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REVIEW & INTERPRETATION

In the last two decades we have witnessed the widespread 
use of molecular markers to study complex, quantitative traits 

in diff erent crop species. My thesis in this Perspectives article is 
that while many QTL have been reported in the literature, these 
reported QTL have not been adequately exploited in breeding 
programs. My objectives are to discuss practical lessons that I 
think we, as a scientifi c community of plant breeders and geneti-
cists, have learned about marker-based selection for quantitative 
traits in the last 20 years, and to present insights on how we might 
best use molecular markers to improve complex traits in current 
and future plant breeding programs.

FROM PHENOTYPE TO (MARKER) GENOTYPE
My view of plant breeding became more complicated one 
autumn day in 1986, when a Ph.D. student in molecular 
genetics walked into our basement offi  ce at the University of 
Illinois and began describing a promising new technology called 
restriction fragment length polymorphisms, or RFLPs or “rifl ips” 
for short (Grodzicker et al., 1974). Back then I was a Ph.D. stu-
dent in quantitative genetics and maize breeding with Profes-
sor John W. Dudley. Based on what my adviser had taught me, 
plant breeding for complex traits seemed fairly simple: a breeder 
(i) created genetic variation mainly by crossing good by good, (ii) 
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selected the best progenies in the cross, and (iii) synthe-
sized the best progenies into a new and improved cultivar 
(Dudley and Moll, 1969). The breeding decisions pertain-
ing to these tasks were made on the basis of phenotypic 
data. But this fellow graduate student showed us maize-
breeding students a recent article that concluded that “the 
advent of RFLPs, by greatly increasing the total number of 
polymorphic genetic markers available to the agricultural 
community, may signal the advent of a new and promising 
era for the understanding and genetic improvement (emphasis 
mine) of quantitative economic traits through the use of 
marker-assisted breeding methodologies” (Beckmann and 
Soller, 1986).

Two parallel developments have allowed the aggres-
sive use of molecular markers for studying quantita-
tive traits. First, new marker systems such as randomly 
amplifi ed polymorphic DNA, microsatellites or simple 
sequence repeats (SSR), amplifi ed fragment length poly-
morphisms (AFLP; Vos et al., 1995), single nucleotide 
polymorphisms (SNP), and diversity arrays technology 
markers (DArT; Kilian et al., 2005) have increased the 
number and decreased the cost of markers in diff erent 
crop species (Burrow and Blake, 1998; Bhattramakki and 
Rafalski, 2001). For example, the development of high-
throughput technologies for SNP genotyping ( Jenkins 
and Gibson, 2002; Syvänen, 2005) has led to, since 2000, 
a 40-fold increase in the number of marker datapoints 
generated and a six-fold decrease in the cost per datapoint 
in a commercial maize (Zea mays L.) breeding program 
(Eathington et al., 2007). The U.S. small-grains breeding 
community is served by four USDA regional genotyping 
centers that have made marker genotyping routine (Chao 
et al., 2006), and diff erent molecular-marker service labs 
in North America, Europe, and Australia provide con-
tractual genotyping services.

Second, statistical methods for detecting QTL and 
computer software for implementing these procedures 
have been developed. In this article I defi ne “QTL map-
ping” as the general class of linkage-based methods for 
fi nding QTL, typically in a cross between two inbreds 
(Dudley, 1993). Methods for QTL mapping range from 
the simplest method of single-marker analysis (Sax, 1923) 
to more sophisticated methods such as interval mapping 
(Lander and Botstein, 1989; Haley and Knott, 1992), joint 
mapping (Kearsey and Hyne, 1994), multiple regression 
(Wright and Mowers, 1994; Whittaker et al., 1996), and 
composite interval mapping (Zeng, 1994). Association 
mapping, which requires collections of germplasm instead 
of biparental populations, has also been developed as a 
method for fi nding genes underlying quantitative traits 
(Hästbacka et al., 1992; Lazzeroni, 1997; Yu et al., 2006). 
Software packages for mapping with F

2
 or backcross pop-

ulations, selfed or recombinant-inbred progenies, or ger-
mplasm collections include MAPMAKER/QTL (Lincoln 

et al., 1993), JoinMap (Stam, 1993), QTL Cartographer (Bas-
ten et al., 1994), PLABQTL (Utz and Melchinger, 1996), 
QGene (Nelson, 1997), and TASSEL (Buckler, 2007). 
Private breeding companies in turn have developed their 
own QTL analysis tools that are integrated with company 
infrastructure for managing both marker and non-marker 
data (Eathington et al., 2007).

QTL, QTL EVERYWHERE
Reports of mapped QTL are now pervasive in the plant 
breeding literature. To obtain a rough estimate of the num-
ber of QTL mapping studies that have been conducted 
to date, I searched the Web of Science database for titles 
that contained the terms (i) “QTL,” “QTLs,” “quantita-
tive trait locus,” “quantitative trait loci,” or “markers” 
+ “associated” and (ii) the common names of 12 major 
crop species [barley (Hordeum vulgare L.), bean (Phaseolus 
spp. and Vicia faba L.), corn or maize, cotton (Gossypium 
spp.), oat (Avena sativa L.), potato (Solanum tuberosum L.), 
rice (Oryza sativa L.), soybean [Glycine max L. (Merr.)], 
sorghum (Sorghum bicolor L.), sunfl ower (Helianthus spp.), 
tomato (Lycopersicon spp.), and wheat (Triticum aestivum 
L.)]. This search indicated that more than 1200 QTL 
mapping studies have been reported for these 12 species. 
Previous reviews have indicated that QTL mapping stud-
ies have typically detected an average of 3 to 5 QTL for 
each trait (Kearsey and Farquhar, 1998; Bernardo, 2002, 
p. 309–311). If we assume that QTL mapping studies 
typically involve ~3 traits (as indicated by Kearsey and 
Farquhar, 1998), we can then surmise that at least 10,000 
marker-trait associations in diff erent plant species have 
been reported in the literature.

The reported QTL have typically accounted for a total 
of 40 to 60% of the phenotypic variance for the quantitative 
trait, and the distribution of the estimated genetic eff ects 
of individual QTL has been consistent with a quantitative 
trait being controlled by few QTL with large eff ects and 
many QTL with small eff ects (Kearsey and Farquhar, 1998; 
Bernardo, 2002). Overall, the QTL mapping literature has 
shown that if a breeder can develop a mapping population 
of N = 100–150 progenies derived from an F

2
 or backcross 

population between two inbreds, obtain reasonably good 
phenotypic data for the traits of interest, and genotype 
the population with markers spaced about 10 to 15 cM 
apart, then an analysis of the phenotypic and marker data 
with an appropriate statistical method as implemented in a 
user-friendly software package will almost always lead to 
the identifi cation of at least a few markers associated with 
each trait of interest. In short, in the last 20 years we have 
learned how to routinely map QTL.

In contrast, exploiting the QTL that have been 
mapped has not been routinely done. While the following 
statement may seem harsh [and I myself, with colleagues, 
have previously reported a total of 172 QTL in maize (Lu 
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stringency for declaring the presence of a QTL, require 
diff erent levels of resolution for pinpointing QTL loca-
tion, and usually require diff erent types of germplasm 
(Fig. 1). As shown later in this article, the most useful 
breeding procedures diff er between the two breeding sub-
goals. Given that there is no single best way to fi nd and 
exploit QTL, the purpose of detecting QTL should there-
fore be very clearly defi ned before embarking on a QTL 
mapping study.

The QTL mapping approach has been proposed as 
a means of increasing our understanding of the genetics 
underlying quantitative variation (Beckmann and Soller, 
1986). The results from QTL mapping have provided 
information on the genetic architecture of complex traits, 
i.e., estimated number of QTL and magnitude of their 
estimated additive, dominance, and epistatic eff ects in 
multiple environments (Mackay, 2001; Holland, 2007). 
But after 20 years of QTL mapping, we need to pause 
and seriously question how much biological (as opposed to 
statistical) information we have gleaned from the > 1200 
QTL mapping studies that have been conducted in major 
crop species. Specifi cally, estimates of QTL locations or 
eff ects per se do not give us direct biological information 
(e.g., the product or function of each gene and the interac-
tions among genes). The models that underlie QTL analy-
sis are an extension of the models in quantitative genetics, 
and the models in quantitative genetics in turn are not 
necessarily designed to be biologically meaningful. In 
particular, the linear additive model, which assumes that 
the genotypic value for a trait can be modeled as the sum 
of the eff ects of unknown individual genes (i.e., additive 

et al., 2003a,b; Parisseaux and Bernardo, 2004)], the vast 
majority of the favorable alleles at these identifi ed QTL 
reside in journals on library shelves rather than in culti-
vars that have been improved through the introgression 
or selection of these favorable QTL alleles. This is cer-
tainly not to say that there have been no examples of QTL 
that have been successfully used in breeding; successful 
examples (some of which will be cited later) provide use-
ful insights on how QTL information can be utilized in 
a breeding program. Neither is this to say that there is no 
value in estimating the number, location, and eff ects of 
genes underlying quantitative variation. Yet from a plant 
breeding standpoint, we need to pay much greater atten-
tion to how identifi ed QTL can be exploited in a breeding 
program or, more generally, how molecular markers can 
best be used to improve (instead of simply study) a com-
plex trait. Toward this end, the following are key lessons 
learned from the successful as well as unsuccessful use of 
molecular markers to improve quantitative traits:

1. We should know why we want to fi nd QTL
2. Procedures for marker-based selection depend on the 

number of QTL
3. Estimates of QTL eff ects for complex traits are often 

inconsistent
4. We need to consider gain per unit time and cost 

rather than gain per cycle

WHY DO WE WANT 
TO FIND QTL IN PLANTS?
While plant breeding relies heavily on the science of genet-
ics, the primary goal of a plant breeder is fundamentally 
diff erent from the primary goal of a geneticist. A plant 
breeder aims to develop improved cultivars, mainly 
through selection, whereas a geneticist aims to under-
stand the inheritance and variation of traits. Breed-
ing programs obviously require genetic variation for 
selection to act on, but genetic variation per se is not 
the main interest of a breeder. Given this context, 
two general goals of QTL mapping in plants to (i) 
increase our biological knowledge of the inheritance 
and genetic architecture (Mackay, 2001) of quantita-
tive traits, both within a species and across related spe-
cies; and (ii) identify markers that can be used to select 
for a complex trait. This latter goal, which focuses 
more on breeding than on pure genetics, can be fur-
ther subdivided into two subgoals: (ii-a) identify a few 
major QTL (i.e., with large estimated eff ects) that can 
be introgressed by standard breeding procedures into 
other germplasm, or (ii-b) identify many QTL that 
can serve as the basis for selection for a complex trait 
in elite germplasm.

While these goals and subgoals are not mutually 
exclusive, they require diff erent emphases on gene 
discovery versus selection, require diff erent levels of 

Figure 1. Goals and approaches for using molecular markers to study and 

select for complex traits in plants.
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eff ects) and of combinations of unknown genes (i.e., dom-
inance and epistatic eff ects), has been a simple yet use-
ful statistical model for describing the inheritance and 
behavior of quantitative traits. The estimated genotypic 
or breeding values, while useful in selection, have limited 
biological meaning. By extension, a linear additive model 
has also been used to model the eff ects of QTL, the dif-
ference being that the individual genes or combinations of 
genes are now identifi ed through known molecular mark-
ers. Estimates of the number of QTL and the magnitude 
of QTL eff ects are therefore biologically relevant only to 
the extent that the preconceived linear additive model for 
QTL eff ects is biologically accurate.

Furthermore, the wide use of the term “population” 
in the QTL mapping literature suff ers from a double 
meaning of the term. From a population genetics stand-
point, a population refers to a group of potentially inter-
breeding individuals (as in an F

2
 or backcross population). 

But from a statistics standpoint, we need to remember that 
we can study only a sample of individuals (e.g., N = 150 
F

2
 plants) rather than the entire (statistical) population to 

which inferences would apply. Estimates of recombination 
distances among markers and estimates of the location, 
number, and eff ects of QTL are therefore subject to statis-
tical error (Beavis, 1994).

On the other hand, QTL mapping studies have yielded 
useful biological information in terms of the importance 
of pleiotropy versus linkage for specifi c traits (Monforte 
and Tanksley, 2000; Chung et al., 2003) and collinearity 
in the organization of crop genomes (Kurata et al., 1994; 
Gale and Devos, 1998). Furthermore, QTL mapping has 
served as a springboard for the discovery of the underly-
ing genes through map-based cloning of QTL (Frary et 
al., 2000), candidate-gene analysis (Pfl ieger et al., 2001), 
or comparative mapping (Paterson et al., 1995) (Fig. 1). 
Knowledge of the approximate locations of QTL has been 
used as a starting point for fi ne mapping by non-QTL-
mapping approaches or for studying candidate genes that 
are close to the identifi ed QTL and that may be the actual 
genes that aff ect the quantitative trait. At least 20 QTL 
have been cloned based on their map positions (Price, 
2006). If the eventual goal is to clone QTL or identify 
candidate genes, the penalty of a false positive is severe. 
The statistical stringency or threshold for declaring the 
presence of the QTL must therefore be very high. Fur-
thermore, the position of the QTL needs to be mapped 
precisely relative to closely spaced fl anking markers.

As previously mentioned, association mapping in plants 
typically involves fi nding marker-trait associations among 
a diverse collection of inbreds with diff erent genetic back-
grounds, instead of among recombinant inbreds derived 
from an F

2
 or backcross population between a pair of 

inbreds as in QTL mapping (Thornsberry et al., 2001; 
Flint-Garcia et al., 2003; Breseghello and Sorrells, 2006). 

The use of markers that represent polymorphisms at can-
didate genes would lead to a high resolution in association 
mapping, although random markers could also be used for 
genomewide association mapping. Spurious marker-trait 
associations arise due to diff erent genetic backgrounds 
or pedigrees of the inbreds used, and association map-
ping needs to account for the population structure among 
the inbreds that comprise the association-mapping panel 
(Pritchard et al., 2000; Yu et al., 2006).

Any mapping procedure can detect only those QTL 
that are polymorphic in the population. The wide assort-
ment of inbreds typically used in association mapping pro-
vides the wide genetic diversity needed for discovering a 
wide array of genes present in the plant species as a whole. 
This increased genetic diversity, however, often comes 
at the cost of a decreased mean performance or adapt-
edness of the germplasm used (Breseghello and Sorrells, 
2006). To a geneticist, association mapping is therefore a 
powerful approach for discovering the genes that underlie 
quantitative variation (Hästbacka et al., 1992; Lazzeroni, 
1997; Fig. 1). But to a breeder, association mapping with 
diverse, unadapted germplasm, rather than with elite ger-
mplasm, could often represent yet another way to discover 
additional QTL that would remain largely unexploited in 
selection for a complex trait, particularly if the contrasting 
QTL alleles detected by association mapping correspond 
to mutant forms that have no practical value. These con-
sequences again underscore that the purpose of detecting 
QTL (e.g., gene discovery versus selection) should there-
fore be very clearly defi ned before embarking on a QTL 
mapping study (Fig. 1).

NUMBER OF QTL AND 
MARKER-BASED SELECTION

Finding and Exploiting a Few Major QTL
The nature of a trait may sometimes suggest that much 
of the quantitative variation is controlled by a few genes 
with large eff ects. In this situation, the objective of QTL 
mapping is clearly defi ned as fi nding a few major QTL. 
The subsequent breeding strategy is to introduce or pyra-
mid these QTL, via standard breeding procedures, into 
elite germplasm to develop improved cultivars (Fig. 1). 
Exploiting a few major QTL therefore requires both gene 
discovery (i.e., QTL mapping) and selection.

Two examples that illustrate this approach are the 
Fhb1 QTL for resistance to Fusarium head blight (caused 
by Fusarium graminearum Schwabe [telomorph: Giberella 
zeae]) in wheat (Anderson et al., 2008) and QTL for resis-
tance to soybean cyst nematode (SCN, Heterodera glycines 
Ichinohe) (Concibido et al., 2004). Resistance to both 
Fusarium head blight and SCN is quantitative (Waldron 
et al., 1999; Concibido et al., 1994). The Fhb1 QTL was 
fi rst reported by Waldron et al. (1999) and the eff ect of 
Fhb1 was confi rmed in a second mapping population by 
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Anderson et al. (2001). With the use of fl anking mark-
ers, the Fbh1 QTL was then introduced into 19 diff erent 
pairs of near-isogenic (for Fhb1) lines and was found to 
have a consistent eff ect of about 27% reduction in infected 
grains (Pumphrey et al., 2007). For SCN resistance, QTL 
have been found near the known rhg1 and Rhg4 resistance 
genes (Concibido et al., 1994, 2004; Webb et al., 1995). 
Molecular markers linked to these QTL have been rou-
tinely used to introduce SCN resistance into elite soybean 
lines (Cahill and Schmidt, 2004).

This approach exemplifi ed by Fhb1 in wheat and by 
rhg1- and Rhg4-related QTL in soybean therefore relies 
on (i) identifying unique germplasm as sources of useful 
QTL alleles (Fig. 1), (ii) fi nding closely linked markers for 
a few QTL that account for a substantial portion of the 
genetic variance for the trait, (iii) confi rming the eff ect of 
the major QTL alleles in diff erent genetic backgrounds, 
and (iv) deploying the QTL alleles widely in a breeding 
program. The Fhb1 QTL allele originated from the Chi-
nese cultivar Sumai 3 (Wang and Miller, 1988). The QTL 
alleles for SCN resistance were found predominantly in 
‘Peking’ but were also detected in fi ve plant introductions 
(Concibido et al., 2004). Given these specifi c germplasm 
sources, the linkage phase between the fl anking marker 
loci and the QTL will remain the same across all recipient 
lines to which the given donor parent is crossed. Alterna-
tive marker loci, however, will have to be used to tag the 
QTL if the donor and recipient lines are not polymorphic 
at the original marker loci. This limitation will be cir-
cumvented after candidate genes for Fhb1, rhg1, and Rhg4 
are eventually cloned and confi rmed (Hauge et al., 2006; 
Liu et al., 2006), as functional markers will then be avail-
able for the genes themselves.

In addition to QTL mapping, other approaches may 
be used to fi nd major QTL with large eff ects (Fig. 1). 
Through comparative mapping, which exploits the col-
linearity among genomes of related species (Gale and 
Devos, 1998), the gene responsible for the loss of shatter-
ing in sorghum has been mapped to the same genomic 
locations in rice and in maize (Paterson et al., 1995). By 
association mapping in a gene bank of 600 potato cultivars, 
markers for the R1 candidate gene were found associated 
with resistance to late blight caused by the Phytophthora 
infestans (Gebhardt et al., 2004). The marker alleles asso-
ciated with increased resistance were traced to an intro-
gression from the wild species S. demissum. This result 
indicates that while a diverse potato germplasm collection 
was used in association mapping, late blight resistance was 
ultimately from a unique source.

Exploiting Many QTL for a Complex Trait
The nature of a trait may sometimes suggest that much 
of the quantitative variation is controlled by many genes 
with small eff ects. An example is grain yield in cereal 

crops where a long breeding history suggests that if any 
major QTL were present to begin with, then the favorable 
alleles at these major QTL would have been fi xed dur-
ing the domestication process (Doebley, 2006) or during 
previous selection that led to the high-yielding cultivars in 
the current germplasm base. When much of the variation 
is controlled by many QTL that mostly have small eff ects, 
the fi nd-and-introgress-QTL approach described in the 
previous section has limited applicability. The reasons for 
this are two-fold. First, as discussed in the next section, 
estimates of QTL eff ects for minor QTL are often incon-
sistent. Second, even if the eff ects for a large number of 
minor QTL were consistent, pyramiding favorable QTL 
alleles into a single cultivar becomes increasingly diffi  cult 
as the number of QTL increases. Furthermore, breeders 
most often select for several traits at time. Even if each trait 
were controlled by only a few major QTL, selection for 
multiple traits would most likely involve the more diffi  cult 
process of selecting for many QTL simultaneously.

To illustrate, suppose the objective is to pyramid the 
favorable alleles at only four major QTL. At the ith QTL, 
we denote the favorable allele by Q

i
 and the less favorable 

allele by q
i
. One inbred parent has the Q

i
 allele at two of 

the QTL whereas a complementary inbred parent has the 
Q

i
 allele at the two other QTL. If the QTL are unlinked, 

a recombinant inbred with the Q
i
Q

i
 genotype at each of 

the four QTL will occur an average of once every 24 = 
16 recombinant inbreds. Now suppose the objective is to 
pyramid the favorable alleles at 10 unlinked QTL. If one 
inbred parent has the Q

i
 allele at fi ve of the QTL whereas 

a complementary inbred parent has the Q
i
 allele at the 

other fi ve QTL, then an inbred with the Q
i
Q

i
 genotype at 

all 10 QTL will occur an average of once every 210 = 1024 
recombinant inbreds.

Unfavorable linkages and multiple sources of the 
favorable QTL alleles will decrease the frequency of an 
inbred with all the desired QTL alleles. Suppose that each 
inbred has the Q

i
 allele at only one out of 10 unlinked 

QTL, so that 10 inbred parents will have to be crossed to 
form a segregating population from which recombinant 
inbreds will be developed. Because the frequency of Q

i
 

decreases from 0.50 in a biparental F
2
 population to 0.10 

in the 10-parent population, an inbred with the Q
i
Q

i
 gen-

otype at all 10 QTL will occur an average of once every 
1010 = 10 billion recombinant inbreds.

When many QTL control the trait, our inability to 
control how genes segregate and assort during meiosis 
and how they come together during fertilization therefore 
severely limits our ability to synthesize the ideal geno-
type at many QTL. In the last 20 years we have learned 
that an eff ective strategy for exploiting multiple QTL is 
to increase the frequency of favorable marker alleles in 
the population, so that the probability of obtaining supe-
rior genotypes or the ideal genotype is consequently 
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increased. Suppose that by selection, the frequency of Q
i
 

at each QTL is increased from 0.50 in an F
2
 population 

to 0.75 in an improved population. The frequency of a 
recombinant inbred with the Q

i
Q

i
 genotype at all 10 QTL 

will subsequently increase from an average of once every 
1024 recombinant inbreds to an average of once every 
1/(0.7510) = 18 recombinant inbreds.

Increasing the frequency of favorable alleles is also 
the rationale behind traditional recurrent selection based 
on phenotype (Allard, 1960, p. 283), and the concept of 
increasing allele frequencies before developing recombi-
nant inbreds has therefore come full circle in the form 
of both phenotypic recurrent selection in the 1950s and 
marker-based selection in the 2000s. Marker-based 
selection to increase QTL-allele frequencies sacrifi ces an 
additional amount of time needed to develop improved 
populations in exchange for smaller population sizes that 
are required for obtaining superior genotypes. As indi-
cated later in this paper in the Gain per Unit Time and 
Cost section, the use of off -season nurseries or green-
houses drastically reduces the amount of time needed to 
increase QTL-allele frequencies.

F
2
 Enrichment and Marker-Assisted 

Recurrent Selection
Two related approaches have been proposed and used to 
increase the frequency of favorable QTL alleles at mul-
tiple loci (Fig. 1): (i) F

2
 enrichment followed by inbreed-

ing (Howes et al., 1998; Bonnett et al., 2005; Wang et 
al., 2007) and (ii) marker-assisted recurrent selection (MARS; 
Edwards and Johnson, 1994; Hospital et al., 1997; Koebner, 
2003; Johnson, 2004; Bernardo and Charcosset, 2006). 
In both approaches the base generation is usually an F

2
 

population from the cross between two inbreds, although 
backcrosses, three-way crosses, or double crosses may also 
be used. The objective is to develop a recombinant inbred 
with superior per se performance for self-pollinated crops 
or with superior testcross performance for hybrid crops. 
Whereas F

2
 enrichment usually involves only one gen-

eration of marker-based selection, MARS involves several 
cycles of marker-based selection.

In F
2
 enrichment, F

2
 plants with the q

i
q

i
 genotype 

at one or more QTL are culled so that the remaining 
plants are carriers of the favorable alleles (i.e., Q

i
Q

i
 or 

Q
i
q

i
 genotypes) at all target QTL (Howes et al., 1998; 

Bonnett et al., 2005). Suppose a total of 10 QTL have 
been identifi ed through a standard QTL mapping proce-
dure in an F

2
 population and that, for simplicity, markers 

are available for the QTL themselves. The probability 
that an F

2
 plant has the Q

i
Q

i
 or Q

i
q

i
 genotype at a given 

QTL is 0.75. If the 10 QTL are unlinked, the expected 
frequency of F

2
 plants with the Q

i
Q

i
 or Q

i
q

i
 genotype at 

all 10 QTL is 0.7510 = 0.056. In other words, about one 
out of every 18 F

2
 plants will be selected. With complete 

selection against the q
i
q

i
 homozygote at each QTL, the 

expected frequency of Q
i
 increases from 0.50 to 0.67 at 

each locus (Howes et al., 1998). If recombinant inbreds 
are developed from the F

2
 plants that remain after cull-

ing (Bonnett et al., 2005), the expected frequency of 
recombinant inbreds with the Q

i
Q

i
 genotype at all 10 

QTL is 0.6710 = 0.018, or one in 55 recombinant inbreds. 
As previously indicated, without F

2
 enrichment, the fre-

quency of a recombinant inbred with the Q
i
Q

i
 genotype 

at all 10 QTL is one in 1024 recombinant inbreds.
Increasing the frequency of Q

i
 from 0.50 to 0.67 via 

F
2
 enrichment therefore increases the probability of recov-

ering a recombinant inbred with the Q
i
Q

i
 genotype at all 

target QTL, or at as many target QTL as practically possi-
ble. But a Q

i
 frequency of 0.67 may still not be suffi  ciently 

high if the target number of QTL is large (e.g., > 15 or 
so QTL). And regardless of the number of target QTL, 
further increases in the frequency of Q

i
 will increase the 

probability of recovering a recombinant inbred with the 
desired Q

i
Q

i
 genotypes. A second round of enrichment at 

a later inbreeding generation may be performed to fur-
ther increase the frequency of Q

i
, but studies suggest little 

added advantage in culling F
3
 or F

4
 plants with the q

i
q

i
 

genotype at any of the QTL (Wang et al., 2007).
This limitation in F

2
 enrichment is overcome in MARS, 

in which multiple cycles of selection are performed based 
on markers (Edwards and Johnson, 1994; Johnson, 2004; 
Eathington et al., 2007). Specifi cally, MARS involves (i) 
identifying F

2
 plants or F

2
-derived progenies that have the 

Q
i
 allele at most, if not all, of the target QTL; (ii) recom-

bining selfed progenies from these selected individuals; and 
(iii) repeating the procedure for 2 to 3 cycles. In the same 
way that phenotypic recurrent selection is an alternative to 
phenotypic selection during selfi ng, MARS is therefore an 
alternative to the cull-and-inbreed process in F

2
 enrich-

ment. An obvious possible disadvantage of MARS, how-
ever, is the extra number of generations needed for cyclical 
selection based on markers.

Direct comparisons of F
2
 enrichment and MARS 

have not been reported, but studies have shown that each 
procedure is eff ective in increasing the frequencies of 
favorable QTL or marker alleles. With enrichment in a 
wheat BC

1
 population followed by marker-based selec-

tion among haploids (that were subsequently doubled), the 
frequency of the Lr34/Yr18 rust-resistance genes increased 
from 0.25 to 0.60 (Kuchel et al., 2007). But the frequency 
of the underlying Lr46/Yr29 rust-resistance genes, as 
evaluated from disease reactions from fi eld tests, increased 
from 0.25 to only 0.27. This result was most likely due to 
the loose linkage between the actual Lr46/Yr29 genes and 
the marker used to screen the BC

1
 plants (Kuchel et al., 

2007). In a sweet corn F
2
 population, MARS increased 

the frequency of the favorable marker allele from 0.50 to 
≥ 0.80 at 18 out of 31 markers used in selection (Edwards 
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and Johnson, 1994). In a second sweet corn F
2
 population, 

the frequency of the favorable marker allele increased to 
≥0.80 at 11 out of 35 markers used. Five marker loci in the 
fi rst F

2
 population and one marker locus in the second F

2
 

population became fi xed for the favorable allele. However, 
frequencies of the favorable allele decreased or remained 
equal to 0.50 at fi ve loci in the fi rst population and at four 
loci in the second population.

These diff erences in the observed changes in 
marker allele frequencies were due to unfavorable link-
ages among markers as well as diff erent weights that 
were given for each marker when ranking candidates 
for selection in MARS (Edwards and Johnson, 1994). 
Specifi cally, the MARS approach uses a selection index 
that gives weights to markers according to the relative 
magnitude of their estimated eff ects on the trait (Lande 
and Thompson, 1990; Edwards and Johnson, 1994). 
The selection index typically has the form M

j
 = Σ b

i
 

X
ij
, where M

j
 is the marker score of the jth individual; 

b
i
 is the weight given to the ith marker locus; and X

ij
 is 

equal to 1 if the jth individual is homozygous for the 
marker allele (at the ith marker locus) with the favor-
able eff ect and –1 if the individual is homozygous for 
the marker allele with the less favorable eff ect. The b

i
 

weights can be obtained from multiple regression of 
trait values on X

ij
 (Lande and Thompson, 1990; Hospi-

tal et al., 1997).

Combining Favorable QTL Alleles 
versus Predicting Performance
The use of weights for diff erent markers in MARS but 
not in F

2
 enrichment underscores two approaches for 

using markers to develop superior germplasm for complex 
traits (Fig. 1). The fi rst approach focuses on combining 
favorable QTL alleles in germplasm. Again, the underly-
ing goal in F

2
 enrichment followed by inbreeding is to 

eventually develop a recombinant inbred with the Q
i
Q

i
 

genotype at most, if not all of the target QTL. All of the 
target QTL are treated as equally important, and individ-
uals that carry as many favorable marker alleles as possible 
are selected (Bonnett et al., 2005; Wang et al., 2007). The 
second approach focuses not on the number of favorable 
marker alleles present in a particular individual, but rather 
on the use of markers to predict the performance of the 
individuals so that those with the best predicted perfor-
mance can be selected.

These two approaches would be equivalent if all QTL 
have equal eff ects. In this situation, the expected marker 
weights in MARS would all be equal to b

i
 =  1.0 and the 

selection index in MARS would be simply equal to the 
number of marker loci for which the candidate is homozy-
gous for the favorable marker allele, i.e., M

j
 = Σ X

ij
. As 

previously mentioned, however, the QTL mapping lit-
erature has indicated that QTL for a given trait do not 

have equal estimated eff ects (Kearsey and Farquhar, 1998; 
Bernardo, 2002). But even if the weights for diff erent 
QTL vary, the two approaches will still be equivalent if 
the number of target QTL is small and the population is 
large. To illustrate, suppose four unlinked target QTL are 
screened among 150 recombinant inbreds. An average of 
one in 24 = 16 recombinant inbreds will have the Q

i
Q

i
 

genotype at all four QTL. If the breeder selects the best 
fi ve out of 150 recombinant inbreds, all fi ve are likely to 
have the ideal Q

i
Q

i
 genotype and, consequently, would 

also have the highest selection index values regardless of 
the b

i
 values used to calculate M

j
.

In contrast, suppose 10 unlinked target QTL are screened 
among 150 recombinant inbreds. It is highly unlikely that 
one of the 150 recombinant inbreds will have the Q

i
Q

i
 gen-

otype at all 10 QTL (i.e., probability of one in 1024 recom-
binant inbreds). Based on a binomial distribution, the best 
fi ve out of 150 recombinant inbreds will likely be fi xed for 
the Q

i
Q

i
 allele at eight out of the 10 QTL. If some QTL are 

more important than others so that b
i
 diff ers among the 10 

QTL, recombinant inbreds that carry the same number of 
QTL alleles will diff er in their performance. Furthermore, 
recombinant inbreds with more Q

i
 alleles may actually be 

inferior to recombinant inbreds with fewer Q
i
 alleles. Sup-

pose the QTL are numbered according to the magnitude of 
the eff ects of their alleles, i.e., Q

1
 has the largest eff ect, Q

2
 

has the second largest eff ect, and Q
10

 has the smallest eff ect. 
Assume that marker-based selection with an unweighted 
index leads to a recombinant inbred fi xed for Q

3
, Q

4
, Q

5
, 

…, Q
10

 (i.e., eight QTL alleles with the smallest eff ects). 
In contrast, marker-based selection with a weighted index 
leads to a recombinant inbred fi xed for Q

1
, Q

2
, Q

3
, … Q

6
 

(i.e., six QTL alleles with the largest eff ects). Depending 
on the distribution of QTL eff ects, the recombinant inbred 
fi xed for eight favorable QTL alleles may be inferior to the 
recombinant inbred fi xed for six favorable QTL alleles.

When combining favorable QTL alleles in germ-
plasm, the number of target QTL should therefore be 
kept manageable. Or, the breeder may initially target a 
large number of QTL and be prepared to accept having 
fewer QTL alleles fi xed in a recombinant inbred. Studies 
have suggested that for typical population sizes used in 
wheat, combining favorable marker alleles for more than 
9 to 12 unlinked QTL does not seem feasible (Howes et 
al., 1998; Wang et al., 2007). Given that improvement is 
targeted at a limited number of QTL, the breeder needs 
to have a high level of confi dence that the target QTL 
do not represent false positives. This implies that a strin-
gent signifi cance level (e.g., P ≤ 0.0001) should be used 
to identify the QTL in the fi rst place. Stringent signifi -
cant levels unfortunately lead to an upward bias in the 
estimates of QTL eff ects (Beavis, 1994; Xu, 2003) and 
may lead to overly optimistic expected responses from 
marker-based selection.
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For MARS, however, empirical and simulation 
research has shown that selection responses are increased 
if relaxed signifi cance levels (P = 0.20 to 0.40) are used to 
identify which markers have signifi cant eff ects and should 
therefore be selected (Edwards and Johnson, 1994; Hospital 
et al., 1997; Koebner, 2003). Relaxed signifi cance levels in 
MARS allow selection for QTL with smaller eff ects, and 
the inclusion of minor QTL more than compensates for the 
higher frequency of false positives. Because MARS does 
not aim to directly control changes in QTL allele frequen-
cies (Edwards and Johnson, 1994), the number of marker 
loci in MARS may be large, with the understanding that 
improved germplasm from MARS may not have the favor-
able allele across all QTL included in the selection index.

The relaxed signifi cance levels in MARS are therefore 
contrary to the stringent signifi cance levels required to iden-
tify QTL if the purpose is combining several QTL alleles in 
a recombinant inbred, introgression of a few major QTL, 
or gene discovery. Furthermore, less precision is required 
for pinpointing QTL locations when the purpose is to pre-
dict genotypic performance (as in MARS) than when the 
purpose is to combine favorable QTL alleles. In the lat-
ter, the QTL ideally should be tagged by a marker for the 
QTL itself, by a closely linked marker, or by two fl anking 
markers that will prevent the loss of the underlying QTL 
because of double recombination. A dense linkage map 
should therefore be used to map QTL if the objective is to 
combine favorable marker alleles in a recombinant inbred. 
In MARS, the multiple markers used in calculating marker 
scores may account for the eff ects of one or more nearby 
QTL. Simulation studies for maize have indicated that for 
a population size of 144 F

2
 plants, the response to MARS 

is largest when about 128 markers are used (Bernardo and 
Charcosset, 2006). This result indicates that markers used 
in MARS should be about 10 to 15 cM apart and that a 
dense linkage map is unnecessary for predicting perfor-
mance in MARS. Overall, these diff erences in the required 
marker density and signifi cance level for detecting QTL 
again underscore the need to clearly defi ne the purpose of 
a QTL mapping study.

INCONSISTENCY OF 
ESTIMATED QTL EFFECTS
The estimated eff ects of QTL are often inconsistent and 
this inconsistency has forced plant breeders to focus on 
major QTL that tend to have more consistent eff ects (e.g., 
Fhb1, rhg1, and Rhg4) or develop breeding strategies that 
circumvent this inconsistency (e.g., QTL mapping con-
ducted independently within each of several F

2
 popula-

tions). Reasons for the inconsistency of estimated QTL 
eff ects include (i) diff erent QTL segregating in diff erent 
mapping populations, (ii) QTL × genetic background 
interaction, (iii) QTL × environment interaction, and (iv) 
the Beavis eff ect (Beavis, 1994; Xu, 2003).

We obviously would expect to detect diff erent QTL 
in diff erent mapping populations if particular QTL are 
segregating in some populations but not in others. Ger-
mplasm of diverse genetic backgrounds and with diff erent 
selection histories would likely diff er in their QTL alleles. 
Diff erences in segregating QTL, however, would not be 
an issue if a unique QTL allele is identifi ed from a specifi c 
germplasm source and this source is used as a common 
donor parent. For example, when Sumai 3 or Sumai 3-de-
rived inbreds were crossed to a series of inbreds that were 
susceptible to Fusarium head blight, the Fhb1 locus was 
segregating in the diff erent crosses because the Fhb1 resis-
tance gene was found uniquely in Sumai 3 (Waldron et al., 
1999; Anderson et al., 2001; Pumphrey et al., 2007). This 
situation is unlikely, however, for other traits for which 
trait means of the parents are not widely divergent and for 
which no parent has a monopoly on favorable QTL alleles 
across many loci. A prime example would be grain yield 
among elite inbreds.

Even when a favorable QTL allele comes from a par-
ticular donor parent, the eff ect of the introgressed QTL 
allele may vary because of a general form of epistasis that 
has become known as QTL × genetic background inter-
action (Tanksley et al., 1989; Charcosset et al., 1994; Blanc 
et al., 2006). When the Fhb1 allele was introgressed into 
13 genetic backgrounds, the allele had its expected posi-
tive eff ect in 12 genetic backgrounds but a negative eff ect 
in one genetic background (Pumphrey et al., 2007). This 
negative eff ect may have been due to unfavorable interac-
tions between Fhb1 and unknown background genes in 
the recipient inbred. Interconnected populations, which 
are formed by crossing parental inbreds in a way that pairs 
of the resulting mapping populations have a parent in 
common, permit the study of QTL × genetic background 
interaction (Rebai et al., 1994; Charcosset et al., 1994; 
Jannink and Jansen, 2000). In a study of six intercon-
nected F

2
 maize populations among four parental inbreds, 

the percentage of signifi cant QTL × genetic background 
interactions was 8% for grain moisture, 9% for silking 
date, and 42% for grain yield (Blanc et al., 2006). Given 
that grain yield is arguably the most complex of these 
three traits, these results suggest that QTL × genetic back-
ground interactions are most important for traits that are 
controlled by a large number of QTL with minor eff ects.

Yet even within a single mapping population, esti-
mates of QTL eff ects may be inconsistent because of QTL 
× environment interaction and sampling error. One of the 
tenets of quantitative genetics is that genes aff ecting com-
plex traits are subject to genotype × environment interac-
tion, and as such QTL × environment interaction should 
also be expected. In a large QTL mapping study (popula-
tion size of N = 344) in maize, a total of 107 QTL were 
detected for grain yield, grain moisture, kernel weight, 
protein concentration, and plant height (Melchinger et 



CROP SCIENCE, VOL. 48, SEPTEMBER–OCTOBER 2008  WWW.CROPS.ORG 1657

al., 1998). About one third of these 107 QTL exhibited 
signifi cant QTL × environment interaction. Examples of 
signifi cant QTL × environment interactions or of QTL 
being detected in some environments but not in others 
have also been reported for other crop species including 
barley (Zhu et al., 1999), cotton (Paterson et al., 2003), 
oat (Zhu and Kaeppler, 2003), rice (Zhuang et al., 1997), 
soybean (Reyna and Sneller, 2001), sunfl ower (Leon et al., 
2001), tomato (Paterson et al., 1991), and wheat (Campbell 
et al., 2003). Unlike the estimation and testing of QTL × 
environment interaction eff ects, the detection of a QTL 
in one environment but not in another is not necessarily 
due to QTL × environment interaction: this may simply 
be due to an environment having a high error variance 
that prevented the detection of a QTL in that environ-
ment. Regardless of the underlying cause, the detection of 
a QTL in one environment but not in others hinders the 
transferability of QTL mapping results.

The same environment or set of environments may 
be used to map QTL among segregating progeny in 
the same cross so that QTL × environment interaction, 
QTL × genetic background interaction, and diff erences 
in segregating QTL are not issues. Yet the results of 
QTL mapping may still diff er due to the Beavis eff ect 
(Beavis, 1994; Xu, 2003). Beavis (1994) used both sim-
ulated data and N = 400 maize F

3
 families derived from 

the B73 × Mo17 cross to determine the eff ects of a 
small N on the power to detect QTL and the accuracy 
of estimated QTL eff ects. On the basis of family means 
across environments, QTL mapping for plant height 
was performed (i) with the entire set of N = 400 and 
(ii) in each of four random subsets of N = 100 families 
each. A total of four QTL were detected in the com-
bined mapping population of size N = 400. In contrast, 
only one to three QTL were detected in each of the 
subsets of N = 100 families. Furthermore, the R2 values 
for individual plant-height QTL increased from 3 to 
8% with N = 400, to 8 to 23% with N = 100. Other 
empirical studies in maize have led to similar results. In 
the Melchinger et al. (1998) study, a total of 31 QTL 
for plant height were detected in a mapping population 
of N = 344 maize F

3
 families derived from a biparental 

cross. When a smaller but independent set of N = 107 
families from the same biparental cross was used, only 
six QTL for plant height were detected. In a study by 
Schön et al. (2004), a total of 30 QTL for plant height 
were detected among testcrosses of N = 976 maize F

2:5
 

families. Multiple subsets of N = 488, 244, and 122 F
2:5

 
families were obtained by sampling without replace-
ment. The number of QTL detected decreased to a 
mean (across multiple subsets of size N ) of 17.6 with 
N = 488, 12.0 with N = 244, and 9.1 with N = 122.

These results, along with simulation studies (Bea-
vis, 1994) and analytical results (Xu, 2003), show that a 

small N leads to (i) fewer QTL being detected and (ii) an 
upward bias in the estimated eff ects of the few QTL that 
are detected. For a trait controlled by 10 unlinked QTL 
and a heritability ranging from h2 = 0.30 to 0.95, Beavis 
(1994) found that N = 500 progenies were required to 
detect at least half of the QTL. With 40 unlinked QTL, 
N = 1000 progenies were required to detect at least a 
quarter of the QTL. The eff ects of the detected QTL 
were greatly overestimated with N = 100, slightly over-
estimated with N = 500, and were close to their actual 
values with N = 1000.

For complex traits controlled by many minor QTL 
(rather than by a few major QTL), the inconsistency of 
estimated QTL eff ects has three important implications 
for plant breeders. First, because estimated QTL eff ects 
for traits such as grain yield or plant height have limited 
transferability across populations, QTL mapping for such 
traits will likely have to be repeated for each breeding 
population. This specifi city for each population is dem-
onstrated in MARS, where genotyping, phenotyping, 
and construction of a selection index are repeated for each 
population (Koebner, 2003). Second, because complex 
traits controlled by many QTL are likely subject to geno-
type × environment interaction, QTL mapping for the 
same population will likely have to be performed for each 
target set of environments. Third, because the eff ects of 
sampling error are large, population sizes of N = 500 to 
1000 are recommended if the objective is QTL mapping 
per se for highly complex traits that are likely controlled 
by many loci (Beavis, 1994). Evaluating N = 500 to 1000 
progenies for each cross of interest is unfortunately pro-
hibitive in plant breeding programs.

GAIN PER UNIT TIME AND COST
We have learned in the last 20 years that marker-based 
selection can increase the gain per unit time and gain per 
unit cost in breeding programs, particularly when pheno-
typing for the traits of interest is time-consuming, expen-
sive, and erratic. For example, screening for resistance to 
Fusarium head blight in wheat is routinely done in fi eld 
or greenhouse tests but the results are often inconsistent 
(Campbell and Lipps, 1998). Whereas a single test is suf-
fi cient to discard highly susceptible individuals, multiple 
fi eld tests at diff erent locations are needed for reliable eval-
uations of resistance to Fusarium head blight (Fuentes-
Granados et al., 2005). Although extensive screening and 
validation was required to initially identify the Fhb1 QTL, 
the deployment of Fhb1 has subsequently allowed simple 
marker-based selection among F

2
 plants or F

3
 families.

Detailed comparisons in soybean have likewise indi-
cated that the cost and time required to screen for SCN 
resistance are lower with marker-based selection than with 
phenotypic selection (Concibido et al., 2004). Specifi cally, 
marker-based screening required 1 to 2 d at the cost of 
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$0.25 to 1.00 per sample. In contrast, an SCN greenhouse 
assay required 30 d at the cost of $1.50 to 5.00 per sample.

The impact on gain per unit time will be largest if 
the use of markers reduces the amount of time needed per 
cycle of selection or increases number of cycles of selec-
tion that can be grown per year. The reduction in time per 
cycle will likely be largest for perennial crops. Oil palm 
(Elaeis guineensis Jacq.), for example, requires 19 years per 
cycle of phenotypic selection based on testcross perfor-
mance. Implementing MARS in oil palm would allow 
marker-based selection among physiologically immature 
palms and would reduce the time per cycle from 19 to 13 
years (Wong and Bernardo, 2008).

Only one season of fi eld trials can be done per year for 
annual crops in temperate regions. Gain per unit time for 
annual crops can be increased mainly by having multiple 
cycles of marker-based selection in greenhouses or off -
season nurseries. The MARS approach in maize, soybean, 
and sunfl ower illustrates how markers can increase gain 
per unit time (Eathington et al., 2007). The MARS pro-
cedure in maize involves two steps. First, markers associ-
ated with the traits of interest are identifi ed from fi eld 
trials of Cycle 0 testcrosses in Year 1 (e.g., May–October 
2008). Markers associated with the traits are then used to 
construct a marker selection index. The best families are 
recombined (November 2008–February 2009) to form 
Cycle 1. Second, up to three cycles of selection based on 
marker scores are conducted in Hawaii or Puerto Rico in 
Year 2 (Cycle 1 to Cycle 2 from March–June 2009; Cycle 
2 to Cycle 3 from July–October 2009; and Cycle 3 to 
Cycle 4 from November 2009–February 2010). Genotyp-
ing during each of the three cycles of selection is done at 
the seedling stage so that the best plants can be identifi ed 
before fl owering and intermated to form the next cycle. In 
other words, selection and recombination are performed 
in the same generation.

The aggressive use of markers in a year-round nurs-
ery, where phenotypic measurements do not refl ect per-
formance in the target environments (e.g., the U.S. Corn 
Belt) but where the marker genotypes remain the same, 
is therefore the key element that increases the gain per 
unit time in MARS. Furthermore, quantitative genetic 
theory has indicated that marker-based selection will be 
most effi  cient relative to phenotypic selection if (i) the 
markers to be used in selection are identifi ed in environ-
ments where h2 is high and (ii) selection is subsequently 
performed in environments where h2 is low (Dudley, 
1993). The MARS scheme satisfi es this “catch-22” situa-
tion (Holland, 2004): when marker-trait associations are 
identifi ed in Year 1, a suffi  cient number of environments 
should be used so that phenotypic measurements are reli-
able. But when marker-based selection is performed in 
Year 2, h2 is eff ectively low or near zero because the 
performance of individual plants in Hawaii or Puerto is 

a poor indicator of the plants’ genotypic value given the 
U.S. Corn Belt as the target environment.

Simulation and empirical results have suggested that 
the per-cycle gain is actually lower during marker-based 
selection in MARS than with phenotypic selection based 
on testcross performance. Simulation experiments in maize 
have indicated that the cumulative gain from two cycles 
of marker-based selection in MARS was about 25 to 50% 
lower than the gain from one cycle of phenotypic selec-
tion (Bernardo and Yu, 2007). Similarly, empirical results 
for maize grain yield in six F

2
 populations indicated that 

the gain from one cycle of marker-based selection was 
about 50% lower than the gain from one cycle of selection 
based on both phenotypic data and marker scores ( John-
son, 2004). Because one cycle of testcross selection in maize 
requires 2 years, the larger number of cycles per year with 
marker-based selection (up to three cycles per year) than 
with phenotypic selection (0.5 cycle per year) compensates 
for the lower per-cycle response to marker-based selection. 
Overall, the gain per year for grain yield in maize is there-
fore larger with MARS than with phenotypic selection.

Gains per unit cost are diffi  cult to compare because the 
cost of phenotyping varies greatly among traits and species, 
and the cost of genotyping varies according to the number 
of markers used and individuals genotyped. Assume that, 
with infl ation, the cost of one maize yield-trial plot has 
increased from $10 in 1998 (Weyhrich et al., 1998) to $15 
in 2008. If at least fi ve locations are needed to obtain reli-
able phenotypic data, the per-entry cost of phenotyping in 
maize would be at least $75. In contrast, the cost of SNP 
genotyping ranges from about 3 cents to 15 cents per data 
point (Schaeff er, 2006; Ha et al., 2007; Hyten et al., 2008, E. 
Buckler, personal communication, 2008; G.J. Muehlbauer, 
personal communication, 2008), where one data point cor-
responds to one plant sample genotyped for one marker 
locus and where the lower costs per data point are for larger 
numbers of SNP markers assayed at once (e.g., 1536 SNP 
markers). Even if the cost per data point for SNP markers 
remains at 15 cents, the per-entry cost of SNP genotyping 
for, say, 256 SNP markers would be $38.

The use of standard SNP chips for all F
2
 or back-

cross populations in a breeding program may lower the 
cost per data point due to an economy of scale. By this 
we mean that instead of screening the parental inbreds of 
each population for polymorphic markers and using only 
the polymorphic markers in marker-based selection, the 
same set of 256, 384, or 512 SNP markers on one or more 
standard SNP chips may be used for all breeding applica-
tions. Not all SNP markers on a standard SNP chip will 
be polymorphic for a given population, and the presence 
of uninformative SNP markers will increase the price per 
data point (Hyten et al., 2008). In this situation, the price 
per entry becomes more meaningful than the price per 
data point. The current price per entry is about $40 to $60 
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for a SNP chip with 1536 markers, with lower per-entry 
costs for larger numbers of entries (Hyten et al., 2008; E. 
Buckler, personal communication, 2008).

The above results regarding the cost of obtaining 
marker data are consistent with informal discussions I 
have had with several commercial maize breeders who 
indicated that in their breeding programs, the cost of 
genotyping is already less than the cost of phenotyping. In 
contrast, the large scale that is required to lower the per-
sample costs of genotyping indicates that the total cost of 
genotyping will remain high. This high total cost will be 
a challenge for noncommercial breeding programs and for 
minor crops for which research investment has been low. 
Nevertheless, although marker costs vary among breeding 
programs, the higher cost of phenotyping than of geno-
typing in some programs and the higher gains per unit 
time with MARS than with phenotypic selection suggest 
that marker-based selection is a resource-effi  cient breed-
ing methodology for complex traits.

FUTURE APPLICATIONS
The increasing availability of cheap and abundant molec-
ular markers suggests that markers should no longer be 
viewed as an add-on to a breeding program (Bernardo and 
Yu, 2007). I speculate that future applications of molecu-
lar markers in plant breeding will have three interrelated 
foci: (i) exploiting marker and phenotypic data routinely 
generated in a breeding program; (ii) marker-based selec-
tion before phenotyping; and (iii) marker-based selection 
without QTL mapping.

Exploiting Marker and Phenotypic Databases
The aggressive use of marker-based selection in a breeding 
program will eventually lead to large amounts of marker and 
phenotypic data. Suppose a maize breeder conducts MARS 
in 30 F

2
 populations each year, and that in each population 

N = 144 F
3
 families are genotyped at 384 SNP markers and 

evaluated for testcross performance in, say, six environments. 
The breeder may initially deem that the sole purpose of the 
phenotypic data (for 30 × 144 = 4320 testcrosses) and SNP 
data (30 × 144 × 384 = 1.7 million data points) is to allow 
marker-based selection for multiple, complex traits within 
each of the 30 populations. In this context, after the selec-
tions have been made in each population, the breeder may 
deem that the SNP and phenotypic data have served their 
purpose in a time- and cost-eff ective manner and that the 
data have no further use in the breeding program. This 
approach, however, would not be the wisest use of marker 
and phenotypic data that are accumulated in the course of 
marker-based selection. As indicated in the next two sec-
tions, the accumulated marker and phenotypic data could be 
mined for information that may later be used for marker-
based selection before phenotyping or without QTL map-
ping. As larger amounts of marker and phenotypic data 

are accumulated over time, the estimates or predictions of 
marker eff ects would become more refi ned and would make 
marker-based selection more eff ective.

In addition to F
2
 or backcross populations undergoing 

marker-based selection, experimental inbreds or hybrids 
are useful for fi nding marker-trait associations (Paris-
seaux and Bernardo, 2004). Experimental inbreds (e.g., 
soybean) or hybrids (e.g., maize) are evaluated in multi-
environment trials for their potential as released cultivars. 
The resulting yield-trial databases are a rich resource for 
fi nding marker-trait associations both within and across 
diff erent genetic backgrounds. Furthermore, the use of 
many environments in cultivar trials permits the sampling 
of a large set of genotype × environment interactions. For 
example, an experimental maize hybrid is typically evalu-
ated in 20 environments, and those that are eventually 
released as cultivars are evaluated in up to 1500 location-
year combinations (Smith et al., 1999). Marker-trait asso-
ciations may then be identifi ed either for a wide range of 
environments or for a specifi c subset of environments.

Combining marker and phenotypic data from mul-
tiple F

2
 or backcross populations as well as experimental 

cultivars leads to (i) highly unbalanced data sets and (ii) 
strong population structures. Methods for mining marker 
and phenotypic databases should therefore account for 
these two complicating factors. Mixed-model methods 
have long been used to handle large, unbalanced data sets 
as well as account for pedigree relationships (Henderson, 
1984), and these methods have been successfully extended 
and used for fi nding marker-trait associations (Kennedy 
et al., 1992; Parisseaux and Bernardo, 2004; Zhang et al., 
2005; Yu et al., 2006). Among 6921 maize single-crosses 
with diff erent genetic backgrounds, a major QTL for 
resistance to common smut [Ustilago maydis (DC.) Cda.] 
was detected on chromosome 8 via mixed-model analysis 
(Parisseaux and Bernardo, 2004). Marker-trait associa-
tions for other traits in maize, including grain moisture, 
have been identifi ed through an identity-by-descent 
approach (Zhang et al., 2005) that traces the inheritance 
of QTL through a pedigree (Graham and Podlich, 2006). 
Because the identity-by-descent of markers is considered, 
the marker-trait associations detected may have greater 
repeatability across diff erent inbreds or populations.

Marker-Based Selection before Phenotyping
In the MARS scheme described so far, a set of progenies 
are both genotyped and phenotyped and an ad hoc index 
is used in multiple cycles of selection in the same cross. An 
ad hoc index refers to a marker selection index constructed 
from marker and phenotypic data for a given cross and used 
for selection in the same cross. Can an eff ective prior index, 
however, be constructed from prior marker and phenotypic 
data on germplasm related to the cross at hand? If so, the 
prior index can be used for marker-based selection of the 
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best individuals in the cross at hand, before obtaining any 
phenotypic data on the cross. Prior indices would likely be 
most useful in the early stages of selection, during which 
large numbers of progenies need to be quickly evaluated.

Two studies suggest the feasibility of a prior index for 
marker-based selection without phenotyping the popula-
tion at hand. In sweet corn, families selected based on a 
prior index yielded 4% higher than families selected based 
on fi eld evaluations ( Johnson, 2001). In maize, divergent 
marker-based selection with a prior index led to a 25 g H

2
O 

kg–1 diff erence in grain moisture between the high and low 
selections (Eathington et al., 2007). Details are unavailable 
on how the prior indices were calculated in these two stud-
ies. Comparisons of the responses to an ad hoc index vs. 
a prior index are likewise unavailable. Nevertheless, prior 
indices will become increasingly attractive as the cost of 
genotyping decreases and the cost of phenotyping increases. 
Furthermore, prior and ad hoc indices may complement 
each other. Marker-based selection among individual F

2
 

plants may fi rst be performed with a prior index. If the cross 
proves superior and warrants further selection, F

2
-derived 

progenies could be phenotyped and an ad hoc index could 
be developed and used for further selection in the cross.

As previously mentioned, plant breeding for com-
plex traits involves three phases: (i) creating genetic vari-
ation mainly by crossing good by good, (ii) selecting the 
best progenies in the cross, and (iii) synthesizing the best 
progenies into a new and improved cultivar (Dudley and 
Moll, 1969). In the literature, most of the applications 
of molecular markers for improving complex traits have 
focused on the middle phase of selecting within a popu-
lation. Little research has been published on the useful-
ness of marker-trait associations for choosing parents of 
populations in inbred development for several complex 
traits, or for choosing the parents of a single-cross cul-
tivar for hybrid crops. Best linear unbiased prediction 
(BLUP) based only on phenotypic and pedigree data 
has been useful for choosing parents to maximize the 
mean performance of F

2
 or backcross populations and for 

predicting the performance of single crosses before fi eld 
testing (Bernardo, 1996). Simulation studies have indi-
cated that because BLUP is eff ective for predicting mean 
performance, marker information adds little to the pre-
diction of single-cross performance (Bernardo, 2001).

On the other hand, pedigree-based BLUP is not useful 
in within-population selection because individuals within 
the same F

2
 or backcross population have the same pedi-

gree (Bernardo, 2002). Marker applications reported in 
the literature have therefore already focused on the phase 
of breeding where markers are potentially most useful. 
Furthermore, results for grain moisture in maize suggest 
that a prior index is useful for predicting the performance 
of individuals within a cross (Graham and Podlich, 2006). 
These results suggest that prior indices may be used to 

create virtual F
2
 or backcross populations that can then 

serve as a basis for choosing which F
2
 or backcross popula-

tions to create in a breeding program. This topic deserves 
much further study.

Marker-Based Selection 
without QTL Mapping
As previously mentioned, F

2
 enrichment can target up 

to 9 to 12 unlinked QTL whereas MARS can target a 
larger number of marker loci (e.g., 30), with the under-
standing that recombinant inbreds eventually developed 
from MARS might not be fi xed for the favorable allele 
at all target loci. One may argue that MARS does not 
truly entail QTL mapping because the procedure does not 
require mapping the specifi c positions of QTL (e.g., as in 
interval mapping) relative to the markers with signifi cant 
eff ects. A third approach, genomewide selection (Meuwissen 
et al., 2001), focuses purely on prediction of performance 
and avoids QTL mapping altogether (Fig. 1).

To illustrate, suppose an F
2
 population is genotyped with 

512 SNP markers. Further suppose that in MARS, signifi -
cance tests at P = 0.20–0.40 subsequently identify 30 SNP 
markers associated with grain yield. The multiple-regression 
coeffi  cients for these 30 markers are then used as weights (b

i
) 

in calculating marker scores (M
j
) in MARS. In genomewide 

selection, however, the joint eff ects on a quantitative trait of 
all 512 SNP markers are fi tted as random eff ects in a linear 
model. Trait values are still predicted from a weighted index 
with the form M

j
 = Σ b

i
 X

ij
, but a b

i
 is calculated for each of 

the 512 markers instead of only for those markers that were 
found signifi cant (30 in this example) in MARS (Bernardo 
and Yu, 2007). Because marker eff ects are fi tted as random 
eff ects, the number of markers used can exceed the popu-
lation size. Whereas MARS involves a two-step process of 
model selection (i.e., which markers to use) and model esti-
mation (i.e., eff ect of each signifi cant marker), genomewide 
selection avoids model selection altogether.

Simulation studies have indicated that across diff er-
ent numbers of QTL (20, 40, and 100) and levels of h2, 
responses to genomewide selection were 18 to 43% larger 
than the corresponding responses to MARS (Bernardo and 
Yu, 2007). Genomewide selection was found most useful for 
complex traits controlled by many QTL and with a low h2. 
Furthermore, genomewide selection can be implemented 
in the same way as MARS (i.e., three cycles of marker-
based selection in Hawaii or Puerto Rico) with the obvi-
ous exception of having to genotype all individuals with 
a larger number of markers. Empirical studies comparing 
genomewide selection and MARS in maize are underway 
(R. Bernardo and H.G. Jung, in progress). Genomewide 
selection methods that utilize a prior index rather than an 
ad hoc index need further study.

In addition to genomewide selection, machine learning 
methods represent a potentially useful class of procedures 
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for maximizing the power of molecular markers to pre-
dict performance. Some plant breeders may already have 
unknowingly used machine learning methods in chemomet-
ric analysis, e.g., fi nding near-infrared refl ectance spectros-
copy (NIRS) calibrations for nondestructive measurement of 
chemical composition of seeds or other plant parts. Breed-
ers who have been involved in calibrating NIRS machines 
know that a representative, training sample is needed to 
develop calibrations. In the same way, machine learning 
methods as applied to marker-based selection would focus 
on fi nding rules or patterns in massive sets of phenotypic 
and marker data. Machine learning methods such as artifi cial 
neural networks have been used to map disease loci in humans 
(Lucek and Ott, 1997), whereas support vector machine regres-
sion has been used in maize (Maenhout et al., 2007). Results 
indicated that support vector machine regression and BLUP 
based on phenotypic and pedigree data (Bernardo, 1996) were 
equally good at predicting maize single-cross performance. 
The usefulness of machine learning methods for predicting 
performance based on prior marker data and prior pheno-
typic data needs further study. Machine learning methods 
may be particularly useful in accounting for epistatic interac-
tions (Thornton-Wells et al., 2004) that may be important in 
the context of long-term selection for certain traits (Carlborg 
et al., 2006; Dudley, 2008).

In a previous Perspectives article, I concluded that because 
of the diffi  culty in estimating the joint eff ects of many QTL 
from fi nite data sets, knowing the number and location of 
the QTL themselves has little value in selecting for a quanti-
tative trait (Bernardo, 2001). Predictive, black-box method-
ologies, such as genomewide selection, ignore information 
on the number and location of QTL and focus on the genetic 
improvement of quantitative traits rather than on under-
standing their genetic basis. The usefulness of marker-based 
selection procedures that focus on predicting performance 
indicates that markers can be used simply as a selectable tool 
to improve a complex trait, without a clear understanding of 
the underlying genetics of the trait. The promise of predic-
tive methods such as genomewide selection, however, does 
not imply that QTL discovery should no longer be done. 
Rather, the data used in genomewide selection can also be 
used to map QTL. Any markers found to have large, highly 
signifi cant eff ects can subsequently be exploited by intro-
gressing such major QTL into other germplasm.

SUMMARY AND CONCLUSIONS

The main points presented 
in this article were as follows

1. For complex traits, QTL mapping is (too) routine but 
marker-based selection is not.

2. At the outset, one needs to determine if he or she is 
interested primarily in gene discovery or in selection 
to improve a complex trait.

3. The germplasm, procedures, stringency, and resolu-
tion required for QTL mapping depend on how the 
results of QTL mapping will be exploited.

4. For traits controlled by few QTL, an eff ective strat-
egy is to fi nd major QTL in unique germplasm and 
to introgress these QTL in breeding germplasm.

5. For traits controlled by several QTL, an eff ective 
strategy is to select for carrier F

2
 individuals and 

develop recombinant inbreds with most, if not all, of 
the target QTL alleles.

6. For traits controlled by many QTL, the results of 
QTL mapping are often inconsistent.

7. For single or multiple traits controlled by many 
QTL, an eff ective strategy is to increase the fre-
quency of favorable marker alleles via cyclical 
marker-based selection.

8. For single or multiple traits controlled by many 
QTL, prediction of performance based on multiple 
markers is more eff ective than pyramiding specifi c 
QTL alleles.

9. In major commercial breeding programs, costs of 
genotyping are now lower than the costs of pheno-
typing.

10. Future applications will focus on predictive meth-
odologies for marker-based selection before phe-
notyping and for marker-based selection without 
QTL mapping.

In conclusion, we have learned in the last 20 years that 
fi nding QTL for complex traits is easy but exploit-
ing these QTL in selection is more diffi  cult. Gains per 
cycle are not necessarily greater with marker-based 
selection than with phenotypic selection, but markers 
can increase the gain per year and per unit cost. As 
marker data become more readily available than pheno-
typic data, plant-breeding decisions will become more 
genotype-driven than phenotype-driven. Plant breed-
ers then would need to design marker-based breeding 
schemes that consider both the routine availability of 
marker data and the continuing challenges in obtaining 
good phenotypic information.
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