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Abstract

Tightly orchestrated programmed cell death (PCD) signalling events occur during normal neuronal development in a

spatially and temporally restricted manner to establish the neural architecture and shaping the CNS. Abnormalities in PCD

signalling cascades, such as apoptosis, necroptosis, pyroptosis, ferroptosis, and cell death associated with autophagy as well

as in unprogrammed necrosis can be observed in the pathogenesis of various neurological diseases. These cell deaths can be

activated in response to various forms of cellular stress (exerted by intracellular or extracellular stimuli) and inflammatory

processes. Aberrant activation of PCD pathways is a common feature in neurodegenerative diseases, such as amyotrophic

lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, resulting in unwanted loss of

neuronal cells and function. Conversely, inactivation of PCD is thought to contribute to the development of brain cancers

and to impact their response to therapy. For many neurodegenerative diseases and brain cancers current treatment strategies

have only modest effect, engendering the need for investigations into the origins of these diseases. With many diseases of

the brain displaying aberrations in PCD pathways, it appears that agents that can either inhibit or induce PCD may be

critical components of future therapeutic strategies. The development of such therapies will have to be guided by preclinical

studies in animal models that faithfully mimic the human disease. In this review, we briefly describe PCD and

unprogrammed cell death processes and the roles they play in contributing to neurodegenerative diseases or tumorigenesis

in the brain. We also discuss the interplay between distinct cell death signalling cascades and disease pathogenesis and

describe pharmacological agents targeting key players in the cell death signalling pathways that have progressed through to

clinical trials.

Introduction

Programmed cell death (PCD) is required for normal devel-

opment and maintenance of tissue homoeostasis, and the

elimination of damaged, infected or obsolete cells in multi-

cellular organisms. Seminal discoveries by Kerr et al. in 1972

identified the hallmark ultrastructural features of cells

undergoing programmed suicide, where the term ‘apoptosis’

was coined for this form of PCD [1]. These features include

cytoplasmic shrinkage, nuclear condensation and fragmen-

tation and the formation of apoptotic bodies that are evident

in various tissues under physiological or certain pathological

conditions. The family of anti- and pro-apoptotic B cell

lymphoma-2 (BCL-2) protein family members has been

discovered that regulate this pathway and are comprised of

three subgroups based on their structure and function with

the presence of conserved regions termed BCL-2 homology

(BH) motifs). This includes the anti-apoptotic proteins (BCL-

2, BCL-XL, MCL-1, BCL-W and A1/BFL1), the BH3-only

proteins (BIM, PUMA, BID, BMF, BAD, HRK, BIK,

NOXA), the critical initiators of apoptosis and multi-BH

domain proteins (BAX and BAK), the essential effectors of

apoptosis that form oligomers that cause mitochondrial outer

membrane permeabilisation (MOMP), thereby releasing

apoptogenic factors that promote a cascade of caspase

(aspartate-specific cysteine proteases) activation [2, 3]. Upon

activation, caspases cleave hundreds of cellular substrates,

Edited by: G. Melino

* Diane Moujalled

dmoujalled@wehi.edu.au

* Andreas Strasser

strasser@wehi.edu.au

1 The Walter and Eliza Hall Institute, Parkville, VIC, Australia

2 Department of Medical Biology, The University of Melbourne,

Parkville, VIC, Australia

3 Department of Biochemistry and Pharmacology, The University of

Melbourne, Parkville, VIC, Australia

1
2
3
4
5
6
7
8
9
0
()
;,
:

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41418-021-00814-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41418-021-00814-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41418-021-00814-y&domain=pdf
http://orcid.org/0000-0002-6405-2788
http://orcid.org/0000-0002-6405-2788
http://orcid.org/0000-0002-6405-2788
http://orcid.org/0000-0002-6405-2788
http://orcid.org/0000-0002-6405-2788
http://orcid.org/0000-0002-5020-4891
http://orcid.org/0000-0002-5020-4891
http://orcid.org/0000-0002-5020-4891
http://orcid.org/0000-0002-5020-4891
http://orcid.org/0000-0002-5020-4891
http://orcid.org/0000-0002-0798-5338
http://orcid.org/0000-0002-0798-5338
http://orcid.org/0000-0002-0798-5338
http://orcid.org/0000-0002-0798-5338
http://orcid.org/0000-0002-0798-5338
mailto:dmoujalled@wehi.edu.au
mailto:strasser@wehi.edu.au


thereby precipitating the morphological features of apoptosis

and demolition of the cell [4–6].

Normal development and tissue homoeostasis in multi-

cellular organisms depend on orchestrated PCD signalling

events that are tightly regulated. During embryogenesis, the

elimination of cells by PCD is necessary for adequate

moulding of certain tissues, for example the sculpting of the

digits of vertebrate limbs [7]. The central nervous system

(CNS), comprised of the brain and spinal cord, is shaped by

PCD where signalling events that are tightly regulated at a

temporal and spatial level result in establishment of the

neural architecture. In normal neural embryonic and post-

natal development, apoptosis is the major form of PCD.

Apoptosis can affect distinct cell populations, including

neural precursor cells (NPCs), differentiated post-mitotic

neurons and glial cells, ensuring the survival only of cells

that are of the correct size and shape and have made the

proper connections with their axons and neurites [8]. In

mouse embryos, neurogenesis occurs as early as E12 when

NPCs exit the cell cycle and differentiate into post-mitotic

neurons. It was shown that the anti-apoptotic BCL-2 family

members myeloid cell leukaemia-1 (MCL-1) and BCL-2-

related gene long isoform (BCL-XL) play critical roles in

cell survival during developmental neurogenesis. Neuronal-

specific ablation of both proteins resulted in massive

apoptotic cell death throughout the entire CNS [9], and even

loss of either gene caused fatal defects in the brain [10, 11].

Conversely, the combined absence of BAX, BAK (and their

relative BOK) causes an increase of neurons within certain

areas of the brain [12], although the impact of this for brain

function and behaviour is not known. The critical opposing

roles of the pro- and anti-apoptotic members of the BCL-2

family are demonstrated by the observation that the com-

bined loss of one allele of Mcl-1 and one allele of Bclx

(Mcl1+/−Bclx+/− mice) causes severe craniofacial abnorm-

alities and early post-natal death, while additional loss of

one allele of Bim (Mcl1+/−Bclx+/−Bim+/− mice) prevents

these abnormalities completely [13].

While removal of superfluous neuronal cells is vital for

normal brain function, aberrant death of distinct neuronal

cell populations is a hallmark of pathology associated with

neurodegenerative diseases, such as ALS, Alzheimer’s

disease (AD), Parkinson’s disease (PD) and Huntington’s

disease (HD) (reviewed in [14]). Conversely, defects in

PCD of neuronal cells or other cell types in the brain is

thought to promote development of brain cancers, such as

the highly aggressive glioblastoma multiforme [15]. The

cell death pathways are associated with distinct morpholo-

gical and biochemical features (refer to Table 1 for char-

acteristic morphological and biochemical hallmarks,

highlighting fundamental differences in the pathways). For

example, apoptosis is typically associated with cell shrink-

age, while necroptosis involves cell swelling and leakage of

cellular contents.

The aetiology of neurodegenerative diseases is multi-

factorial, being associated with defects in different cellular

processes, such as response to oxidative stress, excitotoxi-

city, mitochondrial dysfunction, protein misfolding (ER

Table 1 Cell death pathways and associated morphological and biochemical hallmark features.

Cell death pathway Morphological features and key biochemical pathway components References

Apoptosis Nuclear fragmentation, plasma membrane blebbing, cell shrinkage (pyknosis), formation of apoptotic bodies

and phagocytosis by neighbouring cells.

Pro-apoptotic BCL-2 family members, caspase activation, cleavage of hundreds of caspase substrates (e.g.

ICAD, PARP), PS exposure, ΔΨm dissipation, MOMP and ROS production.

[1, 21, 150]

Necroptosis Cytoplasmic swelling (oncosis), loss of plasma membrane integrity, swelling of cytoplasmic organelles.

RIPK1, RIPK3, MLKL, phosphorylation and ubiquitination of RIPK1, formation of the necrosome complex

in the cytosol, phosphorylation and activation of MLKL, the effector of caspases, ROS production and release

of DAMPs (and in infected cells also PAMPs).

[57–60]

Autophagy Accumulation of autophagic vacuoles, vacuolisation of the cytoplasm, no chromatin condensation.

atg family of gene encoded proteins, LC3-I to LC3-II conversion and cleavage of p62.

[82, 151]

Ferroptosis Smaller mitochondria with decreased cristae, increased density and rupture of mitochondrial membrane but

with normal nucleus. Iron accumulation, cysteine deprivation and/or glutathione peroxidase inactivation

culminating in lipid peroxidation.

[102]

Pyroptosis Rupture of the plasma membrane and lack of cell swelling. Inflammatory induced activation of the initiator

caspases, caspase-1 and -11, and consequent activation of the effector caspases, caspase-3 and -1. Release of

bio-active IL-1β and IL-18 and proteolytic activation of GSDMD, the essential effector of pyroptosis.

[135, 136]

Necrosis Plasma membrane rupture, swelling of cytoplasmic organelles, lack of inter-nucleosomal DNA

fragmentation, depletion of ATP, involvement of calpains and cathepsins, release of DAMPs (and in infected

cells also PAMPs).

[139, 152]

ΔΨm mitochondrial transmembrane potential, MMP mitochondrial membrane potential, LC3 microtubule-associated protein light chain 3, ROS

reactive oxygen species, PARP1 poly ADP-ribose polymerase 1, PS phosphatidyl serine, GSDMD gasdermin D, IL-1β interleukin-1β, ATP

adenosine triphosphate, calpains calcium-activated non-lysosomal proteases.
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stress) and inflammation [16–19]. Considerable evidence

supports a role of cell death in the pathogenesis of various

diseases of the brain and peripheral nervous system.

Nevertheless, an important question remains whether

defects in cell death signalling and neuronal cell death is a

primary or only a secondary response to the insults that

cause these diseases, and how different PCD pathways and

additional processes interact to cause the demise of neuronal

cells and other cell types in these pathologies.

In this review, we provide a brief overview of PCD

pathways, namely apoptosis, necroptosis, pyroptosis, fer-

roptosis as well as cell death associated with autophagy and

unprogrammed necrosis. We discuss their known and pro-

posed roles in the pathogenesis of neurodegenerative dis-

eases and brain cancer, such as GBM. We also describe

already existing and proposed therapeutic strategies to tar-

get central regulators of the various PCD pathways for the

treatment of neurological diseases.

Programmed cell death signalling pathways
and their roles in neurological diseases

Apoptosis

Apoptosis can be triggered by two distinct pathways: the

intrinsic (also called mitochondrial or BCL-2-regulated)

pathway and the death receptor (also called extrinsic)

pathways [20, 21]. The intrinsic pathway is regulated by the

pro- and anti-apoptotic members of the BCL-2 protein

family. In healthy cells the anti-apoptotic proteins BCL-2,

BCL-XL, MCL-1, BCL-W and A1/BFL1 safeguard cell

survival by restraining the essential effectors of cell death

BAX and BAK [2]. In response to intracellular stress (e.g.

growth factor deprivation, DNA damage, ER stress), the

BH3-only proteins (BIM, PUMA, BID, BMF, BAD, HRK,

BIK, NOXA), the critical initiators of apoptosis, are tran-

scriptionally or post-transcriptionally upregulated [22]. The

BH3-only proteins bind with high affinity to anti-apoptotic

BCL-2 proteins, thereby liberating BAX and BAK. Some

BH3-only proteins are reported to also activate BAX and

BAK directly [2, 3, 23]. Upon activation, BAX and BAK

form oligomers that cause MOMP with consequent mito-

chondrial release of cytochrome c and Smac/DIABLO [21].

These apoptogenic factors promote activation of the caspase

cascade, resulting in the cleavage of hundreds of proteins

leading to demolition of the cell. The death receptor path-

way is activated by ligation of members of the tumour

necrosis factor receptor (TNFR) superfamily that have an

intracellular death domain by their respective ligands (e.g.

FAS activated by FAS ligand) [24]. This promotes the

formation of an intracellular death inducing signalling

complex, resulting in the activation of caspase-8 and the

downstream effector caspases (caspases-3 and -7) (Figs. 1

and 2) [25]. The death receptor pathway can connect to the

intrinsic apoptotic pathway through caspase-8-mediated

proteolytic activation of the pro-apoptotic BH3-only pro-

tein BID (Fig. 1) [24].

Amyotrophic lateral sclerosis (ALS) is a progressive

adult-onset form of MND caused by the aberrant death of

motor neurons in the cerebral cortex and spinal cord. The

resulting motor neuron loss leads to muscle atrophy and

weakness, muscle twitches, spasticity and typically death

from respiratory failure [26]. Various molecular processes

have been associated with this pathology, including oxida-

tive stress, excitotoxicity and mitochondrial dysfunction

[27]. Mutations in superoxide dismutase 1 (SOD1) account

for ~20% of familial ALS cases [28]. A direct role for

SOD1 in regulating the apoptotic machinery was proposed

based on reports that on the surface of mitochondria in cells

from the spinal cord mutant SOD1 was bound to BCL-2,

with the contention that this would inhibit this anti-

apoptotic protein [29]. Moreover, changes in the expres-

sion of certain BCL-2 family members and caspases have

been observed in the spinal cord of transgenic mice

expressing mutant SOD1 and from humans affected with

ALS [30]. Abnormally reduced levels of anti-apoptotic

BCL-2 have been reported in the SOD1G93A mouse model

[31, 32] as well as increased expression of the apoptosis

effector BAX in spinal cord motor neurons of ALS patients

[33]. Abnormally high mRNA levels of the BH3-only

protein BIM were found in the spinal cord of post-

symptomatic SOD1G85R transgenic mice and, importantly,

BIM deficiency extended the lifespan of SOD1G93A mutant

mice [34]. The onset of symptoms and terminal illness were

also delayed in SOD1G93A mice by administration of the

broad spectrum caspase inhibitor zVAD-fmk [35], over-

expression of BCL-2 [36] or the absence of the apoptosis

effectors BAX and BAK [37].

AD is the leading cause of dementia. Hallmark patho-

logical features of AD include the accumulation of amyloid-

β-containing neuritic plaques derived from aggregates pro-

duced by sequential cleavages of the amyloid precursor

protein (APP), neurofibrillary tangles and dystrophic neur-

ites containing hyperphosphorylated tau [38]. Evidence for

a role of apoptosis in neuronal cell death in AD is limited.

However, based on immuno-histochemical staining of

neurons, it has been proposed that intracellular Aβ can

induce apoptosis through p53-dependent transcriptional

upregulation of BAX [39, 40] and reductions in BCL-2 and

BCL-XL [41]. It was also reported that caspase activation

and their cleavage of APP are associated with synapse loss

[42–44].

HD is characterised by progressive motor, behavioural

and cognitive decline. This is driven by expanded

CAG repeats in the HTT gene that encodes huntingtin.

Molecular mechanisms of cell death in neurological diseases 2031



Observations in mouse models of HD include increased

levels of pro-apoptotic BIM and BAX in brain lysates at

late stages of the disease [45, 46]. Notably, loss of one

allele of Bim significantly attenuated the accumulation of

mHTT (mutant Huntington protein), neuronal death and

disease-associated phenotypes [47]. BAX expression in

the brain was reported to be maximal in grade 2 and 3 HD

brains [48].

Degeneration of the dopaminergic neurons in the sub-

stantia nigra is the cause of motor dysfunction in PD that is

characterised by a resting tremor as well as abnormal pos-

ture and gait. In PD, the predominant mechanism of neu-

ronal death is thought to be via the intrinsic apoptosis

pathway in dopaminergic neurons. Inherited forms of PD

are associated with mutations in genes associated with

mitochondrial function, such as PRKN, LRRK2, PINK1 and

PARK7 [49]. The functions of the corresponding proteins

may intersect with components of the intrinsic apoptosis

pathway given that they are both located on the outer

mitochondrial membrane. Indeed, Parkin was shown to

suppress apoptosis by ubiquitinating BAK, thereby redu-

cing its oligomerisation and apoptotic activity. PD-

associated Parkin mutants had reduced ability to ubiquiti-

nate BAK, suggesting that this would cause an increase in

BAK-mediated apoptosis [50]. Caspase inhibitors were

shown to be neuroprotective in in vitro models of PD [51].

Examination of brain tissue from PD patients revealed

abnormally increased levels of active caspase-3 and BAX

[52] as well as significant reductions in BCL-2, which

correlated inversely with disease duration and severity [53].

These findings suggest that aberrant activation of the

intrinsic apoptotic pathway may contribute to or even be a

major driver of neuronal death in PD.

GBM is the most common form of brain cancer in

humans with a poor prognosis (5-year survival of only 5%)

that is largely due to its invasiveness. GBM cells are

resistant to apoptotic stimuli and it is thought that this

contributes to the failure of conventional standard of care

Fig. 1 Molecular pathways of apoptosis and necroptosis. Intrinsic

apoptosis signalling: in response to growth factor deprivation, DNA

damage or oncogene activation, BH3-only pro-apoptotic proteins are

induced transcriptionally or post-transcriptionally. The BH3-only

proteins bind to and inhibit the anti-apoptotic BCL-2 proteins. This

leads to release and activation of the effectors of cell death, BAX and

BAK, which then oligomerise and promote mitochondrial outer

membrane permeabilisation (MOMP), leading to release of apopto-

genic factors, including cytochrome c and Smac/Diablo. This initiates

a cascade of caspase activation, cleavage of hundreds of cellular

proteins and consequent cell demolition. Death receptor induced

(extrinsic) apoptosis signalling: stimulation of death receptors (mem-

bers of the TNFR family with an intracellular death domain) by their

cognate ligands (e.g. stimulation of FAS by FASL) results in adaptor

protein (FADD, TRADD) mediated recruitment and activation of the

initiator caspase, caspase-8 (in humans also caspase-10), which can

then activate downstream effector caspases (caspases-3, -7), resulting

in cell demolition (see above). The death receptor induced apoptosis

pathway can connect to the intrinsic apoptotic pathway by proteolytic

activation of the pro-apoptotic BH3-only protein BID (to generate

tBID) by caspase-8. Necroptosis: the best characterised pathway

triggering necroptosis is via TNFR1 stimulation. Upon binding of

TNFα to TNFR1, cIAPs, RIPK1, TRAFs and TRADD are recruited to

the intracellular part of TNFR1, forming the TNFR1 signalling com-

plex I, which activates NFkB and AP1 transcription factors and

thereby stimulates cell survival and proliferation. Upon deubiquityla-

tion of RIPK1 by CYLD, RIPK1 can bind to TRADD, FADD and

caspase-8 forming complex II which can drive caspase-8 mediated

apoptosis (see above). In the absence of caspase-8 (genetic ablation or

pharmacological inhibition) and the absence or inhibition of cIAP1/2,

the necrosome (complex III) is formed where RIPK3 can phosphor-

ylate MLKL, promoting its translocation to the plasma membrane

where MLKL causes cell lysis, resulting in lytic cell death with release

of DAMPs and PAMPs.
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treatment in this disease. Human glioblastoma cells were

shown to express higher levels of BCL-2 and BCL-XL

compared to non-neoplastic glial cells [54]. RNA inter-

ference mediated reduction in BCL-2 or BCL-XL was able

to kill glioblastoma cells in culture, and this death was

caspase dependant [54]. Furthermore, high levels of BCL-

XL have been reported to be associated with rapid pro-

gression and poor survival of glioblastoma patients and

BCL-XL has therefore been proposed as a marker of ther-

apy resistance in this malignancy [55].

Necroptosis

Necroptosis is a lytic form of PCD that can drive inflam-

mation. Necroptosis can be induced by the stimulation of

TNFR1, TLRs and certain other receptors when the activity

of caspase-8 is blocked by pharmacological agents or viral

inhibitors [56]. This process involves receptor-interacting

serine/threonine protein kinase 1 (RIPK1), which is acti-

vated by autophosphorylation [57]. This enables RIPK1 to

activate the kinase RIPK3 within a cytoplasmic high

molecular weight complex termed the necrosome. RIPK3

then phosphorylates and thereby activates the pseudo-

kinase MLKL, the terminal effector of necroptosis that

causes lysis of the plasma membrane [58, 59]. This facil-

itates release of damage-associated molecular patterns

(DAMPs), and in the case of infected cells also pathogen-

associated molecular patterns (PAMPs) [60], driving an

inflammatory response (Fig. 1).

In ALS, necroptosis was reported to be dispensable for

motor neuron degeneration, based on the observation that

the absence of MLKL did not affect disease onset, pro-

gression and survival in SOD1G93A mutant mice [61]. In

contrast, there was evidence of necroptosis in post-mortem

examination of brains from human AD patients, with

abundant expression of MLKL compared to brains from

healthy controls. Moreover, necroptosis was postulated

to exacerbate cognitive deficits in the APP/PS1 mouse

model of AD, since treatment with the RIPK1 inhibitor

necrostatin-1 reduced neuronal death, attenuated the for-

mation of insoluble Aβ plaques and hyperphosphorylated

tau in the cortex and hippocampus and ameliorated cogni-

tive impairment [62, 63]. It is, however, noteworthy that in

addition to inducing necroptosis, RIPK1 (and RIPK3) are

Fig. 2 Molecular pathways of ferroptosis and pyroptosis.

Ferroptosis is potentiated by iron which can be imported by TFR1

and DMT1, and requires the presence of susceptible arachidonic

acid-containing phospholipids generated by ACSL4 and LPCAT3.

Ferroptosis is endogenously inhibited by GPX4 which requires GSH

as a substrate, by ubiquinone which is reduced by FSP1, by BH4

which is generated by GCH1, and by other endogenous RTAs such as

vitamin E. Ferroptosis is promoted by disruption of cysteine supply via

inhibition of the glutamate/cystine antiporter system xCT (by com-

pounds such as erastin, sorafenib, sulfasalazine or glutamate), or

impaired GPX4 activity due to insufficient glutathione or selenium or

by direct inhibition (e.g. RSL3, ML162, ML210, FIN56, FINO2).

Ferroptosis inhibitors include iron chelators (such as deferiprone and

deferoxamine), RTAs (including ferrostatin-1 and liproxstatin-1) and

lipoxygenase inhibitors. Pyroptosis can be activated in response to

physiological or pathological insults which result in activation of

inflammasomes, such as the NLRP3 inflammasome, in which the

adaptor ASC is recruited, resulting in activation of caspase-1. Caspase-

1 proteolytically processes pro-IL-1β and pro-IL-18 into the bio-active

forms of these cytokines. Caspase-1 can also cleave GSDMD, and the

N‐terminal fragment of GSDMD is recruited to the plasma membrane

where it causes pore formation, cell swelling and plasma membrane

rupture. BH4 tetrahydrobiopterin, BSO Buthionine sulfoximine,

DMT1 divalent metal transporter 1, GCH1 GTP cyclohydrolase-1,

GPX4 glutathione peroxidase 4, GSH glutathione, RTAs radical

trapping antioxidants, Se selenium, System xCT glutamate/cystine

antiporter, TFR1 transferrin receptor 1, NLRP3 NLR family pyrin

domain‐containing 3.
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also involved in activating caspase-8 mediated apoptosis

and the production of cytokines and chemokines [64]. It

remains unclear inhibition of which of these processes by

necrostatin-1 reduced pathology in the APP/PS1 mice. A

sub-type of disease-associated microglia has been impli-

cated in promoting the formation of Aβ plaques in AD. A

study showed that RIPK1 may promote this behaviour of

microglia, thereby triggering inflammation and contributing

to pathogenesis [65]. Pharmacological inhibition or genetic

ablation of RIPK1 in a mouse model of AD reduced amy-

loid burden, the levels of inflammatory cytokines and

memory deficits [65]. Therefore, RIPK1 is considered a

promising target for therapeutic intervention in this disease.

In preclinical models of PD, genetic ablation of MLKL or

RIPK3 or pharmacological inhibition of RIPK1 exerted

neuroprotective effects, with decreased dopaminergic neu-

ron degeneration and improved motor performance. More-

over, phosphorylated (i.e. activated) MLKL was found in

post-mortem brain biopsies of human PD patients [66]. In a

tissue culture model of PD, treatment with a RIPK1 inhi-

bitor protected iPSC-derived neural cells from PD patients

harbouring mutations in the optic atrophy type 1 (OPA1)

gene from death and reduced oxidative stress [67].

Evidence of a role of necroptosis in the pathogenesis of

HD is limited. One study reported that in the R6/2 trans-

genic mouse model of HD, in which exon 1 of a mutated

human HTT gene is expressed and driven by the human

huntingtin promoter [68], treatment with Necrostatin-1

ameliorated symptoms and delayed disease progression,

thus identifying a role for RIPK1 in disease progression

[69]. However, to date there are no reports on the expres-

sion of necroptosis signalling proteins in post-mortem

samples from HD patients. Overall, these studies provide

evidence that necroptosis may play a role in disease

pathogenesis and that inducers of necroptosis, such as

RIPK1, may constitute promising ‘druggable’ targets for

this neurodegenerative disease.

Stroke constitutes the second leading cause of mortality

after ischaemic heart disease. It is caused by insufficient

blood flow to the brain, triggering a cascade of pathological

responses, including inflammation, ROS production and

protein misfolding [70]. In animal models of stroke, such as

hypoxia-ischaemia, oxygen-glucose deprivation and

collagenase-induced intracerebral haemorrhage, treatment

with the RIPK1 inhibitor necrostatin-1 or genetic ablation of

proteins critical for necroptosis improved neurological

function and attenuated neuronal cell death post brain injury

[71–73]. While some studies have indicated that necroptosis

plays a role in the pathogenesis of stroke and treatments

targeting necroptosis signalling proteins have proved to be

neuroprotective in various animal models [70], research into

the clinical utility of necroptosis inhibitors in patients is

lacking and this area warrants further investigation.

In cancer, there are contradictory reports claiming that

necroptosis can either promote or inhibit tumour growth

[74], perhaps depending on the type of cancer or whether

necroptosis occurs in the malignant cells or in cells of the

tumour microenvironment. In head and neck squamous cell

carcinoma, RIPK1 expression is downregulated compared

to healthy tissues [75], whereas in lung cancer patients and

mouse models of lung cancer, RIPK1 expression is mark-

edly elevated in the tumour tissue [76]. In a study of GBM

patients, ~30% of tumours exhibited high levels of RIPK1

expression [77] and this correlated with adverse prognosis.

Amongst patients with lower grade gliomas, those with

higher RIPK3 expression levels had poorer prognosis [78].

In another study, upregulation of MLKL in GBM patients

was associated with an unfavourable prognosis [79]. It

therefore appears that increased expression of RIPK1,

RIPK3 and MLKL may promote tumour growth. This may

be linked to reports that necroptosis in cells of the tumour

microenvironment drives angiogenesis and inflammation,

which can promote cancer cell proliferation and metastasis

[80]. With the observations that glioblastoma cells are

highly resistant to apoptosis, activation of necroptosis or

alternate mechanisms of PCD, may represent promising

avenues to explore for cancer therapy. Activators of RIPK1,

RIPK3 and MLKL may constitute possible approaches,

although the safety of such strategies will need to be

established.

Cell death associated with autophagy

Autophagy is a highly conserved process for the degrada-

tion of macro-molecular structures and even entire orga-

nelles that plays critical roles in cellular and tissue

homoeostasis [81]. This process is important for regulating

the cytoplasmic turnover of proteins and entire organelles.

A myriad of stimuli can enhance autophagy, including

nutrient deprivation, oxidative stress and protein aggregates.

In these settings, autophagy reduces cell stress and provides

cells with metabolites for repair, survival and growth.

Autophagy can be differentiated into three subtypes: macro-

autophagy, micro-autophagy and chaperone-mediated

autophagy; for a comprehensive review see ref. [82]. Each

of these processes is distinct, however, they all converge

upon lysosomes for cargo degradation and recycling of

intracellular content. Although autophagy is often used to

promote cell survival, in certain settings, such as the invo-

lution of salivary glands during Drosophila development

[83], autophagy is associated with cell killing.

A hallmark of neurodegenerative diseases includes the

accumulation of proteinaceous aggregates and ubiquitinated

inclusion bodies and they are thought to be involved in the

aetiology of these diseases. Aberrant autophagy is a feature

of several neurological diseases. In ALS, mutations in
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autophagy-related genes, including SQSTM1, OPTN, TBK1,

VCP and C9ORF72, are associated with familial forms of

the disease. The accumulation of autophagosomes in the

cytoplasm of spinal cord neurons of ALS patients has been

reported [84], as well as an increase in the formation of

autophagosomes in SOD1 mutant transgenic mice [85]. In

the SOD1G93A mouse model of ALS loss of Atg7 acceler-

ated neuromuscular denervation and the onset of hindlimb

tremor at the early-symptomatic stage of the disease.

However, at late stages of disease, autophagy had an

adverse role, where loss of Atg7 slowed disease progression

and increased the lifespan of the mice [86].

The accumulation of autophagosomes in neurons is a

conspicuous feature of AD in both animal models and

patients with observations of increased Aβ generation and

accumulation in lysosomes in cells with defects in autop-

hagy. This suggests that the turnover of Aβ is regulated in

part by autophagy [87]. Microarray profiling of hippo-

campal CA1 pyramidal neurons from post-mortem brain

tissues from AD patients or controls revealed high expres-

sion of autophagy-related genes in early stages of AD. This

correlated with increased levels of autophagosome compo-

nents, increased LC3-positive puncta and defective clear-

ance of autophagic substrates by lysosomes in CA1

pyramidal neurons [88]. Therefore, enhancement of autop-

hagy may be a promising area of investigation for achieving

neuroprotective outcomes in AD.

Defects in autophagy are associated with several mole-

cular mechanisms underpinning PD, and several ATG genes

were shown to be aberrant in PD [89]. Accordingly, dys-

regulated autophagy has been identified in brain tissues

from PD patients and in PD animal models, suggesting that

autophagy plays a role in disease pathogenesis [90].

It is a similar scenario in HD, where accumulation of the

huntingtin protein (HTT) is associated with attenuated

autophagy [91]. Notably, enhanced autophagy by inhibition

of mammalian target of rapamycin signalling was found to

enhance the clearance of HTT aggregates and reduced

toxicity in Drosophila and mouse models of HD [92].

Paradoxically, ablation of p62, an autophagy receptor, sig-

nificantly attenuated the formation of nuclear inclusions and

motor deficits and prolonged lifespan in a mouse model of

HD [93]. These reports exemplify the complexity of tar-

geting autophagy signalling in HD (and possibly other

neurological diseases). Thus, substantial additional work is

required to arrive at a better understanding of the role of

autophagy in HD pathogenesis, so that this knowledge may

be used to develop new treatments for HD that are based on

manipulating this process.

The role of autophagy in GBM is controversial, with

some reports claiming that it suppresses tumour growth

whereas others stated that it promotes tumour growth. In

U343 glioma cells, autophagy was shown to trigger cell

senescence [94] and this also enhanced TMZ-induced

senescence in glioma cells [95]. Triggering autophagy

was reported to inhibit GBM cell migration and invasive-

ness, reversing the epithelial-mesenchymal transition [96].

Conversely, autophagy was also reported to exert positive

effects on tumours, increasing their proliferative potential

and elevated expression of p62 was correlated with poorer

survival in GBM patients [97]. Perturbations in EGFR,

PTEN and AKT, which are frequently mutated in GBM,

have been reported to impact the regulation of autophagy

[98]. Autophagy was also shown to promote survival of

GBM cells [99] and to facilitate metastasis [100]. Given the

ongoing controversy about the role of autophagy in glio-

blastoma (and many other cancers for that matter [101]),

further interrogation of this pathway is warranted if it

should be harnessed for therapeutic intervention in this

disease.

Ferroptosis

First coined in 2012 [102], ferroptosis refers to a form of

iron-dependent necrotic PCD. The final executor in fer-

roptosis is overwhelming lipid peroxidation causing com-

plete cell failure. Although ferroptosis exhibits many

features of what was previously commonly called oxidative

stress-induced cell death, there are many aspects that dis-

tinguish it as a distinct form of cell death. For instance,

ferroptosis is morphologically and functionally distinct

from ‘generic’ oxidative stress, such as hydrogen peroxide-

induced necrosis [102]. Many molecular components of

ferroptosis have been identified, including ACSL4 and

LPCAT3 that generate the membrane lipids susceptible to

peroxidation [103, 104], and the glutamate-cystine anti-

porter system xCT required to supply cysteine to the cell.

Critical to prevent lipid peroxidation are endogenous

mechanisms including glutathione peroxidase 4 (GPX4;

[105] and ferroptosis suppressor protein 1 (formerly

AIFM2) [106, 107] which use glutathione and ubiquinone,

respectively, as reducing substrates, and tetrahydrobiopterin

synthesised by GTP cyclohydrolase-1 [108]. Ferroptosis

inducers include inhibitors of GPX4 (RSL3, ML210,

ML162, FIN56, FINO2), disruption of glutathione synthesis

(buthionine sulfoximine), disruption of cysteine supply via

inhibition of system xCT (erastin, sorafenib, sulfasalazine,

glutamate), iron and iron-disrupting stimuli. Endogenous

inhibitors of ferroptosis include glutathione, ubiquinone,

vitamin E and selenium. Exogenously applied ferroptosis

inhibitors include radical trapping antioxidants (RTAs;

ferrostatin-1, liproxstatin-1), inhibition of lipoxygenases (in

absence of RTA activity, see below) and iron chelators

(deferoxamine, deferiprone). The selectivity and potency of

RTAs illustrates the unequivocal role of lipid peroxidation

in ferroptosis.
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Many small molecule inhibitors are redox active and

exhibit significant potential to directly inhibit lipid perox-

idation [109]. This is problematic when attempting to

delineate additional molecular aspects of ferroptosis as such

inhibitors may directly inhibit lipid peroxidation indepen-

dent of interactions with their intended targets. For instance,

many lipoxygenase inhibitors are redox active; this includes

zileuton, NGDA, baicalein and PD146176 [109]. Therefore,

the use of redox active molecules should be coupled with

complementary experimental approaches in order to permit

clear interpretation of the findings. Furthermore, when a

redox active small molecule exhibits efficacy in a given

model of disease, this may be due to inhibition of ferrop-

tosis rather than (or in addition) to their intended action. In

light of the increasing evidence for a role of ferroptosis

across many conditions, this calls for a re-evaluation of

previous studies involving inhibitors that are redox active

and inhibit lipid peroxidation.

Specific evidence for a role of ferroptosis in a disease

setting is difficult to establish. Almost all neurodegenera-

tive diseases appear to exhibit lipid peroxidation. Likewise,

dysregulated iron homoeostasis and diminished glutathione

are also common features of neurodegeneration. Perhaps

the best evidence comes from the protection afforded

by ferroptosis inhibitors in animal models of disease and

ultimately in human clinical trials. The canonical RTA

ferroptosis inhibitors liproxstatin-1 and ferrostatin-1 have

been reported to exhibit efficacy in mouse models of stroke

[110], PD [111] and HD slice culture assays [112]. Vitamin

E prevents the rapid death of neurons in conditional

neuronal Gpx4 knockout mice [113, 114], whereas over-

expression of GPX4 protects against intracerebral hae-

morrhage in rats [115].

Several ferroptosis inhibitors have been assessed in the

clinic. In a phase II clinic trial for AD, the iron chelator

deferoxamine significantly reduced the rate of cognitive

decline in patients [116]. Surprisingly, this study is yet to be

replicated after 30 years, although nasal formulations of

deferoxamine are showing promise in animal models of AD

[117, 118].

More recently, therapeutic strategies targeting iron have

focused on the iron chelator deferiprone. Similar to defer-

oxamine, deferiprone inhibits ferroptosis in vitro, and

exhibits efficacy in mouse models of AD, PD and ALS

[119–121]. In two phase II trials for PD, deferiprone sig-

nificantly impacted brain iron levels and either significantly

delayed or trended towards slowing progression of symp-

toms as measured by the UPDRS [117, 121]. A third phase

II trial with 140 participants has been completed but is yet

to report, while a fourth phase II trial with 372 participants

is currently underway. Deferiprone is also currently

under clinical investigation for AD and ALS in two large

phase II trials.

CuII(atsm) strongly inhibits ferroptosis induced by RSL3

or erastin in neural cells in vitro and in a cell-free lipid

peroxidation system [122]. CuII(atsm) has been extensively

investigated (and independently validated) in preclinical

animal models and exhibits efficacy in multiple models of

ALS, PD and stroke (for review see [123]). Phase I clinical

trials for ALS and PD have been completed with encoura-

ging results [124]. A phase II trial with 80 participants is

currently ongoing, as well as extension trials for ALS

patients from both trials.

Ferroptosis-related gene expression is associated with

diagnostic and prognostic factors in glioma [125]. Many

anti-cancer drugs appear to target and enhance ferroptosis to

kill glioma cells, including withaferin A [126], dihy-

droartemisinin [127] and ibuprofen [128]. Inducing ferrop-

tosis is thought to enhance effects of ‘traditional’ anti-

cancer treatments that trigger other cell death pathways,

mostly apoptosis. Feeding glioblastoma bearing mice or rats

with iron enhanced the impact of radiation therapy

[129, 130]. Moreover, inhibition of xCT by erastin or sul-

fasalazine potentiated the efficacy of temozolomide

[131, 132]. Coatomer Protein Complex, Subunit Zeta 1

(COPZ1) is associated with increased tumour grade. Inhi-

bition of COPZ1 using RNA interference inhibited tumour

growth and enhanced survival in mice by increasing intra-

cellular iron by enhancing ferritinophagy [133]. Conversely,

glioblastoma cell necrosis that was reported to be driven by

neutrophil-triggered ferroptosis was shown to be associated

with worsened outcomes [134]. Overall, it appears that the

effects of ferroptosis are dependent on many factors. Fer-

roptosis may kill cancer cells, however, it is not immune-

silent raising the issue of what impact this may have on

surrounding healthy tissues.

Pyroptosis

Pyroptosis is an inflammatory form of PCD involving

activation of caspase-1 by inflammasomes. Caspase-1 pro-

teolytically processes pro-IL-1β and pro-IL-18 into the

mature inflammatory cytokines IL-1β and IL-18, respec-

tively. Gasdermin D (GSDMD) is the critical executioner

of pyroptosis [135]. Caspase-1 cleaves GSDMD and its N-

terminal fragment assembles into a plasma membrane pore

[136]. This is required for release of bio-active IL-1β and

IL-18 as well as other cellular contents, and for the killing

of the cell. Historically, pyroptosis was often thought to be a

monocyte-specific form of apoptosis, as it exhibits a plasma

membrane-blebbing morphology. However, the recent dis-

covery of GSDMD and its pore-formation activity has

redefined pyroptosis as a necrotic form of cell death.

Evidence for pyroptosis (accompanied by inflammasome

activation and elevated IL-1β and IL-18) has been reported

for many neurodegenerative diseases, including AD, PD,
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ALS, HD, multiple sclerosis, stroke and traumatic brain

injury [137]. Inflammasome activation and pyroptosis have

been found in microglia and oligodendrocytes in an animal

model of multiple sclerosis, in which pathology was

diminished by caspase-1 inhibition [138].

Necrosis: unregulated cell death

Necrosis is classically considered an unprogrammed and

unregulated cell death process that is characterised by cell

swelling, loss of membrane integrity, ‘spillage’ of intra-

cellular contents (DAMPs and PAMPs) into the extra-

cellular environment and dissipation of ion gradients,

overall triggering an inflammatory response. Necrosis can

occur due to overwhelming stimuli from outside the cell,

such as hypoxia, freezing or burning, certain pathogens,

physico-chemical stresses (e.g. H2O2), ischaemia-

reperfusion and calcium overload [139]. Early events in

necrosis include an increase in intracellular Ca2+ con-

centration and generation of reactive oxygen species cul-

minating in events that result in irreversible cell injury.

However, unlike necroptosis, necrosis lacks a defined core

cellular signalling machinery but Ninj1 has recently been

identified as being critical for the rupture of the plasma

membrane [140]. Of note, Ninj1 is also critical for the final

rupture of the plasma membrane that occurs during

necroptosis, pyroptosis and the secondary necrosis that is

seen when cells undergoing apoptosis are not engulfed by

neighbouring phagocytes. Necrosis is observed in many

pathological conditions, including myocardial infarction,

stroke, several neurodegenerative diseases and in certain

cancers, where factors released from necrotic malignant

cells are likely to impact the tumour microenvironment

[14, 141].

Since necrosis is an unprogrammed form of cell death, it

has been proposed that the necrotic pathology associated

with neurological diseases emanates from an interplay of

finely tuned programmed necrosis cascades, such as

necroptosis, ferroptosis and pyroptosis, and that this is a

driver of the neurological diseases (Table 1). It is therefore

anticipated that targeting the necrotic PCD pathways may

provide novel opportunities for therapeutic intervention

which is discussed below. Of note, it remains a distinct

possibility that in neurodegenerative diseases at least some

aspects of tissue damage, such as the immediate insult from

the occlusion of blood vessels in stroke, is actually caused

by unregulated (non-programmed) necrosis rather than by

any of the programmed necrotic cell death pathways. Such

tissue damage may only be alleviated by preventing or

reducing the insult causing the patholoogy in the first place

(e.g. increasing perfusion during stroke). Nonetheless, most

of the secondary (and possibly tertiary) tissue destruction in

neurodegenerative diseases may well be caused by an

interplay of apoptosis and the necrotic PCD pathways.

Therefore, inhibitors of MLKL, GSDMD and BAX/BAK,

the effectors of necroptosis, pyroptosis or apoptosis,

respectively, may allow improved outcomes for patients

with these diseases [142]. It appears likely that such agents

will need to be used in combination due to the ability of

cells to engage another PCD process when the one they

would normally undergo is blocked [143, 144].

Therapeutic implications

The development and study of mouse models (e.g. genetic

modifications or treatment with toxic insults) mimicking

neurological diseases has led to an understanding of key

regulators of the different cell death signalling pathways

and their relevance in disease pathogenesis. Even though

aberrant apoptotic cell death and expression of key pro-

apoptotic proteins are associated with neurodegenerative

diseases, targeting apoptosis in vivo has so far proved dis-

appointing. The clinical potential of Minocycline, a second-

generation tetracycline was tested in various preclinical

mouse models of neurodegenerative diseases, such as ones

for ALS, PD and HD. Minocycline blocks the release of

cytochrome c from mitochondria, inhibiting this step in

apoptosis, and was reported to upregulate the expression of

anti-apoptotic BCL-2, also exhibiting anti-inflammatory and

antioxidant effects, displaying effective neuroprotective

outcomes in preclinical mouse models [145]. However, a

recent randomised clinical trial reported that Minocycline

was ineffective and failed to delay disease progression in

patients with mild AD over a 24 month period [146]. The

reason for this is likely that MOMP and loss of ATP pro-

duction in mitochondria will still occur despite treatment

with this agent. Thus, cells exposed to Minocycline would

still be ‘functionally dead’.

Pharmacological inhibition or genetic ablation of RIPK1

has produced neuroprotective outcomes in preclinical

models of AD, PD and HD. The use of the blood brain

barrier-penetrant RIPK1 inhibitor DNL747 was tested in a

clinical trial for AD and ALS, even though necroptosis was

reported to be dispensable for the latter. DNL747 pro-

gressed through phase I trials. However, the trial was then

halted in favour of its successor compound, DNL788, which

is anticipated to be superior in achieving neuroprotective

outcomes [147]. The efficacy of the combination of sodium

phenylbuturate and Taurursodiol was recently reported in a

randomised, double-blind trial for ALS. Taurursodiol was

reported to exert anti-apoptotic properties, inhibiting the

translocation of the apoptosis effector BAX to mitochon-

drial membranes, while sodium phenylbutrate, a histone

deacetylase inhibitor can ameliorate toxicity from endo-

plasmic reticulum stress, thereby promoting cell survival.

Measurement of drug impact included examination of
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functional decline, which was reported to be slower com-

pared to the placebo treated control subjects, when assessed

over a 24-week period [148].

Bcl2l12, a protein containing a BH2 domain (but none of

the other BCL-2 family homology (BH) regions) was

reported to drive the development of GBM by interacting

with certain members of the BCL-2 protein family and

inhibiting the activation of caspases-3 and -7, thereby

inhibiting mitochondrial-induced apoptosis [149]. An early

phase clinical trial (NCT03020017) in GBM involved

Table 2 Candidate drugs targeting cell death pathways in neurological diseases.

Cell death

pathway

Drug and mechanism of action Disease Clinical trial phase (number of participants)

and outcome

References and/or clinical trial

registration number

Apoptosis Carboplatin, DNA damaging agent

triggering apoptosis. Evaluated in

combination with Bevacizumab

(VEGF inhibitor).

GBM Phase II (122), patients on carboplatin +

Bevacizumab; more toxicity without

additional clinical benefit compared to

placebo.

ACTRN12610000915055 [153]

Olaparib, PARP inhibitor, sensitizes

GBM cells to death receptor-mediated

apoptosis induced by TRAIL. These

agents all induce apoptosis in

malignant cells

GBM PhaseI/IIa (79), Evaluating the therapeutic

potential of Olaparib in combination with

TMZ and radiation.

NCT03212742 [154]

Necroptosis DNL747; RIPK1 inhibitor ALS Phase I (15) NCT03757351

AD Phase I (16) NCT03757325

Autophagy Rapamycin; Autophagy enhancer,

mTOR inhibitor.

ALS Phase II (63) [155]

Resveratrol; autophagy enhancer AD Phase III (27), No significant changes in

Alzheimer’s Disease Assessment Scale.

NCT00678431 [156]

Phase II (119), no effects of drug treatment

on plasma Aβ42, CSF Aβ42, CSF tau, CSF

phospho-tau and hippocampal volume.

NCT01504854 [157]

CQ; autophagy inhibitor,

and chemoradiation with

Temozolomide (alkylating agent).

GBM Phase III (30), Median survival increased in

patients receiving CQ + standard of care

treatment.

NCT00224978 [158]

Ferroptosis Deferiprone; iron chelator PD Phase II (40) Stabilised brain iron and

slowed disease progression (UPDRS).

NCT00943748 [121]

Phase II (22) Deferiprone therapy reduced

brain iron content and trended towards

improved motor -UPDRS scores and quality

of life, but was not significant.

NCT01539837 [159]

Phase II (140) Yet to report. NCT02728843

Phase II (372) Ongoing NCT02655315

AD Phase II (171) Ongoing NCT03234686

ALS Phase II (23) Decreased iron in spinal cord

and motor cortex. Slower disease

progression (ALSFRS-R) and weight loss.

NCT02164253 [120]

Phase II (240) Ongoing NCT03293069

FRDA Phase II 2010 (80) NCT00530127

Phase II 2011 (36) NCT00897221

Edaravone; radical scavenger ALS FDA-approved

CuII(atsm); radical scavenger PD Phase I (31) Not reported NCT03204929

ALS Phase I (50) NCT02870634 [124]

Phase I (28) Ongoing NCT03136809

Phase II (80) Ongoing NCT04082832

Phase II (70) Ongoing NCT04313166

VEGF vascular endothelial growth factor, PARP poly ADP-ribose polymerase, TRAIL tumour necrosis factor-related apoptosis-inducing ligand,

mTOR mammalian target of rapamycin, CQ chloroquine, FRDA Friedreich’s ataxia, ACTRN Australian clinical trial registration number,

NCT clinical trials.gov identifier, CSF cerebrospinal fluid, UPDRS Unified Parkinson’s Disease Rating Scale, ALSFRS-R Revised Amyotrophic

Lateral Sclerosis Functional Rating Scale, FDA United States Food and Drug Administration.
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evaluating the efficacy of utilising spherical nucleic acid

gold nanoparticles composed of siRNAs targeting Bcl2l12

(NU-0129). The nanoparticles can cross the blood brain

barrier; therefore, it is anticipated that NU-0129 will pene-

trate into the tumour tissue and will be able to inhibit the

growth of GBM.

Regulators and effectors of the different cell death

pathways remain attractive therapeutic targets that may

form the basis for translational work that will hopefully

lead to improvements for patients with these diseases.

Given that the aetiology of neurological diseases is

complex, where multiple cell death mechanisms often in

conjunction with other cellular processes drive pathology,

it appears likely that effective therapies will comprise

inhibitors of more than one cell death programme plus

inhibitors of additional cellular processes. Table 2 dis-

plays some key targets within cell death pathways which

have advanced to clinical trials.

Conclusions and perspectives

Many diseases of the brain are associated with defects in

one or several processes of PCD: either aberrant killing of

cells that should survive in neurodegenerative disorders or

aberrant survival of cells that should die during the devel-

opment and therapy of brain cancers. In most neurodegen-

erative diseases it has not yet been unequivocally defined

whether these defects in cell death are a true cause or at least

critical contributor to disease or simply a consequence of

some insult to the tissue where even effective blockade of

this cell death would not offer improved therapy. In the case

of brain cancer, as with all types of cancer, effective

delivery of potent inducers of any type of cell death would

be expected to cause tumour shrinkage, of course with the

proviso that it will be safe, i.e. tolerable to vital tissues. We

contend that much additional research, both basic work in

animal models and studies with patient material, is needed

to garner a more detailed understanding of the roles of the

different processes of cell death in diseases of the brain, so

that this knowledge can be harnessed to develop truly

transformative advances in their treatment.

Facts

● Neurodegenerative diseases are associated with aberrant

neuronal cell death, but the processes leading to such

cell death and the mode of cell death still remain

unclear.
● Glioblastoma cells are highly resistant to apoptosis;

therefore, activation of alternate mechanisms of PCD

may represent promising avenues to explore for therapy

of this cancer.

● With the brain’s complex cellular and architectual

diversity, it is not unreasonable to predict that many

forms of cell death may be occurring simultaneously in

disease states. Indeed, evidence indicates this is likely

the case, with various inhibitors targeting many forms of

cell death having beneficial impact in the same

disease model.
● Given there are perturbations in more than one PCD

signalling pathway and also unprogrammed necrosis in

disease pathogenesis, effective therapies will need to

comprise inhibitors of more than one type of cell death.

Open questions

● Is a defect in a PCD signalling pathway a direct cause or

a critical contributor to disease or simply a consequence

of some insult to the tissue where even effective

blockade of cell death would not offer improved

outcome?
● Programmed pathways of lytic cell death are inherently

more immunogenic than apoptosis. Will inhibition of

lytic PCD pathways be more effective in the treatment of

neurodegenerative diseases than blocking apoptosis

because the former induces a pro-inflammatory

state? Are neurons more susceptible to death in an

inflammatory state?
● The ferroptosis PCD pathway is not immune-silent.

What impact would this have on surrounding healthy

tissues when trying to exploit inducers of ferroptosis for

the treatment of brain cancers?
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