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Schistosomiasis is considered a neglected parasitic disease. Around 280,000 people die from it annually, and more than 779 million
people are at risk of getting infected. The schistosome species which infect human beings are Schistosoma mansoni, Schistosoma
haematobium, Schistosoma intercalatum, Schistosoma japonicum, Schistosoma guineensis, and Schistosoma mekongi. This disease
is also of veterinary significance; the most important species being Schistosoma bovis since it causes the disease in around 160
million livestock in Africa and Asia. This work was aimed at designing and developing a genus-specific loop-mediated
isothermal amplification (LAMP) method for detecting the most important schistosome species affecting humans and for the
species-specific detection of S. bovis. Bioinformatics tools were used for primer design, and the LAMP method was standardised
for detecting the ITS-1 region from S. intercalatum, S. haematobium, S. mansoni, S. japonicum, and S. bovis DNA (generic test)
and the NADH 1 gene for specifically detecting S. bovis (at different DNA concentrations). Detection limits achieved were 1 pg
DNA for S. mansoni, 0.1 pg for S. haematobium, 1 pg for S. intercalatum, and 10 pg for S. bovis. No amplification for S.
japonicum DNA was obtained. The LAMP designed for the amplification of S. bovis NADH-1 worked specifically for this
species, and no other DNA from other schistosome species included in the study was amplified. Two highly sensitive LAMP
methods for detecting different Schistosoma species important for human and veterinary health were standardised. These
methods could be very useful for the diagnosis and surveillance of schistosome infections.

1. Introduction

Schistosomiasis is a parasitic disease caused by several species
of trematode worms of the genus Schistosoma. It is one of the
20 tropical diseases on the World Health Organization’s
(WHO) list of Neglected Tropical Diseases (NTDs) [1]. The
disease affects at least 240 million people worldwide and

more than 779 million are at risk of contracting it [2]. The
infection is endemic in 78 countries, mainly in tropical and
subtropical areas, although it predominates in Sub-Saharan
Africa where more than 80% of the cases occur, leading to
around 280,000 deaths annually. The Global Burden of Dis-
ease study attributed 1.43 million disability-adjusted life
years (DALYs) to it in 2017 [2–5].
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Of the 23 Schistosoma species described to date, S. mansoni,
S. haematobium, and S. japonicum are the main human species
[6, 7]. Nevertheless, schistosomes also represent a health prob-
lem for animals, including ruminants, rodents, and primates.
The species causing animal schistosomiasis are mainly Schisto-
soma bovis, S. japonicum, S. mekongi, S. mattheei, S. curassoni,
S. margrebowiei, S. leiperi, S. indicum, and S. spindale. S. bovis
is one of the most important ones parasitizing cattle and caus-
ing significant economic losses, affecting around 160 million
animals in Africa and Asia [8, 9].

Schistosomes have a complex life cycle requiring an
aquatic snail as intermediate host and a vertebrate as definitive
host [10]. Schistosomiasis is acquired by direct contact with
fresh water contaminated by parasite larvae (called cercariae),
which have been emitted into an aquatic environment by the
aquatic snails, actively penetrating the skin of a susceptible
host [11]. Paired couples of adult schistosome worms live in
a definitive host’s mesenteric or perivascular veins where they
reproduce and lay their eggs. The eggs are released into the
environment through urine (S. haematobium) or faeces (the
rest of the species) or can be retained in host tissues where they
induce an inflammatory response [7].

Both S. mansoni and S. haematobium are found in Africa
and the Middle East, whereas S. mansoni is the only species
found in South America. S. japonicum occurs in Asia, espe-
cially in the Philippines and China; S. mekongi in theMekong
river basin, and S. guineensis and S. intercalatum in West and
Central Africa [7]. S. bovis can be found throughout the
African continent, south-western Asia (Israel, Iran, Iraq,
Syria, and Turkey), Mediterranean islands (Corsica, Sardinia,
and Sicily), and the Iberian peninsula [12].

Schistosomiasis can be treated if an accurate diagnosis is
made and a prompt treatment with praziquantel (PZQ) is
administered. Using appropriate and sensitive diagnostic
techniques is thus essential for identifying infected individ-
uals [13]. Parasitological diagnosis is specific, cheap, and sim-
ply performed. However, in laboratories with limited
resources, it is not very sensitive, especially when infection
intensity is low, as occurs in areas with low prevalence and/or
in individuals having been recently infected or having low
parasite load. Furthermore, this can only be done after egg
production and elimination has begun, approximately two
months after infection [11]. Immunodiagnostic tests have
been shown to have high sensitivity in cases where parasito-
logical techniques have provided false negative results [13].
However, they have problems related to obtaining antigens
and false positive results since it is difficult to differentiate
between active and/or past infections or reinfections and
there can also be problems regarding specificity with other
helminths or even between different species from the genus
Schistosoma. Furthermore, such tests are not useful during
the disease’s acute phase, since antibodies targeting the para-
site would not yet have appeared [11, 13]. On the other hand,
immunodiagnostic tests based on detecting the circulating
cathodic antigen (CCA) or circulating anodic antigen
(CAA) in either urine or blood have the advantage of not
requiring a trained personnel for their interpretation or spe-
cialised equipment, being more sensitive and specific than
egg detection in faeces by microscopy, although they could

give false positive results. It is worth highlighting that such
techniques detect adult forms and not eggs, so xenomonitor-
ing combining either CAA or CCA with molecular biology
techniques is thus recommended for verification and main-
taining elimination [14].

Molecular diagnosis is particularly useful regarding infec-
tions with low parasitaemia [15, 16]. PCR and its variants
have been of great use, and some authors have proposed such
techniques as the gold standard for diagnosing schistosomia-
sis [17]. However, they are expensive and require a specia-
lised personnel and equipment, meaning that they are not
useful for diagnosis in field conditions and their use is limited
to just a few reference laboratories [18].

Several molecular techniques based on isothermal
methods exist, such us nucleic acid sequence-based amplifica-
tion (NASBA, also known as transcription-mediated amplifi-
cation, TMA), signal-mediated amplification of ribonucleic
acid (RNA) technology (SMART), helicase-dependent
amplification (HDA), recombinase polymerase amplifica-
tion (RPA), rolling circle amplification (RCA), multiple dis-
placement amplification (MDA), loop-mediated isothermal
amplification (LAMP), and strand displacement amplifica-
tion (SDA); such techniques might provide an alternative
tool regarding other more complex molecular methods
[19]. The development and application of new methods
meeting the characteristics for the ideal diagnosis of schisto-
somiasis should include high sensitivity and specificity, ease
of use and interpretation, being able to use different sample
types, rapidity, low cost, and being able to be applied in
disease-endemic areas having scarce economic resources
[20]. This work describes designing and developing a LAMP
method for detecting species-specific S. bovis and a genus-
specific LAMP method for detecting the most important
schistosome species affecting humans.

2. Materials and Methods

2.1. Selecting Targets for LAMP Amplification of Schistosoma
bovis and Genus Schistosoma.When this study started, the S.
bovis genome had not been yet completely sequenced and
there was limited sequence information in databases. Thus,
a thorough search in the GenBank database (https://www.
ncbi.nlm.nih.gov/genbank/) was carried out to locate all
possible available DNA sequences. An alignment of the
sequences found was carried out using ClustalW to obtain a
consensus sequence. When the comparison did not allow
generating a consensus sequence, different sequence groups
were made up based on their greater identity. Subsequently,
the BLAST program (Basic Local Alignment Search Tool;
https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to assess
the identity of S. bovis sequences obtained to other species.
Then, to refine the search and obtain greater accuracy in
the results, the sequences were compared in two other
schistosome-specific databases: SchistoDB (Schistosoma
Genomic Resources; http://schistodb.net/schisto/), which
contains the genome of S. mansoni, S. haematobium, and S.
japonicum, and the Wellcome Trust Sanger Institute data-
base (http://www.sanger.ac.uk/), which houses continuously
updated genome sequencing results of 50 helminths,
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including several Schistosoma species (50 Helminth
Genomes Project; http://www.sanger.ac.uk/science/colla
boration/50hgp). Once all S. bovis sequences were compared
and analysed, the most suitable one was selected for design-
ing specific primers for the LAMP.

Useful sequences for designing the specific primers for
developing a LAMP method for amplifying the genus
Schistosoma were selected following similar steps as those
described above for S. bovis.

2.2. Designing LAMP Primers. LAMP primer sets comple-
mentary to the selected specific nucleotide sequences were
designed using both the online PrimerExplorer V5 software
(Eiken Chemical Co., Ltd., Japan; https://primerexplorer.jp/
e/) and the LAMP Designer software (OptiGene Ltd., UK;
http://www.optigene.co.uk/lamp-designer/) since the two
programs use different design parameters. HPLC grade
primers were used (Thermo Fisher Scientific Inc., Madrid,
Spain). Lyophilised primers were resuspended in ultrapure
water to a final 100 pmol/μL concentration and stored at
-20°C until use.

2.3. Obtaining and Preparing Schistosoma Species DNA. S.
bovis adult worms were obtained from hamsters experimen-
tally infected in the laboratory of Animal Parasitology, Insti-
tute of Natural Resources and Agrobiology of Salamanca
(IRNASA-CSIC), Spain. S. bovis genomic DNA (gDNA)
was extracted from worms kept frozen using the NucleoSpin
Tissue Kit (Macherey-Nagel, GmbH&Co., Germany) follow-
ing the manufacturers’ instructions.

S. mansoni DNA (Brazilian strain) was extracted from
frozen adult male and female worms available in our labora-
tory. This strain has been maintained by serial passages in
mice routinely infected in the Laboratory of Parasitic and
Molecular Immunology, CIETUS, University of Salamanca.
Genomic DNA from adult male and female S. haematobium
(Egyptian Strain; NR-31682) and genomic DNA from adult
male and female S. japonicum (Chinese Strain; NR-36066)
were obtained from the Schistosomiasis Resource Centers
for distribution by BEI Resources, NIAID, NIH (https://
www.beiresources.org/Collection/51/Schistosome-Resource-
Centers.aspx). S. intercalatum DNA was provided by Doctor
José Manuel da Costa from the Center for Parasite Biology
and Immunology, National Institute of Health Doutor
Ricardo Jorge, Porto, Portugal. This DNA comes from a
donation from Centers for Disease Control and Prevention,
Atlanta, USA. All gDNAs were measured three times by
spectrophotometry using a Nanodrop ND-100 spectropho-
tometer (Nanodrop Technologies) to obtain an average con-
centration and then diluted with ultrapure water to a final
5 ng/μL concentration. Subsequently, serial 10-fold dilutions
from schistosomes’DNA were prepared with ultrapure water
ranging from 1 × 10−1 to 1 × 10−9 and stored at -20°C until
use. DNAs thus prepared were used as positive controls in
all LAMP and PCR reactions as well as for assessing sensitiv-
ity and specificity of both assays.

2.4. PCR with F3 and B3 External Primers.A touchdown PCR
(TD-PCR) using designated F3 and B3 external primers was

initially tested to verify that the correct target sequence
selected in silico was amplified. The PCR assay was con-
ducted in a 25μL reaction mixture containing 2.5μL of 10x
buffer, 1.5μL of 25mM MgCl2, 2.5μL of 2.5mM dNTPs,
0.5μL of 100 pM F3 and B3, 2U Taq-polymerase, and 2μL
(10 ng) of DNA template. Initial denaturation was conducted
at 94°C for 1min, followed by a touchdown program for 15
cycles with successive annealing temperature decrements of
1.0°C every 2 cycles. For these 2 cycles, the reaction was dena-
tured at 94°C for 20 s followed by annealing at 65°C–60°C for
20 s and extension at 72°C for 30 s. The following 15 amplifi-
cation cycles were similar, except that the annealing temper-
ature was 59°C. The final extension was performed at 72°C
for 10min. The same reaction mixture was used in all PCR
reactions (except for the primers), and the amplification con-
ditions varied according to different annealing temperatures
of the primers used.

DNA samples (2μL; 0.5 ng/μL) from the Schistosoma
species included were used to evaluate specificity; nega-
tive (ultrapure water instead of DNA) and positive
(DNA from each species) controls were included in each
PCR assay.

2.5. LAMP Assay. The LAMP primer sets designed were eval-
uated by using a reaction mixture containing 40 pmol each of
FIP and BIP primers, 5 pmol each of F3 and B3 primers,
1.4mM each of dNTP (Intron), 1x Isothermal Amplification
Buffer-20mM Tris-HCl (pH8.8), 50mM KCl, 10mM
(NH4)2SO4, 2mM MgSO4, 0.1% Tween20 (New England
Biolabs, UK)-betaine (1M) (Sigma, USA), supplementary
MgSO4 (4mM) (New England Biolabs, UK), and 8U of Bst
polymerase 2.0 WarmStart (New England Biolabs, UK) with
2μL (1ng) of template DNA. LAMP reactions were per-
formed in 0.2mL tubes that were incubated in a dry bath heat
block at 63°C-65°C for 60min and then heated at 80°C for 5-
10min to stop the reaction.

Schistosome DNA samples mentioned above were used
to evaluate the specificity of the LAMP assay; the lower
detection limit of the LAMP assay was established by using
10-fold serial dilutions prepared as previously described.
Positive controls (DNA from all species tested) and negative
controls (ultrapure water instead of DNA) were included in
all LAMP reactions.

2.6. Detection of Amplification Products. PCR amplification
products were monitored using 1.5% agarose gel electropho-
resis stained with ethidium bromide and visualised under
UV light.

LAMP reaction results were visually inspected by colori-
metric change by adding 2μL (1 : 10, 10,000x) SYBR Green I
fluorescent dye (Invitrogen, Carlsbad, California, USA) to
the reaction tubes. Green fluorescence was observed in posi-
tive reactions whilst it remained original orange in negative
reactions; additionally, the products (3-5μL) were monitored
by 1.5% agarose gel electrophoresis and visualised under UV
light. All electrophoresed PCR and LAMP agarose gels were
photographed using an ultraviolet gel documentation system
(UVItec, UK).
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3. Results

3.1. Selecting Targets for LAMP Amplification of Schistosoma
bovis and Genus Schistosoma. Sequence similarity analysis of
the selected sequences downloaded from the GenBank,
SchistoDB, and Sanger databases allowed selecting several
potentially useful sequences to design primers for the specific
detection by LAMP of S. bovis and for the simultaneous
detection of several schistosome species (genus Schistosoma)
(Tables S1, S2). After comparison, a 678 bp sequence derived
from mitochondrial NADH subunit 1 (NADH-1) (GenBank
access number HM594942) and a 457 bp sequence from
the internal transcribed spacer 1 (ITS-1) (GenBank access
number GU257398) were selected for detecting S. bovis
and Schistosoma spp., respectively (Figure 1).

3.2. Designing and Synthesising Primers for LAMP
Amplification. Specific LAMP primers were designed using
two programs: LAMP Designer and PrimerExplorer V5.
Different primer sets were generated depending on the par-
ticular characteristics and parameters evaluated by each soft-
ware. A set of 6 primers (including 2 loop primers) were thus
selected to amplify the S. bovis NADH-1 sequence as
designed by the LAMP Designer software, whilst a set of 5
primers (including 1 loop primer) to amplify Schistosoma
species ITS-1 sequence, as designed in the PrimerExplorer
software (Table 1).

3.3. TD-PCR with F3 and B3 External Primers. After testing
several different reaction temperatures and cycles, amplifica-
tion conditions for TD-PCR were finally established for S.
bovis NADH-1 (range 58-53°C; 53°C × 15 cycles) and Schis-

tosoma spp. ITS-1 fragment (range 61-57°C; 57°C × 30
cycles). An approximately 420 bp PCR product was obtained
for S. bovis NADH-1 sequence (400 bp predicted in silico)
(Figure 2). This sequence was only amplified when using S.
bovis DNA, but no amplicons were obtained with DNA sam-
ples from other schistosome species tested.

On the other hand, a PCR product between 220 and
225 bp was obtained for Schistosoma spp. ITS-1 sequence
(216 bp predicted in silico) (Figure 3). This PCR product
was successfully amplified when DNA samples from the
schistosome species included in the study were analysed.
However, amplicons obtained for S. mansoni, S. haemato-
bium, and S. bovis showed a greater signal intensity than
those obtained for S. japonicum and S. intercalatum.

3.4. LAMP for Amplifying S. bovis NADH-1 and Genus
Schistosoma ITS-1 Target Sequences. As shown in Figure 4,
only LAMP products were obtained when S. bovis DNA
was used as template to amplify NADH-1 sequence. No false
positive amplification was observed when using DNA from
other schistosomes (Figure 4(a)), thus indicating the high
specificity of the designed LAMP primers. Regarding sensi-
tivity, the results indicated that the detection limit of LAMP
for S. bovis NADH-1 amplification was 0.01 ng (10 pg)
(Figure 4(b)).

LAMP results when using the specific primers to amplify
ITS-1 sequence for several schistosome species DNA are
shown in Figure 5. Amplification products were observed
when using DNA from S. mansoni, S. haematobium, S. inter-
calatum, and S. bovis, but not from S. japonicum. Colour
change was clearly visualised in positive results, and also, a

NADH
subunit 1
S. bovis

BLAST SchistoDB Sanger

>85% <85% >85% <85%

S. curassoni S. haematobium
S. mansoni
S. japonicum

S. curassoni S. margrebowiei
S. intercalatum
S. guineensis
S. mattheei
S. rodhaini

(a)

ITS-1

Schistosoma

BLAST SchistoDB Sanger

>85% <85% >85% >85%

S. haematobium
S. mansoni
S. bovis
S. curassoni
S. margrebowiei
S. guineensis
S. mattheei
S. rodhaini

S. hippopotami
S. edwardiense
S. turkestanicum
Orientobilharzia

S. haematobium
S. mansoni
S. japonicum

S. margrebowiei
S. intercalatum
S. guineensis
S. curassoni
S. mattheei
S. rodhaini
S. bovis

(b)

Figure 1: Degree of sequence similarity detected amongst the selected sequences for designing the LAMP primers and schistosome sequences
queried in each database. (a) S. bovis mitochondrial NADH subunit 1 sequence. (b) ITS-1 sequence from several Schistosoma species.
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typical ladder-like band pattern was observed on agarose gel
electrophoresis.

When evaluating the sensitivity of the established LAMP
assays for ITS-1 sequence, the detection limit in Schistosoma

spp. genomic DNA amplification was different depending on
the species used as template (Figure 6). Thus, a detection
limit of 0.001 ng (1 pg) was obtained for S. mansoni and S.
intercalatum (Figures 6(a) and 6(c)), 0.0001 ng (0.1 pg) for

Table 1: Primer sets selected in this work for amplifying the S. bovis NADH subunit 1 and the ITS-1 region from the genus Schistosoma.

(a) LAMP primers for the S. bovis sequence (LAMP Designer)

NADH subunit 1

Primer 5′ pos 3′ pos Length (bp) Tm (°C) GC ratio (%) Sequence

SbF3 219 236 18 56.8 38.9 TTCATTGTTAGGTTGCGT

SbB3 642 619 24 57 33.3 TCTATATTCTACTCTAATCCCTCT

SbFIP 48
TCAGTATCATCTCAAACATCACACTAGTAGTATGTTCTGTCTTA

AGTT

SbBIP 45 TTTGTAGTACCTCTGGTTTACATCATTCACTCTCAGACTCTACAT

SbF2 327 349 23 56.8 30.4 AGTAGTATGTTCTGTCTTAAGTT

SbF1c 424 448 25 62.1 36 TCAGTATCATCTCAAACATCACACT

SbB2 593 612 20 57 40 TTCACTCTCAGACTCTACAT

SbB1c 520 544 25 61.8 36 TTTGTAGTACCTCTGGTTTACATCA

SbLF 364 388 25 61.9 36 ACTTAGACCATGAACATCAACCTAT

SbLB 560 584 25 61.9 40 TACTAAGTGAGAGTAATCGAACACC

(b) LAMP primers for the genus Schistosoma sequence (Primer Explorer V5)

ITS-1

Primer 5′ pos 3′ pos Length (bp) Tm (°C) GC ratio (%) Sequence

SF3 2 19 18 59.7 61 TTGACCGGGGTACCTAGC

SB3 200 218 19 59.5 53 CGTGAATGGCAAGCCAAAC

SFIP 39 ATCGCCCTTGGCAGATCAGGCTGTCGTATGCCCTGATGG

SBIP 40 ATATGCATGCAAATCCGCCCCGCGGATCGCTTCAACAGTGTA

SF2 20 38 19 59.2 58 CTGTCGTATGCCCTGATGG

SF1c 61 80 20 64.2 60 ATCGCCCTTGGCAGATCAGG

SB2 180 199 20 59.5 50 CGGATCGCTTCAACAGTGTA

SB1c 135 156 20 65.9 55 ATATGCATGCAAATCCGCCCCG

SLF 39 60 22 60.4 45 CAGATCAGGCAACCCGAAAG

For S. bovis (Sb) and genus Schistosoma (S): F3=forward outer primer; B3=backward outer primer; FIP=forward inner primer (comprising F1c and F2
sequences); BIP=backward inner primer (comprising B1c and B2 sequences); LF=loop forward primer; LB=loop backward primer.

M N NSm Sm Sh Sh Sj Sj Si Si Sb Sb

400 bp

500 bp

Figure 2: TD-PCR F3-B3 for amplifying S. bovis NADH-1. A 58-53°C temperature range and 53°C × 15 cycles were used. Sm: S. mansoni
DNA; Sh: S. haematobium DNA; Sj: S. japonicum DNA; Si: S. intercalatum DNA; Sb: S. bovis DNA; N: negative control (ultrapure water,
no DNA). M: molecular weight marker (100 bp PLUS BLUE DNA ladder).
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M N NSm Sm Sh Sh Sj Sj Si Si Sb Sb

300 bp

200 bp

Figure 3: TD-PCR F3-B3 for amplifying genus Schistosoma ITS-1. A 61-57°C temperature range, and 57°C × 30 cycles were used. Sm:
S. mansoni DNA; Sh: S. haematobium DNA; Sj: S. japonicum DNA; Si: S. intercalatum DNA; Sb: S. bovis DNA; N: negative control
(ultrapure water, no DNA). M: molecular weight marker (100 bp PLUS BLUE DNA ladder).

N NSm Sm Sh Sh Sj Sj Si Si Sb Sb

(a)

Sb 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 N N

10 pg (0.01 ng)

(b)

Figure 4: LAMP assay for amplifying S. bovis NADH-1. (a). Specificity assessment. Only NADH-1 was amplified using S. bovis DNA. Sm:
S. mansoni DNA; Sh: S. haematobium DNA; Sj: S. japonicum DNA; Si: S. intercalatum DNA; Sb: S. bovis DNA; N: negative controls
(ultrapure water, no DNA). (b). Sensitivity assessment. Sb: S. bovis genomic DNA (10 ng/μL); lanes 10-1-10-9, 10-fold serially dilutions.
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S. haematobium (Figure 6(b)), and 0.01 ng (10 pg) for S. bovis
(Figure 6(d)).

4. Discussion

Schistosomiasis is a neglected tropical disease widespread in
74 tropical and subtropical countries. The most important
schistosome species regarding human schistosomiasis are S.
japonicum in the Republic of China, the Philippines, and
Indonesia; S. haematobium in Africa and in some countries
of the Arabian peninsula (it has also recently emerged on
the French island of Corsica); and S. mansoni in Africa, the
Arabian peninsula, and Latin America. Meanwhile, S. gui-
neensis and S. intercalatum (both endemic in Central and
West Africa) and S. mekongi (restricted to a short stretch of
the Mekong River in southern Lao People’s Democratic
Republic and eastern Cambodia) are of local regional impor-
tance [21]. The disease can also cause chronic, debilitating
infection in animals, and it has been estimated that more
than 165 million cattle are infected worldwide causing high
levels of morbidity amongst susceptible animals (cattle,
goats, sheep, horses, camelids, and pigs) and causing consid-
erable production losses due to liver damage, reduced repro-
ductive performance/yields, increased susceptibility to other
infectious agents, and death [9]. There is no data on the cur-
rent prevalence of S. bovis (animal schistosomiasis), but in
the past, it had a wide distribution and prevalence in many
Mediterranean, African, and Asian countries [22].

Hybridisations between schistosomes have already been
identified between different human-specific schistosome
species, different animal-specific schistosome species, and
between human-specific and animal-specific schistosome
species. The hybrid forms between human-specific and
animal-specific schistosome species are particularly startling
because they raise the possibility of the spread of hybrids,
particularly zoonotic hybrids, that could prove problematic
in terms of maintaining transmission if the can replace exist-
ing species and parasite strains, extend intermediate and

definitive host ranges, or present and increase infectivity
and virulence [23].

In addition, the hybrid status of the parasite may impair
the parasitological, serological, and molecular diagnostic.

This work provides new LAMP assays for the specific
detection of S. bovis and, additionally, for the simultaneous
detection of a number of other human-infecting Schistosoma
species.

The LAMP method designed for the simultaneous detec-
tion of different species of the Schistosoma genus achieved
DNA amplification of four of the five species including S.
mansoni, S. haematobium, S. intercalatum, and S. bovis; all
of which are found in Africa. The S. japonicum DNA could
not be amplified, possibly due to the few—although determi-
nant—differences that its sequence presents with respect to
DNA sequences from other African schistosomes, which
share higher levels of identity [24, 25]. However, when per-
forming the TD-PCR with the external primers F3 and B3
to check the in silico size of the selected ITS-1 sequence, it
was possible to amplify the DNA of all species analysed,
including S. japonicum. This could be explained by the addi-
tional primers required for the amplification in the LAMP
technique, so internal primers might have not annealed in
the S. japonicum DNA sequence. Moreover, it is important
to highlight that due to the different origin of African and
Asian schistosomes, it is very difficult to design primers for
the amplification of common sequences amongst all species
taking into account geographical variation [26, 27]. On the
other hand, the ITS-1 sequence type selected for primer
design was that obtained from S. haematobium and, for that
reason, a higher degree of identity is expected for all African
species, whilst Asian species share less identity.

Regarding the sensitivity of the developed LAMP
methods, the detection limit of the LAMP for the S. bovis
NADH-1 amplification was 10 pg of genomic DNA. On the
other hand, the detection limit achieved with the LAMP for
the amplification of the ITS-1 region of the Schistosoma
genus was found to be 1 pg, 0.1 pg, 1 pg, and 10 pg for

N NSm Sm Sh Sh Sj Sj Si Si Sb Sb

Figure 5: LAMP for amplifying the genus Schistosoma ITS-1 sequence. Lanes Sm, Sh, Sj, Si, and Sb mean S. mansoni, S. haematobium, S.
japonicum, S. intercalatum, and S. bovis DNAs, respectively; Lanes N: negative controls (ultrapure water, no DNA).
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(a)

Sh 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 N N

(b)

Si 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 N N

(c)

Figure 6: Continued.
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S. mansoni, S. haematobium, S. intercalatum, and S. bovis,
respectively. These differences in the sensitivity obtained
for the different species may be due to the small differ-
ences between the nucleotide sequences that may end
up influencing primer annealing and, therefore, LAMP
performance. It makes sense that S. haematobium is the spe-
cies displaying the highest detection limit (0.1 pg), since its
own sequence was used as a reference when designing the
generic LAMP.

In terms of specificity, the LAMP designed for S. bovis
NADH-1 amplification worked specifically for this species
and no DNA from other schistosome species included in
the study was amplified. On the other hand, the Schistosoma
genus ITS-1 region LAMP amplified the DNA of all species
tested except for S. japonicum. A LAMP method for the spe-
cific detection of S. bovis and another for the simultaneous
detection of different schistosome species that can produce
human schistosomiasis have thus been developed. It should
be noted that comparisons of genetic distances from pairs
of congeners for both mitochondrial DNA and ITS sequences
have demonstrated that mitochondrial DNA sequences of
platyhelminths (including schistosomes) accumulate nucleo-
tide substitutions at a much higher rate than ITS [28]. More-
over, until now, most of the S. haematobium-S. bovis hybrids
reported demonstrate the existence of a mitochondrial DNA
(i.e., cox 1 and microsatellite DNA) introgressive hybridisa-
tion of S. haematobium by S. bovis [29]. Thus, our developed
LAMP assay based on NADH-1 for S. bovis detection would
be very useful for detecting S. haematobium-S. bovis hybrids,
as most hybrids have a mitochondrial S. bovis signature and a
S. haematobium ITS signature.

5. Conclusions

Two highly sensitive LAMP methods for detecting different
Schistosoma species important for human and veterinary

health were standardised. It is worth highlighting that LAMP
assays are easier to turn into point-of-care tests since no spe-
cialised lab equipment is required. Considering that human
cases due to S. intercalatum are currently increasing and
hybridisation events between S. bovis and S. haematobium
have been reported in Senegal and France [22], LAMP
methods here developed could be very useful for the diagno-
sis and surveillance of schistosome infections.
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