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Molecular mechanism of interaction between SARS-CoV-2

and host cells and interventional therapy
Qianqian Zhang1, Rong Xiang2, Shanshan Huo2, Yunjiao Zhou1, Shibo Jiang 1, Qiao Wang1 and Fei Yu2

The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection has resulted in an unprecedented setback for global economy and health. SARS-CoV-2 has an exceptionally high level of
transmissibility and extremely broad tissue tropism. However, the underlying molecular mechanism responsible for sustaining this
degree of virulence remains largely unexplored. In this article, we review the current knowledge and crucial information about how
SARS-CoV-2 attaches on the surface of host cells through a variety of receptors, such as ACE2, neuropilin-1, AXL, and antibody–FcγR
complexes. We further explain how its spike (S) protein undergoes conformational transition from prefusion to postfusion with the
help of proteases like furin, TMPRSS2, and cathepsins. We then review the ongoing experimental studies and clinical trials of
antibodies, peptides, or small-molecule compounds with anti-SARS-CoV-2 activity, and discuss how these antiviral therapies
targeting host–pathogen interaction could potentially suppress viral attachment, reduce the exposure of fusion peptide to curtail
membrane fusion and block the formation of six-helix bundle (6-HB) fusion core. Finally, the specter of rapidly emerging SARS-CoV-
2 variants deserves a serious review of broad-spectrum drugs or vaccines for long-term prevention and control of COVID-19 in the
future.
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INTRODUCTION
The pandemic of coronavirus disease 2019 (COVID-19) caused by
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
infection is still spreading with devasting consequences in
mortality and morbidity of human life, as well as the global
economy.1–4 According to the World Health Organization’s (WHO)
newly updated situation report on February 23rd 2021, the COVID-
19 pandemic has reached 111,419,939 confirmed cases and
claimed 2,470,772 lives, as documented globally in 223 countries
worldwide (https://www.who.int/emergencies/diseases/novel-
coronavirus-2019). SARS-CoV-2 is transmitted through fomites
and droplets during close unprotected contact between the
infected and uninfected. Current studies reveal that the most
common manifestations of COVID-19 are respiratory symptoms,
such as fever, dry cough, and even dyspnea. Severe cases are
reported to show sepsis, secondary infections, and organ failure.5

More recently, researchers found evidence of gastrointestinal
manifestations and potential fecal-oral transmission of COVID-
19.6,7 The COVID-19 outbreak is the third new acute infectious
coronavirus disease to arise in the past two decades, following
severe acute respiratory syndrome coronavirus (SARS-CoV) and
Middle East respiratory syndrome coronavirus (MERS-CoV),8–11

indicating that coronaviruses remain a powerful threat to public
health.
SARS-CoV-2 is a single-stranded, positive-sense RNA (+ssRNA)

virus, which belongs to lineage B of the genus Beta-coronavirus in
the Coronaviridae family.12 The genome size of SARS-CoV-2, which
was sequenced recently, is ~29.9 kb, sharing ~78% sequence

homology with SARS-CoV.12,13 The SARS-CoV-2 genomic RNA
includes two major open reading frames (ORFs), ORF1a and
ORF1b, encompassing two-thirds of the genome and translated to
pp1a and pp1b proteins. The virus genome encodes 2 cysteine
proteases, a papain-like protease (PLpro), or nsp3, and a 3C-like
protease (3CLpro), or nsp5. These proteases cleave pp1a and pp1b
polypeptides into 16 nonstructural proteins.14,15 The core of RNA-
dependent RNA polymerase (RdRp) consists of nsp12, which is a
critical composition of coronavirus replication/transcription. nsp7
and nsp8 significantly increased the combination of nsp12 and
template-primer RNA.16,17 Notably, the RdRp is one of the most
promising drug targets identified to date.18 The remaining one-
third of the genome has overlapping ORFs, encoding four major
structural proteins, including S (spike glycoprotein), N (nucleo-
capsid protein), M (membrane protein) and E (envelope protein),
and some accessory proteins.15,18 The S protein consists of the
signal peptide (SP), receptor-binding domain (RBD), subdomain 1
(SD1) and subdomain 2 (SD2) in S1 subunit and fusion peptide
(FP), heptad repeat 1 (HR1), heptad repeat 2 (HR2), and
transmembrane (TM) in membrane-fusion subunit (S2).19 The E
protein, along with M and N, is known to facilitate virus-like
particle formation.20 SARS-CoV-2 also encodes accessory proteins,
including ORF3, ORF6, ORF7a, ORF7b, ORF8, and ORF9b, which are
all distributed among the structural genes (Fig. 1).14

SARS-CoV-2 enters into the host cell by direct fusion of the viral
envelope with the host cell membrane, or membrane fusion
within endosome after endocytosis. Viral entry is initiated by
binding RBD of the S protein to the human host cell receptors at
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the cell surface.21–25 One major receptor for SARS-CoV-2 is
angiotensin-converting enzyme 2 (ACE2), which is widely
expressed in the cells of the lung, intestine, liver, heart, vascular
endothelium, testis, and kidney.26 Recently, other host receptors
and/or co-receptors that promote the entry of SARS-CoV-2 into
cells of the respiratory system have been reported. After RBD-
receptor interaction, the S protein undergoes proteolytic cleavage,
which is then catalyzed by several host proteases, such as furin,
TMPRSS2, and cathepsin B/L. Proteolytic processing activates S
protein and allows for viral-host membrane fusion, followed by
the release of viral RNA into the host cytoplasm. In the cytoplasm,
viral RNA utilizes the host and its own machinery to replicate its
genetic material and assemble new viral particles.27,28 Apparently,
SARS-CoV-2 has extremely broad cell tropism. In addition to type II
alveolar epithelial cells and ciliated cells in the lungs, SARS-CoV-2
can also infect intestinal epithelial cells and brain cells, leading to
intestinal symptoms and brain inflammation.29–31

In the setting of the current COVID-19 pandemic, extreme steps
have been taken to develop effective prophylactic and therapeutic
strategies.34 Various efforts are being made globally to shorten the
research time of convalescent plasma, vaccines, neutralizing
antibodies and other antiviral drugs. In particular, convalescent
plasma has been reported as a potential therapy for COVID-19.32

Hospitalized COVID-19 patients transfused with convalescent
plasma exhibited a lower mortality rate compared to patients
receiving standard treatments.33,34 The development of SARS-CoV-
2 vaccines also has accelerated worldwide.33–35 Fortunately,
several mRNA and inactivated vaccines have reported clinical
protection efficacy and are currently obtained through emergency
authorization for vaccination globally to stop the spread of COVID-
1935–38. Neutralizing antibodies may serve as a potential treatment
approach against COVID-19 owing to their excellent neutralizing
efficiency and production scale-up. Many studies have reported
that multiple antibodies targeting RBD have been screened and
shown to have potent neutralizing activity in vitro and in animal
models.43–47 To date, many neutralizing antibodies have been

evaluated clinically.39,40 Several drugs, such as hydroxychloro-
quine, arbidol, and remdesivir, are currently undergoing clinical
studies to test their safety and efficacy.41,42 In addition, peptides
derived from the HR1 and HR2 of S protein have been revealed to
possess antiviral activity.43,44 Traditional Chinese medicines have
also played an important role in curbing this epidemic.45 The early
combined use of Lianhua Qingwen and antiviral drugs may
accelerate recovery and improve the prognosis of patients with
moderate COVID-19.42,46 Here, we systematically elaborated the
interaction between SARS-CoV-2 and host cell factors on the cell
surface during membrane fusion. Moreover, we have summarized
in detail the current antiviral therapies against SARS-CoV-2 entry
into host cells, including antibodies, convalescent plasma, as well
as peptide- and small-molecule compound-based antiviral
therapies.

INTERACTION BETWEEN SARS-COV-2 AND HOST RECEPTORS
Uncovering the molecular mechanism that underlies the entry of
SARS-CoV-2 is one of the most important puzzles in under-
standing how to block its infection. Coronaviruses enter host cells
in three ways: receptor-mediated plasma membrane fusion,
receptor-mediated endocytosis, or antibody-dependent viral
entry. Receptor proteins on the surface of host cells are crucial
for virus attachment on host cells for both fusion and endocytosis.
Research on the interactions between SARS-CoV-2 and its
receptors has provided novel insight into virus transmissions
and has resulted in a solid foundation for the development of
novel strategies for clinical prevention and treatment.47

Host receptor ACE2 for SARS-CoV-2 attachment
The cell receptor for SARS-CoV-2 virus is identified as the
angiotensin-converting enzyme II (ACE2).2,48 As a type I integral
membrane protein composed of 805 amino acids,49 human ACE2
migrates to the surface of cells after transcription with its N-
terminal signal peptide, and it successfully anchors via a C-

Fig. 1 Schematic diagrams of the SARS-CoV-2 virus particle and genome. a Four structural proteins of SARS-CoV-2 include Spike protein (S),
Membrane protein (M), Nucleocaspid protein (N), and Envelope protein (E). b The genome includes ORF1a-ORF1b-S-ORF3-E-M-ORF6-ORF7 (7a
and 7b)-ORF8-ORF9b-N in order. Sixteen nonstructural proteins (nsp1–11, 12–16) are encoded by ORF1a and ORF1b, respectively, and six
accessory proteins were delineated. Plpro papain like protease, 3CLPro 3C-like proteinase, RdRp RNA-dependent RNA polymerase, Hel
Helicase, S encodes NTD N-terminal domain, RBD receptor-binding domain, SD1 subdomain 1, SD2 subdomain 2, FL fusion loop, HR1 heptad
repeat 1, HR2 heptad repeat 2, TM transmembrane domain. Dotted line indicates S1/S2 and S2′ site cleavage by Furin and TMPRSS2
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terminal transmembrane domain.50,51 The ACE2 protein contains
an N-terminal peptidase domain comprised of two lobes, and
when coronaviruses contact the surface of host cells, the spike
RBD binds the tips of one lobe to initiate viral entry.18,22,23,52

The complex structure of SARS-CoV-2 RBD and ACE2 resolved to
less than 3 Å provided detailed and important insights into the
molecular basis of virus-receptor interaction.18,20,23,52 With two
structural domains, a five-stranded, antiparallel β-sheet core
subdomain and an external subdomain with an extended flexible
loop stabilized by a disulfide bond53, SARS-CoV-2 RBD utilizes its
external subdomain to recognize the N-terminal peptidase
domain of ACE2, similar to that reported for SARS-CoV.25 This
external subdomain of RBD was named as the receptor-binding
motif (RBM), and its two-stranded β-sheet component, also called
β-hairpin, forms a concave that cradles the convexity on the
surface of ACE2 peptidase domain.
Atomic-level analysis shows the details of protein binding

interfaces between SARS-CoV-2 RBD and ACE2 and the amino acid
residues in close proximity on both proteins.20,23,52 Each ACE2
peptidase domain accommodates a single RBD, with an extended
loop region of the RBD spanning the bridge-shaped α1 helix of
ACE2 peptidase domain. There are three clusters of contacts
between these two molecules.23 At the N terminus of this bridge-
shaped structure, Q498, T500, and N501 residues of the RBD
protein form a hydrogen-bond network with Y41, Q42, K353, and
R357 amino acid residues of the ACE2 peptidase domain.23 At the
C terminus of bridge-shaped α1 helix, RBD Q474 forms a hydrogen
bond with the ACE2 Q24, with RBD F486 interacting with the ACE2
M82 through van der Waals forces.23 Moreover, K417 and Y453 on
the RBD protein interact, respectively, with D30 and H34 of ACE2
protein.23

The broad interface between SARS-CoV-2 RBD and ACE2 is
consistent with their extraordinary binding affinity, as determined
by Bio-Layer Interferometry analysis or Surface Plasmon Reso-
nance measurement.18,22,23,52 Moreover, despite the high degree
of structural similarity between SARS-CoV and SARS-CoV-2, SARS-
CoV-2 RBD displays more amino acid residues on the binding
interface and more contacts by the residues, resulting in a four-
fold stronger binding affinity compared with that of SARS-CoV
RBD.52 The calculated Kd values for SARS-CoV-2 and human ACE2
binding affinity by different groups are all in the nanomolar level,
ranging from 5 nM to 95 nM47 This outstanding binding affinity
between SARS-CoV-2 RBD and its receptor ACE2 may explain the
high infectivity and global spread of COVID-19.
Structural analysis by both X-ray and cryo-electron microscopy

(cryo-EM) indicates that one RBD molecule binds to one ACE2
receptor protein molecule.18,20,22,52,54–56 However, reality is more
complex. SARS-CoV-2 S glycoprotein is revealed to adopt a
homotrimeric conformation with an RBD subunit presented on
each monomeric unit. The RBD can exhibit two distinct
conformational states, either “up” or “down” conforma-
tion.48,55,57,58 When the RBD points downward, its interaction
with ACE2 is inhibited by steric hindrance. The position switching
from “down” to “up” conformation exposes the receptor binding
site, thus facilitating ACE2 interaction.58–60 More than 16 amino
acid residues in the opened RBD interact with human ACE2, while,
conversely, 21 amino acid residues in human ACE2 receptor
interact with SARS-CoV-2 RBD.20,52 On the interface of SARS-CoV-2
RBD and human ACE2, many hydrophilic interactions take place,
including salt bridges and hydrogen bonds.20,52 These closed
(“down”) and open (“up”) states and the structural changes
between these two conformations have also been observed on
the full-length or the ectodomain of the wild-type S glycoprotein
trimer.61–63 On the surface of SARS-CoV-2 virion, both the
prefusion and postfusion S proteins are present, and their ratio
varies.61 Therefore, the flipped-up RBD on the virion efficiently
captures the ACE2 receptor on the surface of host cells for
subsequent membrane fusion or endocytosis.

Closer examination of ACE2 has revealed its physiological
functions. As a zinc metallopeptidase, ACE2 plays a significant role
in regulating blood pressure and cardiac function64, converting
vasoconstrictor angiotensin II to its metabolite angiotensin-(1-
7).65–67 ACE2 knockout mice (Ace2−/−) show severe cardiac
contractility defect, increased angiotensin II levels, and upregula-
tion of hypoxia-induced genes in the heart.65 Moreover, cardio-
vascular diseases were common comorbidities during SARS-CoV
and MERS-CoV infections,5,68–73 leading to the suspicion that
SARS-CoV-2 infection might also have this same pathogenic
propensity. Nevertheless, the possible destruction of ACE2
receptors induced by SARS-CoV-2 infection has not been
conclusively proven by pathological examination of human
samples. Therefore, importantly, the underlying molecular
mechanism of heart disease caused by SARS-CoV-2 infection is
still largely unknown, and it is very likely that the damages in the
cardiovascular systems or other organs might not be directly
linked to the ACE expression, but rather indirectly caused the
harmful immune responses in the SARS-CoV-2-infected
individuals.
The wide expression of ACE2 in various tissues contributes to

the multi-tissue infection by SARS-CoV-2 in human. Besides its
expression in lung and vasculature74,75, ACE2 is widely expressed
in other human organs, including heart, kidney, testes, gastro-
intestinal tract, and brain.74,76,77 All of these tissues and cell types
expressing ACE2 might be potential targets for SARS-CoV-2
infection. Considering the many complications associated with
SARS-CoV-2 infection, significant research efforts have concen-
trated on elucidating SARS-CoV-2 infection in various tissues.
Neurological symptoms, such as smell or taste loss, have been
observed in a large majority of individuals with COVID-19.5,78

Recently, SARS-CoV-2 viral RNAs and proteins were demonstrated
to be present in anatomically distinct regions of the brain,
cerebrospinal fluid and nasopharynx,79–81 presenting evidence of
SARS-CoV-2 neuroinvasion and neurotropism. SARS-CoV-2 nucleic
acids and viral particles were also revealed in the small bowel,
even in convalescent individuals,31,82–85 consistent with viral RNA
detection in stool samples, even after negative pharyngeal swab
results.86–88 These findings suggest that the persistence of
antigen, even after functional recovery and clinical symptom
resolution, is associated with the presence of virus in small
intestinal epithelium. Moreover, the expression of ACE2 in
spermatocytes, spermatids, and Sertoli cells enables SARS-CoV-2
infection in patients’ testes,89–91 leading to many uncertainties
about the safety of male gametes and the risk of sexual virus
transmission after SARS-CoV-2 infection.92 Taken together, the
wide expression of ACE2 and high affinity between ACE2 and
SARS-CoV-2 RBD provide high potential for SARS-CoV-2 viral
infection in various tissues, and thorough studies with reliable
data are therefore required.

Other host receptors for SARS-CoV-2 attachment
The diversity of receptor usage is an extraordinary feature of
coronaviruses (Fig. 2). Coronaviruses, as a big Coronaviridae family
containing four classified genera, Alpha-coronavirus, Beta-
coronavirus, Gamma-coronavirus, and Delta-coronavirus,93,94 exhi-
bit a complex pattern for receptor recognition.21 Among alpha-
coronaviruses, porcine transmissible gastroenteritis coronavirus
(TGEV), porcine epidemic diarrhea coronavirus (PEDV), and porcine
respiratory coronavirus (PRCV) recognize a receptor called
aminopeptidase N (APN), a zinc peptidase.95–98 Among the beta
coronaviruses, Middle East respiratory syndrome coronavirus
(MERS-CoV) and bat coronavirus HKU4 recognize a receptor
protein called dipeptidyl peptidase 4 (DPP4), a serine pepti-
dase,56,99,100 while mouse hepatitis coronavirus (MHV) recognizes
cell adhesion molecule CEACAM1.101,102 Interestingly, sugar
molecules are also used as receptors or co-receptors by alpha-
coronaviruses (TGEV/PEDV),96 beta-coronaviruses (bovine
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coronavirus BCoV and human coronavirus OC43),103 and gamma-
coronavirus (avian infectious bronchitis coronavirus, IBV).104,105

ACE2, as a host receptor for coronavirus, is not only recognized by
beta-coronavirus SARS-CoV-2,2,48 but also by alpha-coronavirus,
human coronavirus NL63 (HCoV-NL63)106 and beta-coronaviruses,
SARS-CoV25,107 and bat SARS-like coronavirus.108

This diversity of receptor usage by coronaviruses has inspired
researchers to investigate other potential receptors for SARS-CoV-
2 infection. It has been shown that SARS-CoV-2 virus cannot use
APN or DPP4 as its receptor.2 Still, recent new studies have
demonstrated that SARS-CoV-2 can use a receptor protein called
neuropilin-1.109,110 Distinct from ACE2, which binds SARS-CoV-2
RBD directly, neuropilin-1 interacts with RRAR residues (amino
acids 682–685) only after the C-terminus of SARS-CoV-2 S1 protein
is exposed by protease cleavage. Therefore, neuropilin-1 serves as
a “post-proteolysis receptor” for viral attachment on the surface of
host cells. The RRAR peptide located in the C-terminus of SARS-
CoV-2 S1 conforms to a [R/K]XX[R/K] motif, termed as “C-end rule”
(CendR) peptide. It mediates viral entry by binding to neuropilin-
1.111,112 SARS-CoV-2 can infect HEK-293T cells with neuropilin-1
alone, but with much lower infection rate compared with
infectivity in HEK-293T cells stably expressing ACE2.109

Neuropilin-1 is a transmembrane protein with two CUB domains,
two coagulation factor domains, and one MAM domain in the
extracellular region.112 One of the coagulation factor domains
containing the CendR peptide-binding site interacts directly with
SARS-CoV-2 S1 CendR peptide with binding affinity of 20.3 μM at
pH 7.5 and 13.0 μM at pH 5.5.110,113 This binding affinity is much
lower than the nanomolar-level binding affinity between ACE2
and SARS-CoV-2 RBD,47 consistent with the observation that the
neuropilin-1-dependent infection rate in vitro is significantly lower
than that of ACE2.109 However, transcriptome analysis and
immunostaining of human autopsy tissue showed abundant
expression of neuropilin-1 in pulmonary and olfactory cells, but
barely detectable ACE2 expression, while SARS-CoV-2 infection is
positive.18,109,114

Tyrosine-protein kinase receptor UFO (AXL) is another candidate
receptor for SARS-CoV-2 infection.115 AXL was identified in H1299
cells with low ACE2 expression by tandem affinity purification

mass spectrometry. Overexpression of AXL promotes SARS-CoV-2
entry, while viral entry is significantly reduced in AXL-knockout
cells.115 Among the unique characteristics of AXL and SARS-CoV-2
S protein interaction is that S protein N-terminal domain (NTD),
but not RBD, mediates the interaction with AXL (882 nM binding
affinity). Since AXL is not co-expressed with ACE2 in human lungs
or trachea, it appears that AXL acts as an ACE2-independent
receptor for SARS-CoV-2 infection.115 To establish the animal
infection model and solve the molecular structure of NTD-AXL
interaction would further promote our understanding of viral
entry and provide clues for therapeutic interventions.
Using a receptor-overexpression and ligand-labeling sys-

tem,116,117 more than 5000 human membrane proteins were
screened, leading to the identification of ASGR1 and KREMEN1 as
two more potential candidate receptors for SARS-CoV-2.118 ASGR1
interacts with both NTD and RBD, while KREMEN1 interacts with
NTD, RBD, and S2 domains of the SARS-CoV-2 S protein. Their
binding affinity with S protein is also in the nanomolar level at
94.8 nM and 19.3 nM for ASGR1 and KREMEN1, respectively.118

Several more receptor proteins, including cellular heparan
sulfate, CD147, and several C-type lectin receptors, including
DCL-SIGN, L-SIGN, MR, and MGL, have been evaluated for their
binding with SARS-CoV-2 S protein and their contribution during
SARS-CoV-2 viral infection.119–122 With CD147 acting as an
alternative receptor for SARS-CoV-2 in ACE2-deficient cell types,
cellular heparan sulfate, interestingly, is reported to be required
for efficient ACE2-dependent SARS-CoV-2 infection because
heparin dramatically enhances the open conformation of SARS-
CoV-2 RBD for ACE2 binding.121 On RBD, the sulfate-binding site
and ACE2-binding site are adjacent to each other to facilitate
heparan sulfate-dependent enhancement of ACE2 binding.121 This
diversity of receptor usage by SARS-CoV-2 (Fig. 2) may provide
another explanation for the high infectivity of SARS-CoV-2.
Consequently, these receptors may also present new opportu-
nities as therapeutic targets to inhibit SARS-CoV-2 infection.

Antibody-mediated SARS-CoV-2 attachment
Viruses can also invade host cells through antibody-mediated
internalization of virus-antibody immune complexes. This peculiar
phenomenon, called antibody-dependent enhancement (ADE)
effect, has been documented for various infectious viruses,
including Dengue virus, Zika virus, coronaviruses, and other
viruses.123–127 During ADE, an antibody molecule binds a viral
particle through its Fab region, while the antibody Fc region
interacts with the Fc receptor (FcR) on the surface of host cells,
leading to the formation of a virus-antibody-FcR complex for
endocytosis.128 Thus, FcR-bearing cells are the main target of
antibody-mediated viral entry.
During SARS-CoV infection, anti-S antibodies facilitate ACE2-

independent virus internalization into various circulating immune
cell types, including macrophages, monocytes, and B lympho-
cytes.129–131 Whether antibody-dependent viral entry occurs
during SARS-CoV-2 infection is of fundamental importance to
the understanding of viral entry and induced diseases.123,132–135

Although several studies have claimed that no ADE effect was
observed in vitro,136–138 recent studies show that several
antibodies, such as XG016, XG005, DH1047, DH1041, and MW05,
did, indeed, induce ADE, using either pseudoviruses or authentic
viruses. The phenomenon has also been reported in TZM-bl cells
stably expressing human FcγR receptors, or in Raji cells, a human B
cell line originally derived from a Burkitt’s lymphoma
patient.139–141 Moreover, ADE associated with viral entry could
be induced by antibodies against RBD or NTD of SARS-CoV-2 S
protein. However, although the enhancement effects of anti-RBD
antibodies are tightly associated with their RBD epitopes, only
antibodies against certain RBD epitopes exhibit obvious ADE
effect in vitro.141 Blockade of FcγR-binding abolishes entry ADE by

Fig. 2 Different coronaviruses use a variety of receptors for viral
attachment and entry. In the upper panel, various coronaviruses
from four major genera, alpha-, beta-, gamma-, and delta-corona-
virus, are in the dashed line boxes. In the lower panel, distinct
receptors on the surface of host cell mediates the viral entry of the
specific coronavirus. Coronaviruses: PRCV porcine respiratory
coronavirus, TGEV porcine transmissible gastroenteritis coronavirus,
PEDV porcine epidemic diarrhea coronavirus, MERS-CoV Middle East
respiratory syndrome coronavirus, MHV mouse hepatitis corona-
virus, BCoV bovine coronavirus, IBV avian infectious bronchitis
coronavirus, PdCV porcine delta-coronavirus. Host cell receptors:
APN aminopeptidase N, CEACAM1 carcinoembryonic antigen-
related cell adhesion molecule 1, DPP4 dipeptidyl peptidase 4,
ACE2 angiotensin-converting enzyme 2, ASGPR asialoglycoprotein
receptor
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SARS-CoV-2, demonstrating that virus attachment and entry are
mediated by the formed antibody–FcγR complex.139–141

Uptake of viral particles through the ADE pathway does not
necessarily result in a productive viral infection,134,142 but it might
lead to the elevated production of proinflammatory cyto-
kines.5,143–146 Similar to SARS-CoV,129 viral replication of SARS-
CoV-2 was abortive in vitro, despite its ability to enter Raji cells
through the ADE pathway.141 Despite the reported ADE effect
in vitro and ADE in cat induced by feline infectious peritonitis virus
(FIPV),147 animal experiments and clinical data so far suggest the
unlikeliness of ADE as a successful pathway of SARS-CoV-2
infection.140

INTERACTION BETWEEN SARS-COV-2 AND HOST PROTEASES
Although the hemagglutinin glycoprotein of the influenza virus
undergoes proteolysis during virus packaging, the spike protein of
coronaviruses is always subjected to proteolysis during viral
infection, especially after binding to host cell receptors.21,148 Viral
attachment on the cell surface initiates subsequent plasma
membrane fusion or endocytosis, during which proteolysis occurs
with the help of various protease activators. Importantly, the
fusion peptide of coronavirus S protein is located downstream
from the N-terminus of S2 stalk domain. Therefore, upon binding
to host receptors, the SARS-CoV-2 S protein needs to undergo a
conformational transition to expose the internal fusion pep-
tide.149,150 Afterward, the exposed fusion peptide promotes either
cytoplasmic or endosomal membrane fusion, leading to the
ultimate accomplishment of virus entry and the release of viral
RNA into the cytoplasm of host cells for translation (Fig. 3).21,151

Thus, proteolysis of SARS-CoV-2 S protein by various host
proteases to expose the internal fusion peptide is an essential
trigger for viral entry.28,55

Host protease furin for SARS-CoV-2 proteolysis
Sequence analysis of SARS-CoV-2 genome revealed the presence
of a 12-nucleotide or four-amino acid insertion,
proline–arginine–arginine–alanine (PRRA),152–154 which is a con-
sensus furin cleavage site.155,156 This furin cleavage site, at amino

acid residues 682–685, is located at the S1/S2 boundary, and it is
cleaved by furin, one of the major proteases used by SARS-CoV-2
for S protein priming (Fig. 3).28,55

Furin, as a type I transmembrane protein, belongs to the family
of intercellular Ca2+-dependent serine endopeptidases, and it is
also known as a proprotein convertase.156,157 Furin is ubiquitously
expressed in various human organs and tissues, including lung,
gastrointestinal tract, central nervous system, and reproductive
tissues (https://www.proteinatlas.org/ENSG00000140564-FURIN/
tissue).158 In the cytoplasmic domain for furin, targeting signals
mediate the recycling of furin molecules from cell surface to the
trans-Golgi network and then to the endosomal/lysosomal
system.159–161 Meanwhile, in the extracellular region of furin, a
subtilisin-like catalytic domain and a regulatory P domain are
essential for its enzymatic activity.156 The first two substrates
cleaved by furin were identified as anthrax toxin protective
antigen and avian influenza virus hemagglutinin. These cleavages
occurred at the surface of the host cells or in the trans-Golgi
network, suggesting furin activity in distinct cellular compart-
ments and during the activation of diverse pathogens.162,163 Since
then, furin has been intensely investigated for its roles in protein
processing of substrates during infectious diseases and even
cancer progression.157,164–166

PRRA insertion in SARS-CoV-2 S protein harbors multiple
arginine residues, thus denominated as a multibasic (or polybasic)
cleavage site.55,57 This multibasic cleavage site has also been
found in several other types of human coronaviruses, such as
MERS-CoV and OC43, but not in SARS-CoV.28 Variants of SARS-
CoV-2 have since been identified with a deleted multibasic
cleavage site, indicating that PRRA insertion is not fixed during
virus replication and does not affect virus replication in vitro.167,168

Importantly, however, when the monobasic counterpart of SARS-
CoV acts as a substitute for the deleted multibasic site, furin-
mediated cleavage is abrogated.28 Conversely, when the multi-
basic furin cleavage site substitutes for the monobasic site in
SARS-CoV S protein, the fusion process of SARS-CoV is facilitated,
even though no change in viral entry is detected in vitro.169 It
should be noted that cleavage efficiency is not enhanced by the
insertion of an additional arginine together with an alanine-to-
lysine exchange.28 This line of evidence suggests that the
multibasic motif for furin-mediated cleavage in SARS-CoV-2 S
protein enables much more efficient proteolysis, making SARS-
CoV-2 more aggressive than other coronaviruses, as well as
providing a likely third explanation for the high infectivity and
global spread of COVID-19.

Host protease TMPRSS2 for SARS-CoV-2 proteolysis
Transmembrane serine protease 2 (TMPRSS2) is another reported
protease participating in the proteolytic processing of SARS-CoV-2
S protein (Fig. 3). While furin is a type I transmembrane protein
with its transmembrane domain in an Nout–Cin orientation,
TMPRSS2, as a type II transmembrane serine protease, adopts a
Nin–Cout orientation for its transmembrane domain.170,171 In the
TMPRSS2 extracellular region, the catalytic serine protease domain
is highly conserved, and several cysteines form disulfide bonds to
stabilize the structure of the proteolytic domain.149 Transmem-
brane and cytoplasmic domains of TMPRSS2 contribute to its
localization on the cell surface.172 TMPRSS2 expression is detected
in basal cells of the prostate epithelium, as well as in the
epithelium of a variety of other tissues, including airway
epithelium, alveoli, ovaries and so on.171,173 However, the lack of
obvious phenotype in Tmprss2-knockout mice has made it
impossible to determine the normal physiological function of
TMPRSS2, suggesting possible functional redundancy by other
type II transmembrane serine proteases, or a specialized, but
nonessential, contribution.174

Distinct from furin, which is not active for SARS-CoV, TMPRSS2
cleaves the S proteins of both SARS-CoV and SARS-CoV-2.

Fig. 3 Three categories of proteases required for SARS-CoV-2 fusion
and entry. Proprotein convertases (e.g., furin), cell surface proteases
(e.g., TMPRSS2), and lysosomal proteases (e.g., cathepsin) participate
in the proteolysis of SARS-CoV-2 S protein. Furin cleaves the
multibasic site (PRRA) at the S1/S2 boundary to detach S1 from S2
domain. Subsequently, TMPRSS2 cleaves the S2’ site to further
expose the internal fusion peptide for membrane fusion. Cathepsins,
mainly localized in the lysosome, induce proteolysis after virion
endocytosis for fusion of the viral envelope with endosomal
membranes. Different domains of SARS-CoV-2 S protein (from left
to right): NTD N-terminal domain, RBD receptor-binding domain,
SD1 subdomain 1, SD2 subdomain 2, FL fusion loop, HR1 heptad
repeat 1, CH central helix, CD connector domain, HR2 heptad repeat
2, TM transmembrane region, CP cytoplasmic tail domain
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TMPRSS2 is mainly localized on the surface of lung cells and
exhibits proteolytic activity on S protein for membrane
fusion.149,175,176 Distinct from the cleavage site at the S1/S2
boundary, the TMPRSS2 cleavage site is identified as a discrete
proteolytic cleavage site within the S2 domain of S protein of both
SARS-CoV and SARS-CoV-2.177,178 This second proteolytic cleavage
site targeted by TMPRSS2, termed as the S2’ site, is located at the
N-terminal S2 domain of S protein. Unexpectedly, TMPRSS2 also
cleaves human ACE2 after the interaction of S protein with ACE2,
inducing the shedding of ACE2 and promoting the uptake of viral
particles.179 Mechanistically, after viral attachment, furin conver-
tase cleaves the multibasic site at the S1/S2 boundary, removing
the structural constraint of S1 on S2; subsequently, TMPRSS2
cleaves the S2’ site, leading to the release of the internal fusion
peptide for the following membrane fusion.
For SARS-CoV-2 entry into host cells, proteolysis by both furin

and TMPRSS2 is required for S protein activation.180 Upon human
ACE2 receptor binding, S1 and S2 subunits of SARS-CoV-2 S
protein are separated by furin-mediated cleavage at the multi-
basic site, and fusion peptide is further exposed by TMPRSS2-
mediated cleavage at the S2’ site. Meanwhile, heptad repeat 1
(HR1, amino acids 987–1062) and heptad repeat 2 (HR2, amino
acids 1263–1279) domains in S2 subunit interact with each other,
leading to the formation of a six-helix bundle (6-HB) fusion
core.181–184 The 6-HB fusion core formation brings viral particles
into close proximity to the host cell membranes. Ultimately,
membrane fusion occurs, and viral RNA is released into the
cytoplasm.

Host protease cathepsins for SARS-CoV-2 proteolysis
Studies on the entry mechanism demonstrated that cleavage by
furin convertase is not required for SARS-CoV,185,186 while SARS-
CoV-2 shares the same host cell receptors, but needs furin-
mediated processing for viral entry.48 Instead, SARS-CoV virus
particles enter host cells through endocytosis and are processed
by cysteine proteases cathepsin B and L in lysosomes, while
inhibition of cathepsin B/L blocks SARS-CoV entry.187–189 More-
over, host cell entry by MERS-CoV is also dependent on cathepsin
L.190 Understanding whether (1) SARS-CoV-2 entry is also
mediated by cathepsin B/L and (2) any other proteases participate
in the proteolytic processing of SARS-CoV-2 S protein would help
in pinpointing the molecular mechanism(s) of SARS-CoV-2
interaction with host cells and SARS-CoV-2 viral entry.
Cathepsins are a family of lysosomal proteases responsible for

recycling cellular protein machineries.191–193 Cathepsin proteases
are synthesized in the endoplasmic reticulum and translocated
through Golgi apparatus to lysosomes and endosomes wherein
they exhibit endopeptidase or exopeptidase activities.194 Because
of their subcellular localization, low pH is required for their optimal
enzymatic activity.
Recent studies showed the decreased viral intrusion of SARS-

CoV-2 pseudoviruses after cathepsin L, but not cathepsin B,
inhibition, similar to SARS-CoV and MERS-CoV.195 Since cathepsin
L is a lysosomal protease, these results support that SARS-CoV-2
entry, like that of SARS-CoV, into host cells is mainly through
endocytosis.196 However, in this study, only HEK293T cells over-
expressing human ACE2 were used in the SARS-CoV-2 pseudovirus
infection system.195 Infection with SARS-CoV-2 coronavirus could
affect multiple organs in the human body, as explained above;
therefore, the tissue tropism of SARS-CoV-2 is tightly associated
with the radically different expression level of various proteases in
distinct cell types and tissues. For example, in Calu-3 cells, a
human lung cell line with high level of TMPRSS2 expression, but
insufficient cathepsin activation, blockade of SARS-CoV-2 S
cleavage at the multibasic site abolishes viral entry.28 On the
other hand, viral entry is not affected by the same mutation
blockade in Vero cells, a monkey kidney epithelial cell line with no
TMPRSS2, but sufficient cathepsin protease activities.28 These

findings are consistent with previous findings in SARS-CoV and
MERS-CoV in which TMPRSS2, but not cathepsin, activity is
indispensable for virus intrusion into lung cells owing to the lack
of sufficient cathepsin B/L-dependent auxiliary activity in lung
cells.187,191,197,198

In the review, we mainly discuss three proteases: furin,
TMPRSS2, and cathepsins. They represent three major categories
of proteases based on their active stages (Fig. 3).21,199 Proprotein
convertases (e.g., furin) act after viral attachment of ACE2 on the
surface of host cells. Cell surface proteases (e.g., TMPRSS2) act
after S1 cleavage and detachment from the S2 domain of SARS-
CoV-2 S protein. Lysosomal proteases (e.g., cathepsin B/L) act after
viral endocytosis into the lysosome pathway of virus-targeting
cells. Moreover, because of the in vivo complexity and ubiquitous
infection by SARS-CoV-2, many extracellular proteases in the
microenvironment and many tissue- or cell type-specific host
proteases might also participate in cleaving SARS-CoV-2 S protein.

ANTIVIRAL THERAPIES AGAINST SARS-COV-2 ENTRY INTO
HOST CELLS
Viral entry into the host cell is a multistep process (Fig. 4). First, the
S protein is primed by TMPRSS2 or furin cleavage at the S1/S2 site
to produce S1 and S2 subunits.27 The S1 subunit comprised of the
RBD contributes to binding with ACE2 receptor on the target cells
and stabilizes the prefusion state of the membrane-anchored
S2 subunit. Then the HR1 and HR2 of the S2 subunit gradually
approach each other and form a six-helix bundle (6-HB), which
causes the viral envelope and host cell membrane to complete
fusion.200,201 Upon entry to the cell, the virus is uncoated, and the
RNA genome is deposited into the cytoplasm. Finally, viral genes
are translated into genomic RNA and viral proteins, which are
assembled together to form viral particles.201 Given that viral entry
is a critical step for viral infection, inhibition of viral entry by
targeting host- or virus‐related components was considered as the
most potent strategy to prevent and treat COVID‐19.202 The
repurposed drugs, antibodies, peptides, and small-molecule
compounds for inhibiting SARS-CoV-2 entry will be systematically
summarized in this section. The newest clinical status of some
antibodies and small-molecule drugs was searched on COVID-19
Biologics Tracker (https://www.antibodysociety.org/covid-19-
biologics-tracker/) and COVID-19 Antibody Therapeutics Tracker
(https://chineseantibody.org/covid-19-track), and the results are
shown in Table 1.

Repurposed drugs for inhibiting SARS-CoV-2 entry
Repurposing drugs from existing antiviral drugs is a fast and
effective method for drug screening. Five FDA-approved drugs,
including ribavirin, nafamostat, chloroquine, penciclovir,

Fig. 4 Diagram of SARS-CoV-2 entry into host cells. S protein
binding to ACE2 receptor and virus attachment to the cell; S protein
cleaved by TMPRSS2 produces S1 and S2 subunits. HR1 and HR2 of
the S2 subunit gradually approach each other and form a six-helix
bundle (6-HB), which causes the virus envelope and host cell
membrane to complete fusion
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nitazoxanide, and two well-known broad-spectrum antiviral drugs,
favipiravir (T-705) and remdesivir (GS5734), were identified for
antiviral activity against SARS-CoV-2 by using standard methods.
Among them, three nucleoside analogs, including ribavirin,
penciclovir, and favipiravir through interfering with genome
synthesis203 exhibited antiviral activity at high concentrations
with EC50s of 109.50 μM, 95.96 μM, and 61.88 μM, respectively.204

Compared with other tested compounds, this is far from
satisfactory. However, the antiviral activity in vivo is not always
the same as that in vitro205. Therefore, the in vivo antiviral activity
of these drugs needs to be evaluated.
Additionally, chloroquine and remdesivir showed strong anti-

viral activity against SARS-CoV-2 with EC50s of 1.13 μM and
0.77 μM in vitro, respectively.204 Remdesivir showed good clinical
results in a clinical trial. However, side effects of remdesivir were
relatively large, with adverse events reported in 32 patients (60%).
The most common AEs were elevated liver enzymes, diarrhea,
rash, renal impairment, and hypotension, and serious adverse
events such as multiple organ dysfunction syndrome, infectious
shock, and acute kidney injury were also reported.206 It is known
that chloroquine can inhibit SARS-CoV infection by raising the
endosomal pH required for virus/cell membrane fusion and
interfering with the glycosylation of SARS-CoV cell receptors.207

Several clinical trials using chloroquine phosphate for COVID-19
have been documented in the Chinese Clinical Trials Regis-
try.208,209 Although antiviral activity of chloroquine was shown in

Vero cells with the SARS-CoV-2 infection, it could not block SARS-
CoV-2 infection in Calu-3 cells, which express TMPRSS2.210 A
controversial observational study on the effectiveness of chlor-
oquine, or hydroxychloroquine, against COVID-19 has been
reported.211 The results indicate that neither treatment has any
protective effect on COVID-19 patients and that such treatment is,
moreover, associated with an increased incidence of ventricular
arrhythmias based on data compiled from over 600 hospitals in six
continents.211 In view of developments, the U.S. FDA has also
canceled EUA qualifications for chloroquine and hydroxychlor-
oquine because the concluded preclinical study identified a
potential drug interaction between remdesivir and chloroquine/
hydroxychloroquine. Chloroquine/hydroxychloroquine may
attenuate the intracellular metabolic activation process and
antiviral activity of remdesivir.212

Nafamostat is a broad-spectrum serine protease inhibitor that
targets TMPRSS2. Nafamostat showed antiviral activity against SARS-
CoV-2 with an EC50 of 22.50 μM in vitro204. Also, nafamostat
mesylate, a serine protease inhibitor,213 showed broad-spectrum
neutralizing activity against SARS-CoV, MERS-CoV, and SARS-CoV-2
with EC50s of 1.4 nM, 5.9 nM, and 5 nM, respectively, in blocking viral
infection of human lung cells.214 In another study, nafamostat
mesylate inhibited cytopathic effect caused by SARS-CoV-2 infection
in Calu-3 cells with EC50 of ~10 nM.215 A randomized clinical trial was
recently launched to study the antiviral activity of nafamostat in
adults with COVID-19 (ClinicalTrials.gov, NCT04352400).

Table 1. Summary of SARS-CoV-2 antibodies and drugs in clinical trials

Name Target Phase Trial ID Sponsor Location

Antibodies

REGN-COV2 (REGN10933+
REGN10987)

RBD 3 NCT04452318 Regeneron USA

Bamlanivimab (LY3819253, LY-
CoV555)

RBD 3 NCT04497987 Eli Lilly Canada/USA

Sotrovimab (VIR-7831/
GSK4182136)

RBD 3 NCT04545060 Virbiotechnology USA/UK

AZD7442 (AZD8895 + AZD1061) RBD 2/3 NCT04625725
NCT04625972

AstraZeneca UK/USA

Regdanvimab (CT-P59) RBD 2/3 NCT04602000 Celltrion South Korea

TY027 3 NCT04649515 Tychan Singapore

BRII-196 + BRII-198 3 NCT04501978 Brii Biosciences USA

DXP-593 2 NCT04551898 Beigene China

Etesevimab (JS016, LY-CoV016,
LY3832479)

RBD 2 NCT04427501 Junshi Biosciences China/USA

Drugs

Ribavirin RdRp 1 NCT04551768 Bausch Health Americas, Inc. NA

Remdesivir RdRP 3 NCT04252664 Capital Medical University Chinese
Academy of Medical Sciences

China

Arbidol S 4 NCT04260594 Jieming QU NA

Hydroxychloroquine ACE2 4 NCT04466540 Hospital Alemão Oswaldo Cruz Brazil

Chloroquine ACE2 2 NCT04328493 Oxford University Clinical Research Unit,
Vietnam

Vietnam

Favipiravir RdRP 2/3 NCT04464408 King Abdullah International Medical
Research Center

Saudi Arabia

Nitazoxanide RdRP 2/3 NCT04463264 Laboratorios Roemmers S.A.I.C.F. Argentina

Sarilumab IL-6 2 NCT04661527 Clinica Universidad de Navarra,
Universidad de Navarra

Spain

Interferon Cytokine storm 2 NCT04465695 The University of Hong Kong Hong Kong, China

All the sources are obtained by searching the websites of COVID-19 Biologics Tracker (https://www.antibodysociety.org/covid-19-biologics-tracker/) and

COVID-19 Antibody Therapeutics Tracker (https://chineseantibody.org/covid-19-track)
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Arbidol is an anti-influenza drug approved in China and
Russia.216 It targets the SARS-CoV-2 S protein to prevent virus-
mediated fusion and block the virus from entering the target
cell.217 In cell-based assays, arbidol showed satisfactory activity
against SARS-CoV-2 infection with EC50 of 4.11 μM in vitro.218

Several clinical trials for COVID-19 have been conducted to
evaluate the antiviral activity of arbidol, including arbidol
monotherapy and arbidol combination therapy.219,220 In clinical
trials, post-exposure prophylaxis (PEP) using arbidol showed a
certain protective effect in individuals exposed to confirmed cases
of COVID-19.220 However, arbidol monotherapy exhibited little
effect on patients hospitalized with mild and moderate COVID-
19.221 On the other hand, the early combination of Lianhua
Qingwen and arbidol may speed up the recovery of patients with
moderate COVID-19 and improve prognosis.222

Based on high-throughput screening, six compounds (cephar-
anthine, abemaciclib, osimertinib, trimipramine, colforsin
(NKH477), and ingenol) were repurposed from an approved drugs
library by S protein-mediated pseudovirus entry assays as putative
entry inhibitors. They all exhibited antiviral activity against
authentic SARS-CoV-2 infection in Vero E6 cells with EC50s of
1.41, 3.16, 3.98, 20.52, 23.06, and 0.06 μM, respectively.223

Coronavirus can induce the production of interleukin (IL)-1β,
IL-6, and other cytokines related to autoinflammatory diseases.
Anakinra is a recombinant IL-1 receptor antagonist224 that may
help alleviate the hyperinflammatory state associated with
SARS-CoV-2, which is considered to be one of the causes of
acute respiratory distress in patients. A clinical result of anakinra
showed that it reduces the need for invasive mechanical
ventilation in the ICU and reduces the mortality rate of severe
COVID-19 patients without serious side effects.225 Nevertheless,
confirmation of efficacy for anakinra will require controlled
trials.

An analysis of a drug library containing ~12,000 clinical-stage or
FDA-approved small molecules has identified a batch of candidate
therapeutic drugs for COVID-19. Among them, five of the most
potent compounds included apilimod (a specific PIKfyve kinase
inhibitor) and four cysteine protease inhibitors: MDL-28170 (a
cathepsin B inhibitor that can also weaken SARS-CoV and Ebola
virus infections226,227), ONO 5334 (a cathepsin K inhibitor228), VBY-
825 (a reversible cathepsin protease inhibitor229) and Z LVG CHN2.
All were effective against SARS-CoV-2 infection in Vero E6 cells
with EC50 values of 0.023, 0.22, 0.41, 0.3, and 0.19 μM.230 PIKfyve
mainly exists in the early endosome and plays an important role in
maintenance of endomembrane homeostasis. Therefore, apilimod
has also been found to inhibit virus entry.231 Moreover, apilimod
inhibited infection with authentic 2019-nCoV/USA-WA1/2020 virus
in Vero E6 cells with an IC50 of ~10 nM in another report.232 It is
worth noting that MDL-28170, ONO 5334 and apilimod inhibited
virus replication in human lung cell-like cells derived from induced
pluripotent stem cells (iPSC), and apilimod showed antiviral
efficacy against SARS-CoV-2 infection in a primary human lung
explant model.230

Antibody- and protein-based antiviral therapies, convalescent
plasma
Antibody-based antiviral therapies
Antibodies screened from phage library: Single-domain antibody
(sdAb) 3F11 was identified from a phage display library from
nonimmune camel by using recombinant RBD of the SARS-CoV-2
S protein as antigen (Fig. 5a). Monomeric sdAb 3F11 was
sufficiently potent to neutralize SARS-CoV-2 pseudovirus with an
IC50 of 0.0038 µg/mL and for authentic SARS-CoV-2 with an IC50 of
0.4360 µg/mL. Competition binding assays showed that 3F11
completely blocked the binding of RBD to ACE2.233 The sdAb was
fused with human IgG1 Fc fragments in order to overcome the

Fig. 5 Process of preparing SARS-CoV-2 antibodies by using different technologies. a Phage display. b B cell sequencing. c Hybridoma. The
crystal structures of the representative antibody of LY-CoV-555, CT-P59, REGN10933, and REGN10978 are shown for each technology,
respectively
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limitations of monovalent sdAb.234 In a pseudovirus neutralizing
assay, recombinant 3F11 exhibited significantly increased antiviral
activity with an IC50 of 0.0020 µg/mL.233

VHH-72, which was isolated from a phage display library
constructed from immunized llama with SARS-CoV S protein, has
been shown to have cross-reactivity between SARS-CoV and SARS-
CoV-2 S protein. Experimental data showed that the binding
affinity of VHH-72 to the SARS-CoV-2 RBD was approximately
39 nM, which was weaker than that of the SARS-CoV RBD.
According to this report, that result was caused by the rapid
dissociation of VHH-72. Therefore, a genetic fusion of VHH-72 to
the Fc domain of human IgG1 (VHH-72-Fc) was proposed for
overcoming the rapid dissociation of VHH-72. VHH-72-Fc then
exhibited potency against SARS-CoV-2 pseudovirus infection with
an IC50 value of ~0.2 µg/mL.235

The ab1 was identified from eight large phage displayed Fab,
scFv, and VH libraries by using SARS-CoV-2 RBD as antigen. In a
competition assay, ab1 competes with hACE2 to bind SARS-CoV-2
RBD, indicating that it could neutralize SARS-CoV-2 through
disrupting RBD-ACE2 binding. The concentration of ab1 IgG1 that
completely neutralizes SARS-CoV-2 is less than 400 ng/mL in a
microneutralization-based assay. And transgenic mice treated with
ab1 IgG1 was protected from SARS-CoV-2 challenge.236 In a similar
way, rRBD-15 was screened out from the phage display antibody
libraries. IgG1 rRBD-15 was expressed for subsequent activity
evaluation. The results showed that IgG1 rRBD-15 could bind to
SARS-CoV-2 RBD with EC50 values of 3.8 nM in vitro and inhibit the
binding of RBD to ACE2 with an IC50 value of 3.0 nM. In addition,
IgG1rRBD-15 was sufficiently potent to neutralize SARS-CoV-2
pseudovirus infection with an IC50 of 12.2 nM in a pseudovirus
neutralization assay.237

Another single-domain antibody, H11, was identified from a
naive llama phage display antibody library by using SARS-CoV-2
RBD as antigen. Random mutation of H11 resulted in two mutants,
H11-H4 and H11-D4, that had higher affinity to SARS-CoV-2 RBD.
After bivalent Fc-nanobody fusion, H11-H4-Fc and H11-D4-Fc
competed with ACE2 for RBD binding by recognizing same
epitope, which partly overlaps the ACE2 binding site in RBD.
Moreover, H11-H4-Fc and H11-D4-Fc could block the binding
between RBD and ACE2 with IC50s of 61 and 161 nM, respectively.
In a plaque reduction neutralization assay, they could inhibit
authentic virus infection with ND50s (50% neutralization dose) of 6
and 18 nM, respectively.238

A humanized neutralizing monoclonal antibody (mAb), H014,
was identified from a phage display antibody library. It could
cross-neutralize SARS-CoV and SARS-CoV-2. Both IgG and Fab
forms of H014 could effectively bind to SARS-CoV-2 RBD at sub-nM
levels. H014 IgG exhibited antiviral activity with IC50 of 3 nM
against SARS-CoV-2 S protein-based pseudovirus infection and
with an IC50 of 38 nM against authentic SARS-CoV-2 in vitro.
Furthermore, H014 IgG could effectively protect hACE2-Tg mice
from SARS-CoV-2 infection. The epitope of H014 IgG is outside the
RBM on RBD of SARS-CoV-2, indicating that H014 could block RBD-
ACE2 binding through steric hindrance.239

In addition to camel origin sdAbs and humanized sdAbs, fully
human sdAbs have also been reported.240 Some sdAbs were
screened out by using SARS-CoV-2 S1 fragment as antigen from a
fully human phage display library, followed by pseudovirus and
authentic virus neutralization assay and a competition assay with
ACE2 on the most potent sdAbs. Among them, n3088 and n3130,
targeting a “cryptic” epitope like CR3022 in the surface of S
protein, exhibited antiviral activity against SARS-CoV-2 pseudo-
virus infection with IC50s of 3.3 and 3.7 µg/mL and authentic SARS-
CoV-2 infection with IC50s of 4.0 and 2.6 mg/mL, respectively,
without cytopathic effect observed. None of them could
effectively compete with ACE2.240

CT-P59 is an IgG form of an scFv fragment that binds to SARS-
CoV-2 RBD screened from a phage library constructed from

peripheral blood mononuclear cells of a convalescent patient. CT-
P59 was then tested in a plaque reduction neutralization test
against authentic SARS-CoV-2 and SARS-CoV-2 D614G variant. The
results showed that CT-P59 effectively neutralized a SARS-CoV-2
clinical isolate in Korea with an IC50 of 8.4 ng/mL and reduced the
replication of SARS-CoV-2 D614G variant with an IC50 of 5.7 ng/mL
in vitro. Neutralization mechanism studies have shown that CT-
P59 completely inhibits the binding of SARS-CoV-2 RBD (either
wild-type or some reported mutants241) to ACE2. Furthermore,
researchers used animal models (e.g., ferrets, hamsters, and rhesus
monkeys) to evaluate the antiviral activity of CT-P59 in vivo. The
results show that CT-P59 exhibits excellent virus neutralization
activity in vivo. When an ADE assay was performed to investigate
the possible adverse effects of CT-P59, the results showed no
increase in authentic SARS-CoV-2 infection in vitro.242

A scFv phage display library was constructed from llama. From
this phage library, nanobody NIH-CoVnb-112 was isolated, and it
could block the interaction between ACE2 and SARS-CoV-2 RBD.
Furthermore, NIHCoVnb-112 could effectively block the interac-
tion between ACE2 and several high-affinity RBD variants. In the
pseudovirus neutralization assay, pre-nebulization NIHCoVnb-112
exhibited potency against SARS-CoV-2 pseudovirus with an EC50
of 0.323 µg/mL, while the post-nebulization NIH-CoVnb-112
showed an EC50 of 0.116 µg/mL. Nanobodies are single-domain
antibody fragments of 12–15 kD, which can be administered by
inhalation and can be produced on a relatively inexpensive scale
compared with other biological agents.243

In response to the drug demand of COVID-19, researchers have
developed a rapid method for nanobody separation, including an
optimized immunization protocol in alpaca combined with the
surface display of E. coli in the VHH library, which allows the use of
simple density gradient centrifugation of the bacterial library in a
one-step selection. Finally, a single nanobody monomer, W25, was
screened out. W25 bound to SARS-CoV-2 S RBD with sub-
nanomolar affinity and effectively competed with receptor ACE-
2 binding. In addition, W25 effectively neutralized wild-type SARS-
CoV-2 and D614G variants with IC50s of 9.82 ± 1.92 nM and 5.09 ±
1.09 nM, respectively. W25FcM (W25 fused a monomeric Fc) also
neutralized wild-type SARS-CoV-2 and D614G variants with IC50s of
27.40 ± 8.38 nM and 12.36 ± 2.84 nM, respectively. Dimeric W25Fc
neutralized SARS-CoV-2 wild type and D614G variants with IC50s of
7.39 ± 2.39 nM and 3.69 ± 0.96 nM, respectively.85 In a similar
method, nanobody Ty1 was screened out from an alpaca phage
display library. It neutralized SARS-CoV-2 pseudotyped viruses
with an IC50 of 0.77 µg/mL in vitro.244

Researchers immunized an alpaca and a llama and constructed
corresponding phage display libraries, using SARS-CoV-2 RBD, or
inactivated virus, as antigens to screen for single-domain
antibodies with neutralizing activity against SARS-CoV-2. Among
them, four nanobodies, VHH E derived from the llama and VHHs U,
V, and W from the alpaca, potently neutralized infection in a dose-
dependent manner. The most potent nanobody, VHH E, inhibited
SARS-CoV-2 pseudovirus with an IC50 value of 60 nM. Plaque
reduction neutralization tests were performed to identify the
neutralizing activity of nanobodies with SARS-CoV-2. The four
nanobodies had IC50 values ranging from 48 to 185 nM. X-ray
crystallographic analysis showed that the four nanobodies bound
to two different epitopes on RBD, namely the “E” and “UVW”

interfaces, indicating that the combination of nanobodies could
be synergistically targeted to inhibit infection. The neutralizing
results showed VHH VE to be more effective in neutralizing than
VHH E or VHH V alone. Based on the structural information, the
researchers designed bivalent and trivalent nanobodies with
improved neutralization properties. VHH EEE inhibited infection
most effectively with IC50 values of 0.52 nM and 0.17 nM against
SARS-CoV-2 pseudovirus and authentic virus, respectively.245 In
addition, a large number of nanobodies have been screened as
candidate drugs for the treatment of COVID-19.246–248
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Antibodies screened from convalescent patients: A pool of
neutralizing mAbs were screened from convalescent COVID-19
patients by using B-cell sequencing (Fig. 5b).249 Among them, BD-
368-2 showed most effectively neutralizing activity against the
pseudotyped and authentic SARS-CoV-2 infection with IC50s of 1.2
and 15 ng/mL, respectively.249 BD-368-2 also exhibited strong
therapeutic and prophylactic effects in protecting transgenic mice
against SARS-CoV-2 infection. Studies on the targets and
mechanisms of action of BD-368-2 have shown that BD-368-2
blocks the binding of RBD to ACE2 by targeting the binding site of
ACE2 in RBD.249

Recently, CB6 was identified from a COVID-19 convalescent
patient that targets the SARS-CoV-2 RBD and blocked the binding
of RBD with hACE2.250 The results of the neutralization assays
showed that CB6 could inhibit SARS-CoV-2 pseudovirus infection
with ND50s of 0.036, 0.023, and 0.041 μg/mL in Huh-7, Calu-3, and
HEK293T cells, respectively, and effectively neutralize authentic
SARS-CoV-2 infection with ND50 of 0.036 μg/mL in Vero E6 cells.250

Moreover, CB6 showed a considerable effect in both prophylactic
and treatment settings of a rhesus macaque model infected with
SARS-CoV-2.250 Mechanistic studies have showed that CB6 blocks
ACE2 binding to RBD through steric hindrance and amino acid site
competition.250

Similarly, a pair of antibodies, B38 and H4, were identified from
a convalescent COVID-19 patient that exhibited antiviral activity
against SARS-CoV-2 infection by using the RBD of SARS-CoV-2 as
bait. The results of neutralizing assays showed that B38 had higher
potency than H4 in inhibiting SARS-CoV-2 infection with IC50s of
0.177 and 0.896 μg/mL, respectively. In the crystal structure
analysis, the target of B38 overlaps with the binding site of
ACE2 in RBD, suggesting that B38 functionally mimics ACE2 to
bind RBD to block RBD-ACE2 interaction. In the competition assay,
both B38 and H4 competed with ACE2 to bind RBD. Furthermore,
B38 and H4 showed excellent antiviral activity in vivo. While no
competition between B38 and H4 was observed, suggesting that
the two neutralizing mAbs act on different RBD sites. Therefore,
B38 and H4 can be used as an ideal mAb pair for virus targeting to
avoid immune escape in future clinical applications.251

A pool of neutralizing mAbs targeting SARS-CoV-2 RBD was
screened from the PBMCs of SARS-CoV-2-infected individuals.
Among them, P2C-1F11 and P2B-2F6 neutralized SARS-CoV-2
pseudovirus with IC50s of 0.03 and 0.05 µg/mL, respectively.
Consistent with this result, P2C-1F11 and P2B-2F6 had IC50s of 0.03
and 0.41 μg/mL, respectively, in an authentic SARS-CoV-2 neu-
tralization assay.252 In a similar study, neutralizing mAbs were
identified from convalescent patients by using high-throughput
screening with specific antigen. Among the identified mAbs,
CC12.1 effectively neutralized the pseudotyped and authentic
SARS-CoV-2 infection with IC50s of 0.019 and 0.022 µg/mL,
respectively. Moreover CC12.1 showed complete protection to
Syrian hamsters against SARS-CoV-2 infection. Further, mapping
assay showed that CC12.1 targets SARS-CoV-2 RBD and blocks
receptor ACE2 binding.253

Similarly, COVA1-18 and COVA2-15 were identified from
convalescent patients by using SARS-CoV-2 S protein as antigen.
Both neutralizing mAbs target the RBD of SARS-CoV-2 that
neutralized SARS-CoV-2 pseudovirus with an IC50 of 8 ng/mL.
Further, COVA1-18 and COVA2-15 had IC50 values of 7 and 9 ng/
mL, respectively, in authentic SARS-CoV-2 neutralizing assay.254

Similarly, a neutralizing antibody, EY6A, which was isolated from a
convalescent patient, targets the conserved sequence of SARS-
CoV-2 RBD, but distant from the ACE2 binding site255. Neutralizing
antibodies MW05 and MW07, which had high RBD-binding
abilities and strong RBD/ACE2-disrupting activities, showed
neutralizing activities with NT50s of 0.030 and 0.063 μg/mL,
respectively, against SARS-CoV-2 pseudovirus. Furthermore,
MW05 and MW07 blocked authentic SARSCoV-2 entry into Vero
E6 cells with NT100s of ~1 μg/mL and 5 μg/mL, respectively. In

order to eliminate ADE, researchers introduced the LALA mutation
to the Fc region of MW05, after which MW05/LALA showed
prophylactic and therapeutic efficacy against SARS-CoV-2 in
rhesus monkeys.139

A batch of cross-reactive monoclonal neutralizing antibodies
against SARS-CoV, SARS-CoV-2, and WIV1 were identified from
SARS convalescent patients. ADI-55689, and ADI-56046 showed
neutralization activity against SARS-CoV-2 pseudovirus with IC50s
of 0.05–1.4 μg/mL. Similar IC50 values were observed in authentic
SARS-CoV-2256. Diversity was introduced into the variable genes of
the heavy chain and light chain of ADI-55688, ADI-55689 and ADI-
56046 by oligonucleotide-based mutagenesis for affinity optimi-
zation and then transformed into Saccharomyces cerevisiae by
homologous recombination to generate a yeast display library.
ADG-2, one of the affinity-matured variants, was the most potent
in neutralizing an alternative authentic SARS-CoV-2 with an IC50 of
~1 ng/mL. ADG-2 also showed complete protection against
respiratory burden and viral replication in the lungs and lung
pathology in an immunocompetent mouse model of COVID-19.
Structural and biochemical studies exhibited that ADG-2 recog-
nizes a highly conserved epitope overlapping SARS-CoV-2 RBD.257

Some neutralizing mAbs were identified from SARS-CoV-2
convalescent patients by using SARS-CoV-2 S protein.258 These
neutralizing mAbs had antiviral activity with IC50s in the range of
15–4000 ng/mL in a neutralizing assay against SARS-CoV-2 strain
WA1/2020. Among them, both COV2-2196 and COV2-2130 could
completely block the binding between SARS-CoV-2 RBD and
receptor ACE2 in a competition assay, even though epitopes were
different on SARS-CoV-2 RBD. Therefore, COV2-2196 and COV2-2130
could simultaneously bind to S protein. Furthermore, COV2-2196
and COV2-2130 used in combination or alone could protect BALB/c
mice and non-human primate from SARS-CoV-2 infection.259

A pool of neutralizing antibodies was isolated from PBMCs of
five severe COVID-19 patients. Nine of them were potent enough
to neutralize authentic SARS-CoV-2 with IC50 values in the range of
0.7–9 ng/mL. Among these antibodies 2–15, etc. target SARS-CoV-
2 RBD, and 2–17, etc. target SARS-CoV-2 NTD, while 2–43 and 2–51
target a quaternary epitope on the top of SARS-CoV-2 RBD. The
most potent antibody, 2–15, had IC50 values of 5 and 0.7 ng/mL,
respectively, against pseudotyped and authentic SARS-CoV-2
infection. Further, 2–15 exhibited effective protection against
SARS-CoV-2 infection in a golden Syrian hamster model.260

S309, which was identified from the peripheral blood of SARS-
infected patients, had cross-reactivity for SARS-CoV-2. In a
pseudovirus neutralization assay, S309 could effectively neutralize
both pseudoviruses. And S309 could effectively neutralize both
pseudoviruses and potently neutralize authentic SARS-CoV-2
(2019n-CoV/USA_WA1/2020) with an IC50 value of 79 ng/mL by
targeting the RBD. By mapping epitopes, it was shown that S309
could recognize a highly conserved epitope in the SARS-CoV-2
RBD, comprising the N343-glycan.261

By investigating antibody responses in COVID-19 patients at
different periods, researchers could screen out some mAbs that
efficiently neutralized SARS-CoV-2. For example, C121, C144, and
C135 were sufficiently potent to neutralize authentic SARS-CoV-2
with IC50s of 1.64, 2.55, and 2.98 ng/mL, respectively.262

CV30 showed neutralizing activity against SARS-CoV-2 pseudo-
virus with an IC50 value of 0.03 μg/mL.263 Further, crystal structure
of CV30 revealed that the epitope of CV30 overlapped the
receptor ACE2 binding motif in SARS-CoV-2 RBD. The neutraliza-
tion experiment results showed that CV30 could effectively
neutralize SARS-CoV-2 infection with an IC50 of 0.118 μg/mL.
CV30 could also induce the shedding of the S1 subunit to reduce
viral infection. A germline reversion of CV30 showed weaker
binding activity and neutralizing activity against SARS-CoV-2
pseudovirus, indicating that the appropriate somatic mutation is
needed for neutralization activity of antibodies against
SARS-CoV-2.264
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LY-CoV555, a potent neutralizing antibody targeting SARS-CoV-
2 RBD from a convalescent COVID-19 patient, was screened out
through high-throughput microfluidic screening of antigen-
specific B-cells. In order to test the antiviral activity of the selected
antibodies, a pseudovirus neutralization assay, a replication-
capable virus neutralization assay with a reporter gene, and an
authentic virus (the Italian INMI-1 isolate and the USA/Wa-1/2020
isolate) neutralization assay were all performed. LY-CoV555
exhibited strong neutralizing activity against SARS-CoV-2 in these
assays, and LY-CoV555 neutralized both isolates with IC50s of
<100 ng/mL. In addition, LY-CoV555 exhibited effective protection
in prophylaxis doses as low as 2.5 mg/kg in rhesus macaques.265

Further, the results of a clinical trial of LY-CoV555 showed that
patients treated with LY-CoV555 reduced the hospitalization of
patients. In addition, the symptom burden of high-risk groups was
comparable to that of placebo, and the safety was similar to that
of placebo.39

Antibodies identified from immunized animal: 7B11and 18F3
were identified from previously screened antibodies specific to
SARS-CoV. Both of them neutralized about 80% SARS-CoV-2
pseudovirus infection at 10 μg/mL. And 7B11 blocked the binding
of SARS-CoV-2 RBD to ACE2 owing to the proximity between
epitope and ACE2 binding site. However, 18F3 could not block the
binding of SARS-CoV-2 RBD to ACE2 owing to the distance
between epitope and ACE2 binding site.266

A large number of fully human mAbs targeting different sites in
SARS-CoV-2 RBD were isolated from the plasma of immunized
transgenic mice and COVID-19 convalescent patients (Fig. 5c).
Among them, REGN10933 and REGN10987 could effectively block
the binding of ACE2 to the RBD and neutralize SARS-CoV-2 at pM
level. The crystal structure showed that these two antibodies
target different sites of SARS-CoV-2 RBD. Therefore, these two
antibodies can be used in combination as a cocktail.267 In addition,
viral escape mutations could be effectively avoided in such
antibody cocktail (REGN-CoV2) therapy.268 Researchers have also
evaluated the antiviral activity of REGN-CoV2 in rhesus macaques
and hamsters. When administered prophylactically or therapeuti-
cally in rhesus monkeys, results showed that REGN-COV-2 could
make a substantial reduction in the viral load of the upper and
lower respiratory tracts of rhesus monkeys and reduce the
pathological sequelae caused by the virus. Similarly, hamster
administration could limit weight loss, as well as reduce
pneumovirus titers and pneumonia.269 In an interim analysis of a
clinical trial, REGN-COV2 reduced the viral load of patients and had
a greater impact on patients who had not yet started an immune
response or had a high baseline viral load. The safety results of the
combined REGN-COV2 dose group and the placebo group were
similar.40

Similarly, many chimeric neutralizing mAbs that having cross-
reactivity against SARS-CoV-2 and SARS-CoV were identified from
transgenic mice immunized with SARS-CoV S protein. Among
them, 47D11 was reconstructed and expressed in human IgG1.
Further study, humanized 47D11 showed binding activity with
SARS-CoV-2 S protein that were expressed on the cell surface. And
humanized 47D11 neutralized the pseudotyped and authentic
SARS-CoV-2 infection with IC50s of 0.061 and 0.57 μg/mL,
respectively. The 47D11 also targets the RBD verified by an
ELISA.270

Using SARS-CoV-2 RBD fused with a mouse IgG Fc as the
antigen, a batch of mAbs specifically targeting SARS-CoV-2 RBD
was obtained using animal immunization and hybridoma
technology. RBD binding and SARS-CoV-2 pseudovirus neutraliza-
tion assays were performed on these antibodies. Researchers
humanized the antibodies with strong neutralizing activity, and a
humanized version of the 2H2/3C1 cocktail was found to potently
neutralize authentic SARS-CoV-2 infection in vitro with an IC50 of
12 ng/mL with a protective effect on mice in 24 h post-infection.

The crystal structure showed that 2H2 and 3C1 target two
different epitopes in SARS-CoV-2 RBD and only weakly compete
for binding to RBD.271 A recent study tested the antiviral activity of
multiple antibodies from different research teams against infec-
tion by SARS-CoV-2 variants B.1.1.7 emerged in the UK and B.1.351
emerged in South Africa. The results showed that mAb cocktails
maintained better neutralizing activity against these mutant
strains than using a single antibody.272

Convalescent plasma. In convalescent plasma therapy, plasma is
collected from recovered patients and transfused to symptomatic
patients. The transfer of convalescent plasma is an ancient
concept that has been used since the time of the Spanish flu
pandemic in 1918.273 During the SARS pandemic in 2003,
convalescent plasma was successfully used,274,275 as well as
during the influenza H1N1 pandemic in 2009276 and the Ebola
outbreak in Africa in 2015.277 Several small observational studies
published during the COVID-19 pandemic indicate that convales-
cent plasma is part of an effective treatment strategy for severe
disease.278–282 Meanwhile, a study suggested that administration
of convalescent plasma late in the disease course was ineffective
in reducing mortality.283 A recent report showed that the virus
strain with ΔH69/ΔV70 and D796H appeared in the course of
plasma treatment and that this mutant strain was not only less
sensitive to some existing antibodies, but also enhanced
infection.284 The clinical effect of plasma therapy is still unclear;
therefore, clinical application should be strictly monitored. There is
no accepted best method for measuring antibodies in plasma, and
plasma antibody titers vary widely among COVID-19 recovered
patients; in addition, hospitalized COVID-19 patients may already
have SARS-CoV-2 neutralizing antibody titers comparable to
plasma donors, which would limit the benefit of plasma from
recovered patients in this patient population.

Peptide-based antiviral therapies
Peptides targeting RBD. The binding of SARS-CoV-2 RBD with
ACE2 is an inevitable event that induces virus invasion. Conse-
quently, disrupting the contact and binding between RBD and
ACE2 is a key strategy for antiviral therapy. The efficient binding of
RBD and ACE2 indicates that peptides derived from the ACE2 may
have the same, or even more, binding activity to RBD. Disrupting
SARS-CoV-2-RBD binding to ACE2 with peptides has the potential
to inhibit the virus from entering human cells, presenting a new
modality for therapeutic intervention (Fig. 6). Detailed information
on peptide-based antivirals was displayed in Table 2.
SBP1, a 23-mer peptide fragment derived from human ACE2

peptidase domain (PD) α1 helix composed entirely of ACE2 amino
acids, was chemically synthesized. Bio-layer interferometry was
performed to investigate the binding activity between SARS-CoV-2
RBD and SBP1. The result showed that SBP1 specifically bound
with the SARS-CoV-2 RBD at KD= 47 nM.285 Therefore, SBP1 may
have the potential to inhibit virus entry into cells.
Peptides AHB1, AHB2, LCB1, and LCB3 were screened out using

two methods, one design based on ACE2 binding to RBD and
another de novo design based on the RBD binding surface. First,
researchers designed a pool of peptides for the two methods.
Then these peptides were screened for binding to RBD displayed
on the surface of yeast cells. Three and 105 peptides derived from
method 1 and 2, respectively, with high binding activity were
further sequenced. The active peptides were subjected to PCR
mutation, and mutants AHB1, AHB2, LCB1, and LCB3 were
obtained. Prokaryotic expression of these peptides was per-
formed, and the RBD binding activity of the expressed products
was detected. The results showed that LCB1 and LCB3 showed
binding signals at 5 pM of RBD. For peptide thermostability
testing, MT values for most were greater than 90 °C. After 14 days
at room temperature, these peptides retained full binding activity.
In the crystal structure of peptide combined with SARS-CoV-2 RBD,
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LCB1 and LCB3 formed multiple hydrogen bonds and salt bridges
with the RBD with buried RBD surface areas.286 The crystal
structure and peptide sequence are shown in the figure.287 Finally,
the neutralizing activity of AHB1, AHB2, and LCB1 to LCB5 against
SARS-CoV-2 was tested. AHB1 and AHB2 strongly neutralized
SARS-CoV-2 with IC50s of 35 and 15.5 nM, respectively, while LCB1

and LCB3 were much more potent, with IC50s of 23.54 and 48.1
pM, respectively. The entire span of time for peptide development
took about 4 months, noting that rapid drug development is
essential during the spread of severe epidemics. Therefore, the
two methods could be considered candidates for quick drug
development.286

Fig. 6 Peptides targeting the SARS-CoV-2 S protein. a RBD-targeting peptides: targets of AHB1, AHB2, LCB1, and LCB3 were shown in yellow,
orange, green, and blue, respectively, in SARS-CoV-2 RBD. b 6-HB-targeting peptides: targets of IPB02 and 2019-nCoV-HR2P overlaps with the
HR2 binding site that colored in yellow. The targets of the pan-CoV fusion inhibitors, EK1 and EK1C4 peptides, was shown in blue

Table 2. Summary of peptides showing SARS-CoV-2 entry inhibition

Name Description Sequence Target Inhibitory activity (IC50) Clinical status Ref

SBP1 A peptide derived from
ACE-PD α1 helix

IEEQAKTFLDKFNHEAEDLFYQS RBD – Preclinical 280

AHB1 Derived from ACE2
Deep sequencing identified
three ACE2 helix scaffolded
designs

DEDLEELERLYRKAEEVAKEAKDAS
RRGDDERAKEQMERAMRLFDQV
FELAQELQEKQTDGNRQKATHLD
KAVKEAADELYQRVRELEEQVMHV
LDQVSELAHELLHKLTGEELERAAY
FNWWATEMMLELIKSDDEREIREIEE
EARRILEHLEELARK

RBD LV: IC50 = 35 nM Preclinical 281

AHB2 A truncate of AHB2 ELEEQVMHVLDQVSELAHELLHK
LTGEELERAAYFNWWATEMMLELI
KSDDEREIREIEEEARRILEHLEELARK

RBD LV: IC50 = 15.5 nM Preclinical 281

LCB1 De novo interface designs DKEWILQKIYEIMRLLDELGHAEASM
RVSDLIYEFMKKGDER
LLEEAERLLEEVER

RBD LV: IC50 = 23.54 pM Preclinical 281

LCB3 De novo interface designs NDDELHMLMTDLVYEALHFAKDEEI
KKRVFQLFELADKAYKNNDRQKL
EKVVEELKELLERLLS

RBD LV: IC50 = 48.1 pM Preclinical 281

IPB02 A lipopeptide made by
adding a cholesterol group
to the C-terminal of IBP01

ISGINASVVNIQKEIDRLNEVAKNLN
ESLIDLQELK (Chol)

S2-HR1 PsV: IC50= 0.08 μM Preclinical 293

EK1 Derived from HR2 (OC43) SLDQINVTFLDLEYEMKKLEEAI
KKLEESYIDLKEL

S2-HR1 PsV: IC50= 2.375 μM Preclinical 289

LV: IC50= 2.468 nM

EK1C4 cholesterol group to the
C-terminal of EK1

SLDQINVTFLDLEYEMKKLEEAIKKLEE
SYIDLKELGSGSG-PEG4 (Chol)

S2-HR1 PsV: IC50= 15.8 nM Preclinical 289

LV: IC50 = 36.5 nM

2019-nCoV-HR2P HR2 (1150–1185) DISGINASVVNIQKEIDRLNEVAKN
LNESLIDLQEL (aa1168–1203)

S2-HR1 PsV: IC50= 0.98 μM Preclinical 200

PsV pseudovirus, LV live virus
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Peptides Targeting HR1. Peptides derived from the CHR or NHR of
HIV have been revealed to possess antiviral activity through
blocking the formation of 6-HB288. Such peptides have also
appeared in coronavirus research, including SARS-CoV, and MERS-
CoV.289–292 EK1, a pan-CoV fusion inhibitor derived from the HR2
of HCoV-OC43, exhibited inhibitory activity against diverse HCoVs,
including HCoV-229E, HCoV-NL63, HCoV-OC43 SARS-CoV and
MERS-CoV.293 With the outbreak of COVID-19, EK1 was identified
to effectively inhibit SARS-CoV-2 S protein-mediated membrane
fusion with an IC50 of 0.19 µM and pseudovirus infection with an
IC50 of 2.38 µM in a dose-dependent manner.200,294 At the same
time, researchers synthesized 2019-nCoV-HR2P (aa1168–1203),
and it could effectively inhibit SARS-CoV-2 membrane fusion with
an IC50 of 0.19 µM and pseudovirus infection with an IC50 of
0.98 µM.200 Emerging studies showed that lipid conjugation is a
viable strategy to enhance antiviral activity and stability of
peptide-based fusion inhibitors.295–297 Researchers further mod-
ified EK1 and obtained EK1C4, which effectively inhibited
membrane fusion and pseudovirus infection with IC50s of 1.3
and 15.8 nM294. Similarly, IPB02 was designed as a SARS-CoV-2
fusion inhibitor, and it showed highly potent activity in inhibiting
SARS-CoV-2 S protein-mediated cell-cell fusion and pseudovirus
infection with IC50s of 0.025 µM and 0.08 µM.298

Small-molecule compound-based antiviral therapies
Small molecules targeting S protein. The S protein of SARS-CoV-2
plays a key role in receptor recognition and virus-cell membrane
fusion. Therefore, S protein is also a key target for antiviral therapy.
A hydrophilic compound, Salvianolic acid C (Sal-C) isolated from
Danshen, a traditional Chinese medicine (TCM), inhibited SARS-
CoV-2 infection by blocking the formation of 6-HB core with an
EC50 of 3.41 μM in authentic SARS-CoV-2 inhibition assays299. In
addition, two novel drug-like compounds, DRI-C23041 and DRI-
C91005, showed antiviral activity in disrupting the interaction
between hACE2 and SARS-CoV-2 S protein. DRI-C23041 also
inhibited the entry of SARS-CoV-2-S pseudovirus into ACE2-
expressing cells with an IC50 of 5.6 μM

300.

TMPRSS2 inhibitors. The virus attaches to the receptor ACE2
through the S protein, and the host cell serine protease TMPRSS2
triggers cleavage and conformational changes of S protein,
thereby triggering viral invasion. Therefore, TMPRSS2 could be
used as a target to prevent virus entry. Camostat mesylate, a
clinically proven TMPRSS2 inhibitor, significantly inhibited SARS-
CoV-2 pseudovirus entry into Calu-3 cells with an EC50 of ~1 μM
and CC50 > 500 μM301. Similarly, camostat mesylate significantly
reduced authentic SARS-CoV-2 infection in Calu-3 cells and
reduced SARS-CoV-2 pseudovirus infection in primary human
lung cells301. A randomized clinical trial is under evaluation for
camostat mesylate as a treatment for SARS-CoV-2 (Phase IIa,
ClinicalTrials.gov, NCT04321096). Double-blinded, randomized,
placebo-controlled trials are being carried out on 334 COVID-19
patients (phase IV, ClinicalTrials.gov, NCT04338906). In addition,
bromhexine, a generic mucolytic targeting TMPRSS2302, is
currently being investigated clinically for SARS-CoV-2 (Clinical-
Trials.gov, NCT04273763, NCT04340349). MI-432 and MI-1900 are
two prospective peptide mimetic inhibitors of TMPRSS2303. Both
exhibited antiviral activity against SARS-CoV-2 infection in vitro303.

Cathepsin B/L inhibitors. In addition to TMPRSS2, cellular
cathepsins can also prime viral S protein cleavage and favor viral
fusion. Of interest are cathepsin B and cathepsin L, which become
active in the early and late endosome, respectively, and are known
activators for fusion.304,305 P9, derived from mouse β-defensin-4,
has broad-spectrum antiviral activity against multiple respiratory
viruses by interfering with cathepsin L.306 The P9-optimized
product P9R showed antiviral activity against SARS-CoV-2 with an
IC50 of 0.9 μg/ml in a plaque reduction assay.307 Further, an eight-

branched derivative, 8P9R, showed more potent antiviral activity
with an IC50 of 0.3 μg/ml. The 8P9R can inhibit both endocytic and
surface pathways of SARS-CoV-2 mediated by TMPRSS2 by
aggregating virus particles. In vivo, 8P9R alone, or in combination
with other drugs (arbidol, chloroquine, and camostat), could
significantly inhibit SARS-CoV-2 replication in hamsters.308 E64-d, a
broad cathepsin B/L inhibitor, showed inhibitory activity with an
IC50 of ~4.487 μM in a SARS-CoV-2 pseudovirus infection
assay.301,309 Teicoplanin, an antibiotic currently used for the
treatment of Gram-positive bacterial infections, had antiviral
activity against SARS-CoV, MERS-CoV, and Ebola virus
in vitro.310,311 Teicoplanin acts on the early step of the coronavirus
viral life cycle by directly inhibiting the enzymatic activity of
cathepsin L. Teicoplanin inhibited SARS-CoV-2 pseudovirus infec-
tion with an IC50 of 1.66 µM, which is much lower than the
commonly used dose of 8.78 µM used to inhibit Gram-positive
bacteria.312 More investigation of teicoplanin was encouraged for
the treatment of COVID-19 disease.310

CONCLUSIONS AND PROSPECTS
In this article, we reviewed the molecular mechanisms of interaction
between SARS-CoV-2 virus and host cells, especially receptor-
mediated virus attachment on the surface of host cells and
protease-mediated proteolysis during virus entry. Obviously, many
steps are involved in successful viral infection, including viral
attachment on receptors on the cell surface, proteolysis or
subsequent lysosomal proteolysis after endocytosis, 6-HB formation
after the exposure of the internal fusion peptide, and membrane
fusion, followed by the release of viral RNA to the cytoplasm of host
cells. Although the complexity of viral entry might at first glance
appear to be inefficient, SARS-CoV-2 exhibits extraordinarily high
transmissibility. Recent studies using structural analysis, as well as
molecular and cellular techniques, explain the reasons for the high
infectivity of SARS-CoV-2 by revealing the exceptional binding affinity
between SARS-CoV-2 RBD and its receptor ACE2, the diversity of
receptor usage by SARS-CoV-2, and the multibasic motif at the S1/S2
boundary of SARS-CoV-2 S protein for efficient proteolysis.
In this review, we also highlighted the interventional therapies

targeting the SARS-CoV-2 viral entry machineries, including its
receptors and proteases. Numerous treatments, including small-
molecule compounds, antibodies, and antiviral peptides, are
proposed and under intensive investigations. Studies to unravel
the molecular mechanism of interactions between SARS-CoV-2
virus and host cells provide profound insights into prevention and
treatment approaches. However, the complexity of viral entry and
the functional redundancy of receptors and proteases may
suggest the unlikeliness of using just one drug to fully inhibit
infection, especially considering the ability of coronaviruses to
manifest in different tissues. For example, a complete blocking of
ACE2 receptor could not inhibit infection in certain cell types
owing to the reported ACE2-independent receptor.115 Moreover,
some extracellular proteases or cell type-specific lysosomal
proteases could compensate for the lack of furin or TMPRSS2.21

Therefore, effective treatment options will need extensive clinical
trials and post-approval monitoring.
Recently, various SARS-CoV-2 variants have been reported,

including the emerging new SARS-CoV-2 lineages B.1.1.7 in
England and B.1.351 in South Africa.313 At this time, researchers
are using all resources to test the efficacy of various vaccines and
drugs against these new COVID variants with diverse escape
mutations.314 How these mutations induce more transmissivity,
whether they induce higher morbidity and mortality, and how
they systematically affect interactions between SARS-CoV-2 and
host cells are largely unknown. Therefore, the development of
broad-spectrum antiviral drugs and vaccines against SARS-CoV-2
and its variants will require a long-term strategy in the search for
clinical treatments.
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