	
222421.6...	$18_{8,10}-17_{8,8} \quad \mathrm{E}$	1.0	5.2		233854.2...	$19_{11,8}-18_{11,7} \quad \mathbf{A}$	$\} 0.7$	3.1	
222438.2...	$18_{8,10}-17_{8,8} \quad$ A					$19_{11,8}-18_{11,8} \quad$ A	\} 0.7	3.1	
222440.3...	$18_{8,11} \mathbf{- 1 7}_{8,10}$ A	1.2	10.8	c	233867.1....	19 $9_{11,9}-18_{11,8}$ E	0.4	1.6	
222441.9...	$18_{8,10}-17_{8,9} \quad \mathrm{E}$				234011.3....	$\mathbf{1 6}_{9,7}-16_{8,8} \quad \mathbf{A}$	m
223038.3....	$19_{2,17}-18_{3,16} \mathrm{E}$	0.3	0.8		234011.8....	169,8-168,9 \quad A	\cdots	\ldots	m
223051.7...	$19_{2,17}-18_{3,16} \quad$ A	0.2 ?	\ldots		234112.3....	19910,8-18 $\mathbf{1 8}_{10,8}$ E	0.3	2.3	
223119.2....	$18_{7,12}-17_{7,11}$ A	1.1	5.5		234124.8....	$19_{10,8}-18_{10,8} \quad$ A	\} 0.6	2.9	
223125.1....	$18_{7,12}-17_{7,11} \mathrm{E}$	1.0	5.4			$19_{10.10}-18_{10,9} \mathbf{A}$	$\} 0.6$	2.9	
223134.9....	$18_{7,11}-17_{7,10} \mathrm{E}$	1.0	4.6		234134.6....	$19_{10,10^{-18}}^{10,0}$ E	0.6	3.0	
223162.7....	187,11-17 7,10 A	0.8	2.7		234328.8....	$15_{9,8}-15_{8,7} . \mathrm{A}$	0.3?		
224021.4....	$18_{8,13}-17_{8,12}$ E	$\} 1.0$	7.5	d	234328.9....	15, ${ }_{9,7}-15_{8,8} \quad$ A	\} 0.3 ?	\cdots	
224024.1...	$18_{8,13}-17_{8,12}$ A	11.0	7.5	d	234486.4....	$19_{9,10}-18_{9,9} \quad$ E	0.6	3.5	
224312.9....	$18_{5,14}-17_{5,13}$ E	0.8	2.9		234502.2....	$19_{9,11}-18_{9,10} \quad \mathrm{~A}$	$\} 1.1$	6.5	
224328.3....	185,14-17 ${ }_{5,13}$ A	0.8	3.2	e	234502.4....	$19_{9,10}-18_{9,0} \quad$ A	$\int 1.1$	6.5	
224583.0....	$18_{6,12}-17_{6,11} \quad \mathrm{E}$	0.8	3.2		234508.5....	$19_{9,11^{-18}} \mathbf{1 8}_{9,10}$ E	0.6	3.7	
224609.3....	$18_{0,12}-17_{8,11}$ A	0.8	2.8		234739.0....	$20_{2,18}-19_{3,17}$ A	0.5	0.9	

TABLE 22-Continued

$\begin{gathered} \nu \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{J}_{\mathrm{K}_{\mathrm{p}} \mathrm{K}_{\text {o }}}$	$\begin{gathered} \mathbf{T}_{\mathbf{z}}^{*} \\ (\mathrm{~K}) \end{gathered}$	$\begin{gathered} \int \mathrm{T}_{\mathrm{s}}^{*} \mathrm{dv} \\ \left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$	notes	(MHz)	$\mathrm{J}_{\mathrm{K}_{\mathrm{p}} \mathrm{K}_{0}}$	$\begin{aligned} & \mathrm{T}_{\mathbf{2}}^{*} \\ & (\mathrm{~K}) \end{aligned}$	$\begin{gathered} \int \mathrm{T}_{\mathrm{z}}^{*} \mathrm{dv} \\ \left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$	notes
235029.9...	$19_{8,11}-18_{8,10} \quad \mathbf{E}$	1.2	2.4		240021.4....	$19_{3,16}-18_{3,15} \mathrm{E}$	1.0	5.9	
235043.2...	$19_{8,12}-18_{8,11} \quad \mathrm{E}$) 0.6	2.5		240034.6....	$19_{3,16}-18_{3,15} \quad$ A	1.1	4.9	
235046.5....	$19_{8,12}-188,11 \quad$ A	\} 0.6	2.5		242872.2....	$19_{5,14}-18_{5,13} \quad \mathrm{E}$	1.1	6.5	
235051.4....	$19_{8,11}-18_{8,10}$ A	1.2	5.1		242896.0....	$19_{5,14}-18_{5,13} \quad$ A	1.1	6.1	
235844.5...	$19_{7,13}-18_{7,12} \quad$ A	0.5	2.1		244580.7....	$20_{4,17}-19_{4,16}$ E	1.3	5.3	
235865.9....	$19_{7,13}-18_{7,12} \quad \mathrm{E}$	0.5	2.1		244594.0....	$20_{4,17-19} \mathbf{4 9}_{4,16}$ A	1.1	5.4	
235887.2....	$19_{7,12}-18_{7,11} \quad \mathrm{E}$	0.5	2.0		245137.9....	$21_{3,18}-20_{4,17} \mathrm{E}$	0.3 ?	...	
235932.3....	$19_{7,12}-18_{7,11} \quad$ A	0.5	1.6	n	245165.8....	$21_{3,18}-20_{4,17} \mathrm{~A}$	0.4 ?	\ldots	
236355.9....	$20_{3,18}-19_{3,17} \quad \mathrm{E}$	0.9	5.8		245651.1....	$20_{15,5}-19_{15,4} \quad \mathrm{~A}$	\} 0.6	3.2	
236365.5....	$20_{3,18}-19_{3,17} \quad \mathrm{~A}$	0.7	3.9			2015,8-19 $\mathbf{1 5 , 5}^{\text {d }}$ A	\} 0.6	3.2	
236743.7...	$19_{5,15}-188_{5,14}$ E	0.6	2.4		245752.2....				
236759.6...	195,15-18,14 A	0.6	2.6			20 $\mathbf{1 4 , 7}^{-19} 19$ 14,8 \quad A	$\} 0.7$	2.3	
236800.5...	$19_{0,14}-18_{6,13} \mathrm{E}$	0.6	2.7		245754.3....	$20_{14,6}-19_{14,5} \quad \mathrm{E}$			
236810.3...	$19_{0,14}-18_{6,13}$ A	0.8	2.8		245772.1....	$20_{14,7}-19_{14,6} \mathrm{E}$	0.5	1.8	
237266.9...	$21_{1,20}-20_{2,19}$ A	0.4	3.3		245883.2....	$20_{13,8}-19_{13,7} \mathrm{E}$	0.2	0.5	
237297.5...	$20_{2,18}-19_{2,17} \mathrm{E}$	0.8	3.5		245885.1...	$20_{13,7}-19_{13,6}$ A	\} 0.8	3.3	
237306.0...	$20_{2,18}-19_{2,17} \mathrm{~A}$	$\} 1.1$	8.6			$20_{13,8}-19_{13,7}$ A) 0.8	3.3	
237309.5....	$21_{2,20}-20_{2,19} \mathrm{E}$	\} 1.1	8.6		245903.5...	$20_{13,7}-19_{13,6} \mathrm{E}$	0.2	0.9	
237315.1....	$21_{2,20}-20_{2,19}$ A	1.1	6.2		246055.1....	$20_{12,9}-19_{12,8} \mathrm{E}$	0.5	1.0	
237344.8...	$21_{1,20}-20_{1,19}$ E	0.8	2.6		246060.8....	$20_{12,8}-19_{12,7} \mathrm{~A}$	$\} 0.8$	3.0	
237350.4....	21 $1_{1,20}-20_{1,19}$ A	0.7	2.4			20 ${ }_{12,8}-19_{12,8}$ A	\} 0.8	3.0	
237393.2...	$21_{2,20-20,19}$ E	0.1?	\ldots		246076.6...	$20_{12,8}-19_{12,7} \mathrm{E}$	\cdots	\cdots	-
237398.6....	$21_{2,20}-20_{1,19}$ A	0.2 ?	\cdots		246285.4....	$20_{11,2^{-1}} 19_{11,8}$ E	0.4	1.5	
237807.6...	$19_{0,13}-18_{6,12}$ E	0.5	2.3		246295.1....	$20_{11,10^{-19}}{ }^{19} 18 \mathrm{~A}$	$\} 1.3$	3.0	
237829.8...	$19_{6,13}-18_{6,12} \quad$ A	0.6	2.3			$20_{11,9^{-1}} 19_{11,8}$ A	\} 1.3	3.0	
238156.2...	22 $\mathbf{1 , 2 2}^{-21} 1_{1,21}$ E)			246308.6...	$20_{11,10}-19_{11,9} \mathrm{E}$	0.4	2.0	
238156.6....	22 ${ }_{0,22}-21_{0,21}$ E	2.7	21.1		246600.2....	$20_{10,11}-19_{10,10} \mathrm{E}$	0.7	3.3	
238156.8...	$22_{1,22}-21_{1,21}$ $22^{\text {A }}$	2.7	21.1		246613.3....	$20_{10,11}-19_{10,10} \mathrm{~A}$	$\} 1.1$	4.8	
238157.3....	$22_{0.22}-21_{0.21} \mathrm{~A}$				246613.4....	$20_{10,10^{-1}} \mathbf{1 9}_{10,9} \mathrm{~A}$			
$238190.1 \ldots$. $238190.2 \ldots$.	$7_{8,2}-6_{5,1} \quad$ A	$\} 0.2$	1.7		246623.1....	$20_{10,10}-19_{10,9} \mathbf{E}$	0.8	3.7	
238190.2...	$7_{6,1}-6_{5,2} \quad \mathrm{~A}$	f 0.2	1.7		246891.1...	194,15-18 ${ }_{4,14}$ E	1.2	3.4	
238926.8...	$20_{3,18}-19_{2,17} \mathrm{E}$	0.3	0.9		246914.6....	$19_{4,15}-18_{4,14}$ A	1.2	5.5	
238932.5...	$20_{3,18}-19_{2,17} \mathrm{~A}$	0.1 ?	...						

${ }^{\text {a }}$ Blend with $\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}\right) 221422$.
${ }^{\mathrm{b}}$ Lost under $\mathrm{SO}_{2} 221965$.
${ }^{\mathrm{c}}$ Blend with $\mathrm{CH}_{3} \mathrm{OCH}_{3} 222435$.
${ }^{d}$ Blend with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} 224018$.
${ }^{e}$ Blend with $\mathrm{CH}_{2} \mathrm{CO} 224327$.
${ }^{\text {f }}$ Blend with CN 226632.
${ }^{8}$ Blend with ${ }^{34} \mathrm{SO}_{2} 227032$.
${ }^{\mathrm{h}}$ Blend with unidentified line.
${ }^{i}$ Lost under $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} 233207$.
${ }^{\mathrm{j}}$ Blend with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} 233498$.
${ }^{k}$ Blend with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} 233524$.
${ }^{1}$ Blend with $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{CN} 233654$.
${ }^{m}$ Blend with ${ }^{13} \mathrm{CH}_{3} \mathrm{OH} 234012$.
${ }^{n}$ Blend with ${ }^{34} \mathrm{SO}_{2} 235928$.
${ }^{\circ}$ Lost under $\mathrm{CH}_{3} \mathrm{OH} 246075$.

Lines in the first excited torsional state of methyl formate are in principle detectable due to the low energy (~ 100 cm^{-1}) of the torsional motion. Frequency predictions for such lines have not yet been made. However, there should be hundreds of such lines additionally present at about the noise level of the spectrum ($\sim 0.1 \mathrm{~K}$).

n) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$

Dimethyl ether $\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$ is detected on the basis of 14 rotational transitions, as listed in Table 23. The lines are narrow, with intrinsic widths of $\sim 3 \mathrm{~km} \mathrm{~s}^{-1}$, and are centered at $v_{\text {LSR }} \approx 8 \mathrm{~km} \mathrm{~s}^{-1}$, typical of the spike component of the molecular cloud. Each rotational transition is split by the hindered internal rotation of the two methyl groups into four components corresponding to the four allowed symmetry states. This splitting is generally resolved in the spectra, except for transitions with low values for the oblate rotor quantum
number K. The variation in the observed line intensities yields an excitation temperature of 80 K and an inferred column density for $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ of $3 \times 10^{15} \mathrm{~cm}^{-2}$.

$$
\text { o) } \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN} \text { and } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}
$$

Vinyl cyanide ($\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$) and ethyl cyanide ($\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$) are heavy asymmetric rotors which show emission from a large number of lines in this frequency band involving highly excited levels. Because of their large moments of inertia, values for the total angular momentum range generally from $J=23$ to $J=28$ for most of these lines. Typical upper-state energies for these levels are $\sim 100-200 \mathrm{~cm}^{-1}$ above the ground state. The lines detected are listed in Tables 24 and 25. Line shapes are those characteristic of hot-core emission: widths of ~ 10 $\mathrm{km} \mathrm{s}^{-1}$ and central velocities of $v_{\text {LSR }} \approx 5 \mathrm{~km} \mathrm{~s}^{-1}$. The excitation temperature for both vinyl cyanide and ethyl cyanide is $T_{\mathrm{ex}} \approx 150 \mathrm{~K}$ with column densities of $2 \times 10^{14} \mathrm{~cm}^{-2}$ and

TABLE 23
$\xlongequal{\text { Transitions of } \mathrm{CH}_{3} \mathrm{OCH}_{3}}$

$\stackrel{\nu}{(\mathrm{MHz})}$	$J_{K_{p} K_{o}}$	$\begin{gathered} T_{a}^{*} \\ \text { (K) } \end{gathered}$	$\begin{gathered} \int T_{a}^{*} d v \\ \left(\mathbf{K m ~ s}^{-1}\right) \end{gathered}$	Notes
222238.7...	$4_{3,2}-3_{2,1}$ EA	0.2	0.8	
222247.5...	$4_{3,2}-3_{2,1} A E, E E$	1.3	4.3	
222254.7...	$4_{3,2}-3_{2,1} A A$	1.0	2.6	
222426.8...	$4_{3,1}-3_{2,2} A E$	0.3	1.2	
$\begin{aligned} & \text { 222434.0. } \\ & 222435.6 . \end{aligned}$	$\left.\begin{array}{l} 4_{3,1}-\mathbf{3}_{2,2} E E, A A \\ 4_{3,1}-3_{2,2} E A \end{array}\right\}$	1.5	4.0	b
223200.1...	$8_{2,7}{ }_{8} 7_{1,6} A E, E A$			
$\begin{aligned} & \text { 223202.3.. } \\ & \text { 223204.5.. } \end{aligned}$	$\left.\begin{array}{l}8_{2,7} 7_{1,6} E E \\ 8_{2,7}-7_{1,6} A A\end{array}\right\}$	1.1	9.5	
225598.8..	$\left.{ }_{12}^{1,12}-11_{0,11} E A, A E\right)$			
225599.1...	$121,12^{1}-11_{0,11}$ EE	3.6	12.5	
225599.5...	$12_{1,12}-11_{0,11} A A$			
226346.0..	14, ${ }_{1,13}-13_{2,12} A A$			
226346.9	$14_{1,13}-13_{2,12}$ EE	1.6	5.7	
226347.8...	$14_{1,13}-13_{2,12} A E, E A$			
228978.8...	$7_{7,1}-8_{6,2} E A$	0.2	0.6	
228983.2...	$7_{7,1}-8_{6,2}$ EE			
228984.8...	$7_{7,1}-8_{6,2} A E$			
	$7_{7,0}-8_{6,3} A E$			
228987.7...	$\begin{aligned} & 7_{7,1}-8_{6,2} A A \\ & 7_{7,0}-8_{6,3} A A \end{aligned}$	0.2	0.7	
228989.3...	$7_{7,0}-8_{6,3}$, $E E$			
228990.9...	$7_{7,0}-8_{6,3} E A$			
230465.8...	$10_{8,3}-11_{7,4} E A$			
230467.8...	$10_{8,3}-11_{7,4} E E$			
230469.8...	$\begin{aligned} & 10_{8,3}-11_{7,4} A A \\ & 10_{8,2}-11_{7,5} A A \end{aligned}$			
230470.2..	$\begin{aligned} & 10_{8,3}^{8,-11_{7,4} A E} \\ & 10_{8,2}-11_{7,5} A E \end{aligned}$	0.4	2.0	
230472.2...	$10_{8,2}-11_{7,5}$ EE			
230474.6...	$10_{8,2}^{8,11_{7,5} \text { EA }}$			
231987.8...	${ }^{13_{0,13}-12_{1,12} A A}$			
231987.9...	$13_{0,13}-12_{1,12} E E \quad$, $\}$	3.2	8.3	c
231988.0...	$13_{0,13}-12_{1,12}$ EA, AE			
237046.3...	$7_{2,5} \mathbf{6}_{1,6} A E, E A$)			
237049.0...	$7_{2,5}-6_{1,6} E E$,	1.5	7.5	d
237051.7...	$\left.7_{2,5} \mathbf{6}_{1,6} A A \quad\right\}$			
237618.9...	$9_{2,8}-8_{1,7} E A, A E \quad$)			
$237621.0 \ldots$	$\left.9_{2,8}-8_{1,7} E E \quad\right\}$	0.9	4.8	
237623.0..	$9_{2,8}-8_{1,7} A A \quad \mid$			
240978.2	$5_{3,3}-4_{2,2}$ EA	0.1	0.4	
240982.9		1.0	4.1	
240985.2.	$\left.\begin{array}{l}5_{3,3}-4_{2,2} E E \text { E } \\ 5_{3,3}-4,2\end{array}\right\}$	0.5	1.0	
241524.0..	$5_{3,2}-\mathbf{4}_{2,3} A E$	0.9	4.2	
241528.8.	$5_{3,2}-4_{2,3}$ EA			
241529.0	$\left.5_{3,2}-4_{2,3} E E \quad\right\}$	1.7	10.2	
241531.2...	$5_{3,2}-4_{2,3} A A$			
241946.2	${ }_{13} 3_{1,13}-12_{0,12} A E, E A$			
241946.5	$13_{1,13}-12_{0,12} E E$,	3.8	12.8	
241946.9.	$13_{1,13}-12_{0,12}$ AA			

${ }^{2}$ Blend with $\mathrm{HCOOCH}_{3} 222422$.
${ }^{\mathrm{b}}$ Blend with $\mathrm{HCOOCH}_{3} 222439$.
${ }^{\mathrm{c}}$ Blend with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} 231990$.
${ }^{d}$ Blend with $\mathrm{SO}_{2} 237069$.
$2 \times 10^{15} \mathrm{~cm}^{-2}$. Because of its greater column density, emission from ethyl cyanide is much more prominent in the spectrum.

p) Recombination Lines

Because of the larger spacing between recombination lines at higher frequencies, only one $\mathrm{H} \alpha$ line falls within our
spectral range (see Table 26), in contrast with the four $\mathrm{H} \alpha$ lines observed by Johansson et al. (1984). The $\mathrm{H} 30 \alpha$ line at 231901.3 MHz is found to have a peak antenna temperature of 0.7 K , a v_{LSR} of $4 \mathrm{~km} \mathrm{~s}^{-1}$, and a $23 \mathrm{~km} \mathrm{~s}^{-1}$ line width. The velocity of the emission is somewhat redshifted with respect to that of Johansson et al., although the velocity is not well determined in this measurement. The width is consistent with

TABLE 24
Transitions of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN}$

(MHz)	$\mathrm{J}_{\mathrm{K}_{\mathrm{p}} \mathrm{K}_{\text {o }}}$	$\begin{aligned} & \mathbf{T}_{\mathbf{2}}^{*} \\ & (\mathbf{K}) \end{aligned}$	$\begin{gathered} \int T_{\mathrm{a}}^{*} d v \\ \left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$	notes	(MHz)	$\mathrm{J}_{\mathrm{K}_{\mathbf{p}} \mathrm{K}_{0}}$	$\begin{aligned} & \mathrm{T}_{\mathbf{2}}^{*} \\ & (\mathrm{~K}) \end{aligned}$	$\begin{gathered} \int \mathrm{T}_{\mathrm{\alpha}}^{*} \mathrm{dv} \\ \left(\mathrm{~K} \mathrm{~km} \mathrm{~s}{ }^{-1}\right) \end{gathered}$	notes
216936.7...	$23_{2,22}-22_{2,21}$	0.6	1.3	a	229647.8...	$25_{1,25}-24_{1,24}$	0.2	1.0	b
218398.5...	$23_{7,17}-22_{7,16}$	$\} 0.4$...		230487.9...	$24_{1,23}-23_{1,22}$	\ldots	...	
218402.4....	$23_{7,10}-22_{7,15}$				230738.5....	$25_{0,25}-24_{0,24}$	0.4	3.8	
	$23_{6,18}-22_{6,17}$				231952.3....	$24_{2,22}-23_{2,21}$	0.3	2.7	
	$23_{6,17}-22_{6,16}$				235563.8....	$25_{2,24}-24_{2,23}$	0.3	4.5	
218421.7....	$\begin{aligned} & 23_{8,1 \sigma}-22_{8,16} \\ & 23_{8,16}-22_{8,14} \end{aligned}$	$\} 0.3$	1.5		237397.0....	$\begin{aligned} & 25_{7,19}-24_{7,18} \\ & 25_{7,18}-24_{7,17} \end{aligned}$	\}	c
	$23_{8,15}-22_{8,14}$								
$\begin{aligned} & 218451.3 . . . \\ & 218452.3 \ldots \end{aligned}$	$\begin{aligned} & 23_{5,19}-22_{5,18} \\ & 23_{5,18}-22_{6,17} \end{aligned}$	$\} 0.2$	1.4		237411.9....	$\begin{aligned} & 25_{6,2 \sigma}-24_{6,19} \\ & 25_{6,19}-24_{6,18} \end{aligned}$	\}...	...	d
218452.3...	$23_{5,18}-22_{6,17}$ $23_{4,20}-22_{4,19}$	0.3							
218573.6...	$23_{4,20}-22_{4,19}$ $23_{3,21}-22_{3,20}$	0.3	2.3		237415.4....	$\begin{aligned} & 25_{8,18}-24_{8,17} \\ & 25_{8,17}-24_{8,10} \end{aligned}$	$\} 0.4$?	..	d
218615.1....	$23_{4,19}-22_{4,18}$	0.2	2.4		237456.3....	$25_{9,17}-24_{9,10}$	$\} 0.2$	1.4	
219400.6....	$23_{3,20}-22_{3,19}$	0.3	1.9			$25_{9,16}-24_{9,15}$			
220561.3...	$24_{1,24}-23_{1,23}$	0.4	1.7		237482.8....	$25_{5,21}-24_{5,20}$	$\} 0.3$	3.1	
221123.8....	$23_{1,22}-22_{1,21}$	0.4	3.5		237485.0....	25,20-24 ${ }_{5,19}$			
221766.0....	$24_{0,24}-23_{0,23}$	0.4	2.1		237591.4....	$25_{3,23}-24_{3,22}$	0.4	4.1	
222153.5....	$23_{2,21}-22_{2,20}$	0.4	3.1		237638.0....	$25_{4,22}-24_{4,21}$	nd	...	
226256.8....	$24_{2,23}-23_{2,22}$	0.2	3.0		237711.9....	$25_{4,21}-24_{4,20}$	0.3	2.6	
227897.5...	$24_{7,18}-23_{7,17}$	$\} 0.5$	1.5		238726.7....	$26_{1,26}-25_{1,25}$	0.2	1.3	
	$24_{7,17}-23_{7,16}$				238796.2....	$25_{3,22}-24_{3,21}$	0.2	1.8	
227906.6...	246,19-23 ${ }_{6,18}$	$\} 0.5$	1.9		239708.3....	$26_{0,2 \mathrm{6}}-25_{0,25}$	0.1	0.6	
	$24_{6,18}-23_{6,17}$				239816.1....	25 1,24 $^{-24} 4_{1,23}$	0.5	3.6	
227918.5...	$24_{8,16}-23_{8,15}$	$\} 0.5$	2.4		241737.5...	25, ${ }_{2,23}-24_{2,22}$	\cdots	\cdots	e
	$24_{8,17}-23_{8,16}$				244857.4....	$26_{2,25}-25_{2,24}$	0.5	4.7	
227960.1...	$\begin{aligned} & 24_{9,16}-23_{9,15} \\ & 24_{9,16}-23_{9,14} \end{aligned}$	0.5	6.0		246896.9....	$\begin{aligned} & 26_{7,20^{-}}-25_{7,19} \\ & 26_{7,19}-25_{7,18} \end{aligned}$	$\} 0.5$	3.2	f
227966.0....	$24,15^{-23}$ $24_{5,20}-23_{5,14}$				246912.2...		$\}_{\ldots}$...	
227967.5....	$24_{5,19}-23_{5,18}$					$26_{8,18}-25_{8,17}$			
228090.5...	$24_{3,22}-23_{3,21}$	0.4	2.5		246918.3....	$\begin{aligned} & 26_{6,21}-25_{6,20} \\ & 26_{0,21}-25_{0,19} \end{aligned}$	$\} 0.6$	4.1	f
228104.6....	$24_{4,21}-23_{4,20}$	0.5	3.5						
228160.3....	$24_{4,20}-23_{4,19}$	nd	\ldots		246952.1....	$\begin{aligned} & 26_{9,18}-25_{9,17} \\ & 26_{9,17}-25_{9,16} \\ & \hline \end{aligned}$	$\} 0.6$	1.1	
229087.0....	$24_{3,21}-23_{3,20}$	0.3	2.8						

${ }^{\text {a }}$ Blend with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} 218390$.
${ }^{\mathrm{b}}$ Lost under CO 230538.
${ }^{\text {c }}$ Blend with $\mathrm{HCOOCH}_{3} 237399$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} 237405$.
${ }^{\text {d }}$ Blend with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} 237405$.
${ }^{\mathrm{e}}$ Lost in wings of $\mathrm{CH}_{3} \mathrm{OH} 241700$ and 241767.
${ }^{\mathrm{f}}$ Blend with $\mathrm{HCOOCH}_{3} 246915$.
the lower frequency recombination-line data, and the intensity is comparable with that expected from non-LTE theory for an electron temperature of $10^{4} \mathrm{~K}$ and a proton emission measure of $10^{7} \mathrm{pc} \mathrm{cm}^{-6}$.

The H37 β line at 240021.6 MHz and $\mathrm{H} 38 \beta$ at 222012.2 MHz are not convincingly detected. This is consistent with the noise level in the spectra and the much-reduced intensity expected. The location for the $\mathrm{H} 37 \beta$ line is contaminated by the presence of an HCOOCH_{3} line. Similarly, the $\mathrm{He} 30 \alpha$ line is not seen due to its low strength and a competing line of $\mathrm{CH}_{3} \mathrm{OCH}_{3}$.

q) Unidentified Lines

There are at present 27 lines in the spectrum stronger than 0.3 K which are unidentified and which we believe to be real. The frequencies, widths, and peak antenna temperatures of these lines are tabulated in Table 27. All those listed in the table have been individually examined and shown not to be ghosts of lines in the opposite sideband.

r) Other Species

Several other species of interest have transitions in this frequency range but have not been convincingly detected. The $J=2-1$ transitions of NO^{+}measured by Bowman, Herbst, and De Lucia (1982) are clearly not detected. Similarly, CO^{+} is not seen in Orion, since the emission at 236062 MHz can be attributed to ${ }^{13} \mathrm{CH}_{3} \mathrm{OH}$, as discussed by Blake et al. (1984). The refractory oxides MgO (Steimle, Azuma, and Carrick 1984) and FeO (Endo, Saito, and Hirota 1984) are also not detected, although the limits are not terribly severe and the frequency for MgO is not well determined. Also not seen are the $J=11-10$ transition of HOCO^{+}and the $3_{1,3}-2_{2,0}$ components of NH_{2} (Charo et al. 1981).

The nitroxyl radical (HNO) was tentatively identified in Sgr B2 and NGC 2024 by Ulich, Hollis, and Snyder (1977) on the basis of a single line $\left(1_{0,1}-0_{0,0}\right)$. As far as we know, this assignment has not been verified by observations of other transitions, in part due to the lack of accurate frequency predictions. The frequency of the $3_{0,3}-2_{0,2}$ transition, which

Transitions of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$

$\begin{gathered} \nu \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{J}_{\mathrm{K}_{\mathbf{p}} \mathrm{K}_{0}}$	$\begin{aligned} & \mathrm{T}_{\mathrm{a}}^{*} \\ & (\mathrm{~K}) \\ & \hline \end{aligned}$	$\begin{gathered} \int \mathrm{T}_{\mathrm{a}}^{*} \mathrm{dv} \\ \left(\mathrm{Km} \mathrm{~s}{ }^{-1}\right) \end{gathered}$	notes	$\begin{gathered} \nu \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{J}_{\mathrm{K}_{\mathbf{p}} \mathrm{K}_{\mathrm{o}}}$	$\begin{aligned} & \mathrm{T}_{\mathbf{2}}^{*} \\ & (\mathrm{~K}) \end{aligned}$	$\begin{gathered} \int \mathrm{T}_{\mathrm{a}}^{*} \mathrm{dv} \\ \left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$	notes
$215039.7 \ldots$. $215041.9 \ldots$	$24_{9,1 \mathrm{E}}-23_{9,15}$ $24_{9,15}-23_{9,14}$ $24_{10,15}-23_{10,14}$	\} 1.1	19.7		$\begin{aligned} & 224638.7 \ldots \\ & 224643.3 \ldots \end{aligned}$	$\begin{aligned} & 25_{4,22}-24_{4,21} \\ & 25_{21,4}-24_{21,3} \end{aligned}$	0.6	8.4	
215041.9....	$\begin{aligned} & 24_{10,15}-23_{10,14} \\ & 24_{10,14}-23_{10,13} \end{aligned}$)			225236.1...	$\begin{aligned} & 25_{21,5}-24_{21,4} \\ & 25_{4,21}-24_{4,20} \end{aligned}$	0.8	13.7	
215058.0....	$24_{3,22}-23_{3,21}$				227170.2....	$27_{1,26}-26_{2,25}$	nd	\ldots	
215058.6...	$24_{8,17}-23_{8,16}$				227781.0....	$25_{3,22}-24_{3,21}$	0.5	7.9	
	$\mathbf{2 4}_{8,1 \sigma}-23_{8,15}$	1.3	20.6		228483.1...	$25_{2,23}-24_{2,22}$	0.9	11.9	
215059.2...	$24_{11,13}-23_{11,12}$				228797.5...	$\mathbf{1 4}_{2,12}-13_{1,13}$	0.3	2.1	
	$24_{11,14}-23_{11,13}$				229265.2...	$26_{2,25}-25_{2,24}$	0.7	10.7	
215088.2...	$\begin{aligned} & 24_{12,13}-23_{12,12} \\ & 24_{12,12}-23_{12,11} \end{aligned}$	\} 0.5	6.7		231310.4....	$\begin{aligned} & 26_{1,25}-25_{1,24} \\ & 27_{0,27}-26_{1,20} \end{aligned}$	0.9	10.6	
215109.1...	$\begin{gathered} 24_{12,12}-23_{12,11} \\ 24_{7,18} 23_{7,17} \end{gathered}$				231312.3....	$27_{0,27} \mathbf{2 6} \mathbf{1 , 2 6}^{2}$ $24_{2,23}-23_{1,22}$		10.6	
215109.1....	$\begin{aligned} & 24_{7,18}^{-23_{7,17}} \\ & 24_{7,17}-23_{7,16} \end{aligned}$	\} 1.1	9.2		231854.2....	$\begin{aligned} & 24_{2,23}-23_{1,22} \\ & 27_{1,27}-26_{1,26} \end{aligned}$	1.1	11.6	
215119.2...	$25_{0,25}-24_{0,24}$	1.0	13.6		231990.4....	$27_{0,2 \tau^{-26}}{ }^{0,26}$	1.1	17.7	d
215126.7...	$\begin{aligned} & 24_{13,12}-23_{13,11} \\ & 24_{13,11}-23_{13,10} \end{aligned}$	$\} 0.5$	3.5		232532.3....	$\begin{aligned} & 27_{1,2}-26_{0,26} \\ & 26_{3,24}-25_{3,23} \end{aligned}$	$\begin{gathered} \text { nd } \\ 1.1 \end{gathered}$	13.7	
215173.3...	$\begin{gathered} 24_{14,11}-23_{14,10} \\ 24_{14,10^{-}}-23_{14,9} \end{gathered}$	\} 0.3	3.9		232962.3....	$\begin{aligned} & 26_{10,16}-25_{10,15} \\ & 26_{10,17}-25_{10,16} \end{aligned}$	1.2	20.0	
215211.5...	$24_{6,19}-23_{6,18}$...	\ldots	a	232967.6....	269,18-259,17	1.2	20.0	
215212.5...	$24_{8,18}-23_{8,17}$	\ldots	...	a		$26_{9,17}-25_{9,18}$			
215400.8...	$24_{5,20}-23_{5,19}$	0.8	15.2		232975.5....	$26_{11,15}-25_{11,14}$	0.8	10.7	
215428.0...	$24_{5,19}-23_{5,18}$	1.0	18.4			$26_{11,16}-25_{11,15}$	0.8	10.7	
215620.2...	$24_{4,21}-23_{4,20}$	0.6	12.5		232998.7....	$26_{8,19}-25_{8,18}$			
215941.1...	$6_{4,3}-5_{3,2}$	\} 0.3 ?				$26_{8,18}-25_{8,17}$	1.1	16.2	
215943.1...	$6_{4,2}-5_{3,3}$	f 0.3 ?	\ldots		233002.7....	$26_{12,15}-25_{12,14}$		16.2	
215965.6...	$25_{1,25}-24_{0,24}$	0.3	1.7			$26_{12,14}-25_{12,13}$			
216077.2...	$24_{4,20}-23_{4,19}$	0.7	9.6		233041.1....	$26_{13,14}-25_{13,13}$	0.4	7.7	
216752.5...	$26_{1,25}-25_{2,24}$	0.3 ?	...			$26_{13,13}-25_{13,12}$	0.4	7.7	
218390.0...	$24_{3,21}-23_{3,20}$	0.8	9.9	b	233069.3....	$26_{7,20}-25_{7,19}$	1.0	12.7	
219463.6....	$22_{2,21}-21_{1,20}$	0.3	3.3			$26_{7,19}-25_{7,18}$	\} 1.0	12.7	
219505.6...	$24_{2,22}-23_{2,21}$	0.9	11.5		233088.9....	$26_{14,12}-25_{14,11}$	0.5	6.3	
220660.9....	$25_{2,24}-24_{2,23}$	0.7	5.4			$26_{14,13}-25_{14,12}$		6.3	
222707.2...	$26_{0,26}-25_{1,25}$	0.3	2.9		233144.8....	$26_{15,11}-25_{15,10}$	0.4	5.6	
222918.2....	$25_{1,24}-24_{1,23}$	0.9	10.6			$26_{15,12}-25_{15,11}$	0.4	5.6	
223385.3....	$26_{1,26}-25_{1,25}$	0.9	18.7		233205.0....	$26_{6,21}-25_{6,20}$			
223553.6....	$26_{0,2 \sigma}-25_{0,25}$	0.6	7.9		233207.3....	$26_{6,20}-25_{6,19}$	1.5	21.2	
223933.7...	$25_{3,23}-24_{3,22}$	0.6	8.1		233208.1....	$26_{16,10^{-25}}{ }_{16,9}$		21.2	
224002.1...	25 ${ }_{10,15}-24_{10,14}$)				$26_{10,11}-25_{16,10}$			
	$25_{10,16} \mathbf{- 2 4} 4_{10,15}$	0.9	10.8		233443.1...	$26_{5,22}-25_{5,21}$	0.7	6.9	
224003.4....	259,17-249,16	0.9	10.8		233498.3...	$26_{5,21}-25_{5,20}$	0.8	6.7	e
	$25_{9,16}-24_{9,15}$)			233523.5....	$26_{20,7}-25_{20,6}$			
224017.5...	25 ${ }_{11,15}-24_{11,14}$	\} 0.6	95			$26_{20,0}-25_{20,5}$	0.5	6.1	f
	$25_{11,14}-24_{11,13}$	\} 0.6	9.5	c	233654.1...	$26_{4,23}-25_{4,22}$	1.1	8.1	g
224028.1...	$25_{8,18}-24_{8,17}$	\} 0.8	8.2		234423.9...	$26_{4,22}-25_{4,21}$	\cdots	\cdots	h
	$\mathbf{2 5}_{8,1} \tau^{-24} \mathbf{8 , 1 6}$	\} 0.8	8.2		237170.4....	$26_{3,23}-25_{3,22}$	0.9	10.5	
224045.8...	25 12,13 $^{-24_{12,12}}$	\} 0.3	4.4		237360.9....	$28_{1,27}-27_{2,26}$	nd	\cdots	
	25 $\mathbf{1 2 , 1 4}^{-24} \mathbf{1 2 , 1 3}$	\} 0.3	4.4		237405.2...	$26_{2,24}-25_{2,23}$	0.7	10.2	i
224084.3...	25 ${ }_{13,12} \mathbf{- 2 4} \mathbf{1 3 , 1 1}$				237476.0...	$25_{2,24}-24_{1,23}$	0.2 ?	\cdots	
	$25_{13,13}-24_{13,12}$		11.4		237851.8...	$27_{2,20}-26_{2,25}$	0.4	6.3	
224088.2...	$\mathbf{2 5}_{7,10}-24_{7,18}$	0.8	11.4		239682.8...	$27_{1,26}-26_{1,25}$	0.7	8.6	j
	$25_{7,18}-24_{7,17}$)			239887.3..	$28_{0,28}-27_{1,27}$	0.2 ?	\ldots	
224131.5....	2514,12-2414,11	\} 0.2	2.7		240319.3...	$28_{1,28}-27_{1,27}$	0.8	10.5	
	25 $\mathbf{1 4 , 1 1}^{-24} \mathbf{1 4 , 1 0}$		2.7		240429.2...	$28_{0,28}-27_{0,27}$	0.6	9.4	
$224186.3 \ldots$	25 $\mathbf{1 5 , 1 1}^{-24} \mathbf{1 4 , 1 0}^{15}$	\} 0.2	1.7		240861.3....	$28_{1,28}-27_{0,27}$	0.2 ?	...	
	$25_{15,10}-24_{15,9}$	\} 0.2	1.7		241625.9....	$27_{3,25}-26_{3,24}$...		k
224206.6...	$25_{0,20}-24_{6,19}$	$\} 0.7$	11.8		241922.5....	$27_{10,18}-26_{10,17}$			
224208.1...	25 ${ }_{6,18}-24_{6,18}$) 0.7	11.8			$27_{10,17}-26_{10,16}$	0.9	5.2	
224231.7....	$26_{1,26}-25_{0,25}$	nd	\cdots		241932.2....				
224419.8....	$25_{5,21}-24_{5,20}$	0.4	4.9			$27_{9,18}-26_{9,17}$		17.4	
224458.9....	$25_{5,2 \sigma}-24^{6,19}$	0.7	7.1		241933.2...	$27_{11,16}-26_{11,15}$		17.4	
224469.0...	$25_{18, \tau}-24_{19,6}$	$\} 0.3$	1.8			$27_{11,17}-26_{11,16}$,		
	$25_{19,8}-24_{19,5}$	\} 0.3	1.8		241959.1....	$27_{12,15}-26_{12,14}$			
						$27_{12,16}-26_{12,15}$	0.7	5.5	

TABLE 25 - Continued

$\begin{gathered} \nu \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{J}_{\mathrm{K}_{\mathrm{p}} \mathrm{K}_{0}}$	$\begin{gathered} \mathbf{T}_{\mathbf{2}}^{*} \\ (\mathrm{~K}) \\ \hline \end{gathered}$	$\underset{\left(\mathrm{K} \mathrm{~km} \mathrm{~s}^{-1}\right)}{\int \mathrm{T}_{\mathbf{2}}^{*} \mathrm{dv}}$	notes	$\stackrel{\nu}{(\mathrm{MHz})}$	$J_{K_{p} K_{0}}$	T_{2}^{*} (K)	$\underset{\left(\mathrm{K} \mathrm{~km} \mathrm{~s}^{-1}\right)}{\mathrm{T}_{\mathbf{s}}^{*} \mathrm{dv}}$	notes
241970.4....	$\begin{aligned} & 27_{8,20}-26_{8,19} \\ & 27_{8,10}-26_{8,18} \end{aligned}$	$\} 0.8$	6.8		$\begin{aligned} & 242207.0 \ldots \\ & 242210.1 . . . \end{aligned}$	$\begin{aligned} & 27_{6,22}-26_{6,21} \\ & 27_{6,21}-26_{6,20} \end{aligned}$	$\} 1.3$	21.9	
241997.1...	$\begin{aligned} & 27_{13,16}-26_{13,14} \\ & 27_{13,14}-26_{13,13} \end{aligned}$	$\} 0.5$	3.5		242238.8....	$\begin{aligned} & 27_{17,11}-26_{17,10} \\ & 27_{17,10}-26_{17,9} \end{aligned}$	\} 0.2 ?	${ }^{-\cdots}$	
242045.3....	$\begin{aligned} & 27_{14,13}-26_{14,12} \\ & 27_{14,14}-25_{14,13} \end{aligned}$	0.8	14.3		$\begin{aligned} & \text { 242470.4.... } \\ & 242547.3 \ldots \end{aligned}$	$\begin{aligned} & 27_{5,23}-26_{5,22} \\ & 27_{5,22}-26_{5,21} \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	$\begin{array}{r} 12.5 \\ 7.0 \end{array}$	
242052.4....	$\begin{aligned} & \mathbf{2 7 _ { 7 , 2 1 } - 2 6 _ { 7 , 2 0 }} \\ & \mathbf{2 7} 7_{7,2 \sigma^{-2}} 6_{7,19} \end{aligned}$	0.8	14.3		$\begin{aligned} & 242664.7 \ldots \\ & 243643.2 \ldots \end{aligned}$	$\begin{aligned} & 27_{4,24}-26_{4,23} \\ & 27_{4,23}-26_{4,22} \end{aligned}$	1.0 0.9	$\begin{aligned} & 12.4 \\ & 13.6 \end{aligned}$	
242102.2....	$\begin{aligned} & 27_{15,13}-26_{15,12} \\ & 27_{15,12}-26_{15,11} \end{aligned}$	$\} 0.8$	14.4		$\begin{aligned} & 243823.0 \ldots \\ & 246268.7 \ldots \end{aligned}$	$\begin{aligned} & 26_{2,25}-25_{1,24} \\ & 27_{2,25}-26_{2,24} \end{aligned}$	$\begin{gathered} \text { nd } \\ 0.9 \end{gathered}$	$\cdots .5$	
242167.0....	$\begin{aligned} & 27_{16,12}-26_{16,11} \\ & 27_{16,11}-26_{16,10} \end{aligned}$	$\} 0.2$	1.7		$\begin{aligned} & \text { 246421.9.... } \\ & \text { 246548.7... } \end{aligned}$	$\begin{aligned} & 2_{2,27}-27_{2,26} \\ & 27_{3,24}-26_{3,23} \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	5.5 5.4	

[^5]${ }^{8}$ Blend with $\mathrm{HCOOCH}_{3} 233655$.
${ }^{\text {h }}$ Blend with $\mathrm{SO}_{2} 234422$.
${ }^{i}$ Blend with $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN} 237397$, 237412, and 237415.
${ }^{\mathrm{j}}$ Blend with $\mathrm{CH}_{3} \mathrm{CN}\left(\nu_{8}\right) 239685$.
${ }^{\mathrm{k}}$ Lost under $\mathrm{SO}_{2} 241616$.

TABLE 26
Recombination Lines

Transition	ν (MHz)	T_{a}^{*} $(\mathrm{~K})$	FWHM $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	$T_{a}^{*} d v$ $\left(\mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}\right)$	$v_{\text {ISR }}$ $\left(\mathrm{km} \mathrm{s}^{-1}\right)$
$\mathrm{H} 30 \alpha \ldots \ldots$	231901.3	0.7	23.0	15.7	+4.
$\mathrm{H} 38 \beta \ldots \ldots$	222012.2	nd	\ldots	\ldots	\ldots
$\mathrm{H} 37 \beta \ldots \ldots$	240021.6	nd	\ldots	\ldots	\ldots
$\mathrm{He} 30 \alpha \ldots$.	231995.8	nd	\ldots	\ldots	\ldots

falls in this frequency range, has recently been measured to be 244364.0 MHz by Sastry et al. (1984). Although a very weak bump is present in Figure 1 at this frequency, it is unclear if this is a real feature or an artifact of the data reduction. At present it is not possible to claim detection of HNO in Orion.

Of considerable interest is the nondetection of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$, a structural isomer of the abundant species dimethyl ether $\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$. This indicated a high degree of chemical selectivity in Orion, as previously noted in the Onsala survey (Johansson et al. 1984). A similar selectivity holds between acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ and methyl formate $\left(\mathrm{HCOOCH}_{3}\right)$. Although accurate frequencies are not available for acetic acid in this frequency range, if it were as abundant as methyl formate it would be evident through the presence of scores of unidentified lines.

VI. SUMMARY

In this survey we have detected a total of 544 lines from a 32 GHz interval in the spectrum of Orion A. The extraordinary number and strengths of the molecular lines illustrate the importance of studies of line emission from molecular clouds. Line emission is both useful as a key to understanding the kinematic and chemical properties of these clouds and important in its own right as a major factor determining the energy balance within these regions.

As expected, the majority of the lines detected are from
heavy asymmetric rotors such as HCOOCH_{3} and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$. The molecule emitting the largest amount of flux is SO_{2}, which is also a heavy asymmetric rotor and which in addition has a large column density and is concentrated in the large-line-width plateau source. SO_{2} together with the plateau components of CO, CS, and SO account for approximately 70% of the line flux in this frequency range. Most of the lines in the spectrum are readily identified. The few remaining unidentified lines are probably mostly due to the well-studied molecules such as $\mathrm{CH}_{3} \mathrm{OH}$ for which it is difficult to make accurate frequency predictions.

The large amount of data reported here is in large part due to the high frequencies at which this survey was conducted. Molecular lines are generally more intense at high frequencies, if they are optically thin and the molecular cloud has sufficiently high excitation. For such higher frequency work it has been necessary to employ more accurate millimeter-wave telescopes. Telescopes of large aperture and high surface accuracy are necessary in order to have narrow beams which will pick out the compact, dense, high-excitation regions such as the Orion plateau source. Also of great importance are sensitive high-frequency receivers. Both will be very important in future high-frequency work. Finally, it is evident that the interpretation of astronomical molecular-line data is near being limited by the amount of available laboratory data, for both wellknown molecules and new molecules. Considerable work is needed in obtaining further laboratory data as well as in

TABLE 27
Unidentified Lines

UNIDENTIFIED LINES		
ν $(M H z)$	T_{a}^{*} (\mathbf{K})	FWHM $\left(\mathrm{km} \mathrm{s}^{-1}\right)$
$215886 \ldots \ldots$	0.9	3.1
$217300 \ldots \ldots$	1.2	6.5
$217823 \ldots \ldots$	0.7	7.0
$217887 \ldots \ldots$	0.9	7.0
$222177 \ldots \ldots$	0.4	3.3
$222259 \ldots \ldots$	0.6	4.8
$222723 \ldots \ldots$	0.6	3.3
$224493 \ldots \ldots$	0.5	6.2
$224699 \ldots \ldots$	0.7	4.9
$224895 \ldots \ldots$	0.7	3.0
$225625 \ldots \ldots$	1.0	4.2
$226384 \ldots \ldots$	0.5	3.4
$226436 \ldots \ldots$	0.4	4.8
$227095 \ldots \ldots$	0.9	5.0
$227815 \ldots \ldots$	1.4	4.6
$229590 \ldots \ldots$	1.3	5.1
$230233 \ldots \ldots$	0.6	5.3
$232163 \ldots \ldots$	0.8	10.9
$234291 \ldots \ldots$	0.6	6.0
$235261 \ldots \ldots$	0.5	7.1
$236977 \ldots \ldots$	0.9	6.6
$237131 \ldots \ldots$	0.7	6.1
$238017 \ldots \ldots$	0.4	11.7
$239732 \ldots \ldots$	0.6	2.6
$242076 \ldots \ldots$	0.7	3.7
$243740 \ldots \ldots$	0.8	5.6
$243747 \ldots \ldots$	1.1	6.1
2		

theoretical work on line assignments and frequency predictions.

The authors are grateful to F. J. Lovas, H. M. Pickett, F. C. De Lucia, E. Herbst, and G. M. Plummer for providing most of the spectroscopic data used in this work. In addition, the authors would like to thank D. P. Woody and S. L. Scott for their efforts in ensuring successful observations, and R. E. Miller of AT\&T Bell Laboratories, Murray Hill, for supplying the junctions used in this work. Single-dish millimeter-wave astronomy at the Owens Valley Radio Observatory is supported by NSF grant AST-8214693.

TABLE 28	
Known Defects	
$\stackrel{\nu}{(\mathrm{MHz})}$	$\begin{aligned} & T_{a}^{*} \\ & (\mathbf{K}) \end{aligned}$
215136	0.4
215696	1.0
223357	0.6
223378	0.9
232857	0.5
234913	0.5
235217	0.6
243465	0.7
243811	0.9
244411	1.0
245094	0.7
245099	0.6

APPENDIX A

KNOWN DEFECTS IN THE SPECTRUM

The spectrum presented in Figure 1 contains a few noticeable defects arising from the procedure used to generate a single-sideband spectrum from the double-sideband data. The defects are usually in the form of "ghosts," small residuals left when a strong line is not entirely assigned to the proper sideband. Such ghosts will be found separated by approximately twice the IF frequency (a total of $\sim 2.5 \mathrm{GHz}$) from the stronger features in the spectrum. Their reality can usually be checked by examination of the original double-sideband data. All unidentified features in the spectrum stronger than 0.4 K were examined to see if they were ghosts. Those which were found to be real, albeit unidentified, features were listed in Table 27. Those which can be attributed to ghosts are listed below in Table 28.

REFERENCES

Altman, R. S., Crofton, M. W., and Oka, T. 1984, J. Chem. Phys., 80, 3911.

Blake, G. A., Sutton, E. C., Masson, C. R., Phillips, T. G., Herbst, E., Plummer, G. M., and De Lucia, F. C. 1984, Ap. J., 286, 586.
Bowman, W. C., Herbst, E., and De Lucia, F. C. 1982, J. Chem. Phys., 77, 4261.
Charo, A., Sastry, K. V. L. N., Herbst, E., and De Lucia, F. C. 1981, Ap. J. (Letters), 244, L111.

DeFrees, D. J., McLean, A. D., and Herbst, E. 1984, preprint.
Dickinson, D. F., and Rodriguez-Kuiper, E. N. 1981, Ap. J., 247, 112.
Endo, Y., Saito, S., and Hirota, E. 1984, Ap. J. (Letters), 278, L131.
Genzel, R., Downes, D., Ho, P. T. P., and Bieging, J. 1982, Ap. J. (Letters), 259, L103.
Goldsmith, P. F., Krotkov, R., Snell, R. L., Brown, R. D., and Godfrey, P. 1983, Ap. J. 274, 183.
Goldsmith, P. F., Snell, R. L., Deguchi, S., Krotkov, R., and Linke, R. A. 1982, Ap. J., 260, 147.

Hollis, J. M., Lovas, F. J., Suenram, R. D., Jewell, P. R., and Snyder, L. E. 1983, Ap. J., 264, 543.
Hollis, J. M., Snyder, L. E., Blake, D. H., Lovas, F. J., Suenram, R. D., and Ulich, B. L. 1981, Ap. J., 251, 541.
Irvine, W. M., and Schloerb, F. P. 1984, Ap. J., 282, 516.
Johansson, L. E. B., et al. 1984, Astr. Ap., 130, 227.
Kawaguchi, K., Saito, S., and Hirota, E. 1983, J. Chem. Phys., 79, 629.
Linke, R. A., Cummins, S. E., and Thaddeus, P. 1985, in preparation.
Loren, R. B., and Mundy, L. E. 1984, Ap. J., 286, 232.
Loren, R. B., Mundy, L. E., and Erickson, N. R. 1981, Ap. J., 250, 573.
Lovas, F. J., Snyder, L. E., and Johnson, D. R. 1979, Ap. J. Suppl., 41, 451.

Masson, C. R. 1982, Astr. Ap., 114, 270.
Morris, M., Palmer, P., and Zuckerman, B. 1980, Ap. J., 237, 1.
Oloffson, H. 1984, Astr. Ap., 134, 36.
Plummer, G. M., Herbst, E., De Lucia, F. C., and Blake, G. A. 1984, Ap. J. Suppl., 55, 633.

Plummer, G. M., Herbst, E., De Lucia, F. C., and Blake, G. A. 1985, in preparation.
Poynter, R. L., and Pickett, H. M. 1981, Submillimeter, Millimeter, and Microwave Spectral Line Catalog (J.P.L. Pub. 80-23).
Sastry, K. V. L. N., Helminger, P., Plummer, G. M., Herbst, E., and De Lucia, F. C. 1984, Ap. J. Suppl., 55, 563.
Schloerb, F. P., Friberg, P., Hjalmarson, A., Hoglund, B., and Irvine, W. M. 1983, Ap. J., 264, 161.

Skatrud, D. D., De Lucia, F. C., Blake, G. A., and Sastry, K. V. L. N. 1983, J. Molec. Spectrosc., 99, 35
Steimle, T. C., Azuma, Y., and Carrick, P. G. 1984, Ap. J. (Letters), 277, L21.
Sutton, E. C. 1983, IEEE Trans., MTT-31, 589.

Sutton, E. C., Blake, G. A., Masson, C. R., and Phillips, T. G. 1984, Ap. J. (Letters), 283, L41.

Thorne, L. R., Anicich, V. G., Prasad, S. S, and Huntress, W. T. 1984, Ap. J., 280, 139.
Ulich, B. L., Hollis, J. M., and Snyder, L. E. 1977, Ap. J. (Letters), 217, L105.
Wootten, A., Lichten, S. M., Sahai, R., and Wannier, P. 1982, Ap. J., 257, 151.

Wootten, A., Loren, R. B., and Bally, J. 1984, Ap. J., 277, 189.
Wyse, F. C., Manson, E. L., and Gordy, W. 1972, J. Chem. Phys., 57, 1106.

Zuckerman, B., and Palmer, P. 1975, Ap. J. (Letters), 199, L35.

Note added in proof.-Recent laboratory measurements have shown that nine of the lines listed in Table 27 as unidentified are in fact due to methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$. The measured rest frequencies are 217299.2, 217886.6, 222722.9, 224699.4, 227094.6, 227814.5, $229589.1,237129.4$, and 239731.4 MHz . Relative intensities of the features in the laboratory spectrum are consistent with those in Orion. The total count of unidentified lines is lowered to 18 out of a total of 544 lines.

Geoffrey A. Blake and T. G. Phillips: Downs Laboratory of Physics 320-47, California Institute of Technology, Pasadena, CA 91125
C. R. MASSON: Downs Laboratory of Physics 405-47, California Institute of Technology, Pasadena, CA 91125
E. C. Sutton: Space Sciences Laboratory, University of California, Berkeley, CA 94720

[^0]: ${ }^{1}$ Department of Physics, California Institute of Technology.
 ${ }^{2}$ Space Sciences Laboratory, University of California, Berkeley.
 ${ }^{3}$ Department of Chemistry, California Institute of Technology.

[^1]: ${ }^{\mathrm{a}}$ Lost under $\mathrm{SO}_{2} 226300$.

[^2]: ${ }^{\text {a }}$ Lost under $\mathrm{HCOOCH}_{3} 216110$ and 216116.
 ${ }^{\text {b }}$ This transition was seen in an incomplete set of measurements extending a few GHz below the nominal band discussed in this paper. It is included here since this was the only accessible transition of HCS^{+}. Due to the incomplete nature of this datum, its uncertainty is considerably greater than that of the rest of the data.

[^3]: ${ }^{\text {a }}$ Blend with $\mathrm{HCOOCH}_{3} 224328$.

[^4]: ${ }^{\text {a }}$ Blend with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} 241970$ and ${ }^{34} \mathrm{SO}_{2} 241986$.

[^5]: ${ }^{\text {a }}$ Lost under SO 215221.
 ${ }^{\mathrm{b}}$ Blend with $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CN} 218399$ and 218402.
 ${ }^{\text {c }}$ Blend with $\mathrm{HCOOCH}_{3} 224024$.
 ${ }^{\text {d }}$ Blend with $\mathrm{CH}_{3} \mathrm{OCH}_{3} 231988$.
 ${ }^{e}$ Blend with $\mathrm{HCOOCH}_{3} 233505$.
 ${ }^{\mathbf{f}}{ }^{\text {Blend }}$ with $\mathrm{HCOOCH}_{3} 233525$.

