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Abstract.  Adiponectin has been proposed to act as an antidiabetic adipokine, suppressing gluconeogenesis and
stimulating fatty acid oxidation in the liver and skeletal muscle.  Although adiponectin-knockout (adipo(–/–)) mice are
known to exhibit insulin resistance, the degrees of insulin resistance and glucose intolerance are unexpectedly only
moderate.  In this study, the adipo(–/–) mice showed hepatic, but not muscle, insulin resistance.  Insulin-stimulated
phosphorylation of IRS-1 and IRS-2 was impaired, the IRS-2 protein level was decreased, and insulin-stimulated
phosphorylation of Akt was decreased in the liver of the adipo(–/–) mice.  However, the triglyceride content in the liver
was not increased in these mice, despite the decrease in the PPARalpha expression involved in lipid combustion, since the
expressions of lipogenic genes such as SREBP-1 and SCD-1 were decreased in association with the increased leptin
sensitivity.  Consistent with this, the down-regulation SREBP-1 and SCD-1 observed in the adipo(–/–) mice was no longer
observed, and the hepatic triglyceride content was significantly increased in the adiponectin leptin double-knockout
(adipo(–/–)ob/ob) mice.  On the other hand, the triglyceride content in the skeletal muscle was significantly decreased in
the adipo(–/–) mice, probably due to up-regulated AMPK activity associated with the increased leptin sensitivity.  In fact,
these phenotypes in the skeletal muscle of these mice were no longer observed in the adipo(–/–)ob/ob mice.  In conclusion,
adipo(–/–) mice showed impaired insulin signaling in the liver to cause hepatic insulin resistance, however, no increase in
the triglyceride content was observed in either the liver or the skeletal muscle, presumably on account of the increased
leptin sensitivity.
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ADIPONECTIN (also known as Acrp30) [1–4] is a
hormone secreted by adipocytes that acts as a major an-

tidiabetic adipokine.  Plasma adiponectin levels are de-
creased in obesity, insulin resistance and type 2
diabetes mellitus [1–4].  Decreased adiponectin has
been implicated in the development of insulin resis-
tance in obesity, which has been shown to be reversed
by replenishment of adiponectin [5–7].  This insulin-
sensitizing effect of adiponectin seems to be mediated
by the inhibition of gluconeogenesis in the liver and
stimulation of fatty acid oxidation via activation of
AMP-activated protein kinase (AMPK) and peroxi-
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some proliferator-activated receptor (PPAR) alpha in
the liver and skeletal muscle [8–12].  Thus, adiponectin
ameliorates insulin resistance in both the liver and skel-
etal muscle.

Adiponectin-knockout (adipo(–/–)) mice have been
described mainly by four groups.  We reported that ad-
ipo(–/–) mice showed insulin resistance [13], indicat-
ing that adiponectin acts as an insulin-sensitizing
hormone in vivo.  Maeda et al. reported that adipo(–/–)
mice fed a normal diet failed to show insulin resistance
and glucose intolerance [14].  Ma et al. described the
absence of insulin resistance and unexpectedly, in-
creased fatty acid oxidation, in the skeletal muscle of
adipo(–/–) mice [15].  Nawrocki et al. described that
adipo(–/–) mice exhibited hepatic, but not muscle, in-
sulin resistance, and increased endogenous glucose
production (EGP), with absence of any change in the
rate of disappearance (Rd) of glucose during the eugly-
cemic-hyperinsulinemic clamp study [16].  However,
the degrees of insulin resistance and glucose intoler-
ance were unexpectedly moderate in these adipo(–/–)
mice [13, 15, 16].  We recently reported increased lep-
tin sensitivity in adipo(–/–) mice [17].  Leptin is known
to decrease the expressions of lipogenic genes and also
the triglyceride content in the liver [18, 19] and, it has
also been shown to activate AMPK in the skeletal mus-
cle [20].  In fact, muscle AMPK activity was shown to
be increased in the adipo(–/–) mice [17].  In this study,
we investigated the molecular mechanisms of the insu-
lin resistance observed in the adipo(–/–) and adiponec-
tin/leptin double-knockout (adipo(–/–)ob/ob) mice.  

Materials and methods

Animals

Mice lacking adiponectin were generated as de-
scribed previously [13, 21].  Adiponectin/leptin dou-
ble-knockout mice and ob/ob mice were generated by
intercrossing of adipo(+/–)ob/+ mice [21].  The mice
were allowed free access to water and ordinary labora-
tory diet.  All experiments in this study were conducted
on littermate male mice.  The animal care and proce-
dures of the experiments were approved by the Animal
Care Committee of the University of Tokyo.

Euglycemic-hyperinsulinemic clamp study

A clamp study was carried out as described previ-
ously [21].  A catheter was inserted into the jugular
vein 2-3 days prior to the clamp study.  After overnight
food deprivation, insulin was injected constitutively by
intravenous infusion at 4 mU/kg/min, and 50% glucose
solution enriched to 20% with 6,6-d2 glucose as tracer
was injected to maintain the blood glucose at about 120
mg/dl under conscious and unstressed conditions.
Blood was sampled via tail tip bleeds at 90, 105 and
120 min to determine the rate of glucose disappearance
(Rd) and endogenous glucose production (EGP).

RNA preparation and analysis

Tissue samples were homogenized to isolate RNA
with ISOGEN reagent (Wako, Japan) and analyzed by
northern blotting and real-time quantitive PCR.  North-
ern blotting for PPARalpha and SREBP-1 mRNA was
carried out as described previously [6, 19].  For real-
time quantitive PCR, the ABI 7900 sequence detection
system (Applied Biosystems, CA, USA) was used.
The RNA sample was processed with TURBO DNase
(Ambion, TX, USA) before reverse transcription to
synthesize cDNA.  36B4 mRNA was used as the inter-
nal control.  The primer sets for PEPCK and G6Pase
were purchased from Applied Biosystems.  The se-
quences of the primer sets for SREBP-1c, PPARalpha
and 36B4 were as follows [22]; SREBP-1c: forward
primer, ATCGGCGCGGAAGCTGTCGGGGTAG
CGTC; reverse primer, TGAGCTGGAGCATGTCT
TCAA; probe, FAM-ACCACGGAGCCATGGATT
GCACATT-TAMRA.  PPARalpha: forward primer,
CAACGGCGTCGAAGACAAA; reverse primer,
GACGGTCTCCACGGACATG; probe, FAM-
CAGAGGTCCGATTCTTCCACTGCTGC-TAMRA.
36B4: forward primer, TGCCACACTCCATCAT
CAATG; reverse primer, CCGCAAATGCAGATG
GATC; probe, FAM-CCCACTTACTGAAAAGGT
CAAGGCCTTCCTG-TAMRA.

Measurement of the tissue triglyceride content

Tissue homogenate was extracted with 2:1 (vol/vol)
chloroform/methanol, and the triglyceride content was
determined as described previously [22].  In brief,
chloroform/methanol was added to the homogenate
and shaken for 15 min.  After centrifugation at 14,000
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rpm for 10 min, the organic layer was collected.  This
extraction step was repeated three times.  The collected
sample was dried and resuspended in 1% Triton X-100/
ethanol, and measured using L-type Wako (Wako,
Japan).

Immunoprecipitation and western blotting

Immunoprecipitation and western blot analyses were
carried out as described previously [23].  Tissue lysate
was immunoprecipitated with anti-IRS-1 antibody or
anti-IRS-2 antibody (Upstate, VA, USA) and blotted
with an anti-phospho-tyrosine (anti-pY) antibody (Up-
state, VA, USA) to assess the degree of phosphoryla-
tion of IRS-1 or IRS-2.  For the western blot analyses,
antibodies against Akt, phospho-Akt, AMPK and
phospho-AMPK (Cell Signaling Technology, MA,
USA) were used.

Statistics

All values were expressed as means ± SEM.  The
statistical significances of differences were calculated
using the t-test.

Results

The euglycemic-hyperinsulinemic clamp study revealed 

hepatic insulin resistance in the adipo(–/–) mice

We carried out the euglycemic-hyperinsulinemic
clamp study using the tracer technique in the wild-type
and adipo(–/–) mice.  Significant decrease of the GIR
was observed in the adipo(–/–) mice as compared with
that in the wild-type mice (Fig. 1A), indicating that the
adipo(–/–) mice indeed exhibited insulin resistance, as
previously reported [13].  Adipo(–/–) mice showed
similar Rd to the wild-type mice, but significantly in-
creased EGP.  (Fig. 1B, C).  The expressions of PEP-
CK (Fig. 1D) and G6Pase (Fig. 1E), which are
involved in gluconeogenesis, were up-regulated during
the euglycemic-hyperinsulinemic clamp study in the
adipo(–/–) mice, indicating the hepatic insulin resis-
tance in the adipo(–/–) mice.

Impaired insulin signaling in the liver of the adipo(–/–) 

mice

Insulin signaling was investigated in the liver and the
skeletal muscle of the adipo(–/–) mice.  Insulin-stimu-
lated tyrosine phosphorylation of IRS-1 was signifi-
cantly decreased and that of IRS-2 was markedly
decreased in the liver of the adipo(–/–) mice as com-
pared with that in the liver of the wild-type mice
(Fig. 2A).  The protein level of IRS-2 was significantly
decreased, while that of IRS-1 was not altered
(Fig. 2A).  Insulin-stimulated phosphorylation of Akt
was also significantly reduced in the adipo(–/–) mice
(Fig. 2B).  In the skeletal muscle, the insulin-stimulat-
ed tyrosine phosphorylation level of IRS-1 was similar
in the wild-type and adipo(–/–) mice (Fig. 2C).  The in-
sulin-stimulated phosphorylation level of Akt was also
similar in the two genotypes (Fig. 2D).  These data in-
dicate impairment of hepatic insulin signaling in the
adipo(–/–) mice.

Fig. 1. The euglycemic-hyperinsulinemic clamp study revealed
hepatic insulin resistance in the adipo(–/–) mice.
(A-E) Glucose infusion rate (GIR) (A), rate of glucose
disappearance (Rd) (B), endogenous glucose production
(EGP) (C), PEPCK (D) and G6Pase (E) mRNA levels
in the liver during the euglycemic-hyperinsulinemic
clamp study. All values are expressed as means ± SEM
of data (n = 7) obtained from the analysis of wild-type
(open bars) and adipo(–/–) mice (closed bars). *p<0.05,
**p<0.01.
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Hepatic triglyceride content was not elevated and the 

expressions of lipogenic genes were down-regulated in 

the adipo(–/–) mice

We next investigated the lipid metabolism in the liv-
er of these mice.  No significant differences in the ex-
pression levels of the adiponectin receptors AdipoR1
and AdipoR2 [24] were observed between the wild-
type and adipo(–/–) mice (Fig. 3A).  While the degree
of AMPK phosphorylation remained unchanged
(Fig. 3B), significant down-regulation of PPARalpha

Fig. 2. Impaired insulin signaling in the liver of the adipo(–/–)
mice.
(A) Insulin-stimulated tyrosine phosphorylation of
IRS-1 and IRS-2 in the liver. Quantification of the
protein levels (upper, right) and phosphorylation levels
of IRS-1 and IRS-2 (lower). (B) Insulin-stimulated
phosphorylation of Akt in the liver. (C) Insulin-
stimulated tyrosine phosphorylation of IRS-1 in the
skeletal muscle. Quantification of the protein level
(middle) and phosphorylation level of IRS-1 (right).
(D) Insulin-stimulated phosphorylation of Akt in the
skeletal muscle. All values are expressed as means ±
SEM of data (n = 4) obtained from the analysis of wild-
type (open bars) and adipo(–/–) mice (closed bars).
*p<0.05.

Fig. 3. Hepatic triglyceride content was not elevated and the
expressions of lipogenic genes were down-regulated in
the adipo(–/–) mice.
(A) AdipoR1 and AdipoR2 mRNA expression levels in
the liver (n = 3). (B) AMPK phosphorylation in the liver
(n = 8–10). (C-D) The mRNA levels of PPARalpha,
SREBP-1 (C) and SCD-1 (D) in the liver (n = 4–5).
(E) Hepatic triglyceride content (n = 11–14). (F)
PPARalpha expression level in the skeletal muscle
(n = 5). Triglyceride content (G) in the skeletal muscle
(n = 5). All values are expressed as means ± SEM of
data obtained from the analysis of wild-type (open bars)
and adipo(–/–) mice (closed bars). *p<0.05.
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was observed in the adipo(–/–) mice as compared with
that in the wild-type mice (Fig. 3C), suggesting that
fatty acid oxidation may be reduced in the liver of the
adipo(–/–) mice.  The expressions of lipogenic genes
such as SREBP-1 (Fig. 3C) and SCD-1 (Fig. 3D) were
also significantly down-regulated in the adipo(–/–)
mice, and the hepatic triglyceride content was not ele-
vated in the adipo(–/–) mice (Fig. 3E).  This unexpect-

ed down-regulation of lipogenic genes, which may be
explained by the increased leptin sensitivity seen in the
adipo(–/–) mice [17], might have prevented the eleva-
tion of the triglyceride content in the liver of the adi-
po(–/–) mice.  In the skeletal muscle, we previously
reported that the phosphorylation of AMPK was in-
creased in adipo(–/–) mice, presumably due to in-
creased leptin sensitivity [17].  Consistent with this,
although the expression of PPARalpha was similar in
the wild-type and adipo(–/–) mice (Fig. 3F), the muscle
triglyceride content was significantly decreased in the
adipo(–/–) mice (Fig. 3G).

The reduced expressions of the lipogenic genes 

observed in the adipo(–/–) mice no longer seen in the 

adipo(–/–) mice with a leptin-deficient background

To evaluate the existence of the aforementioned
compensatory mechanism in the adipo(–/–) mice, we
generated adipo(–/–)ob/ob mice.  The expression levels
of AdipoR1 and AdipoR2 were similar in the liver of
the ob/ob and adipo(–/–)ob/ob mice.  Comparison of
the wild-type with ob/ob mice, and of the adipo(–/–)
with adipo(–/–)ob/ob mice demonstrated a tendency
towards reduced expression levels of the adiponectin
receptors in the leptin-deficient background (Fig. 4A).
Significant decrease of PPARalpha expression was
observed in the liver of the adipo(–/–)ob/ob mice
(Fig. 4C), as in the liver of the adipo(–/–) mice
(Fig. 3C).  The expression levels of SREBP-1c (Fig.
4C) and SCD-1 (Fig. 4D) were not altered in the liver
of the adipo(–/–)ob/ob mice, unlike in the liver of the
adipo(–/–) mice, indicating that the compensatory
mechanism in the adipo(–/–) mice was no longer oper-
ative in the adipo(–/–)ob/ob mice.  In fact, the hepatic
triglyceride content was significantly increased in the
adipo(–/–)ob/ob mice (Fig. 4E).  These data suggest
that the leptin pathway might have contributed to the
reduced expressions of the lipogenic genes and absence
of elevation of the hepatic triglyceride content in the
adipo(–/–) mice.  In the skeletal muscle, increased
phosphorylation of AMPK in the adipo(–/–) was no
longer observed in the adipo(–/–)ob/ob mice (Fig. 4F).
The expression level of PPARalpha (Fig. 4G) and the
triglyceride content (Fig. 4H) were also unaltered in
the skeletal muscle of adipo(–/–)ob/ob mice.

Fig. 4. The reduced expressions of the lipogenic genes in the
adipo(–/–) mice were no longer seen in the adipo(–/–)
mice with a leptin-deficient background.
(A) AdipoR1 and AdipoR2 mRNA expression levels in
the liver (n = 3–6). (B) AMPK phosphorylation in the
liver (n = 5). (C-D) mRNA levels of PPARalpha,
SREBP-1c (C) and SCD-1 (D) in the liver (n = 4–5).
(E) Hepatic triglyceride content (n = 5). (F) AMPK
phosphorylation in the skeletal muscle (n = 5). (G)
PPARalpha expression level in the skeletal muscle
(n = 5). (H) Triglyceride content in the skeletal muscle
(n = 5). All values are expressed as means ± SEM of
data obtained from the analysis of ob/ob (open bars)
and adipo(–/–)ob/ob mice (closed bars). *p<0.05.
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Discussion

In the present study, we investigated the molecular
mechanisms of the insulin resistance in adipo(–/–)
mice.  Adipo(–/–) mice showed hepatic, but not mus-
cle, insulin resistance.  Insulin-stimulated tyrosine
phosphorylation of IRS-1 and IRS-2 was impaired in
the liver of the adipo(–/–) mice, despite the absence of
any change in the hepatic triglyceride content.  One of
the underlying mechanisms responsible for this may be
the increased phosphorylation of the serine/threonine
residue of IRS-1 in the liver of these mice, which is
currently under investigation.  Moreover, the IRS-2
protein level was also significantly decreased in the ad-
ipo(–/–) mice; as a result, insulin-stimulated phospho-
rylation of Akt was significantly decreased in these
mice.  In the skeletal muscle, on the other hand, insu-
lin-stimulated phosphorylation of IRS-1 and Akt was
similar in degree between the wild-type and adipo(–/–)
mice.  In fact, while the EGP and expression levels of
PEPCK and G6Pase were increased, the Rd was not
found to be significantly changed in the adipo(–/–)
mice during the euglycemic-hyperinsulinemic clamp
study.

Triglyceride content in the liver was not increased in
the adipo(–/–) mice, despite the decrease in PPARal-
pha expression involved in lipid combustion, since the
expressions of lipogenic genes such as SREBP-1 and
SCD-1 were decreased in association with the in-
creased leptin sensitivity.  Consistent with this, down-
regulation of SREBP-1 and SCD-1 observed in the adi-
po(–/–) mice was no longer observed in the adipo(–/–
)ob/ob mice, and the hepatic triglyceride content was
significantly increased in the adipo(–/–)ob/ob mice as
compared with that in the ob/ob mice.  On the other
hand, the triglyceride content in the skeletal muscle
was significantly decreased in the adipo(–/–) mice,
probably due to the up-regulated muscle AMPK activi-
ty associated with the increased leptin sensitivity in
these mice [17].  In fact, the increase in AMPK activity
[17] and decrease triglyceride content in the skeletal
muscle were no longer observed in the adipo(–/–)ob/ob
mice.  Therefore, increase in the leptin actions appears
to compensate for the adiponectin deficiency in both
the liver and the skeletal muscle of the adipo(–/–) mice,
accounting for the unexpected absence of a increase in
the hepatic triglyceride content and rather decreased

muscle triglyceride content in the adipo(–/–) mice [13].
Why was the degree of insulin resistance different

between the liver and skeletal muscle of the adipo(–/–)
mice? We recently demonstrated that adiponectin in-
duces the expression of IRS-2 in the liver (Awazawa
M, Ueki K and Kadowaki T, manuscript in prepara-
tion).  IRS-2 is a major IRS in the liver, but not in the
skeletal muscle [25], suggesting that the reduction of
IRS-2 due to adiponectin deficiency may have little ef-
fect on the insulin signaling in the skeletal muscle of
adipo(–/–) mice.

A similar degree of phosphorylation of AMPK was
seen in the liver of the wild-type and adipo(–/–) mice,
even though adiponectin is known to activate AMPK
[9, 10].  SCD-1 expression was down-regulated in the
adipo(–/–) mice.  Increased phosphorylation of AMPK
has been reported in the liver of SCD-1-knockout mice
[26].  It is suggested that the down-regulation of
AMPK resulting from adiponectin deficiency may be
balanced by the up-regulation of AMPK occurring as a
result of the decreased SCD-1 expression, resulting in
the absence of any net change in the phosphorylation
level of AMPK in the liver of the adipo(–/–) mice.  In
Nawrocki’s study, there appeared to be no differences
in the phosphorylation level and activity of AMPK be-
tween the wild-type and adipo(–/–) mice [16].  

In conclusion, adipo(–/–) mice showed impaired
insulin signaling in the liver to cause hepatic insulin
resistance, however, no increase in the triglyceride
content was observed in either the liver or the skeletal
muscle, presumably on account of the increased leptin
sensitivity.
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