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Abstract

Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related
groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral
vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning
relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved
independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing
system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and
hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body
movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas
correlated with the amount of movement performed and was independent of auditory and visual input. These same
movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied
cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of
previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network
that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for
movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly
related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a
motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners
evolved as a specialization of a pre-existing motor pathway that controls movement.
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Introduction

Vocal learning is the ability to imitate vocalization from others,

and is a critical behavioral substrate for spoken human language.

As such, vocal learning is a rare trait found to date in at least three

distantly related groups of mammals (humans, bats, and cetaceans

[1]; also see recent studies including seals [1,2] and elephants [3]),

and in three distantly related groups of birds (songbirds,

hummingbirds, and parrots [4]; Fig. 1A). Among the birds,

vocalizing-driven immediate early gene (IEG) expression experi-

ments revealed that each vocal learning group possesses seven

comparable cerebral (i.e. telencephalic) song nuclei, also called

vocal nuclei (Fig. 1B) [5–7]. Three of the nuclei make up part of

an anterior vocal pathway (Fig. 1B, red) that in songbirds is

necessary for vocal learning [8–10]. The other four nuclei form a

posterior vocal pathway (Fig. 1B, yellow) of which the songbird

HVC and RA are necessary for the production of the learned

vocalizations [10–12] (abbreviations in Table 1). None of these

cerebral vocal nuclei have been found to date in vocal non-

learners, such as in the suboscine songbirds closely related to

songbirds [13,14], the interrelated doves [15,16], and the distantly

related galliforms ([17], Fig. 1B). Yet, both vocal learners and

non-learners have brainstem vocal nuclei DM and nXIIts (Fig. 1B)
that are responsible for production of innate vocalizations [7,18],

and an auditory cerebral pathway that is responsible for processing

species-specific vocalizations and auditory learning ([19–21],

Fig. 1B, blue). Therefore, according to the dominant hypothesis

[4,14], within the past 65 million years 3 out of 23 avian orders

independently evolved seven similar cerebral vocal nuclei for a

complex behavior ([7], Fig. 1A, red dots). The reason for these

remarkable similarities had remained mysterious, but they suggest

that the evolution of brain structures for vocal learning is under
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strong genetic or epigenetic constraints. Here we conducted a

series of experiments that, in addition to identifying the motor

control circuit of the avian brain, points towards a possible genetic

constraint: a pre-existing motor system that in birds consists of at

least seven cerebral areas active during the production of limb and

body movements. Of the multiple hypotheses proposed for the

evolution of vocal learning [14,22,23], including for spoken

language, our findings support those that suggest a motor origin

[10,24,25].

Results

In experiments that identified night vision brain areas in

migratory songbirds [26,27], we performed a series of control

experiments that led to the identification of brain areas associated

with movement behavior that we report here. Unexpectedly, the

areas of robust movement-associated activation were closest to the

vocal nuclei, and thus we investigated this activation further in a

non-migratory songbird, the zebra finch (Taeniopygia guttata), for

which the vocal system has been studied in detail. Once we

established these areas as movement-associated and adjacent to

vocal nuclei in songbirds (Part I of this report), we next tested

whether other vocal learning birds (Part II) and vocal non-learning

birds (Part III) had similar properties to address implications on

the evolution of vocal learning. To perform the experiments, we

compared groups of birds that repeatedly performed specific

movements for 30–60 min with control groups that either sat still

but awake or were in other experimental conditions. The

movement behaviors were wing whirring, flights, hopping, or

walking. We sectioned the brains and performed in-situ hybrid-

izations for the activity-dependent IEG transcription factors

ZENK and c-fos. The mRNA expression of these genes is sensitive

to increased activity in neurons [28]. We processed adjacent

sections for expression of the AMPA glutamate receptor subunit

GluR1 or the transcription factor FoxP1, because we found that

these anatomical markers were critical for identifying the different

cerebral subdivisions in each species, particularly the mesopallium

[16,29], that were otherwise prone to identification errors with

Figure 1. Phylogenetic and brain relationships of avian vocal learners. A. One view of the phylogenetic relationships of living birds [129].
Vocal learners are highlighted in red. Red dots: possible independent gains of vocal learning; green dots: alternatively, possible independent losses.
B. Semi-3D view of seven cerebral vocal nuclei (red and yellow) found in vocal learners and of auditory areas (blue) found in all birds. Red-labeled
vocal nuclei and white arrows: anterior vocal pathway. Yellow-labeled vocal nuclei and black arrows: posterior vocal pathway. Only a few connections
in hummingbirds are known and that of songbird MO is not known. Based on serial sections of singing-driven IEG expression in this study, we see
that NIf and Av are adjacent at lateral levels. Anterior is right, dorsal is up. Scale bars, 1 mm. Figure modified from Jarvis et al. (2000) [7] and Jarvis
(2004) [10], with connectivity reviewed therein.
doi:10.1371/journal.pone.0001768.g001

Movement in the Avian Brain

PLoS ONE | www.plosone.org 2 March 2008 | Volume 3 | Issue 3 | e1768



Nissl staining (see anatomy section in methods for a detailed

explanation). The results represent hybridizations to over 5,800

serially cut brain sections of entire hemispheres from five species.

In species where the brain regions, such as vocal nuclei, are

thought to have evolved independently, we used different names

following previous designations [7,30] and the new avian brain

nomenclature [29,31]. Based on their functions, we refer to the

‘posterior vocal pathway’ as a ‘vocal motor pathway’ and the

‘anterior vocal pathway’ as a ‘vocal learning pathway’. However,

when we refer to vocal learning nuclei or system, we mean all

cerebral vocal/song nuclei in vocal learners, as these nuclei are

associated with the presence of vocal learning and also have motor

related-neural firing (in songbirds) and/or IEG expression [5–

7,32–34]. Figure 2 shows examples of the most reduced

movement-associated and singing-driven patterns in songbirds

we have obtained. Table 1 lists all anatomical regions studied and

their relative similarities across species.

Part I. Movement-Associated Brain Areas in Songbirds
Migratory restlessness: wing whirring and

flights. Migratory restlessness is a highly stereotyped and

repetitive behavior performed by migratory songbirds at night in

Table 1. Terminology of comparable regions across avian species studied

Modality Vocal Movement Visual Auditory

Species. Song Parrot Humb Song Parrot Humb Dove All All

Subdivision

H - - - AH AH AH AH PH -

MD - - - AMD AMD AMD AMD PMD -

MV MO MO VAM AMV AMV AMV AMV

Av LAM VMM PLMV LMV n.d. PLMV

MVb MVb n.d. MVb MVe MV-L2

N MAN NAO VAN AN AN AN AN

HVC NLC VLN DLN SLN DLN DLN

NIf LAN VMN PLN LN n.d. PLN NDC

Nb Nb n.d. Nb Ne N-L2

A RA AAC VA LAI LAI LAI LAI AI

St Area X MMSt VASt ASt ASt ASt ASt LSte CSt

n.d., not done. Humb, hummingbird. Song, songbird. Abbreviations are listed below.
Abbreviations

A, arcopallium
AAC, central nucleus of the anterior arcopallium
ACM, caudal medial arcopallium
AH, anterior hyperpallium
AI, intermediate arcopallium
AIVM, ventral medial intermediate arcopallium
AMD, anterior dorsal mesopallium
AMV, anterior ventral mesopallium
AN, anterior nidopallium
Area X, a vocal nucleus
ASt, anterior striatum
Av, nucleus avalanche
B, basorostralis
Cb, cerebellum
CM, caudal mesopallium
CSt, caudal striatum
DLN, dorsal lateral nidopallium
DLM, dorsal lateral nucleus of the thalamus
DM, dorsal medial nucleus of the midbrain
DMm, magnocellular nucleus of the dorsal thalamus
DT, dorsal thamalus
E, entopallium
GP, globus pallidus
H, hyperpallium
Hp, hippocampus
HVC, a vocal nucleus (no abbreviation)
LAI, lateral intermediate arcopallium
LAN, lateral nucleus of the anterior nidopallium
LAM, lateral nucleus of the anterior mesopallium
LMV, lateral ventral mesopallium
M, mesopallium
MAN, magnocellular nucleus of the anterior nidopallium
MLd, dorsal part of the lateral mesencephalic nucleus
MMSt, magnocellular nucleus of the medial striatum
MO, oval nucleus of the mesopallium
MD, dorsal mesopallium
MN, motor neurons

MV, ventral mesopallium
MVb, ventral mesopallium adjacent to B
MVe, ventral mesopallium adjacent to E
MV-L2, ventral mesopallium adjacent to L2 (same as CM)
N, nidopallium
Nb, nidopallium adjacent to B
ND, dorsal nidopallium
Ne, nidopallium adjacent to E
N-L2, nidopallium adjacent to L2
NAO, oval nucleus of the anterior nidopallium
NDC, caudal dorsal nidopallium
NIDL, dorsal lateral intermediate nidopallium
NIf, interfacial nucleus of the nidopallium
NLC, central nucleus of the lateral nidopallium
nXIIts, 12th nucleus tracheosyringeal part
OT, optic tectum
PDN, posterior dorsal nidopallium
PH, posterior hyperpallium
PLMV, posterior lateral ventral mesopallium
PLN, posterior lateral nidopallium
PLSt, posterior lateral striatum
PDN, posterior dorsal nidopallium
PMN, pre-motor neurons
RA, robust nucleus of the arcopallium
S, septum
SLN, supra lateral nidopallium
St, striatum
Ste, striatum adjacent to E
v, ventricle
VA, vocal nucleus of the arcopallium
VAM, vocal nucleus of the anterior mesopallium
VAN, vocal nucleus of the anterior nidopallium
VASt, vocal nucleus of the anterior striatum
VMM, vocal nucleus of the medial mesopallium
VLN, vocal nucleus of the lateral nidopallium
doi:10.1371/journal.pone.0001768.t001
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dim light, during their migratory season [35,36]. We found that

under dim light in our cylindrical monitoring apparatus

(Supporting Fig. S1A), migratory songbirds performed

migratory restlessness behavior consisting mainly of rapid wing

whirring while perched, but also head scans and some hops, in a

preferred direction corresponding to the migratory orientation of

their free-flying conspecifics [26,37]. Using infrared video, we

quantified wing whirring in garden warblers (Sylvia borin) in dim

light and flights in day light for 45–60 min. Relative to birds that

sat still (Fig 3Aa-d), those that performed flights (Fig. 3Ae,f) or

wing whirring (Fig. 3Ag,h) both had high levels of induced

ZENK gene expression in the medial part of the anterior

cerebrum centered around the anterior vocal nuclei and in areas

lateral to the posterior vocal nuclei. The anterior activated areas

included the medial part of the anterior striatum (ASt) centered

around the striatal vocal nucleus Area X, the anterior nidopallium

(AN) centered around the magnocellular vocal nucleus of the

anterior nidopallium (MAN, both lateral and medial parts), and

the anterior ventral mesopallium (AMV) centered around the

mesopallium oval (MO) vocal nucleus; we note here that the MO

vocal nucleus is situated in the ventral mesopallium (MV), as

revealed by comparisons of GluR1 with ZENK expression (Fig.

S2A; also seen below for zebra finches and FoxP1 expression). The

caudal limits of the anterior activated areas (ASt, AN, and AMV)

in birds that made flights formed a semi-linear functional

boundary across the respective brain subdivisions (St, N, and

MV; Fig. 3Ae). Other activated areas were the medial part of the

dorsal mesopallium (MD) and adjacent medial hyperpallium (H;

Fig. 3Ae, 3B). The posterior activated areas included the dorsal

lateral nidopallium (DLN) adjacent to the HVC vocal nucleus and

the lateral intermediate arcopallium (LAI) adjacent to the robust

arcopallium (RA) vocal nucleus (Fig. 3Af,h, 3B; Fig. S2B shows

higher power images). Expression was also high in the posterior

lateral nidopallium (PLN) and adjacent posterior-lateral ventral

mesopallium (PLMV; Fig. 3Af,h) lateral to the two other

posterior vocal nuclei-nucleus interface of the nidopallium (NIf)

and avalanche (Av) of the ventral mesopallium. However, it was

difficult to determine whether NIf and Av were immediately

adjacent to the vocal nuclei in garden warblers, as these vocal

nuclei are small and more easily identified by singing-driven gene

expression (see experiments below with zebra finches).

Although ZENK expression can be found in other brains areas

of individual animals or of a group, activation in the brain areas

adjacent to the vocal nuclei (3 anterior, 4 posterior) as well as

throughout medial MD and medial H occurred whether the birds

performed wing movements in day or dim light (Fig. 3B; statistics

in 3Da, 3rd & 4th rows). In control areas such as the hippocampus

and the higher auditory area NCM, there were no increases in

expression that were exclusive to the movement groups (Fig. 3B,

3Da). We also measured two regions as background controls, the

entopallium (E, a primary visual region) and the globus pallidus

(GP) known not to express high levels of ZENK [6,38], and found

no significant differences among groups (Fig. 3B, 3Da).

Outside the cerebrum, we noted distinct activation in the

granule cell layer of specific cerebellum lobules (Fig. 4A–C). Birds

that performed flights and were generally active had ZENK

activation distributed across lobules I-X (Figs. 3B and 4B) albeit

with higher levels in lobule VIab (p,0.01, relative to IXcd, paired

t-test), whereas birds that performed wing whirring while perched

had high activation specific to lobules I-VI (Fig. 4C, p,0.012,

VIab versus IXcd, paired t-test).

Proportionality. In all vocal learning birds, IEG induction

levels in vocal nuclei is linearly proportional to the amount of

songs produced per 30–60 min and this has been one test to

support the conclusion that singing-associated gene expression is

motor-driven [5–7,33]. To test for this property in the identified

areas, we performed regression analyses on the amount of gene

expression with the number of wing beats (counted semi-

automatically, both during wing whirring and flights). Similar to

the vocal nuclei, the amount of IEG expression in the adjacent

anterior and posterior areas, and in the cerebellum, was

proportional to the amount of wing beats and flights performed

(Fig. 3C, top panels and 3Db). Interestingly, the relationship was

not linear, but was best fitted by a saturating exponential curve

(Fig. 3C top), similar to the relationship seen in the number of

neurons that express ZENK protein in vocal nuclei when birds

sing [39]. ZENK mRNA expression levels reached a maximum at

,6000 wing beats and then saturated, and may have even started

to decrease (or perhaps habituate [40]) in some birds. Natural

logarithmic transformations of the data were linear (Fig. 3C,

bottom panels and 3Dc), confirming that the original relationship

was exponential. In both exponential and logarithmic analyses, the

correlations were stronger for the anterior areas and the

cerebellum (Fig. 3Db,c). There were no correlations between

wing beats or flights and ZENK expression for the hippocampus,

NCM, or the E (Fig. 3Db,c). A significant but barely detectable

correlation with the number of flights was seen in GP, but this is

not surprising as the GP is generally known to be involved in

motor control [29].

Hopping and walking. We next analyzed brains of a non-

migratory songbird, the zebra finch, which was placed in our

cylindrical apparatus. In the day light condition, most zebra

finches hopped and walked around the perimeter of the cage at a

rapid pace. The ZENK expression pattern in these finches relative

to sitting still controls (in dim light, Fig. 5Aa) was similar to that

found in the flying day time group of garden warblers, except that

the activation of the anterior areas (ASt, AN, and AMV) was more

narrowly focused around the anterior vocal nuclei (Fig. 5Ab, 5B).

Likewise, the caudal and rostral limits of high expression each

lined up to form a strip of activation across the three brain

subdivisions: St, N, and MV. Activation in the medial MD and

adjacent medial H still spanned the caudal-to-rostral extent of

their respective brain subdivisions (Fig. 5Ab). The cerebellum

Figure 2. IEG expression patterns in brain sections from
moving versus singing zebra finches. A. Example of the most
restricted movement-associated expression pattern obtained in this
study. A mid-sagittal section from a deafened bird that was hopping in
the dark. B. Comparable section from a bird that was singing while
movingly relatively little. ZENK expression is shown in (A); c-fos is shown
in (B) due to its high contrast in vocal nuclei. White: IEG expression; red:
cresyl violet staining. Six (HVC, NIf, Av, Area X, MAN, and MO) of the
seven vocal nuclei can be seen in these sections, which are adjacent to
five movement-associated areas (PLN, PLMV, ASt, AN, AMV); movement-
associated areas laterally adjacent to the HVC and RA are not in this
section. AMD and AH are known somatosensory areas. Anterior is right,
dorsal is up. Scale bar, 2 mm.
doi:10.1371/journal.pone.0001768.g002
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showed a gradient of high expression concentrated towards lobule

VI (Fig. 4E), similar, but not identical to that seen in garden

warblers that performed flights (Fig. 4B), and clearly increased

relative to finches that sat still (Fig. 4D and 5B).
In the above experiments, the movement behaviors were

performed voluntarily. Although the birds performed repetitive

stereotyped movements, there were still a variety of types across

and within animals. To induce a more repetitive single-movement

performance, we developed a motorized rotating plexiglass wheel

orientated sideways (similar to a hamster wheel, Fig. S1B). When

the wheel was rotated at a constant rate, in dim light, the zebra

finches repeatedly hopped, with a minimum of other movements,

Figure 3. Movement-induced ZENK expression in garden warblers. A. Darkfield images of medial (top) and lateral (bottom row) sagittal
sections from birds sitting relatively still in room day light (a, b) or dim night light (c, d) and birds making mostly flights in day light (e, f) or wing
whirring in dim light (g, h). The anatomical profiles to the right show the extent of the movement-induced (red) and visual-induced (blue) gene
expression areas. Note that the PLN and PLMV areas differ slightly in shape between garden warblers (panel Af,h) and zebra finches (Fig. 2A), due to
differences in the shapes of the N and MV cerebral subdivisions and that the warbler sections are more lateral. Anterior is right, dorsal is up. Scale bar,
2 mm. B. Quantification of ZENK expression levels in different brain areas from the four groups of warblers. Anterior and posterior areas were
grouped according to their relative location to vocal nuclei. * = p,0.05, one-way ANOVA followed by Holm-Sidak multi-comparison test, comparing
moving groups with still groups for each light condition; each movement group showed significant differences with each still group.#=p,0.001 for
an increase in Cluster N in dim versus day light groups, whether still or moving. Error bars, S.E.M. C. Correlation between the amount of wing beats
and ZENK expression levels shown in exponential (top row) and double natural logarithmic (bottom row) graphs for example areas. Each dot
represents the value of one bird. D. Statistical analyses: (a) one-way ANOVA followed by Holm-Sidak all-pairwise multi-comparison test for the brain
areas in (B); (b) exponential regression stats (examples in C, top row); (c) linear regression stats on double-logarithmic transformation of the data (C,
bottom row). Red text are significant differences (p,0.05); n.s. = not significant.
doi:10.1371/journal.pone.0001768.g003
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to maintain their position at the bottom of the rotating wheel. The

ZENK expression pattern in these zebra finches was similar to that

in birds that voluntarily hopped around the cage (Fig. 5B), though
more distinct (shown below in detail for other groups in the wheel)

as expected due to mainly one type of movement performed. The

activation in the cerebellum was more restricted to the anterior

lobules (highest in VI) and in the posterior lobule IXcd (Fig. 4F),
similar, although not identical to that seen in garden warblers that

performed wing whirring behavior (Fig. 4C).
Visual versus movement activation. In both garden

warblers and zebra finches we noted differential activation in

other brain areas that varied across groups (Fig. 3B, control

regions). Some of these areas are parts of known visual pathways.

They included: 1) the nidopallium and ventral mesopallium

adjacent to the entopallium that we here call Ne and MVe

(Fig. 3Af), which are part of the tectofugal visual pathway and

that we previously demonstrated were activated by day-light vision

[26]; 2) the posterior part of the medial hyperpallium (PH, also

known as the visual Wulst) and the adjacent posterior dorsal

mesopallium (PMD; Fig. 5Ab), which are part of the thalamofugal

visual pathway [41]; and 3) cluster N, consisting of regions within

the most posterior end of the hyperpallium and adjacent dorsal

mesopallium (Fig. 3Ah) that we previously demonstrated was

activated by dim-light, night-vision in migratory songbirds and

implicated in light-mediated magnetic compass detection [26,42].

We found that cluster N in garden warblers showed strong

induced expression by dim light whether the birds sat still or

performed migratory restlessness, with no detectable effect of

movement (Fig. 3Ad,h, 3B, 3Da). Ne and MVe showed strong

induced expression by day light relative to dim light (Fig. 3Ab,f,

3B, 3Da); however, Ne and MVe showed further increased

expression in the moving relative to the respective day and dim

light control sitting still birds (Fig. 3B, 3Da), with stronger

correlations with the number of flights than with the number of

wing beats (Fig. 3Db,c). Because flights cause optic flow more so

than stationary wing whirring movement, we surmise that Ne,

proposed to detect visual motion [43], as well as MVe, might

detect optic flow as the birds move.

If visual areas are activated as a result of motion detection, then

movement in complete darkness should eliminate this activation.

To test this idea, we placed zebra finches in the rotating wheel in

complete darkness and observed their movements using an

infrared camera. They hopped similarly as the birds moving in

dim light. We found that hopping in darkness eliminated the

widespread induced expression in visual areas (PMD, PH, Ne and

MVe; Fig. 5Ac, 5B; in-situ shown only for PMD and PH). In

contrast, high levels of induced ZENK expression remained in the

areas (ASt, AN, and AMV) surrounding the anterior vocal nuclei,

the areas (DLN, LAI, PLN, and PLMV) laterally adjacent to the

posterior vocal nuclei, known somatosensory areas of the anterior

dorsal mesopallium (AMD) and adjacent anterior hyperpallium

(AH), and a small strip of cells in the nidopallium (Nb) and ventral

mesopallium (MVb) adjacent to the second somatosensory area

basorostralis (B; Nb and MVb shown in Fig. 6C below, [44]); B

like the E does not express high levels of ZENK [38]. High levels

of induced ZENK expression also remained in the cerebellum of

birds hopping in the dark (Fig. 5B). Thus, we conclude that the

movement-associated gene expression in the cerebellum, regions

of the two known somatosensory pathways, and the regions

adjacent to the anterior and posterior vocal pathway nuclei is

independent of visual input.

Auditory versus movement activation. We noted that in

some groups of moving birds there was increased ZENK

expression in some of the known auditory areas surrounding the

primary auditory field L2 (L2, like the E and B, does not express

high levels of ZENK [45]). Such areas include fields L1, L3, and

surround (called N-L2 here) and CM (called MV-L2 here), which

particularly showed increased ZENK expression in garden

warblers that performed wing whirring (Fig. 3Ag, 3B, 3Da)

and in zebra finches that performed hopping in the rotating wheel

(Fig. 5Ac, 5B), even though the wheel was in a sound isolation

box with the motor mounted outside of it (Fig. S1B). N-L2

expression in garden warblers had a stronger correlation with the

number of wing beats than with the number of flights (Fig 3Db,c).

We surmise that the auditory pathway may be responding to self-

produced wing whirring sounds and to hopping sounds on the

wheel floor or mechanical sounds transmitted through the rotating

wheel, similar to the IEG induction that occurs in N-L2 and other

auditory areas when songbirds hear themselves sing [33]. But

some reports noted that song playbacks alone can also result in

increased ZENK expression in the anterior striatum surrounding

Area X, where it has been suggested that the forebrain vocal

pathway may be located within an auditory system [46,47]. This

idea was further supported by the facts that HVC sits dorsally

adjacent to the HVC shelf and RA caudally adjacent to the RA

cup, two known auditory pathway areas with hearing-induced

IEG expression [23,33,45].

To assess the plausibility of these ideas, we individually placed

zebra finches in complete darkness outside of the wheel next to a

yoked control bird hopping inside the wheel, of which the former

bird could hear the wheel rotate and the bird hop inside of it, but

did not move himself and could not see the bird hop. These sitting

still, but hearing stimulated birds showed high induced ZENK

expression in the N-L2, MV-L2 and other auditory areas, but had

Figure 4. Movement-induced ZENK expression in the cerebel-
lum. Example sagittal sections of: A. Garden warbler sitting still. B.
Garden warbler making flights and other movements in day light. C.
Garden warbler performing wing whirring in dim light. D. Zebra finch
sitting still. E. Zebra finch flying and hopping around the perimeter of
the cylinder cage. F. Zebra finch hopping in a rotating wheel. G.
Budgerigar hopping in the wheel. H. Anna’s hummingbird hovering. I.
Ring dove walking on a treadmill. Birds in G and I were deaf; F, G, and I
were in the dark. Anterior is right, dorsal is up. Scale bar, 1 mm.
doi:10.1371/journal.pone.0001768.g004
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no detectable increases in the 11 cerebral regions that include the

areas surrounding the anterior vocal nuclei (ASt, AN, and AMV),

lateral to the posterior vocal nuclei (DLN, LAI, PLN, and PLMV),

and the somatosensory areas (Nb, AMD, AH; except for a small

increase in MVb), or in the cerebellum (Fig. 5Ad, 5B).

We also presented birds with playbacks of song while inside our

apparatus or the sound isolation chamber. Even in complete

darkness, at least half of the birds responded to the song playbacks

by hopping excitedly within the confined area, as detected with an

infrared camera, and these birds had a similar expression pattern

Figure 5. Movement-induced ZENK expression in zebra finches. A. Sagittal sections of birds (a) sitting relatively still in dim light, (b) hopping
around the perimeter of a cylindrical cage in day light, (c) hopping in a rotating wheel in the dark, (d) sitting still in the dark and hearing a bird hop in
the rotating wheel, (e) sitting still in the dark and hearing playbacks of zebra finch song, and (f) hopping in the rotating wheel in the dark while deaf.
The anatomical profile in the lower right highlights the extent of the movement-induced (red) and visual- and auditory-induced (blue) gene
expression. Anterior is right, dorsal is up. Scale bar, 2 mm. B. Quantification of ZENK expression levels in 23 brain regions in 8 groups of male zebra
finches. Except for a small difference in cerebellum lobule VI, there were no significant differences between sitting still dim light and dark animals;
thus, they were treated as one control group for statistical analysis. * = p,0.05 to,0.0001, one-way ANOVA followed by Holm-Sidak multi-
comparison test relative to combined values of sitting still animals in dim light+dark (n = 3–6/group). Lines underneath *s indicate brain areas with
statistically significant increases exclusive to the moving groups. #s alone indicate values that approached significance by a few tenths of decimal in
the ANOVA test. Error bars, S.E.M.
doi:10.1371/journal.pone.0001768.g005

Figure 6. Serial sagittal brain sections of ZENK expression in male zebra finches. A. Auditory areas: bird sitting still in the dark while
hearing song. Although not mentioned in the main text, hearing-induced expression also occurs in caudal St and MLd, known auditory regions of the
striatum and midbrain, respectively [45]. B. Auditory and vocal areas: bird hearing and singing alone in a sound box in the day light condition. C.
Movement areas: bird hopping in the rotating wheel in the dark while deaf. D. FoxP1 expression from adjacent sections of the bird in (C). E.
Corresponding anatomical drawings; red: areas with movement-induced expression; blue: areas with auditory- or visual-induced expression. First row
are medial-most sections. Anterior is right, dorsal is up. Scale bar, 2 mm. Compare with frontal sections in figure S3.
doi:10.1371/journal.pone.0001768.g006
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as other hopping birds, including in the areas surrounding the

anterior vocal nuclei and lateral to the posterior vocal nuclei (data

not shown). In the three birds that remained still, we found robust

increased expression in N-L2, including NCM, MV-L2, the HVC

shelf, and the RA cup, and other auditory areas as expected [45],

but no increased expression in the areas surrounding the anterior

vocal nuclei (ASt, AN, and AMV), the areas lateral to the posterior

vocal nuclei HVC and RA (DLN and LAI), the somatosensory

areas (Nb, MVb, AMD, and AH), or in the cerebellum (Figs. 5Ae,
5B, and 6A). The exception was part of PLN and PLMV; these

areas also showed increased robust expression to playbacks of song

(Figs. 5Ae, 5B, and 6A).

To further test whether the induced gene expression in these 11

cerebral areas can be independent of auditory input, as is singing-

induced gene expression in vocal nuclei [33], we deafened zebra

finches and placed them in complete darkness in the rotating

wheel. These birds hopped similarly as hearing intact animals.

Relative to the hearing intact animals, deafening eliminated the

induced expression in all the auditory areas around L2 (N-L2,

MV-L2, and NCM), the HVC shelf, and the RA cup (Figs. 5Af,
5B, and 6C) supporting previous findings that these regions are

predominantly auditory [23,33,45]. But, these deafened hopping

birds still showed strong induced gene expression in the areas

surrounding the anterior vocal nuclei (ASt, AN, and AMV), in all

four areas lateral to the posterior vocal nuclei (DLN, LAI, PLN,

and PLMV), the somatosensory areas (Nb, MVb, AMD, and AH),

and the cerebellum (Figs. 5Af, 5B, and 6C); this is the most

distinct movement-associated expression pattern that we have

seen. We conclude that the induced expression in the auditory

areas of moving animals is a result of the animals hearing

movement- and/or mechanically-generated sounds, and the

remaining areas have movement-associated gene expression that

is independent of auditory input. We also conclude that the same

parts of PLN and PLMV can independently have movement-

induced and hearing-induced gene expression.

We noticed that although ZENK expression in vocal nuclei was

much lower than in the adjacent brain areas of the moving birds,

in some animals there were some cells that expressed ZENK

(Fig. 5Ab,c,f). Thus, we quantified ZENK expression in Area X

and HVC of all birds and found a trend of low-level increased

expression that approached significance in some of the moving

groups (Fig. 5B). Future experiments will be needed to determine

if this increase is real and associated with limb and body

movements or whether some birds produce some vocalizations

while hopping.

Physical relationship to vocal nuclei. To determine how

close the movement-associated areas are to the vocal nuclei and to

clarify the relative physical relationship of the posterior vocal

nuclei to auditory areas, we quantified the distances in Nissl

stained serial sagittal (Figs. 6 and 7) and coronal (Fig. S3)
sections of the deaf, dark, hopping animals. We used serial sections

of hearing song-induced and singing-induced IEG expression in

other birds, along with FoxP1 expression in adjacent sections, to

help identify the auditory regions, the vocal nuclei, and cerebral

subdivision boundaries (Figs. 6 and 7; Fig. S3; see methods).

The ZENK activated neurons of ASt, AN, and AMV were on

average only ,11, 28, and 10 mm distant from the edge of vocal

nuclei Area X, LMAN, and MO respectively (range 0–30 mm,

Table 2). That is, there were either no or 1–3 unlabelled neurons

between the movement-activated neurons and these vocal nuclei.

This expression within ASt, AN, and AMV surrounded the central

Figure 7. High power images of IEG activation in zebra finch
vocal nuclei during singing and in adjacent movement-
associated areas during hopping. (A) Anterior vocal nuclei adjacent
to ASt, AN, and AMV. (B) HVC adjacent to DLN and dorsal PLN. (C) NIf
and Av adjacent to ventral PLN and PLMV respectively. (D) RA adjacent
to LAI. The c-fos expression in vocal nuclei (first column) is of a young
zebra finch male that sang for 30 min while moving relatively little; c-
fos is shown for its high contrast in vocal nuclei relative to the
surrounding non-vocal areas. The hopping-associated expression (left
two columns) is from a male that hoped in the dark and was deaf; the
left most sections are lateral to the vocal nuclei (except for anterior
areas, which still contain the lateral part of the anterior vocal nuclei).
Yellow dashed lines-brain subdivision boundaries; white dashed lines–
vocal nuclei boundaries, only highlighted for some images so that other
sections can be viewed as is. Anterior is right, dorsal is up–sagittal
sections; sections of the top panel are orientated at a ,45u angle so
that all three anterior vocal nuclei fit vertically into one image. Scale bar,
200 mm.
doi:10.1371/journal.pone.0001768.g007

Table 2. Distances between movement-associated areas and
vocal nuclei

Areas Distance mm6SEM

ASt-AreaX 11.6660.96

AN-MAN 28.3365.09

AMV-MO 10.5561.54

DLN-HVC 88.89611.06

PLN-HVC 10.0060

PLN-NIf 8.6162.47

PLMV-Av 17.2265.47

LAI-RA 28.89610.02

Nb-MAN 962.50623.94

MVb-MO 1,167.00633.33

doi:10.1371/journal.pone.0001768.t002
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portions of the anterior vocal nuclei, was most prominent anterior

and ventral to them (Fig. 7A, medial), and was less on their

caudoventral sides further laterally (Fig. 7A, lateral). This pattern

suggests a topographical relationship in the functional activation

across brain subdivisions.

For the posterior areas, the dorsal part of PLN was ,10 mm

ventral and anterior to the lateral ,1/3rd of HVC (Fig. 7B;

brightfield in Fig. S4Ab), whereas DLN began ,88 mm posterior

to HVC and increased in size further laterally and posteriorly

(Fig. 7B; Fig. S4Ac; coronal in Fig. S3Ba). The auditory shelf

directly ventral to the medial ,2/3rds of HVC that shows

auditory-induced expression (Fig. 6A, 3rd and 4th row) did not

show any clusters of labeled neurons in the hopping deaf animals

(Fig. 6C; Fig. S4Aa). For the location of PLN and PLMV relative

to NIf and Av, it was simple to identify the vocal nuclei in singing

animals using IEG expression (Fig. 7C), but difficult to identify by

Nissl alone in the hopping animals. However in the hopping

animals, we noted a split of expression within PLN where NIf (but

also adjacent field L2) would be located and a split between PLN

and PLMV by the mesopallium lamina (LM, Fig. 7C, medial;

Fig S4Bb). To determine if the first split was due to NIf, we false

colored the IEG expression from singing and hopping deaf

animals, aligned them by the LM boundary, and found that PLN

appeared to surround the dorsal ,1/3rd of NIf and that PLMV

was directly dorsal to Av (Fig. S4D). Further lateral, when NIf was

no longer present, the split in PLN was no longer present (Fig. 7C,

lateral; Fig. S4Bc). Further medial, field L2 was easily seen by its

smaller size neurons relative to L1 and L3, but there was no

movement-associated expression around it (Fig. S4Ba). Using

these alignments, we calculated that PLN and PLMV are on

average ,8 and 17 mm from the NIf and Av respectively

(Table 2). For LAI, it was ,28 mm caudal to the lateral ,1/

3rd of RA (Fig. 7D, medial; Fig. S4Cb, Table 2), and wrapped

around RA laterally such that it occupied a similar central position

in the arcopallium (Fig. 7D, lateral; Fig. S4Cc; coronal in Fig.

S3Bb). There was also some expression in the arcopallium

caudoventral to RA (Fig. 7D; Fig. S3Bb). The auditory RA cup

anteroventral to the medial ,2/3rds of RA that shows hearing-

induced expression (Fig. 6A, 4th row) did not show detectable

clusters of movement-activated neurons (Fig. 6C; Fig. S4Ca). In

contrast to these distances, the known somatosensory areas with

movement-associated expression (Nb and MVb) were at a

minimum ,962 and ,1,167 mm distant to their nearest vocal

nuclei MAN and MO, respectively (Table 2). We did not measure

distances for the other two known somatosensory areas (AMD and

AH), as there are no known vocal nuclei in their respective brain

subdivisions (MD and H). Based on these results, it is clear that 7

of the 11 movement-associated cerebral areas are directly adjacent

to the 7 known vocal nuclei; the remaining 4 brain areas not

adjacent to the vocal nuclei are known somatosensory regions.

Relative cerebral volume. We next made a gross

assessment of the relative cerebral volume activated during

hopping. We found that the movement-associated areas in the

deaf, dark, hopping animals comprised ,8.7% of the cerebrum

volume (Fig. 8A, total). The largest contributor to this volume was

the ASt around Area X and the somatosensory AH within the

hyperpallium (Fig. 8A). In comparison, the song nuclei combined

comprised ,2.5% of the cerebrum volume, with Area X the

largest contributor (Fig. 8A). Most of the movement-associated

areas were proportionally larger than the adjacent vocal nuclei;

LAI and RA were the exceptions, which were about the same size.

In this regard, there was a significant positive correlation between

vocal nuclei size and adjacent movement-associated region size

(Fig. 8B). This distinct hopping-induced expression pattern

contrasts with the pattern found in birds taken from our aviary

in the early morning, after 60 min of lights, hearing songs and

calls, feeding, flying, hopping, and making physical contact with

other birds, which results in widespread ZENK expression in the

cerebrum (Fig. S5A). Based on these results, it becomes clear that

the hopping-induced expression pattern comprises distinct

domains of the cerebrum (Fig. 6C), most of which are directly

adjacent to the vocal nuclei.

Confirmation with another IEG. We tested whether

movement-associated gene expression was specific to ZENK or a

general IEG property, by examining expression of another IEG, c-

fos, which is generally thought to be less sensitive to small changes

in neural activity, and thus can reveal areas that were highly active

during a specific behavior. We found that c-fos was induced in the

same cerebral brain areas adjacent to the vocal nuclei as well as in

known somatosensory areas (Fig. 9), but with a higher contrast of

activation relative to ZENK (Fig. 6C). As with ZENK, the c-fos

induction in these dark and deaf animals was independent of visual

and auditory input.

Figure 8. Relative volumes of movement-associated areas and
vocal nuclei. A. Relative volumes as a percentage of the summed
cerebral (telencephalon) volume from a series of sagittal sections (see
methods) from the hopping, dark and deaf animals. The movement-
associated areas and adjacent vocal nuclei are shown as bars adjacent
to each other. Totals represent the summed relative volumes of all
movement-associated areas whether or not it is adjacent to a vocal
nucleus, and of all vocal nuclei. * = p,0.05, paired t-test (within bird
comparisons, n = 3). Error bars, S.E.M. Although all animals had higher
volumes of ASt and AMV relative to Area X and MO, the variance was
large in the movement areas such that the volume difference did not
reach significance. B. Correlation between relative volumes of
movement-associated regions and adjacent vocal nuclei. Each dot
represents the average values from the graph in (A).
doi:10.1371/journal.pone.0001768.g008
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Summarizing Part I of this study, in songbirds, 11 cerebral areas

showed movement-associated activation that can be grouped into

4 clusters: an AH and AMD cluster comprising known

subdivisions of a somatosensory pathway; a Nb and MVb cluster

within known subdivisions of a second somatosensory pathway; an

anterior ASt, AN, and AMV cluster surrounding the three anterior

vocal pathway nuclei Area X, MAN, and MO, respectively; and a

posterior DLN, LAI, PLN, and PLMV cluster posterior-laterally

adjacent to the four posterior vocal pathway nuclei HVC, RA,

NIf, and Av respectively. We do not know if the movement-

associated IEG activation adjacent to the vocal nuclei is the result

of pre-motor activity as occurs in the vocal nuclei during singing

[32–34], is the result of somatosensory feedback activity via muscle

spindles, or is from a combination of both; thus, we call the

induced gene expression as movement-associated. Regardless of

the specific source of activation, these findings led us to

hypothesize that vocal learning systems may have evolved out of

a pre-existing motor or somatosensory-motor system, which may

explain the anatomical similarities among distantly related vocal

learning birds. If true, then the other vocal learning birds should

show a similar relationship between movement-associated areas

and their cerebral vocal nuclei, an idea we tested next.

Part II. Movement-Associated Brain Areas in Other Vocal
Learners

Parrots. In parrots, the three anterior vocal pathway nuclei

are situated in nearly identical brain locations as their analogous

counterparts in songbirds, but the counterparts of the four

songbird posterior vocal nuclei are situated much further (1000s

of mm) laterally away from the main avian auditory pathway areas

(Fig. 1B, yellow). Therefore, this differential relationship provides

a natural experiment to test whether movement-associated brain

areas would be adjacent to parrot vocal nuclei or instead in the

same location as in songbirds, near the auditory pathway. To

perform this test, we placed deafened budgerigars (Melopsittacus

undulatus, a small parrot) in the rotating wheel in complete

darkness. The parrots performed hopping movements similar to

zebra finches, and in addition often bobbed the head before a hop.

We compared brain ZENK expression in these birds with sitting

or hopping animals in dim light, and with hearing intact animals

that either heard or produced parrot warble song (Fig. 10Aa,b)

[6].

Similar to deafened songbirds hopping in darkness, the induced

ZENK and c-fos expression patterns in the deafened parrots

hopping in darkness were distinct, with the highest levels

distributed across at least nine cerebral brain areas of which

seven were directly adjacent (within 100 mm) to the seven parrot

vocal nuclei (Fig. 10Ac, 10B; c-fos not shown). Figure S6 shows

coronal sections for comparison. These brain areas were: ASt, AN,

and AMV with the highest expression directly caudal and medial

to the parrot anterior vocal nuclei MMSt, NAO, and MO (analogs

of songbird Area X, MAN, and MO respectively); the lateral

nidopallium (LN) surrounding LAN (proposed analog of songbird

NIf) and the adjacent lateral ventral mesopallium (LMV)

surrounding LAM (proposed analog of songbird Av); the LAI

surrounding AAC (analog of songbird RA); and the supra-lateral

nidopallium (SLN, for details see anatomy section in methods)

surrounding NLC (analog of songbird HVC) (Fig. 10Ac, 10B;

Fig S6B). For each of these posterior areas (LN, LMV, LAI, and

NLC), expression was highest dorsally and/or posteriorly to the

vocal nuclei. Also as in songbirds, the somatosensory areas of

AMD and AH showed robust induced expression (Fig. 10Ac, 1st

row and 10B; Fig S6B, 1st row). There was activation in the

presumed second somatosensory areas Nb and MVb adjacent to

B, but these two areas are also adjacent to two of the posterior

vocal nuclei of parrots (LAN and LAM) making it difficult to parse

out the boundaries, if any (Fig. 10Ac, 2nd row and 10B; Fig
S6B, 2nd row). There were no detectable high levels of induced

expression in the known auditory areas (N-L2, NCM) or in the

posterior dorsal nidopallium (PDN) where songbird DLN and

HVC would be expected to be located (Fig. 10A,B) if they were in
the same relative location to the auditory pathway as in songbirds.

The anterior vocal nuclei, such as MMSt also did not show

induction (Fig. 10Ac, 10B). In hearing intact hopping budger-

igars in dim light, induced expression occurred in the same brain

areas as well as in visual (PMD, PH, Ne, and MVe) and auditory

(N-L2) areas (Fig. 10B) similar to that found in songbirds,

presumably due to optic flow in dim light and to the animals

hearing the hops and/or the mechanical rotating sounds of the

wheel, respectively. In both moving groups, there was induced

expression in the anterior half of the cerebellum (highest in VI)

and in lobule IXcd (Figs. 4G and 10B), similar to that seen in

zebra finches that hopped in the wheel (Fig. 4F).

Hummingbirds. We next investigated the Anna’s

hummingbird (Calypte anna), a known vocal learner [48]. The

three anterior vocal pathway nuclei of hummingbirds are situated

in nearly identical brain locations as in songbirds and parrots, but

the proposed counterparts of the four posterior vocal nuclei are

situated at intermediate caudal-lateral locations, partly adjacent to

the auditory pathway areas (Fig. 1B, yellow). Attempting to

perform similar movement experiments with hummingbirds would

not work, because hummingbirds rarely walk or hop for mobility.

Instead, they fly, even to move a few centimeters from one perch

location to another. Further, when Anna’s hummingbirds were

Figure 9. Movement-induced c-fos expression in zebra finches.
A. Vocal areas: brain section containing all seven cerebral vocal nuclei
from a singing bird. B. Movement areas: serial sections from a hopping
bird in the rotating wheel in the dark while deaf. The patterns are
similar to that found with ZENK (Fig. 6C). See figure 6E for delineation
of anatomical boundaries. Anterior is right, dorsal is up. Scale bar,
2 mm.
doi:10.1371/journal.pone.0001768.g009
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placed in darkness for 2–3h to reduce brain IEG expression to

basal levels, they went into torpor, a unique hibernation-like

sleeping state that makes them immobile [49]. Thus, for the

hummingbirds, we plugged one ear with clay and covered the ear

and ipsilateral eye with black vinyl tape to reduce visual motion-

and auditory wing humming-induced gene expression in one

hemisphere. Covering one eye in songbirds causes ZENK

expression to be reduced in visual pathways of the contralateral

hemisphere [27] (Hara, Kubikova, Hessler, Jarvis; submitted), as

in laterally eyed birds the visual pathways are nearly completely

crossed [50]. Auditory input is bilateral, but removing input from

one ear in chicks causes some auditory nuclei to have reduced 2-

deoxyglucose activation in the contralateral hemisphere [51,52].

We then placed the hummingbirds in dim light inside a plexiglass

box with a central perch (see methods). Most Anna’s

hummingbirds remained relatively still on the perch for the first

several hours; thereafter, some birds performed stereotypical

circular hovering flights on and off the perch in the direction of the

open eye while others remained perched, relatively still (less than

,15 flights in 60 min), and awake.

In the hovering hummingbirds, there was an induced ZENK

expression pattern that was discrete and significantly different

between hemispheres, which allowed us to suggest which brain

areas have movement-associated versus visual- and possible

auditory-associated gene expression (Fig. 11Ab). Figure S7

shows serial coronal sections for comparison. Apparent visual

Figure 10. Movement-induced ZENK expression in budgerigars, a parrot. A. Serial sagittal sections of: (a) Auditory areas: bird sitting
relatively still while hearing playbacks of budgerigar warble song; (b) Auditory and vocal areas: perched bird hearing himself and producing warble
song while alone and moving relatively little; (c) Movement areas: bird hopping in the rotating wheel in the dark while deaf; (d) FoxP1 expression
from adjacent sections of the bird in (c); (e) Corresponding anatomical drawings; red: areas with movement-induced expression; blue: areas with
auditory- or visual-induced expression. First row are medial-most sections. Sections with N-L2 are not shown. Anterior is right, dorsal is up. Scale bar,
2 mm. Compare with frontal sections in figure S6. B. Quantification of ZENK expression levels in 22 different brain regions in three groups of
budgerigars. * = p,0.05 to,0.0001, one-way ANOVA followed by Holm-Sidak multi-comparison test relative to the sitting still group (n = 3/group).
t = significantly different, p,0.05, by a t-test. (t) = 0.06,p,0.09 by a t-test. Although the cerebellum lobule VI clearly had high levels of induced
expression in all three animals of the hopping, dark, deaf group, this difference approached significance (p = 0.06) due to a large variance; the same
was true of the PH region in the hopping, dim light group. Error bars, S.E.M.
doi:10.1371/journal.pone.0001768.g010
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pathway areas (PMD, PH, Ne, MVe, and optic tectum [OT])

showed increased expression in the animals that made hovering

flights, but this expression was significantly reduced in the

hemisphere contralateral to the covered eye (Fig. 11Ab, 11B;
Fig. S7B). A similar and visible, but non-significant trend was

seen in the auditory region N-L2 (including NCM; Fig. 11Ab,
11B; Fig. S7B), perhaps due to crossed pathways. In contrast,

there was equivalent bilateral increased expression in hovering

birds within the ASt, AN, and AMV medial to and surrounding

the anterior vocal pathway nuclei VASt, VAN, and VAM (analogs

of songbird Area X, MAN, and MO, respectively), in the DLN

medially adjacent to the VLN vocal nucleus (analog of songbird

HVC), and in the LAI caudally and ventrally adjacent to the VA

vocal nucleus (analog of songbird RA; Figs. 11Ab, 11B; Fig.
S7B; higher power images shown in Fig. 12A–C). Although

hummingbird DLN expression was distinctly medially adjacent to

VLN instead of lateral to it as in songbirds, the hummingbird VLN

is positioned more laterally than the songbird analog HVC and

thus the DLN area of movement-associated activation is in a

similar location as that of songbirds (Fig. 12B vs Fig. S3Ba). As
in songbirds and parrots, these areas of apparent movement-

associated gene expression were less than 100 mm distant to the

vocal nuclei.

There was also increased bilateral expression in the apparent

somatosensory areas AMD and adjacent AH (Fig. 11Ab top three

rows, 11B and 12A). We did not note high expression levels in the

second somatosensory areas Nb and MVb. We could not reliably

determine whether there was induced expression adjacent to the

other two posterior vocal nuclei VMN and VMM (proposed

analogs of songbird NIf and Av) in the medial nidopallium and

mesopallium respectively, because these nuclei in hummingbirds,

more so than in songbirds, are relatively small and difficult to

locate without singing-induced gene expression; likewise, they are

also directly adjacent to auditory areas. Nevertheless, in the several

birds where we were able to locate these nuclei, there was still

adjacent high induced ZENK expression bilaterally, but in regions

that, like songbird PLN and PLMV, also show hearing-induced

gene expression (Fig. 11A top row, and 12D [7]). The

cerebellum had increased activation in lobules V and IXcd

(Fig. 4H), similar, although not identical, to the pattern seen in

garden warblers that performed wing whirring (Fig. 4C);
hummingbirds have under-developed lobules II and III, which

are thought to modulate leg movements [53] (but see discussion).

Lobule VI already had high expression in the relatively still

animals that performed few flights (Fig. 11B).

Summarizing part II of this study, all seven parrot and at least

most hummingbird cerebral vocal nuclei are directly adjacent to

areas that are activated during movement, even though some of

the posterior vocal pathway nuclei are in different brain locations

in each group. This activation does not require visual or auditory

input. These findings suggest that vocal learning systems in

distantly related birds are adjacent to a pre-existing system

involved in movement control. If true, then vocal non-learning

birds should have similar brain areas associated with movement

control, an idea that we tested next.

Part III. Movement-Associated Brain Areas in Vocal Non-
Learners

Female songbirds. Females of many songbird species,

including zebra finches, do not have vocal learning behavior, i.e.

song or learned calls [12]. Their forebrain vocal nuclei (except for

LMAN) are atrophied as seen in zebra finch females [54] and

garden warblers (noted here). We separated out the females in the

garden warbler groups described above (n= 10) and found that in

those that performed movement behaviors (wing whirring and

flights) ZENK gene activation was present within comparable

cerebral areas and in the cerebellum as seen in males, but without

the presence of negative expression regions of vocal nuclei (Fig.

S8A, except for LMAN). To determine a more restricted pattern,

we analyzed ZENK expression in the brains of deafened female

zebra finches placed in the rotating wheel in the dark. Movement-

induced ZENK expression was found in the same 11 cerebral

brain areas and in the cerebellum as in males, except that the

expression where the anterior vocal nuclei would be expected to be

located was patchier and diffuse (Fig. S8B; PLN, PLMV, and LAI

not shown; p,0.02 hopping females [n = 4] relative to sitting

males [n = 6]; p.0.05 hopping females [n = 4] relative to hopping

males [n = 3] for all 11 areas, two-tailed t-test). Thus, these

movement-associated areas appear to be present independent of

the presence of functioning vocal nuclei. However, female

songbirds of an ancestral species may have once had vocal

learning behavior and associated brain nuclei that were then

subsequently lost in some species. Thus, to test our hypothesis

further, we examined movement-associated gene expression in a

vocal non-learning species.

Ring Doves. Ring doves (Streptopelia risoria) are interrelated

between songbirds and hummingbirds (Fig. 1A). Nevertheless,

they are known vocal non-learners [55] and do not possess

cerebral vocal nuclei [15]. As ring doves are bigger than

zebra finches and budgerigars, they did not fit into our rotating

wheel apparatus. Further, ring doves do not normally hop when

they move from one nearby location to another, but instead

walk. Therefore, we placed deafened ring doves in darkness

on a treadmill designed for animals the size of rats and

compared their gene expression to intact controls that sat still

(Fig. 13A,B).

We found that in sitting controls, there was low ZENK

expression throughout the brain except in the auditory pathway,

which had unusually high basal levels that were partly reduced by

deafening (Fig. 13Aa,b). The olfactory bulb also had high basal

levels. When the treadmill floor moved, the doves walked. ZENK

expression in these doves was induced to high levels in anterior

cerebellum lobules I-VI and posterior lobule IXcd (Fig. 4I),
similar, although not identical to that seen in songbirds and

budgerigars that hopped (Fig. 4F, G). In addition, there was

increased expression in somatosensory areas of AMD and adjacent

AH, and Nb and adjacent MVb (Fig. 13Ab, 13B; but more

widespread in Nb and MVb, not shown) similar to that seen in

songbirds, parrots, or hummingbirds (except for Nb and MVb in

the latter). When we examined expression in the anterior medial

forebrain where we would expect to find anterior vocal nuclei in

vocal learners, there was increased expression in ASt, AN, and

AMV without the presence of negative expression regions of vocal

nuclei (Fig. 13Ab, 13B). The expression was more diffuse as seen

in female zebra finches. In the posterior cerebrum, there was

increased expression in the DLN region lateral to where we would

expect to find songbird HVC, and in the LAI region lateral to

where we would expect to find songbird RA (Fig. 13Ab, 13B); in

ring doves, the location of the arcopallium relative to the rest of

the cerebrum is intermediate in medial-lateral position between

that of songbirds and parrots. Finally, there was higher expression

in the PLN and adjacent PLMV dorsolateral to where we would

expect to find songbird NIf and Av, but the relative increases were

not as large due to the unusually high basal levels of ZENK

expression in these and the adjacent auditory pathway areas of

sitting hearing intact animals (Fig. 13Ab, 13B). Nevertheless, the

increase was independent of auditory and visual input, since the

birds were deafened and in darkness. In the olfactory bulb, there
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Figure 11. Movement-induced ZENK expression in male Anna’s hummingbird. A. Serial sagittal sections of: (a) Vocal and other areas: ZENK
expression in a bird that was singing interspersed with flying near an outdoor feeder in the morning (high expression in non-vocal areas is due to
other behaviors, including flying and feeding); (b) Auditory, visual, and movement-associated areas: ZENK expression in control hemisphere
(contralateral to open eye and ear) and experimental hemisphere (contralateral to covered eye and ear) of a bird hovering in a plexiglass cage in dim
light; (c) FoxP1 expression from adjacent sections of the experimental hemisphere of the bird in (b); (d) Corresponding anatomical drawings; red:
areas with movement-induced expression; blue: areas with visual- or auditory-induced expression (auditory areas also determined from a previous
study [7]). First row are medial-most sections. Anterior is right, dorsal is up. Scale bar, 2 mm. Compare with coronal sections in figure S7. B.
Quantification of ZENK expression levels in 18 different brain regions, in both hemispheres, in two groups of hummingbirds. * indicates brain areas
with statistically significant increases in both experimental (covered) and control (open) hemispheres of hovering birds relative to the experimental
and control hemispheres of the relatively still birds (p,0.05, one-tailed t-test, n = 3 relatively still and 4 hovering animals for both hemispheres). #
indicates significantly less increase in the experimental hemisphere (p,0.05, paired t-test on experimental and control hemispheres within birds). The
(*) for the OT indicates that this is the only visual area that did not show increased ZENK expression in the experimental hemisphere opposite the
covered eye. Error bars, S.E.M.
doi:10.1371/journal.pone.0001768.g011
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was no significant difference between sitting still and walking

animals (p.0.05, one-tailed t-test).

Summarizing part III of this study, vocal non-learners appear to

have movement-associated gene expression in brain areas similar

to that of vocal learners. The expression patterns in the cerebellum

and AH and AMD somatosensory areas are quite similar across

the vocal learning and vocal non-learning groups. The expression

patterns in vocal non-learners where one would expect to find

vocal nuclei are more uniform without the presence of negative

regions due to vocal nuclei.

Discussion

This is the first study we are aware of to globally map

movement-associated areas in the avian cerebrum. The discovered

areas are adjacent to the cerebral vocal nuclei in all three vocal

learning orders. The anatomical extent of the movement-

associated areas are larger than the vocal nuclei, which is

consistent with a greater amount of musculature involved in the

control of limb and body movements relative to that for the syrinx.

Below we discuss the implications of our results for understanding

motor and somatosensory pathways in birds, and the evolution of

brain pathways for vocal learning.

Movement-associated brain areas in birds
It is well established that voluntary movements in mammals are

controlled by motor and somatosensory pathways in the cerebrum.

Motor cortical areas send commands to lower motor neurons in

the brainstem and spinal cord that control muscle contraction and

relaxation, and to motor basal ganglia areas that modulate

Figure 12. High power images of IEG activation in hummingbird vocal nuclei during singing and in adjacent movement-associated
areas during hopping. A. Anterior vocal nuclei adjacent to ASt, AN, and AMV in sagittal sections. B. DLN adjacent to VLN [and LAI to VA] in coronal
sections. C. LAI adjacent to VA [and DLN to VLN] in sagittal sections. D. VMN [as well as VMM] adjacent to activated areas near L2 in sagittal sections.
The c-fos expression in vocal nuclei (first column) is of male that sang for 30 min interspersed with flying and feeding; c-fos is shown for its high
contrast in vocal nuclei relative to the surrounding non-vocal areas. The hovering-associated expression patterns (left two columns) are from the
hemisphere opposite of the covered eye and ear of males that hovered in a plexiglass cage. Anterior is right, dorsal is up for sagittal sections; medial
is left, dorsal is up for frontal sections. The left most sections are either lateral (A, C, and D) or caudal (B) to that shown in the middle column. Different
background red color is due to different cresyl violet staining intensities. Note that similar to budgerigar MO and NAO (Fig. 10Ab and Fig. S6A), the
two analogous hummingbird pallial anterior vocal nuclei (VAM and VAM) are very close such that the IEG expression does not distinguish the brain
subdivision boundary well. Yellow dashed lines-brain subdivision boundaries; white dashed lines–vocal nuclei boundaries, only highlighted for some
images so that other sections can be viewed as is; boundaries were determined from Nissl stain and adjacent sections hybridized with FoxP1
(Fig. 11Ac and Fig. S7C). Scale bars, 200 mm.
doi:10.1371/journal.pone.0001768.g012
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ongoing movements, whereas muscle spindles send proprioceptive

feedback to somatosensory areas that sense and modulate ongoing

movements [56]. However, the motor and somatosensory

pathways function in an overlapping manner: the somatosensory

cortex sends efference copies of sensory commands to motor

cortex prior to the motor command, and the motor cortex has

inhibitory connections with the somatosensory cortex to modulate

the somatosensory input [57]. Although cerebral motor pathways

are well understood in the mammalian brain, surprisingly little is

known for the avian brain. Here we found that limb and body

movements result in activation within specific cerebral areas of the

two known somatosensory pathways (AH and AMD; Nb and

MVb). There was striking specificity in the activation patterns

when other sensory factors (vision and audition) were eliminated,

allowing us to map functional domains of the avian cerebrum.

Although such specificity cannot be readily revealed by tracer

studies, such studies have shown that the AH area of zebra finches,

owls, and pigeons receives input from AMD and from the anterior

portion of the intercalated lamina of the hyperpallium (IH), which

in turn receives input from the somatosensory thalamus and spinal

cord dorsal column nuclei, which are innervated by somatosensory

neurons from the wings and legs [58–61]. AH also sends

descending projections to the intermediate grey matter of the

spinal cord [59]. Some have interpreted this pyramidal tract-like

projection to the spinal cord to indicate that AH may also have

motor or mixed somatosensory-motor functions, and is the

Figure 13. Movement-induced ZENK expression in ring doves, a vocal non-learner. A. Sagittal sections of: (a) Dove sitting relatively still in
the dark; (b) Dove walking on a treadmill in the dark while deaf; (c) FoxP1 expression from adjacent sections of the bird in (b); (d) Corresponding
anatomical drawings; red: areas with movement-induced expression; blue: known auditory and visual areas. First row are medial-most sections. Front
is right, dorsal is up. Scale bar, 2 mm. B. Quantification of ZENK expression levels in 20 different brain regions in two groups of ring doves. * = p,0.05
to,0.0001, one-tailed t-test, relative to sitting still animals (n = 3/group). Error bars, S.E.M.
doi:10.1371/journal.pone.0001768.g013
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homolog of the mammalian motor cortex [62]. Wild and Williams

[59] who discovered this projection proposed instead that it is not

motor, but somatosensory feedback to the ascending somatosen-

sory pathway of the spinal cord. As for the other pathway, B also

receives somatosensory input and projects to Nb [63] and Nb

projects to MVb [64]; it is not clear where MVb projects to.

Electrophysiology studies show that B has a somatotopic map of

the body in budgerigars [65], whereas AH has a touch

somatotopic map of the leg and foot in owls [60]. Presumably

the areas that sense leg movements during hopping or wing

movements during whirring were specifically activated in our

study. This activation could conceivably be used for processing

proprioceptive feedback from muscles spindles and/or skin touch

receptors as the animal sense the floor with its feet or surrounding

air with its wings, an idea that can be tested with peripheral

stimulation and removal of somatosensory input.

There was also consistent cerebellum activation, as would be

expected because the cerebellum receives somatosensory input and

sends motor output commands for fine coordination of movements

[53,66,67]. Our findings are the first that we are aware to identify

patterns of movement-associated IEG activation in the cerebellum.

The cerebellum in birds, as in mammals, has two somatotopic

body representations: one in the anterior half from lobules I-VI

and the other in posterior lobules IX-X [67]; determining more

specific topographic organization has yielded conflicting results

[53]. Connectivity data in pigeons and zebra finches suggest

overlapping zones where lobules I-III and IXab receive input from

the neck, III-V from the wings, III-VI and IXcd from the legs,

VII-VIII from visual and auditory areas but also from somato-

sensory AH [66,67]. Our findings are partly consistent with this

picture, in that wing whirring activated IEG expression mostly in

lobules II-VI, hopping in lobules VI and IXcd, and when moving

in dim light or in the dark little if any activation occurred in VII-

VIII. In general, the cerebellum activation patterns suggest that

limb movements may be mostly responsible for the overall brain

gene activation seen in the controlled hopping movement groups,

as lobules II-VI and IXcd that are connected to the limbs were

consistently activated.

With known somatosensory areas identified, a remaining

question is where are the motor areas? Besides the hypothesis

that AH and AMD are motor in addition to somatosensory [62],

previous studies have suggested the arcopallium and dorsal

striatum as general motor areas of the avian cerebrum [68,69].

However, none that we are aware of have used movement

behavior to map a cerebral motor system. Based on our results, we

hypothesize that a general motor system in birds consists of the

brain areas adjacent to the cerebral vocal nuclei of vocal learners.

Our reasons are as follows: First, we found a close association in

locations and size of these movement-associated areas with the

cerebral vocal nuclei. Second, like the vocal nuclei [32–34], these

brain areas have movement-associated IEG expression that is

independent of auditory and visual input. Third, like the vocal

nuclei, the expression levels correlate with the amount of

movement performed. Fourth it appears that the vocal nuclei

and adjacent regions have similar connectivity, as described below.

Many prior studies have accidentally or purposely placed tracers

adjacent to the songbird vocal nuclei, and except for the HVC

shelf and RA cup [23] the function of these brain regions were not

known. In some of these studies on zebra finches, we note

remarkable overlap in the connectivity patterns [70,71] with the

movement-associated gene expression patterns (this study). When

we compile these connectivity results with the movement-

associated gene expression results (Table 3 [63,70–74]), it appears

that the movement-associated areas in songbirds may be

connected in anterior and posterior pathways in parallel, although

not identical, with the adjacent vocal nuclei (Fig. 14A). The

anterior movement-associated areas, like the anterior vocal

pathway nuclei, appear to be connected in a pallial-basal-

ganglia-thalamic-pallial loop (Fig. 14A; white arrows): anterior

AMV to AN adjacent to LMAN, these two areas to the striatum

adjacent to Area X, the striatum via its pallidal-like neurons to the

dorsal thalamus adjacent to the vocal part of DLM, and the dorsal

thalamus back to the AN adjacent to LMAN. Connectivity of MO

or the surrounding MV is not known in songbirds, but the

comparable song nucleus and adjacent MV in parrots and the MV

in pigeons projects to the anterior nidopallial and striatal vocal

nuclei and surrounding area, respectively [75,76]. The parrot

anterior vocal pathway also forms a pallial-basal-ganglia-thalamic-

pallial loop (Fig. 1B) [76]. That is, similar connectivity can be

compiled for these cerebral regions in other vocal learning and

vocal non-learning birds [25].

The posterior movement-associated areas in zebra finches, like

the songbird posterior vocal pathway, appear to be connected into

a descending motor system: the DLN posterior and lateral to HVC

(within a larger region called the caudal lateral nidopallium, NCL)

[22,63,70,71,73] projects to LAI directly lateral to RA, which in

turn projects to pre-motor neurons (PMN) of the brainstem

reticular formation (Fig. 14A). Interestingly, the reticular PMN in

pigeons, chickens, and ducks also receive a direct projection from

the arcopallium; in these species, the reticular PMN laterally

adjacent to the nXIIts vocal nucleus projects onto the spinal cord

motor neurons that control muscles for wing and leg movements,

and when stimulated electrically or with neurotransmitters, induce

wing beats, hopping, or walking [77,78]. The parrot and

hummingbird posterior vocal nuclei also make a similar

descending motor projection (Fig. 1B) [30,76,79].

In terms of apparent connectivity between posterior and

anterior movement-associated areas, the shell of neurons around

songbird MMAN and the comparable area in non-songbirds

projects to NCL (inclusive of DLN) in a similar manner as MMAN

projects to HVC [71,80]; the shell around LMAN projects to LAI

in a similar manner as LMAN projects to RA (Fig. 14A) [70].
Differences within the vocal pathway are as follows: unlike HVC’s

projection to Area X, the adjacent DLN in zebra finches only

sends a weak projection to the striatum, whereas the LAI adjacent

to RA sends a strong projection to the striatum (Fig. 14A) and

many other areas besides the reticular PMN [71]. Likewise, there

are more differences in the connectivity between the posterior and

anterior vocal pathways of songbirds and parrots than there is

within each of the vocal pathways (Fig. 1B) [10]; for example, in

both groups, output of the anterior vocal pathway to the posterior

vocal pathway is via the MAN-like nucleus, but the input is either

from the HVC-like nucleus (songbirds) or the RA-like nucleus

(parrots).

Interestingly, in zebra finches, AH sends some of its heaviest

cerebral projections to the areas around the anterior vocal

pathway nuclei, to the DLN lateral to HVC, and to ventral AI

[81]; this connectivity pattern is also strikingly similar to the

movement associated gene expression we found (Fig. 14Ab). This

overlap of connectivity and gene expression patterns suggests that

AH may transmit somatosensory input into putative anterior and

posterior motor pathways adjacent to vocal nuclei, or that the

areas adjacent to vocal nuclei are somatosensory instead of motor.

If the latter possibility were true, however, there would be no

activated cerebral areas left for the motor control of movement. As

for the vocal nuclei themselves, they do not require somatosensory

input from the syrinx for their vocalizing-driven gene expression

and this is one reason why this gene expression has been
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designated motor-driven [33]; the vocal nuclei also show pre-

motor neural firing during singing [32,34]. Thus, based on

parallels with the vocal nuclei, we hypothesize that the movement-

associated areas adjacent to the vocal nuclei will show both pre-

motor firing for movement control and somatosensory feedback

firing from AH after initiation of movement. These hypotheses on

connectivity and activity can be confirmed or falsified in future

studies that perform double labeling experiments with injected

neural tracers and movement-induced IEG expression, that locally

remove cerebral somatosensory input into posterior and anterior

movement-associated areas, and that perform electrophysiological

recordings during movement. Preliminary electrophysiological

studies from our group indicate that the AN area adjacent to

zebra finch LMAN has pre-motor neural firing during hopping

(Tremere, Pinaud, and Jarvis; Soc. Neurosci. Abstracts, 2007,

221.9).

Although future work still needs to be conducted to decipher

motor and/or somatosensory roles of the identified brain areas of

this study, our findings help advance future investigations of the

avian brain. Since it is difficult to make birds sit absolutely still

during a sensory task and obviously impossible during behavioral

tasks, general movement-associated activation may distract

experimenters’ attention from other types of activation. Thus,

knowing the brain areas activated during movement will be

Figure 14. Summary of the results of this study and proposed theory. A. Schematic drawing of the known vocal pathway in songbirds (a)
and the putative adjacent non-vocal motor pathway in all birds (b). Movement-associated areas adjacent to the posterior vocal nuclei (HVC, RA, NIf,
and Av) in (b) are drawn with dashed lines to indicate that they are lateral to the plane of the section shown. Lines and arrows in (b) are inferred from
our compilation of the literature on tracers placed adjacent to the vocal nuclei (Table 3). White arrows: connectivity of anterior vocal pathway (a) and
proposed adjacent anterior motor pathway (b). Black arrows: connectivity of posterior vocal pathway (a) and proposed adjacent posterior motor
pathway (b). Not all known connections are shown; in particular, the anterior mesopallium connections have not been determined in songbirds, a
DLN to ASt connection appears to be weak in zebra finches, and RA and LAI also projects to other sub-telencephalic areas (Table 3 and references
therein), and connectivity of PLN and PLMV with other movement-associated regions is not known. Different background colors designate different
cerebral brain subdivisions. B. Diagram comparing brain organization in the three vocal learning groups and in a vocal non-learner as a proposed
common ancestor. We hypothesize that by independent evolution, the vocal nuclei (light colored boxes) of recent vocal learners originated from the
movement-associated brain areas (dark colored boxes) of the common ancestor. Relative sizes and positions of brain areas are approximate. The
parrot posterior regions (LAI, SLN, LAN, and LAMV) are more anterior and laterally than the corresponding areas in the other species. Hummingbird
PLN and PLMV are highlighted with dashed lines to indicate that they were only examined in a few birds. Songbird HVC is drawn as adjacent to both
DLN and PLN, and thus, it is ambiguous as to which region it could have evolved from. Color-coding in panel (B) reflects the coding of panel (A).
doi:10.1371/journal.pone.0001768.g014
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important for studies using behavioral molecular mapping to

identify brain areas involved in specific behaviors, including

sensory-motor learning tasks.

Taken together, we speculate that the vocal control circuits,

which use auditory information to influence vocal motor output

are anatomically adjacent to putative motor control circuits, which

use somatosensory information to influence motor output. We

suggest that the motor control circuits comprise a general cerebral

motor system consisting of two sub-pathways: an anterior and a

posterior pathway (Fig. 14Ab). Based on parallels with the vocal

system, we hypothesize that the adjacent posterior pathway

controls the production of movements and the adjacent anterior

pathway controls sequencing if not learning of movements.

Although, our results do not indicate whether the anterior areas

are involved in motor learning (such as learning to walk, fly, or

manipulate the beak), as is the case for the anterior vocal nuclei

during song learning, like the anterior vocal pathway’s activation

during singing, the adjacent movement-associated areas are active

during production of motor behaviors. Our approach was not

specific enough and did not aim to map a possible homunculus

organization as seen in the mammalian motor cortex [82], but

given that the avian AH and AMD has somatotopic organization

[60,65] and that restricted patterns of activation occurred adjacent

to the vocal nuclei depending on the types of movements

performed, it would not be surprising to find a homunculus-like

organization in a putative avian anterior and posterior motor

system as well.

A motor theory for vocal learning origin
Based on the above findings and related studies, we propose the

following theory: Cerebral systems that control vocal learning in distantly

related animals evolved as specializations of a pre-existing motor system

inherited from their common ancestor that controls movement, and perhaps

motor learning.

Although the results of this study do not prove this theory-the

reason for calling it a theory-they support it more than other

theories of vocal learning origin; we called our idea a theory as

opposed to a hypothesis, because it consists of multiple hypotheses.

Others have suggested that forebrain vocal learning systems for

learning and production in various species including humans have

evolved out of either a pre-existing auditory pathway [22,23], an

auditory-motor system [83], a non-motor cognitive system [84,85],

or de-novo [86]. Support for some of these theories in birds are: i)

The songbird posterior vocal nuclei are adjacent to and share

similar connectivity with the descending auditory pathway [23,87];

ii) The parrot posterior vocal nucleus NLC is surrounded by

auditory responsive neurons [88]; iii) All vocal nuclei of songbirds

show neural firing when hearing song, leading to the motor theory

of song perception [89]; and iv) The striatum around Area X was

thought to show hearing-induced IEG expression [46,47].

Alternative explanations or interpretations can now be offered

for these findings. These include that: i) The descending auditory

pathway, which is not activated by movement, has connectivity

that is similar to movement-associated areas [23] (noted here) and

thus this may not be a good distinguishing factor; ii) The auditory-

evoked neural firing in the songbird vocal nuclei occurs mainly in

anesthetized or sleeping birds [90,91] whereas when the birds are

awake, firing and IEG induction is mainly motor-driven (singing)

independent of auditory input [33,34]; iii) Similar to auditory

responses in vocal nuclei of anesthetized songbirds and parrots, the

auditory responses adjacent to NLC in parrots [88] may reflect

sensory input into a motor system, in that parrot SLN around

NLC behaves more like DLN adjacent to songbird HVC than to

the auditory shelf adjacent to HVC; and iv) The hearing-

associated gene activation around anterior songbird vocal nuclei

can be explained by animals moving in response to hearing song

(this study).

These alternative explanations and interpretations do not mean

that auditory or other sensory information does not enter the vocal

or putative adjacent motor system. On the contrary, sensory

information must enter the systems in order to control sensory-

motor guided behavior. For auditory input, the best candidate

songbird nuclei so far are the vocal nucleus NIf [92,93] and the

auditory CM (MV-L2) area [21] in which Av is located.

Interestingly, the adjacent PLN and PLMV regions were the only

two areas that showed both movement- and auditory-associated

activation independent of each other, and thus we speculate that

they could possibly represent a pre-existing multimodal brain

cluster where auditory information is transmitted to a motor

system. Likewise, one view for budgerigars is that the vocal nucleus

proposed to be analogous to NIf (LAN [6]) receives input from

auditory fields L1 and L3 [76,94]; but this remains to be further

tested and considered with possible dual auditory input from an

auditory part of basorostralis in parrots [30,95].

Our theory can explain why the cerebral vocal systems are

similar across distantly related vocal learning birds (Fig. 14B). For

many years, there has not been a satisfactory explanation for the

finding that songbirds, parrots, and hummingbirds have seven

comparable cerebral vocal nuclei that cannot be found in their

close vocal non-learning relatives [7,13–15,96]. One possible

explanation was that supposed vocal non-learners actually have

rudimentary vocal learning behavior and rudimentary cerebral

vocal nuclei that were then independently amplified in vocal

learners (Fig. 1A); however, none have been found despite efforts

to search for them [13,15,79] (and this study). Another

explanation was that a cerebral vocal pathway existed in a

common vocal learning ancestor of vocal learning birds that was

then lost multiple independent times in their cousins [7] (Fig. 1A,

Table 3. Sources for connectivity of neural populations
adjacent to songbird vocal nuclei

Connection Direction References

Ast =.DT anterograde [39,71,74]

DT =.AN retrograde, anterograde [70,72]

AN=.LAI & ASt retrograde, anterograde [63,70–72]

AN=.DLN retrograde, anterograde [70,71]

DLN=.ASt retrograde (weak in finch,
strong in pigeon)

[71,75]

DLN=.LAI retrograde, anterograde [63,71]

LAI =.PMN retrograde [63,71]

The first column shows the connection; arrows indicate axonal projections. The
second column indicates the tracer direction studied; connections determined
in both the anterograde and retrograde directions are accepted with more
confidence than ones determined only in one direction. The third column lists
the references where these connections were determined. The AN=.LAI & ASt
indicates that AN neurons send collateral projections to LAI and ASt adjacent to
RA and Area X respectively, which is similar to the collateral projections from
individual LMAN neurons to RA and Area X. In the studies before 2004, the old
avian brain nomenclature was used and terminology varied between studies.
AN was called the LMAN shell or frontal neostriatum, DLN we consider here as a
part of NCL (see main text), LAI was called dorsal archistriatum (Ad), and ASt
and Area X was within a region called the lobus parolfactorius. PMN is premotor
neurons of the brainstem, medulla, and possibly spinal cord. Here, we adopted
a terminology that is applicable across all avian species, vocal learners and non-
learners.
doi:10.1371/journal.pone.0001768.t003
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green dots). A third and the dominant hypothesis was that each of

the three vocal learning bird groups evolved similar cerebral nuclei

for vocal learning and production independent of their common

ancestor [7,14] (Fig. 1A, red dots). Our theory offers a modified

view of the independent evolution hypothesis, this being that the

three vocal learning bird groups independently evolved similar

cerebral vocal systems but that were dependent, i.e. constrained,

by a previous genetically determined motor system inherited from

their common ancestor (Fig. 14B). This pre-existing motor system

may be a basic motor system of the avian brain that consists of

distinct areas (possibly seven nuclei) distributed into two pathways

(posterior and anterior), which in parallel incorporate portions of

different cerebral subdivisions (mesopallium, nidopallium, arco-

pallium, and striatum), each sub-serving a specific function. If true,

then such a basic posterior/anterior motor system that controls

different non-vocal muscles in parallel pathways via premotor

neurons in the brainstem could be used as a template for the

evolution of a vocal motor/learning system that controls muscles

of the syrinx, taking over control of DM and nXIIts that normally

controls innate vocalizations. This hypothesis may be testable with

fate mapping and genetic manipulation studies of developing brain

circuits.

One potential caveat of our theory is that the posterior vocal

nuclei are in different locations in each vocal learning avian order

and so are the adjacent movement-associated regions. The biggest

relative differences are seen in parrots compared to all the other

species (songbirds, hummingbirds, ring doves, chickens, quails,

pigeons, and suboscines) we have examined in our studies. One

possible explanation is that the posterior motor pathway migrated

more anterior-laterally during evolution of the parrot ancestor and

that the posterior vocal pathway moved with it or later evolved out

of it. Support for this general idea is that the arcopallium in parrots

is positioned much further anterior relative to other avian species,

although it is still posterior relative to the anterior vocal nuclei. If

the motor part of the nidopallium moved with the arcopallium

anterior and laterally, then this would suggest that parrot SLN is

the homolog of DLN in the other species (Fig. 14B). Further, the
parrot cerebrum, and the nidopallium in particular, is much larger

in brain to body size ratio relative to other species [97,98]. Since

the posterior nidopallium also contains sensory integration

pathways [99], perhaps such sensory pathways were expanded in

parrots displacing the posterior motor pathway anterior and

laterally. This idea can be tested by mapping the functional

organization of the nidopallium and the connecting arcopallium

between the auditory and posterior movement-associated areas in

parrots relative to other species. In hummingbirds, the posterior

movement-associated areas are in a more similar position relative

to songbirds and ring doves, but the posterior vocal nuclei are

positioned more lateral instead of medial to the movement areas.

Such differences suggest that it is likely that the vocal nuclei in

each bird order evolved independently, but from the common

ancestor motor pathway substrate (Fig. 14B).

We believe that our findings may also have implications for

understanding the evolution of brain pathways for vocal learning

among distantly related mammals. The phylogenetic distances

among vocal learning mammals (humans, bats, sea mammals, and

elephants) are similar to those among vocal learning birds [10].

Comparative analyses among vocal learning and non-learning

mammals [10,100,101] and between mammals and birds

[10,102], with humans being the only vocal learner for which

cerebral vocal (speech) brain regions are known, indicate some

analogies between humans and vocal learning birds [10]. These

include in humans a proposed anterior vocal pathway involving

Broca’s area, adjacent cortices, the anterior striatum, and anterior

thalamus and a posterior vocal pathway that comprises the face

motor cortex and its projections to brainstem vocal motor neurons

[10]. The face motor cortex is within the motor cortex and Broca’s

area is adjacent to or considered by some to be within the pre-

motor cortex [103]. An analogous area of the pre-motor cortex in

non-human primates, macaques, a vocal non-learner, modulates

orofacial, but not laryngeal, movements [104]. Further, the

mammalian non-vocal motor (posterior) and pre-motor (anterior)

pathways follow a connectivity design similar to the songbird and

parrot posterior and anterior vocal pathways [10,76]; these are the

mammalian descending motor pathway and cortical-basal-gan-

glia-thalamic motor loops, respectively. Perhaps the evolution of

vocal learning brain areas for birds and humans exploited a more

universal motor system that predates the split from the common

ancestor of birds and mammals, i.e. stem amniotes [31]. Such a

universal system would be consistent with both proposed

hypotheses of avian and mammalian pallial homologies, which

are that pallial areas containing the vocal nuclei in birds are

homologous to either the mammalian six layered cortex or to the

mammalian claustrum-amygdala complex [31], if the latter in

mammals were found to consist of a rudimentary motor system.

This hypothesis can be strengthened or weakened by studying

brain pathways for vocal learning in other vocal learning

mammals as well as non-vocal motor pathways of reptiles and

amphibians.

At this point, we cannot say in our theory whether the forebrain

vocal system formed by using a pre-existing part of a motor

pathway as a scaffold or usurped a pre-existing part of the

pathway. However, we do not believe that a pre-existing part of a

motor pathway was lost. Rather, our theory is in line with previous

ideas on evolution of novel brain systems from older systems. For

example, Finlay [105] suggested that new mammalian cortex areas

arise first by an enlargement of an older region and then second by

allocating part of that older region to the new function, while the

remaining part maintains the old function. This is similar to the

idea that new functions can be generated by gene duplications,

where a gene is duplicated and one copy is used for a new function

while the old copy maintains its function [106]. More universally,

Ghysen [107] argues that vertebrate as well as insect brains have

ancient principle sensory and motor circuits with stable functions

upon which alterations by gene mutations and embryonic

development during evolution are applied to home new functions.

These altered circuits may then be uncoupled from the original

pathways to allow the novel functions without affecting the original

system. Perhaps vocal learning systems have evolved by such a

mechanism.

Although our findings led us to propose the above theory, we

are not the first to implicate a motor origin for a learned vocal

behavior. Based upon a literature summary of studies conducted in

humans, Robin Allot in a linguistic conference proceedings [24]

proposed a ‘‘motor theory for language origin’’ where he argued

that language brain areas evolved from a pre-existing motor neural

system; however, he did not provide experimental evidence or

flesh out the anatomical or mechanistic details of this theory.

Lieberman [100] proposed that language areas evolved out of a

pre-existing cortical-basal-ganglia-thalamic-loop, for which he

deemed the basal ganglia part as the reptilian brain. However,

we now know that reptilian and avian cerebrums are not made up

of only basal ganglia, that vocal learning birds only have part of

the vocal system in the basal ganglia, and that spoken language

areas may involve more than just this loop [10,31]. Farries [73]

and Perkel [102] proposed in birds and Jarvis [10] in birds and

humans, that vocal learning pathways in birds and humans may be

similar to systems outside of the vocal pathways that intuitively
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could be motor pathways found in vocal non-learning birds and

mammals; but they did not have experimental evidence to

corroborate these suggestions. Here we provide evidence that

the brain areas adjacent to the vocal systems of all known vocal

learning birds function during movement. This poses the question-

what makes vocal learning, and spoken language for that matter,

special-a question that is often debated [83,108-110]. We argue

that it is a cerebral motor system that controls the vocal apparatus.

That is, vocal learners and non-learners have similar auditory

pathways, but vocal learners have a unique vocal motor system

that gives them the ability to translate auditory signals into vocal

signals. Like in birds, it is not clear how the auditory information

reaches the vocal motor areas but a dorsal sensorimotor stream

from secondary auditory cortex to Broca’s area has been one

hypothesized system [111].

Our results are also concordant with the gestural origin of

spoken language hypothesis, where the motor learning ability of

gestures in humans and non-human primates has been argued to

be the precursor behavior for motor learning of speech/language

[112–114]. During child development, gesture production appears

before speech production and is thought to enhance learning of

speech; adults also use limb gestures automatically and often

unconsciously during speech production [112,115]. This gesturing

hypothesis was one basis for the motor theory of language origin

[24]. We suggest that, logically, gesturing is controlled by a pre-

existing motor system. Gesturing, although not a requirement in

our theory, has not been well studied in birds, but many avian

species perform other movements such as a courtship dance or

wing displays during vocalizing [116–120]. Investigations into the

behaviors and neural circuits for movement displays in birds may

help shed light onto these ideas. If verified in both birds and

mammals, then the evolution of vocal learning brain systems as a

specialization of a pre-existing motor system could be a general

feature of the vertebrate brain.

Materials and Methods

Species
We used 38 garden warblers (28 males and 10 females), 35

zebra finches (31 males and 4 females), 9 budgerigars (both males

and females have vocal nuclei), 6 male ring doves, and 9 male

Anna’s hummingbirds. Many of these animals also provided data

for multiple prior studies [6,26,27,37,42,121–125], thus leading to

a large gain of knowledge from a relatively small number of

animals per published study. The garden warblers were caught on

Helgoland and around Oldenburg (Germany) in May-September,

2002/2003, and acclimated to captivity for a minimum of 5 days.

Zebra finches and budgerigars were obtained from either local

breeders or our breeding colonies at The Duke University Medical

Center (USA). Ring doves were obtained from Dr. Wilmer Miller

at Iowa State University (USA). Anna’s hummingbirds were

obtained with the help of Dr. Douglas Altshuler at the University

of California, Riverside (USA). All animal procedures were

approved by the Institutional Animal Care and Use Committee

of Duke University, or of Bezirksregierung Weser-Ems (Old-

enburg) for garden warbler experiments, or University of

California Riverside for hummingbird experiments.

Behaviors
For all species, we placed birds inside an experimental

apparatus for at least 1–3h before the start of an experiment

and carefully observed the birds’ behavior from at least 1h before

until the end of the experiment. The 1–3h waiting period allowed

for the decay of any gene expression induced either by behaviors

before the observation period and/or by the light-dark transition

[33]. We only collected a bird after it produced repetitive

movement behavior or was sitting still but awake while a

minimum of other behaviors occurred for at least 30–45 min,

the peak time of ZENK mRNA expression [33,45]. To reduce

hearing-induced gene expression [33,46] due to noise, we made

sure that no sounds from the experimenters or from the outside

reached the birds during the critical hour. In case of accidental

noise (from indoors or outdoors), we waited at least 1h before

starting the experiment again. When the required highly consistent

behavior was observed for 30–45 min, we sacrificed the bird,

rapidly dissected its brain within 5–6 min, separated the two

hemispheres along the mid-sagittal plane (except for humming-

birds), embedded them in TissueTek O.C.T. (Sakura Finetek, NL),

and quick-froze the brains to 280uC in a dry ice/ethanol bath.

Migratory restlessness: wing whirring and flights. To

reliably record and quantify migratory restlessness movement

behavior in garden warblers and relate this behavior to activity-

dependent gene regulation, we designed a behavior apparatus as

described in Figure S1A [26,37]. This apparatus allowed us to

carefully observe the bird’s behavior in real time. We found that

garden warblers under dim light either sit in this orientation cage

for extended periods of time or perform migratory restlessness

behavior more consistently and stereotypically than they do in the

Emlen funnels [35] normally used for orientation experiments.

This behavior included head scans apparently to detect the

direction of the Earth’s magnetic field [37], some hopping, but

mainly rapid wing whirring while perched (92%61.34% SEM of

movement events, n = 15 birds).

On the day of testing, a thin stripe of infrared-retroreflective

tape (3M) was glued to the top of the bird’s head. The tape was

used to track and record the bird’s movements with an infrared-

sensitive video camera under dim light. For the dim light

conditions, the birds were placed in the cylindrical cage before

13:30h and food was removed 90 min before onset of darkness

(simulated local photoperiod). Some birds were exposed to an

artificially changed magnetic field, but these manipulations did not

affect the IEG expression in movement-associated areas, as

described elsewhere [27]. We collected garden warblers in four

groups: 1) animals that sat relatively still in the cage during the day

time showing a minimum of movement behavior (e.g. less than 5

flights, 100 wing beats, and/or 50 head scans in 1h, n= 5); 2)

animals that remained awake and still during the night in dim light

(0.04 lux, n= 11); 3) animals that displayed general motor activity,

mostly flights, during the day (e.g. several hundred to several

thousand defined movement events; n = 5); and 4) animals that

displayed wing whirring behavior in dim light (n = 15). We also

placed zebra finches in the cylindrical cage and collected animals

under conditions of groups 2 (n = 4) and 3 (n= 4) above.

To quantify the number of wing beats, we measured both

the rapid wing whirring made during migratory restlessness

behavior in dim light and wing flapping made during day light

conditions often in preparation to fly off the perch. The amount of

wing beats during flapping was relatively simple to quantify

manually from video, as the birds performed it at a slow rate.

Quantifying beats during wing whirring was more complicated, as

it was rapid. To measure wing beats during whirring, we first

measured the mean wing beat frequency for several birds by

watching the video frame-by-frame. This mean frequency (average

11 wing-beats/sec) was then transferred to the keys of a PC

keyboard so when a key assigned to a Matlab program was pressed

continuously, the output signal was identical to the wing-beat

frequency. Thereafter, the observer watched all video tapes in

real-time and either held the key down for the time the bird
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performed constant wing-whirring or flying in the cage or made

individual key-strokes for isolated wing flaps while perched. The

time and number of each button-press event were analyzed using a

custom-written Matlab program. To quantify the number of

flights, the same videos were reviewed and we counted the

number of times the bird flew off the perch or off the bottom of the

cage. When zebra finches were placed in the cylindrical apparatus

during the day light, they spontaneously hopped around the

perimeter of the cage as well as performed some flights; in dim

light, they remained still. We quantified the movement behaviors

in day light, but there was not enough variation among animals to

perform correlations.

Hopping and Walking. To reliably induce repetitive

hopping or walking behavior in birds, we designed a behavior

apparatus consisting of a cylindrical, transparent plexiglass wheel,

placed inside a sound isolation chamber, attached to a metal rod

that was controlled by a relatively quiet motor outside of the box

with variable speed control (Fig. S1B). The inner floor-surface of
the wheel was covered with a black rubber mat to give traction for

their feet. Behavior was observed and recorded via an infrared-

sensitive camera inside the sound-proofed box, connected to an

external video recorder. In dim light (,0.04 lux) or dark (in the

box, which was in turn inside a room without windows or light),

most birds sat still.

To perform an experiment, we first placed a bird inside the

apparatus during normal waking hours and rotated the wheel

(,20 rpm) in day light for 5 min and then in dim light or darkness

for an additional 10 min to get the bird accustomed to the wheel

and reduce stress in the new environment; both species tested in

the wheel (zebra finches and budgerigars) habituated fairly easy to

this task. We then turned off the wheel and allowed the bird to sit

for 2-3h in dim light or darkness; because this was in the middle of

the day, most birds did not go to sleep as determined by eyes open

and head not resting on the back. Thereafter we collected 8 groups

of zebra finches after 30 min of: 1) males that remained awake and

sat still in dim light (n = 3); 2) males that sat still in the dark (n = 3);

3) males that hopped in the rotating wheel in dim light (n = 3); 4)

males that hopped in the rotating wheel in the dark (n = 3); 5)

deafened males that hopped in the rotating wheel in the dark

(n = 3); 6) males that remained still in the dark outside the wheel

while hearing another bird hop inside the wheel (n = 2); 7) males

that sat still in the dark hearing playbacks of conspecific songs

(three different songs spaced every 10 seconds per min for 30 min;

n = 3); and 8) deafened females that hopped in the rotating wheel

in the dark (n = 4).

For budgerigars, we collected three groups: 1) animals that

remained awake and sat still in the wheel in dim light (n = 3); 2)

animals that hopped in the rotating wheel in dim light for at least

30 min (n= 3); and 3) deafened animals that hopped in the

rotating wheel in the dark (n = 3).

For ring doves, we used a treadmill (37614.5630 cm; Simplex

II, Columbus Instruments, Columbus, OH) designed for rats and

loaned to us by Dr. Miguel Nicolelis (Duke University). The

treadmill was attached to a 4-meter cable controlled by a relatively

quiet variable speed motor, which was placed in an adjacent room.

An infrared video camera was used to observe the animal’s

behaviors. The doves were prepared in a similar manner as above

for the other species. After the 2–3h quiet period, we collected two

groups of birds: 1) males that remained awake and sat still in the

dark for at least 30 min (n= 3); and 2) deafened males that walked

on the treadmill (,10 rpm along the 37 cm length) in the dark for

at least 30 min (n= 3).

Hummingbird Flying/Hovering. To reduce auditory-

induced and visually-induced gene expression in Anna’s

hummingbirds when they fly, the feathers around one ear were

trimmed (sides randomly alternated among birds), an ear-plug of

clay placed gently in the ear canal, and then the ear and eye of the

same side was covered with three layers of black vinyl electrical

tape; one layer faced inward so that the smooth surface covered

the eye to prevent damage to it. The tape was then sealed at the

edges with super glue to the surrounding skin and feathers to

reduce light leakage. Left and right sides were alternated to control

for any possible lateralization differences. Thereafter, the bird was

placed inside a transparent square plexiglass box we designed

(20630.5620 cm) with a wooden perch ,12 cm above the floor

across the center of the box, inside a room with dim light. After

making some attempts to escape, most birds within minutes

learned the location of the plexiglass barrier and then rested on the

perch. After 1–1.5h of sitting on the perch, some birds began to

spontaneously fly and hover in a repetitive fashion (hummingbirds

have a relatively unique flying behavior of being able to hover).

This behavior included a hovering lift off the perch, a small

circular flight trajectory (,10–15 cm in diameter) above the perch

in the direction of the opened eye, and then landing on the perch.

A video camera was used to record the behavior. Using this

paradigm, we collected two groups of Anna’s hummingbirds: 1)

unilateral ear and eye covered males that remained awake and sat

relatively still (less than 20 movements) on the perch for at least

30 min (n= 3); and 2) unilateral ear and eye covered males that

made at least 60 or more circular hovering flights in 30 min

(n= 4).

Singing. To compare movement-associated gene expression

with singing-driven gene expression in vocal learning birds, we

chose previously collected brain sections of zebra finches (n = 6)

and budgerigars (n = 6) [6,125] that sang alone or heard song with

a minimum of other movement behaviors, or brains of Anna’s

Hummingbirds (n = 2) that sang near a feeder in the open field

following a previously described protocol used for other

hummingbird species [7]. We used animals that sang 60 or

more song bouts of undirected song within a 30 min period;

undirected singing leads to high IEG expression in all known vocal

nuclei [5].

Hearing and Deafening. The ‘‘hearing song’’, ‘‘hearing a

bird hop’’, and ‘‘hopping deaf’’ groups are mentioned above in the

hopping and walking experiments. We further describe the

procedures for these groups here. To assure that birds remained

still, those that heard the hopping bird and rotating wheel were

gently wrapped in cotton cloth bedding, where they remained for

the ,2h habituation period and throughout the stimulus period.

For experiments that required elimination of auditory input, birds

were deafened by bilateral cochlea removal following a previously

described protocol [126]. Briefly, birds were anesthetized, a small

hole was cut in the neck muscle and the skull behind the ear, the

oval window of the cochlea removed and then the cochlea

removed. The skull and skin were sealed with tissue adhesive, and

the bird allowed to recover for 4–6 days. Thereafter, the bird was

placed inside of the wheel (zebra finches or budgerigars) or

treadmill (ring doves) and treated the same as all other groups.

Gene expression analyses
For each brain, 12 mm frozen sections were cut throughout the

entire left hemisphere in the sagittal plane. We used sagittal

sections to maximize the amount of brain tissue per section. For

selected example birds, serial coronal sections were also cut

throughout the entire right hemisphere. Corresponding sections of

all birds of a given experiment were fixed in 4% paraformaldehyde

and processed for in-situ hybridization with antisense 35S-UTP

labeled riboprobes of zebra finch ZENK (acronym for zif268,
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Egr-1, NGF-1A, and Krox-24) [125], c-fos [125], GluR1 [15], or

FoxP1 (forkhead box P1) [16] cDNAs following previously

described procedures [15]. Hybridization temperature and washes

were 65uC for zebra finches and garden warblers, 62uC with

ZENK and c-fos or 60uC with FoxP1 for all other species. ZENK

and c-fos can be detected in neurons ,10 min after increased

neuronal activity with peak expression at 30–45 min [33,125], and

therefore increased cumulative mRNA expression marks brain

areas that were active during the last 45–60 min of the animals’

life. The hybridized sections were exposed to X-ray film (Biomax

MR, Kodak) for 1–4 days, then dipped into autoradiographic

emulsion (NTB2, Kodak), incubated for 1–3 weeks at 4uC,

processed with Kodak developer (D-19) and fixer, and Nissl-

stained with cresyl-violet acetate solution (Sigma). X-ray film brain

images were digitally scanned from a dissecting microscope

connected to a SPOT-III CCD camera using SPOT imaging

software (Diagnostic Instruments, Inc.). Care was taken to use the

same lighting settings across all images used for quantifications.

We used Adobe Photoshop 7.0 to measure the mean pixel

intensities in the brain areas of interest from at least two adjacent

sections on a 256 grey scale. For all species, except the garden

warblers, we normalized the value of each brain area by dividing it

with the value of the entopallium for each animal. This allowed us

to compare expression levels across in-situ hybridizations con-

ducted on different days for the large number of experiments

performed; the garden warblers were all hybridized at once, and

thus did not need normalization.

Distance and gross volume measurements
To calculate distances, we digitized images from 2–3 sections

per animal (n = 3 deaf, dark, hopping animals) containing ZENK

expression in movement-associated areas. Images were taken

under brightfield and 10X magnification with a Leica DMXRA

microscope (2.5X for calculating the MAN to Nb and MO to

MVb distances). Nissl stained boundaries were used to locate the

vocal nuclei. We measured the distance of the nearest movement-

associated areas with the criterion that the region had to have a

minimum of five labeled neurons within ,200 mm radius to

prevent artificially identifying non-movement-associated areas

with few labeled neurons. We then averaged all values per area

per bird to obtain average distance measurements for each bird.

To calculate gross relative cerebral volumes of the movement-

associated regions and vocal nuclei, we used the digitized X-ray

film images of 9 evenly spaced sagittal sections that spanned

representative areas of the cerebrum, whether or not the sections

had high levels of gene expression. We used Nissl stains of these

same sections to locate the vocal nuclei. We then measured the

areas of each movement-associated region and each vocal nucleus

in each section (0 if not present), added up the values, and divided

the value by the total area of the cerebrum across all 9 sections, to

obtain a volume fraction for each brain region per bird. Although

this method does not give absolute values, it reliably yields relative

values. Values were then averaged across birds (n = 3 deaf, dark,

hopping animals).

Statistics
To test for significant differences in IEG expression levels

among groups, we performed ANOVAs followed by a Holm-Sidak

multi-comparison test when comparing three or more groups of

animals (songbird and parrot experiments) and t-tests when

comparing just two groups (female zebra finch, hummingbird,

and ring dove experiments), using SPSS (Chicago, IL) or

SigmaSTAT (Systat Software, San Jose, CA) software. Tests were

performed on each brain area separately due to our primary

interest in deciphering activation of specific areas across groups

and due to the large number of areas, which made multiregional/

group comparisons beyond the limits of the software capabilities.

To determine correlations between movement behaviors and IEG

gene expression levels in garden warblers, we performed two

analyses, both using Pearson Correlation. First, since the

relationship between movement and gene expression levels was

not linear, we searched for a curve that best fitted the data, which

was a saturating exponential curve (f = y0+a*(1-exp(-b*x))), fol-

lowed by a Pearson Correlation between the measured values and

values deducted from the fitted graph. Second, we performed a

double natural logarithmic transformation that resulted in a linear

relationship, and then performed a Pearson Correlation between

measured values and the regression graph.

Anatomy
Because the IEG expression patterns form clusters of brain areas

across brain subdivisions that can be misleading in defining

subdivision boundaries and because we examined multiple species

for which cerebral subdivision organization is not well character-

ized, we sought reliable markers of brain subdivision boundaries to

define the anatomical locations of IEG expression. Nissl staining

was not suitable for unambiguously defining brain subdivision

boundaries. Thus, in addition to Nissl staining, we found that

GluR1 [15] and FoxP1 [16] expression patterns were valuable and

critical for identifying brain subdivisions in all avian species.

GluR1 shows enriched expression in the hippocampus, mesopal-

lium, and striatum, low expression in the pallidum and in primary

thalamic recipient neurons (L2, B, part of E, and IH), intermediate

expression elsewhere, and differential expression in songbird vocal

nuclei (high in AreaX, low in HVC, RA, and MAN). FoxP1 shows

highly enriched expression in the mesopallium and striatum, low

expression in the hyperpallium and nidopallium, and lower

expression in the primary thalamic recipient neurons (L2, B, part

of E, and IH), the pallidum and arcopallium. FoxP1 also shows

differential expression in songbird vocal nuclei (higher in HVC,

RA, and Area X; lower in MAN), the parrot analogs of Area X

(higher in MMSt) and HVC (higher in NLC) as previously noted

[16], and, as we note here, the hummingbird analog of HVC

(higher in VLN).

When using these genes and many others as brain subdivision

markers (Jarvis et al, in preparation), it becomes apparent that

what has been previously labeled as dorsal hyperstriatum (HD)

and ventral hyperstriatum (HV) in the old avian brain nomencla-

ture [29,31] is marked with mesopallium enriched genes, such as

GluR1 and FoxP1. Thus, here we follow the practice of some of

our recent publications [26,27] of labeling the formally named

dorsal hyperstriatum (HD) as dorsal mesopallium (MD) and the

formally named ventral hyperstriatum (HV) as ventral mesopal-

lium (MV), due to the presence of mesopallium specific gene

expression.

For the budgerigar brain we used the term supra-lateral

nidopallium (SLN) to describe the area that stretches dorsally,

ventrally, and caudally around the vocal nucleus NLC. The caudal

and ventral areas have previously been called the superior central

nucleus of the lateral nidopallium and ventral nucleus of the lateral

nidopallium (NLs and NLv) [30].

In addition to the above definitions, we also sought to define a

more global terminology that can be applied across multiple avian

species for names of homologous brain structures that are in

different topological positions among species. When possible, we

used a non-coordinate terminology for this purpose. For primary

thalamic receiving populations, we labeled functionally adjacent

regions with names that were associated with these populations.
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Thus, for the visually-activated areas adjacent to and near the

entopallium that have been called lateral nidopallium (LN) and

lateral ventral mesopallium (LMV), we called them nidopallium

adjacent to the entopallium (Ne) and ventral mesopallium near the

entopallium (MVe). For somatosensory areas near basorostralis,

we called them Nb and MVb. For the auditory areas near Field

L2, we called them N-L2 (for L1 and L3), and MV-L2 (for caudal

mesopallium, CM); we note here that based on the FoxP1

expression, CM and the vocal nuclei Av and MO of songbirds, the

MO of parrots, and the VAM of hummingbirds are all within the

ventral mesopallium. This naming scheme allowed us to easily

compare expression patterns across species.

Finally, while the presence of seven comparable cerebral vocal

nuclei amongst the three vocal learning bird groups has been

published [5–7] and reviewed [10], we briefly review the evidence,

particularly for the lesser studied nuclei, to help clarify the

definitions used in this study. We define a vocal nucleus as a

continuous anatomical structure that has vocalizing-associated

activation. In this regard, HVC, RA, NIf, Av, MO, and Area X of

songbirds can be defined as one structure each. LMAN and

MMAN in zebra finches has been noted to be discontinuous

[71,80]. However, we noted that this is not the case for all

songbirds. In canaries, for example, LMAN and MMAN are one

continuous structure (Fig. S9A). Further, in zebra finches, in the

central part of LMAN and MMAN, a bridge of singing-activated

neurons connects LMAN and MMAN (Fig. S9B). Therefore, we
consider LMAN and MMAN as one nucleus with different lateral

and medial domains, as the names imply. For Av and MO in

songbirds, these nuclei have been repeatedly identified in

singing-driven IEG expression studies [5,33,125]; Av was

initially identified as a nucleus that receives a projection from

HVC [127]; the connectivity of songbird MO is not yet known.

For budgerigars, both ZENK and c-fos have been used to identify

all seven vocal nuclei [6,128], and many connectivity studies

have been performed [30,76] (reviewed in [10]). For humming-

birds, only ZENK has been used to identify the vocal nuclei,

and one connectivity study performed [79], but all seven

nuclei have been found in at least five species ([7] and this study).

Thus, while further work is necessary to determine the specific

functions and analogies of these nuclei within and across

vocal learning bird orders, the current evidence supports their

presence.

Supporting Information

Figure S1 Behavioral apparatuses used in this study. A.

Cylindrical plexiglass cage with a circular perch placed in the

center of the cage used to detect wing whirring and other

behaviors. Infrared-sensitive cameras (IR) allowed for constant

observation even under dim light conditions [26,27]. B. Rotating

plexiglass wheel used to induce hopping behavior in zebra finches

and budgerigars. When the wheel was externally driven by the

motor, the birds hopped in order to stay upright.

Found at: doi:10.1371/journal.pone.0001768.s001 (1.02 MB TIF)

Figure S2 Anatomical definitions of brain areas and higher

magnifications of posterior movement-associated areas. A. GluR1

expression in sagittal sections of a garden warbler male brain,

which defines major anatomical subdivisions and some vocal

nuclei. Anterior is right, dorsal is up. Scale bar, 2 mm. B. High

magnification of ZENK expression in sagittal sections with garden

warbler vocal nuclei HVC (a) and RA (d), indicated by black

arrows, and sections laterally adjacent, showing the transition from

the vocal nuclei to the movement-associated areas DLN (c) and

LAI (f), indicated by white arrows, in a bird that performed flights

during the day light. Dashed line in (f) shows the boundary

between the arcopallium and nidopallium dorsal to it and striatum

anterior to it. Scale bar, 0.5 mm.

Found at: doi:10.1371/journal.pone.0001768.s002 (5.46 MB TIF)

Figure S3 Zebra finch serial coronal brain sections. A (a, a’).

Right hemisphere sections of ZENK expression from a male bird

that hopped in the rotating wheel in the dark while deaf. (b, b’)

FoxP1 expression on adjacent sections are shown to help define

anatomical regions in (c, c’) the corresponding anatomical profile

drawings; red lines: areas with movement-induced expression. In

three sections (a: rows 1, 4, and 5), we accidentally hybridized

ZENK and FoxP1 simultaneously, effectively performing double-

labelling; we show the results here as they further help define the

boundaries of ZENK expression (higher signal intensity) with

FoxP1 (lower signal intensity). Top left row: anterior-most sections;

bottom right row: posterior-most. Scale bar, 2 mm. B. Higher

magnification of ZENK expression in frontal sections showing (a)

DLN and (b) LAI. Hopping-induced expression in DLN (a) is

caudal and lateral to HVC (not shown); expression in LAI is lateral

to RA in this section. The darkly stained arched curve above RA

and LAI is the boundary between the arcopallium and

nidopallium. Medial is left, dorsal up; right hemisphere. Scale

bar, 0.5 mm.

Found at: doi:10.1371/journal.pone.0001768.s003 (8.79 MB TIF)

Figure S4 High power brightfield and false-color images of

posterior areas. A. HVC, PLN and DLN. B. NIf, Av, PLN and

PLMV. C. RA and LAI. Purple label: Nissl cresyl violet stain;

black label: silver grains from labelled ZENK mRNA in neurons.

D. False-colored images of singing- and movement-associated

ZENK expression in (a, green) in NIf and Av of an adult zebra

finch male that sang for 30 min and was deaf [from Fig. 7B], (b,

magenta) in PLN and PLMV of an adult zebra finch male that

hopped for 30 min and was deaf [from panel Ab and Fig. 7C], and

(c) overlap between the expression patterns of (a) and (b). The

expression anterior to NIf in (a) appears to not be neither hearing,

singing or hopping-associated, as it can occur whether or not the

animals sing or are deaf, and it did not occur when they hopped.

Anterior is right, dorsal is up. Scale bar, 200 mm.

Found at: doi:10.1371/journal.pone.0001768.s004 (8.84 MB TIF)

Figure S5 Examples of widespread ZENK expression. A.

Example of widespread ZENK expression in a zebra finch male

that had performed many behaviours, including hopping, eating,

singing to a female, and seeing light for the first time in the

morning. B. Example of widespread ZENK expression in an

Anna’s Hummingbird male that had been performing many

behaviours in the early morning (1h after sunrise), including flying,

feeding, and chasing other birds. Medial is left, dorsal up. Scale

bar, 2 mm.

Found at: doi:10.1371/journal.pone.0001768.s005 (5.31 MB TIF)

Figure S6 Budgerigar coronal brain sections. Shown is ZENK

expression in the right hemisphere. A. Vocal areas: perched

singing bird while alone and moving relatively little. B. Movement

areas: bird hopping in the rotating wheel in the dark while deaf. C.

FoxP1 expression from adjacent sections of the bird in (B). D.

Corresponding anatomical drawings; red: areas with movement-

induced expression. First row are anterior-most sections. Note the

absence of a distinct boundary in the ZENK expression between

LAI and SLN, which can be seen with FoxP1 expression. Also

note that ASt in the middle section is medial to the MMSt vocal

nucleus in the same section, but caudal to MMSt as revealed by

the more anterior (top row) section, consistent with the sagittal

series (Fig. 10Ac). For the large area of expression between B and
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the LAM and LAN vocal nuclei, there is no distinct boundary.

Medial is left, dorsal is up. Scale bar, 2 mm.

Found at: doi:10.1371/journal.pone.0001768.s006 (9.74 MB TIF)

Figure S7 Anna’s hummingbird serial coronal sections. Shown is

ZENK expression in both the experimental and control hemi-

spheres. A. Vocal and other areas: right hemisphere of a bird that

was singing interspersed with flying near and feeding from an

outdoor feeder in the morning. B. Auditory, visual, and movement

areas: control (contralateral to open eye and ear) and experimental

(contralateral to covered eye and ear) hemispheres of a bird hovering

in a plexiglass cage in dim light. C. FoxP1 expression from adjacent

sections of the bird in (B). D. Corresponding anatomical drawings;

red: areas with movement-induced expression; blue: areas with

auditory- or visual-induced expression (auditory areas also deter-

mined from a previous study [7]). First row are rostral-most sections.

Note that in the singing and flying animal there is high levels of

ZENK expression in vocal nuclei and many other brain areas, but in

the hovering animal, most areas of highest induced expression are

closest to the vocal nuclei and not different between experimental

and control hemispheres. Dorsal is up. Scale bar, 2 mm.

Found at: doi:10.1371/journal.pone.0001768.s007 (6.35 MB TIF)

Figure S8 Movement-induced ZENK expression in vocal non-

learning female songbirds. A. Example comparison of garden

warbler male and female anterior brain areas from animals that

performed wing whirring movements during migratory restless-

ness. Females have atrophied vocal nuclei, but show movement-

associated expression in areas corresponding to the location of

vocal nuclei in males. Scale bar, 0.5 mm. B. Example sagittal

sections showing anterior (left) and posterior (right) areas of a zebra

finch female hopping in the dark while deaf. As seen in garden

warblers, the female finches have atrophied vocal nuclei but

similar movement-associated expression as the males. Rostral is

right, dorsal is up. Scale bar, 2 mm.

Found at: doi:10.1371/journal.pone.0001768.s008 (6.16 MB TIF)

Figure S9 Continuity of MMAN and LMAN in songbirds. A.

Coronal section of ZENK expression of an adult male canary that

sang undirected song for 30 min. MMAN and LMAN are

contiguous. B. Coronal section of ZENK expression of an adult

zebra finch male that sang undirected song for 30 min. There is a

bridge of singing-activated neurons between the cores of MMAN

and LMAN. The medial part of Area X is in more caudal sections.

(A) is from a non-radioactive in-situ (Dig probe) and (B) from a

radioactive in-situ (35S probe), both in brightfield views. Scale bar

2mm.

Found at: doi:10.1371/journal.pone.0001768.s009 (2.94 MB TIF)
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