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Abstract

Endothelial hyperpermeability is a significant problem in vascular inflammation associated with

trauma, ischaemia–reperfusion injury, sepsis, adult respiratory distress syndrome, diabetes,

thrombosis and cancer. An important mechanism underlying this process is increased paracellular

leakage of plasma fluid and protein. Inflammatory stimuli such as histamine, thrombin, vascular

endothelial growth factor and activated neutrophils can cause dissociation of cell–cell junctions

between endothelial cells as well as cytoskeleton contraction, leading to a widened intercellular space

that facilitates transendothelial flux. Such structural changes initiate with agonist–receptor binding,

followed by activation of intracellular signalling molecules including calcium, protein kinase C,

tyrosine kinases, myosin light chain kinase, and small Rho-GTPases; these kinases and GTPases then

phosphorylate or alter the conformation of different subcellular components that control cell–cell

adhesion, resulting in paracellular hypermeability. Targeting key signalling molecules that mediate

endothelial-junction-cytoskeleton dissociation demonstrates a therapeutic potential to improve

vascular barrier function during inflammatory injury.

Endothelial cells lining the inner surface of microvessels form a semipermeable barrier that

actively participates in blood–tissue exchange of plasma fluid, proteins and cells. The precise

regulation of endothelial permeability is essential for maintaining circulatory homeostasis and

the physiological function of different organs. As a result, microvascular barrier dysfunction

and endothelial hyperpermeability represent crucial events in the development of a variety of

disease processes, such as adult respiratory distress syndrome (ARDS), ischemia–reperfusion

(I–R) injury, diabetic vascular complications, and tumour metastasis. Better insight into the

molecular mechanisms underlying pathogenic conditions related to microvascular

hyperpermeability is required for developing effective therapeutic strategies. Following

intensive studies over the past few decades, it is now understood that endothelial permeability

is mediated through a transcellular pathway (across cells) and a paracellular pathway (between

cells), both of which are highly regulated by mechanical forces and biochemical signals.

Transcellular versus paracellular permeability

An important molecular mechanism underlying transcellular permeability is macromolecule

transcytosis via caveoli – specialised plasmalemmal vesicles containing caveolin-1. The

involvement of caveolin-1 in regulating cardiovascular functions associated with endothelial

barrier properties has been demonstrated through studies using transgenic and knockout
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animals (Refs 1,2,3,4). Upon binding to plasma proteins (of size >3 nm, e.g. albumin), the cell-

surface docking protein gp60 interacts with caveolin-1 and signalling intermediaries, including

a G protein and Src-family tyrosine kinase. This cascade results in the formation and release

of albumin- and solute-containing caveolae from the apical membrane (Ref. 5). The vesicles

are subsequently transported to the basal membrane and release their contents through

exocytosis (Ref. 5). Recent ultrastructural evidence suggests that caveolae-like

vesiculovacuolar organelles can interconnect to each other, forming secondary, grape-like

structures that function as transmembrane channels for molecular trafficking across the cell

(Ref. 6). Receptors of endogenous permeability-enhancing agents have been identified on the

surface of these channels, indicating the possibility of their participation in transcytosis-related

endothelial permeability (Refs 7,8).

Despite the potential contribution of transcytosis to the basal permeability of the endothelium,

paracellular flux of plasma fluid and proteins through endothelial cell–cell junctions has been

emphasised for its pathophysiological importance in vascular inflammation during disease and

injury. Among the different types of junction structures in the vascular endothelium, the tight

junction and adherens junction are the best characterised with respect to their function in

mediating cell–cell adhesion and thus barrier properties. Briefly, the tight junction is a zipper-

like structure formed at the cell–cell contact area by a group of transmembrane proteins

primarily expressed in the blood–brain barrier and retinal microvasculature, including claudins,

occludins and zonular occludins (ZO-1 and ZO-2). The adherens junction has been identified

in nearly all types of vascular beds, especially in the peripheral microvasculature (Fig. 1). Its

molecular structure is based on VE-cadherin (vascular endothelial cadherin), a transmembrane

receptor whose extracellular domain homophilically binds to the extracellular domain of

another VEcadherin molecule from an adjacent cell and whose intracellular domain is anchored

to the cell cytoskeleton via a family of actin-binding proteins called catenins (α, β, γ and p120

catenins). The catenins not only serve as a structural linkage between VE-cadherin and the

cytoskeleton, but also transduce biochemical signals for cell–cell communications (Refs 9,

10). Moreover, endothelial cells are tethered to the extracellular matrix through focal

adhesions, which consist mainly of integrin transmembrane proteins and a family of actin-

linking proteins including focal adhesion kinase (FAK), talin and paxillin (Ref. 5) (Fig. 1). The

stability of this junction–cytoskeleton complex withstands fluid shear stress and is essential in

maintaining the endothelial barrier function.

Many inflammatory mediators are capable of disrupting the interendothelial junction assembly,

thereby causing endothelial hyperpermeability. More in-depth molecular analyses suggest that

the mechanism underlying inflammation-induced endothelial paracellular hyperpermeability

involves phosphorylation, internalisation or degradation of the junctional molecules (Ref.

11). In addition, the junction–cytoskeleton complex participates in other cellular processes

including molecular scaffolding, intracellular trafficking, transcription and apoptosis that may

directly or indirectly alter vascular barrier function (Ref. 12). Regardless of the molecular

details, however, essentially all permeability responses in the vascular endothelium are initiated

with receptor occupancy followed by a series of intracellular signalling cascades, some of

which are described below (Fig. 2).

Intracellular signal transduction

Cytosolic calcium

Many inflammatory agonists mediate endothelial hyperpermeability via a calcium (Ca2+)-

dependent mechanism. The signalling cascade is triggered when an agonist binds to its

respective receptor expressed on the endothelial surface, which activates phospholipase C

(PLC) either directly (e.g. VEGF receptor) or via a G protein (e.g. histamine receptor) (Fig.

2). This culminates in inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] production and Ca2+ release
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from intracellular stores as well as influx via various channels. Elevated intracellular Ca2+

further targets cytoskeleton proteins or junction structures that determine the paracellular

permeability property.

At the cytoskeleton, Ca2+ activates Ca2+/calmodulin-dependent myosin light chain kinase

(MLCK), which phosphorylates myosin light chain (MLC) and promotes a cross-bridge

movement between actin and myosin (Fig. 1). This interaction generates a contractile force

that pulls neighbouring cells apart from each other (retraction), leading to intercellular gap

formation (Ref. 13). In parallel, Ca2+ stimulates nitric oxide synthase (NOS), which produces

nitric oxide (NO) and subsequently cyclic GMP (cGMP); the latter activates cGMP-dependent

protein kinase (PKG). The NO–PKG cascade is known to mediate endothelial barrier structural

and functional responses to a wide spectrum of physiological and pathological mediators,

including angiogenic growth factors and proinflammatory agents (Refs 14,15). Additionally,

intracellular Ca2+ has been shown to participate in the transcellular transport of

macromolecules via caveoli, as demonstrated by Ca2+ waves in caveolin-1-rich cell edges

under shear stress or ATP stimulation (Ref. 16).

Protein kinase C

Protein kinase Cs (PKCs) are a family of serine/threonine kinases that differ in structure,

expression, subcellular distribution, and function. Their activities are differentially regulated

by Ca2+, diacylglycerol (DAG) and phospholipids. Some isoforms can be activated by synthetic

compounds such as phorbol 12-myristate 13-acetate (PMA). The downstream signals of PKCs

include the Rho family of GTPases, mitogen-activated protein kinases (MAPKs) and MLCK.

More specifically, PKCs induce rapid phosphorylation of the Rho-GDP dissociation inhibitor

(GDI), promoting RhoGDP–GTP exchange and Rho-associated protein kinase (ROCK)

activation coupled with increased actomyosin ATPase activity (Ref. 17). With respect to the

MAPK cascades, PKCs trigger Ras-dependent signalling through a sequential activation of a

Ras protein, Raf protein, MAPK kinase (MEK1/2) and extracellular-signal-regulated kinase

(ERK1/2) (Refs 18,19). In particular, PKCs cause a time-dependent increase in the activity of

Ras, which binds CRAF (Raf-1), a serine/threonine kinase capable of activating MEK1/2 and

subsequently ERK1/2. Inhibition of Ras completely abolishes PMA-induced CRAF activity,

and MEK1/2 inhibitors attenuate PMA–induced hyperpermeability, consistent with the role of

PKC-MAPK signalling in endothelial barrier regulation (Ref. 19).

Structurally, PKCs can also directly stimulate the cytoskeletal contractile machinery by

phosphorylating MLCK, a key molecule triggering actin–myosin motor function. PKCs also

interact with other cytoskeletal proteins known to participate in cell contraction, such as actinin,

caldesmon, and the intermediate filament protein vimentin (Ref. 20). Furthermore, PKC

activation correlates with disassembly of adherens junctions (Ref. 21) and tight junctions (Ref.

22).

Tyrosine kinases

Both receptor and nonreceptor tyrosine kinases participate in the signal transduction that

mediates changes in endothelial barrier structure and function. As a representative of receptor

tyrosine kinases, vascular endothelial growth factor (VEGF) receptor 2 (VEGFR-2; also named

KDR) undergoes dimerisation and phosphorylation at multiple tyrosine residues upon ligand

binding. This provides a molecular configuration for recruiting more intracellular signals and

further stimulating the receptor-linked PLCγ. The downstream reactions include PKC

activation, Ca2+ release, NO production, and MAPK signalling (Refs 23,24,25,26,27,28). In

addition to these well-characterised pathways, VEGFR-2 has been shown to mediate

endothelial hyperpermeability by activating p21-activated kinase (PAK) (Ref. 29) and by

phosphorylating FAK, thereby triggering integrin signalling (Ref. 30). In endothelial adherens
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junctions, both VE-cadherin and catenins (β-, γ- and p120-catenin) can be tyrosine

phosphorylated by this receptor kinase in the presence of VEGF (Ref. 11). Recently, it became

evident that the internalisation of VE-cadherin is closely regulated by VEGF signalling in a

β-arrestin-dependent manner (Ref. 31).

Among multiple nonreceptor tyrosine kinases, the Src family (c-Src, Fyn, Yes, Yrk, Lyn, Hck,

Fgr, Blk, Lck) has been frequently implicated in the barrier-opening action of various

inflammatory mediators and growth factors (Ref. 32). The mechanisms underlying Src-induced

paracellular hyperpermeability may involve cytoskeleton contraction driven by MLCK

phosphorylation (Ref. 33), and/or junction opening triggered by VE-cadherin and β-catenin

phosphorylation (Ref. 34). Furthermore, it has been demonstrated that Src-induced

phosphorylation of caveolin-1 and dynamin is crucial for the signalling machinery in directing

the polarised transportation of albumin and other solute through the transcellular pathway (Refs

5,35).

Rho GTPases

The activity of Rho GTPases is regulated through GDP–GTP cycling dependent on guanine-

nucleotide-exchange factors. Three members of the Rho family (RhoA, Rac and Cdc42) have

been characterised for their effects on endothelial permeability through distinct subcellular

targeting and functions. In particular, RhoA promotes cell contractility and focal adhesion,

whereas Cdc42 and Rac1 are major players in cell membrane protrusion or filopodia formation

and thus cell migration (Ref. 36). Under physiological conditions, changes in mechanical forces

(e.g. shear stress) act to relay intracellular signals to regulate RhoA activity, thus maintaining

endothelial integrity, especially at intercellular junctions (Ref. 37). The importance of

increased RhoA activity in endothelial barrier dysfunction is supported by studies showing that

RhoA and its effector kinase ROCK mediate endothelial hyperpermeability in response to

histamine, thrombin, VEGF, neutrophils, and mechanical stimuli (Refs 8,37,38,39,40,41).

Upon activation, RhoA inhibits myosin-associated protein phosphatase by phosphorylating its

inhibitory myosin phosphatase targeting (MYPT) subunit via ROCK, indirectly promoting

MLC phosphorylation and actin–myosin contraction (Ref. 42). In addition, RhoA increases

endothelial permeability by stimulating Ca2+ entry, which activates MLCK.

By contrast to the permeability-increasing effect of RhoA, Rac and Cdc42 have been generally

accepted as barrier protectors capable of decreasing permeability. Although a recent study

suggests that Rac contributes to VEGF-induced hyperpermeability (Ref. 31), activation of Rac

is associated with a tightened barrier after treatment with sphingosine 1-phosphate (Ref. 43)

and hepatocyte growth factor (Ref. 44), Likewise, Cdc42 has been shown to play a critical role

in re-annealing adherens junctions and restoring barrier function in endothelial cells during the

recovery phase of inflammatory injury (Ref. 45). While the detailed mechanisms by which

these Rho members protect endothelial barrier properties remain elusive, their effects may

involve PAK-dependent cytoskeleton redistribution or junction reorganisation (Ref. 43).

cAMP

The adenine nucleotide is a conserved, ubiquitous intracellular second messenger that has been

well recognised for its barrier protection function (Refs 14,46). Several mechanisms have been

proposed to explain the action of cyclic adenosine monophosphate (cAMP) on endothelial

barrier structure. First, increased intracellular cAMP activates its cognate protein kinase, PKA,

which by stabilising the actin cytoskeleton counteracts the cell retractile force, thus preventing

intercellular gap formation (Ref. 46). Second, activated PKA can inhibit MLCK activity, which

in turn leads to decreased MLC phosphorylation and minimises actin–myosin contraction.

Finally, cAMP inhibits membrane phospholipid hydrolysis, thereby reducing DAG production

and PKC activity. In accordance with these protective effects of cAMP at cell–cell junctions,
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previous studies also show that cAMP analogues induce a diffuse distribution of focal

adhesions of endothelium and improved barrier function (Ref. 47).

Hyperpermeability mediators

Increased circulating levels of immune cells (e.g. neutrophils) and pro-inflammatory cytokines

[e.g. interleukins (ILs) and tumour necrosis factors (TNFs)] or other soluble mediators (e.g.

histamine, thrombin and VEGF) are a hallmark of host defence against injury. Most of these

mediators produce vasoactive and cytotoxic effects by directly targeting the vascular

endothelium and activating the aforementioned signalling pathways. With recent intensive

studies, the list of mediators inducing endothelial hyperpermeability continues to grow. In this

review, we focus on some typical acute inflammatory mediators and discuss their effects and

mechanisms in endothelial hyperpermeability (Table 1).

Histamine

Histamine has long been known as an oedematogenic factor contributing to microvascular

leakage in the acute inflammatory response associated with trauma, burns, allergy and certain

types of infectious disease. Endothelial paracellular hyperpermeability resulting from

intercellular gaps has been accepted as the major cellular mechanism underlying histamine-

induced barrier dysfunction. Four subtypes of G-protein-coupled receptors (H1, H2, H3 and

H4) have been attributed to histamine action (Refs 48,49), among which H1 is considered the

most important with respect to vascular permeability (Ref. 50). It is well established that

histamine binding to Gq-coupled H1 receptor activates PLCβ and elevates intracellular Ca2+,

which increases MLCK activity and triggers actin–myosin contraction (Refs 15,51). Other

downstream reactions include PKG-dependent MAPK activation (Ref. 52). At the junctional

level, histamine signalling causes phosphorylation and disruption of components of the

adherens junction and tight junction (Refs 5,53,54).

Thrombin

This procoagulant serine protease is well known for its endothelial hyperpermeability effect,

especially in vitro. Its receptors belong to the family of protease-activated receptors (PARs).

Of four known isoforms, PAR-1, -3 and -4 are activated by thrombin and PAR-2 is activated

by trypsin, whereas PAR-1 is best characterised with respect to endothelial permeability.

Similar to the histamine H1 receptor, PAR-1 signals through Gq-coupled Ca2+ mobilisation,

PKC activation, and MAPK signalling (Refs 53,55,56). In addition to Gq, other G proteins may

participate in PAR-1 signalling as well. For example, PAR-1 coupling of Gα12/13 has been

shown to activate p115RhoGEF (Ref. 57), a RhoA activator that also functions downstream

of PKC (Refs 18,58). Furthermore, through the PAR-1 cascades, thrombin is able to activate

multiple protein kinases including Src, FAK, PKC and MAPK, as well as to stimulate their

crosstalk (Ref. 59).

Vascular endothelial growth factor

VEGF is a glycoprotein originally identified as a vascular permeability factor based on the fact

that it caused interstitial accumulation of intravenously injected dyes and ascites in vivo (Ref.

60). Subsequently, its role in pathological angiogenesis has been extensively studied with

respect to diabetic retinopathy, I–R injury, and tumour development and metastasis, all of

which involve altered endothelial permeability (Ref. 61). Three types of VEGF receptors have

been characterised. Although a recent study using venom VEGF (TfsvVEGF) suggests that

VEGFR-1 is involved in endothelial permeability responses (Ref. 62), VEGFR-2 is still

considered as the primary receptor mediating the hyperpermeability action of VEGF (Refs

40,63). As indicated above, the intracellular signal transduction triggered by this receptor

tyrosine kinase involves complex interactions among multiple signalling molecules and
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structural proteins (Refs 23,24,25,26,27,28,29,30). While there has been ultrastructural

evidence supporting VEGF-induced transcellular permeability, recent studies suggest that

VEGF also affects paracellular permeability by promoting cytoskeleton contraction, focal

adhesion dynamics, and cell–cell junction opening (Refs 30,40,64).

Neutrophils and neutrophil-released cytokines

In response to injurious or inflammatory stimulation, neutrophils undergo a series of kinetic

changes characterised by adherence to the venular endothelium, followed by transendothelial

migration and chemotaxis to the site of stimulation (Refs 65,66,67,68,69,70,71), a process often

accompanied by plasma fluid and protein leakage (Ref. 72). While the leak response is

conventionally attributed to mechanical disruption of the endothelial barrier as a result of

neutrophil transmigration, an emerging paradigm emphasises a dynamic and reversible

interaction between the endothelium and vasoactive mediators released from neutrophils

during adhesion and migration (Ref. 73). In this regard, activated neutrophils produce a variety

of hyperpermeability factors, including oxidants, cytokines, lipid metabolites, leukotrienes and

proteases. These factors directly or indirectly target the endothelium, inducing a series of

biochemical and conformational changes in the barrier. It has been shown that microvascular

endothelial cells play an active role in response to neutrophil activation through a Src- and

RhoA-dependent endothelial cell–cell interaction, characterised by VE-cadherin and β-catenin

phosphorylation and adherens junction disorganisation; the response is coupled with MLC

phosphorylation-dependent cytoskeleton contraction (Refs 38,39,73,74). Consistently, many

studies have demonstrated that neutrophil-released factors, such as oxidants and cytokines,

cause endothelial hyperpermeability by activating the contractile machinery and opening cell–

cell junctions through signalling pathways that involve Src, RhoA, PLC, Ca2+, MAPK and

MLCK (Refs 75,76,77,78).

Two of the best-studied cytokines released by activated leukocytes and endothelial cells, with

respect to their impact on the endothelial barrier, are TNF and IL-1 (Ref. 5). TNF and IL-1

augment endothelial permeability and facilitate leukocyte infiltration in tissues when injected

locally. This is mainly mediated through upregulation of endothelial adhesion molecules, such

as intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1)

and E-selectin that afterwards interact with their ligands on the activated leukocytes to mediate

cell arrest and subsequent transendothelial migration (Refs 5,79,80). Recent studies have also

implicated PKC, RhoA/ROCK, transient receptor potential canonical 1 (TRPC1), and matrix

metalloproteinases (MMPs) in TNF-induced endothelial hyperpermeability (Ref. 5). These

subcellular mediators can influence paracellular permeability at the level of adherens junction

disorganisation as well as actin cytoskeleton reorganisation.

It has recently been shown that ICAM-1-mediated Src-dependent caveolin-1 phosphorylation

is crucial for neutrophil-induced pulmonary vascular hypermeability. This finding suggests a

potential role of transcellular permeability in neutrophil-mediated inflammatory responses

(Ref. 81).

Clinical relevance

Vascular inflammation contributes to the development of a variety of diseases or pathological

processes, including trauma, burns, I–R injury, sepsis, diabetes, atherosclerosis, thrombosis,

and tumour development and metastasis. Below is a brief discussion of some clinical situations

directly relevant to endothelial barrier injury.
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Adult respiratory distress syndrome

ARDS is a severe pulmonary condition resulting from a major burn, trauma, sepsis or acute

pancreatitis. It is characterised by diffuse pulmonary inflammation, leukocyte infiltration,

alveolar-capillary barrier dysfunction, and plasma extravasation. The pathogenesis of ARDS

involves multiple pro-inflammatory factors, such as histamine, TNF-α, IL-1 and IL-6 (Refs

82,83). The plasma level of histamine is significantly increased in patients and experimental

animals with septic shock (Refs 84,85). Besides a strong bronchoconstrictive effect, histamine

increases pulmonary microvascular permeability, leading to lung oedema (Ref. 86). This injury

can be augmented by TNF-α and IL-1β produced from activated leukocytes during the

development of ARDS (Ref. 82). The levels of TNF-α in serum and bronchoaveolar lavage

fluid are substantially increased in patients (Refs 87,88), whereas blocking TNF-α ameliorates

pulmonary oedema in animal models of ARDS (Ref. 89). The mechanisms by which TNF-α
causes barrier injury include actomyosin-contraction-driven intercellular gap formation, as

well as overexpression of other proinflammatory cytokines (e.g. IL-1β) and adhesion

molecules (e.g. ICAM-1) mediated by the transcription factor NF-κB (Refs 79,80). IL-1β is

also found in bronchoaveolar lavage fluid from ARDS patients, although its detrimental role

in the disease is challenged by an in vitro study showing that IL-1β contributes to the repairing

process of injured alveolar epithelium (Ref. 90).

Ischaemia–reperfusion injury

I–R injury refers to tissue damage after blood supply returns to previously ischaemic areas,

typically observed under the clinical conditions of myocardial infarction and organ

transplantation. The injury is often accompanied by intracellular Ca2+ stress and accumulation

of reactive oxygen species (ROS), which can disrupt endothelial cell–cell junctions and cause

microvascular hyperpermeability (Refs 91,92). Furthermore, ROS has been implicated in the

initiation and progress of the inflammatory response to I–R injury by upregulating leukotriene

B4, thromboxane A2, and endothelial adhesion molecules that induce leukocyte activation and

chemotaxis (Ref. 93). Also, oxidative stress increases VEGF production and VEGF receptor

expression in endothelial cells (Ref. 94). Although it is commonly accepted that the upregulated

VEGF signalling benefits collateral vessel formation after myocardial infarction, recent studies

using animal models of I–R injury suggest that VEGF may aggravate pulmonary oedema and

cerebral haemorrhagic transformation (Refs 95,96). In the gastrointestinal system following

ischaemia, mucosal mast cells are activated by free radicals and subsequently release histamine,

thus inducing microvascular permeability and leukocyte infiltration (Ref. 97). Another

pathway leading to I–R injury is complement activation, which not only upregulates

proinflammatory cytokines but also activates leukocytes and endothelial cells (Ref. 98). As a

consequence, these cells release more oxidants, vasoactive factors and proteases (elastases and

cathepsin G) that directly target the microvascular barrier resulting in plasma leakage and tissue

oedema (Refs 99,100). Accumulated evidence further suggests that MMPs are also

significantly upregulated in response to oxidative stress and contribute to I–R injury in multiple

organs through increasing endothelial permeability (Ref. 101). Since MMPs have long been

associated with degradation of extracellular matrix components, the reduced cell–matrix

interaction (i.e. cell detachment) and subsequent apoptosis may partially confer microvascular

barrier dysfunction.

Diabetes

Diabetes mellitus represents a group of metabolic disorders associated with defects in either

insulin production or utilisation. Without proper treatments, diabetes results in a series of

complications that affect multiple end organs, manifested as retinopathy, cardiomyopathy,

nephropathy, and cerebral and peripheral vascular disease. Most of these problems are initiated

with abnormal microcirculatory function and endothelial barrier injury; as an example, both
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adherens junctions and tight junctions are diminished in the retinal and cerebral

microvasculature of diabetic patients (Refs 102,103). Although the precise mechanism remains

elusive, it is commonly believed that the injury is caused by polyol flux, oxidative stress,

advanced glycation endproducts (AGEs) and upregulated DAG–PKC signalling, all stemming

from hyperglycaemia. In diabetes, the adapted metabolism of excessive intracellular glucose

results in overconsumption of nicotinamide adenine dinucleotide phosphate oxidase (NADPH)

and glutathione, leading to oxidative stress that compromises vascular barrier function (Ref.

104). In parallel, AGEs at high concentration induce microvascular hyperpermeability by

binding to their receptors on the endothelium as well as leukocytes (Refs 105,106), where they

upregulate pro-inflammatory cytokines such as TNF-α and IL-1, thereby initiating multiple

inflammatory cascades (Refs 15,107,108). AGEs may alternatively induce endothelial barrier

damage by modifying extracellular matrix proteins (Ref. 109). Also, in hyperglycaemia

increased de novo synthesis of DAG can activate the PKC pathway. Many PKC isoforms,

including PKCα and β, promote endothelial permeability (Refs 110,111,112). Accordingly,

selective inhibition of PKCβ attenuates microvascular leakage in the retina, kidney and heart

of diabetic patients and animals (Refs 15,112,113). Of particular interest, VEGF and its

receptor VEGFR-2 are also upregulated during diabetes, which may play a critical role in the

development of microvascular complications, especially diabetic retinopathy (Ref. 114).

Cancer

Tumour growth requires excessive supply of oxygen and nutrients and active removal of

metabolic wastes. This extremely high level of blood–tissue exchange is supported by a dense

microvasculature developed through pathological angiogenesis. Unlike other microvessels,

tumour microvessels have thin walls, with defective and leaky endothelium, partially due to

under developed endothelial cell–cell junctions and discontinuous smooth muscles and

pericytes (Refs 115,116). The hyperpermeability property of the endothelium plays a crucial

role in the initial development and continued growth of tumours as well as in tumour metastasis,

as it facilitates cell transmigration and plasma accumulation in the matrix to support new vessel

formation. This process is characterised by a highly orchestrated cellular response requiring

interactions of multiple growth factors, adhesion molecules, and matrix proteins (Ref. 117).

Typically, VEGF is considered a key signal for endothelial barrier breakdown that allows

endothelial cell migration and matrix-supported capillary growth. In cancer tissues, especially

breast cancer and other types of cancer, an excessive amount of VEGF is detected (Ref. 118)

and its expression level correlates with the degree of tumour malignancy (Ref. 119), whereas

inhibition of VEGF signalling suppresses tumour angiogenesis and malignant progression

(Refs 120,121). Previously, it has been demonstrated that VEGF increases endothelial

permeability and promotes angiogenesis via complex endothelial cell–cell and cell–matrix

interactions (Ref. 122). Recent experiments with breast cancer cell and endothelial monolayer

cocultures further indicate that matrix proteins, such as MMP-2, can be activated upon tumour

cell attachment to the endothelium or after VEGF stimulation. This effect is accompanied by

increased endothelial permeability and tumour cell transendothelial migration (Ref. 123).

Therapeutic implications

As described above, under the pathophysiological conditions of inflammation, microvascular

hyperpermeability is elicited by circulating mediators and growth factors that can bind to their

endothelial receptors and trigger further signalling reactions in the barrier structure. Selective

blockades of proinflammatory agents have been used in patients with trauma and inflammatory

injury. Further inhibition of their downstream signalling or terminal effectors represents a

promising area of drug development for prevention and treatment of vascular disease. Below

are examples of potential therapies relevant to vascular endothelial hyperpermeability.
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Antihistamine therapy

Histamine receptor antagonists have been widely used in the treatment of allergic reactions.

Most of them competitively bind H1 receptors, thereby blocking histamine-induced

hypersensitive responses and endothelial hyperpermeability. In animal models, the H1 receptor

antagonist diphenhydramine reduces lung microvascular permeability and ameliorates

pulmonary oedema (Ref. 124). Another histamine antagonist, loratadine, exerts protective

effects on microvascular barrier function during I–R injury (Ref. 97). When administered

simultaneously, the H1 receptor antagonist diphenhydramine and the H2 receptor antagonist

cimetidine prevent I–R-induced leukocyte infiltration (Ref. 125). Clinically, however, single

blockades of histamine receptors often demonstrate a limited utility for they do not block the

complex interactions and redundant effects of multiple inflammatory agents and pathways

elaborated under injurious conditions. In the cases of severe anaphylaxis and angio-oedema,

glucocorticoids are usually used in combination with antihistamine drugs. Glucocorticoids not

only suppress T helper 1 (Th1)-mediated cellular immunity and systemic inflammatory

response but also inhibit histamine release from mast cells (Refs 126,127).

Anti-VEGF therapy

Given the importance of VEGF in angiogenesis-associated diseases, such as tumourigenesis

and diabetic retinopathy, a considerable research effort has been devoted to developing novel

strategies that inhibit the VEGF pathway. Current products mainly include anti-VEGF

antibodies, VEGF traps (genetically engineered soluble VEGF receptors), and VEGF receptor

blockades. Animal experiments demonstrate that VEGF neutralising antibodies can suppress

microvascular permeability and angiogenesis in tumours, thereby reducing tumour size (Ref.

121). Bevacizumab, the first anti-VEGF agent for cancer therapy approved by the US Food

and Drug Administration, not only inhibits tumour growth in a dose-dependent fashion (Ref.

128) but also produces an antimetastatic effect (Refs 120,129). This drug has been used along

with chemotherapy in patients with lung, renal or colorectal cancer. In addition to cancer

therapy, anti-VEGF strategies have proven beneficial in other diseases or disorders associated

with microvascular hyperpermeability. For example, in experimental diabetic retinopathy,

administration of anti-VEGF antibodies or VEGF traps significantly reduces the abnormal

growth of microvessels and hyperpermeability in the retina (Refs 130,131). In patients with

diabetic macular oedema, the therapeutic effect of anti-VEGF agents has been tested using

fluorescein angiograph and optical coherence tomography (Ref. 132). Subsequently, several

VEGF receptor antagonists have been developed and are currently under preclinical or clinical

trials. They act either as pan-inhibitors of VEGF receptors (e.g. pazopanib), or as specific

inhibitors of VEGFR-2 (e.g. ZM323881). In animal studies, ZM323881 effectively blocks the

acute vascular leak response caused by VEGF (Refs 132,133). In a Phase I trial, pazopanib

demonstrates an inhibitory effect on tumour growth in patients with hypernephroma.

In addition to the strategies specifically targeting VEGF/VEGFR-2, a barrier-protective effect

against VEGF-induced damage can derive from other approaches, including administration of

angiopoietin-1 and inhibition of PLC, PKC, PKG, intracellular Ca2+, MEK and Src (Refs 14,

28,52,134). Although both angiopoietin-1 and VEGF are proangiogenic factors, angiopoietin-1

promotes vessel maturation and inhibits VEGF-induced endothelial hyperpermeability. A

recent study suggests that the protective effect mediated by angiopoietin-1 is through inhibition

of Src activation (Ref. 135). In support of this, it has been demonstrated that VEGF-induced

vascular barrier dysfunction is specifically blocked in Src-deficient mice, with sparing of

normal angiogenesis (Ref. 32). Further evidence shows that topical application of a novel

VEGFR-2/Src-kinase inhibitor suppresses VEGF-mediated retinal vascular hyperpermeability

in animal models (Ref. 136).
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Activated protein C

Activated protein C (APC) is an endogenous anticoagulation factor that has recently been

shown to possess anti-inflammatory and anti-apoptotic functions (Refs 137,138). Recombinant

APC [DrotAA; drotrecogin-alpha (activated)] has been used in critical care for patients with

severe sepsis and disseminated intravascular coagulation. The mechanism underlying the dual

functions of APC is a subject of current investigation. It is generally accepted that the beneficial

effect of APC is mediated by endothelial protein C receptor (EPCR)-dependent cleavage of

PAR-1 on the vascular endothelial surface (Refs 138,139,140). Binding of APC to EPCR

switches the PAR-1 signalling downstream of thrombin to a protective pathway through

coupling of PAR-1 to a Gi protein (Refs 139,140). It has been shown that soluble APC–EPCR

complexes with proteinase-3 and integrins expressed on leukocytes (Ref. 141), and that APC

downregulates adhesion molecules such as ICAM-1, VCAM-1 and E-selectin expressed on

endothelial cells, thereby inhibiting vascular inflammation (Refs 142,143). In animals, DrotAA

significantly attenuates smoke-induced lung microvascular hyperpermeability (Ref. 144). It

also ameliorates pulmonary oedema caused by I–R injury (Ref. 145).

PKC inhibitors

In light of the fact that PKC plays a central role in the endothelial response to various

proinflammatory factors, targeting this common signalling molecule with site specificity may

become an effective adjunct therapy for treating vascular inflammatory injury. In fact, it has

been well documented that PKC inhibitors significantly reduce microvascular

hyperpermeability caused by cytokines, vasoactive agents and growth factors (Ref. 28). In

diabetic patients and animals, oral administration of PKCβ inhibitors (e.g. LY333531 or

Ruboxistaurin) prevents microvascular dysfunction and delays the progress of retinopathy and

nephropathy (Refs 146,147). In a series of studies with porcine models of diabetes, it was

demonstrated that PKC expression and enzymatic activity (especially that of the βII isoform)

was upregulated in the heart and coronary system during early stages of diabetes. The

abnormalities correlate with increased coronary microvascular permeability (Refs 112,113),

which is significantly attenuated by PKCβ inhibitors (Ref. 112). These results support the

therapeutic potential of targeting PKCβ for treating diabetic microvascular complications.

Rho inhibitors

Similar to PKCs, the RhoA–ROCK pathway has been frequently implicated in the pathological

progression of endothelial barrier dysfunction associated with ARDS, I–R injury and diabetes

mellitus. In experimental models of ARDS, systemic administration of a ROCK inhibitor,

Y-27632, substantially reduces pulmonary microvascular permeability and lung injury (Refs

75,148). Fasudil, a ROCK inhibitor, has been evaluated in clinical trials for treating pulmonary

hypertension, cerebral vasospasm, and angina (Ref. 149). A recent study demonstrates that

fasudil inhibits VEGF-induced angiogenesis (Ref. 150). In diabetic animals, fasudil

ameliorates microvascular injury associated with retinopathy and nephropathy (Refs 151,

152). In addition, some drugs that are clinically used for treating hypertension and

hypercholesterolaemia have been shown to protect vascular endothelial barrier function

through RhoA inhibition. For example, simvastatin can decrease thrombin-induced endothelial

dysfunction by attenuating RhoA activation and stress-fibre formation (Ref. 153). Moreover,

simvastatin reduces VEGF-induced glomerular endothelial hyperpermeability (Ref. 154).

However, compared with other selective inhibitors of RhoA signalling such as Y-27632, statins

do not seem to deliver any immediate or rapid barrier protection and their downstream effectors

are relatively nonspecific as a result of a broad targeting of multiple Rho GTPases.
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Future directions

Microvascular barrier dysfunction is a significant problem confronted in the clinical treatments

for various diseases. In vitro and animal studies in this field have led to a better understanding

of the molecular mechanisms underlying endothelial hyperpermeability, and corresponding

strategies have been developed for clinical applications as described in this review. However,

many puzzles still remain to be elucidated. Of particular significance is the fact that although

several mediators (such as VEGF, histamine and thrombin) share similar signalling cascades

in triggering endothelial hyperpermeability, their temporal effects and the permeability-

recovery rates are rather different. This heterogeneity may be attributed to differential

regulation of binding, trafficking, internalisation, and/or desensitisation of their receptors on

the plasma membrane. It is also possible that different levels of counter-regulatory signalling

(e.g. cAMP) are activated concurrently with the hyperpermeability signalling. Furthermore,

despite the efficacy of antagonising individual mediator-induced hyperpermeability in certain

pathological states, only moderate effectiveness is demonstrated under more complicated

inflammatory conditions where multiple mediators are involved and interact with each other.

Therefore, targeting their common terminal effectors (e.g. RhoA/ROCK) may represent a

promising strategy against vascular injury. Within this context, site-specific drug delivery

needs to be developed. A good strategy should improve the barrier function in the affected

vascular bed while sparing other tissues from unwanted effects. A similar issue applies to

treating cancers, where microvascular hyperpermeability may favour the delivery of

chemotherapeutic drugs. Research efforts to further understand endothelial barrier structure

and function should ultimately lead to improved treatment of vascular inflammation.
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Figure 1. Schematic diagram of microvascular endothelial barrier structure

The barrier is formed by endothelial cells that connect to each other through the junctional

adhesive molecule vascular endothelial (VE)-cadherin, which binds to another VE-cadherin

molecule from an adjacent cell and connects to the actin cytoskeleton via a family of catenins

(α, β, γ and p120). This endothelial lining is tethered to the extracellular matrix through focal

adhesions mediated by transmembrane integrins composed of α and β subunits, focal adhesion

kinase (FAK), and cytoskeleton-linking proteins including paxillin and vinculin. The integrity

of this barrier is maintained by VE-cadherin-mediated cell–cell adhesions and focal-adhesion-

supported cell–matrix attachment. A dynamic interaction among these structural elements

controls the opening and closing of the paracellular pathways for fluid, proteins and cells to

move across the endothelium. In particular, the Ca2+/calmodulin (CaM)-dependent myosin

light chain kinase (MLCK) catalyses phosphorylation of myosin light chains (small red circles),

triggering binding of the myosin heavy chain motor domains to actin and their cross-bridge

movement. This reaction promotes cytoskeleton contraction and cell retraction. In parallel,

phosphorylation of VE-cadherin and/or catenins may cause the junction complex to dissociate

from its cytoskeletal anchor, leading to weakened cell–cell adhesion. The cytoskeletal and

junctional responses act in concert causing paracellular hyperpermeability. These structural

changes are caused by signalling reactions depicted in Figure 2.
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Figure 2. Signal transduction in endothelial hyperpermeability

(Legend; see previous page for figure) Multiple cascades of intracellular signalling reactions

are initiated when an inflammatory agonist binds to its respective receptor expressed on the

endothelial surface [e.g. thrombin binds the protease-activated receptor 1 (PAR-1), histamine

binds its receptor H1, and vascular endothelial growth factor (VEGF) binds its receptor

VEGFR-2 (KDR)]. Occupancy of G-protein-coupled receptors activates RhoA and its effector

kinase ROCK (left), or it triggers phospholipase (PLC)-catalysed protein kinase C (PKC)

activation and elevated intracellular calcium, which stimulates nitric oxide production and

cGMP-dependent protein kinase (PKG) activation (right). Agonist binding of receptor tyrosine

kinase also activates the mitogen-activated protein (MAP) kinase cascades characterised by
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phosphorylation of extracellular-signal-regulated kinases (ERK1/2) (middle). The three

pathways (Rho GTPases, MAP kinases and protein kinases) interact with each other, causing

changes in the endothelial barrier structure. Abbreviations: cGMP, cyclic guanosine

monophosphate; CRAF, Raf-1; DAG, diacylglycerol; ER, endoplasmic reticulum; GC,

guanylate cyclase; GDP, guanosine diphosphate; GEF-H1, guanine-nucleotide-exchange

factor H1; GRB2, growth factor receptor-bound protein 2; GTP, guanosine triphosphate; JNK,

c-Jun N-terminal kinase; JNKK, c-Jun N-terminal kinase kinase; L-Arg, L-arginine; NO, nitric

oxide; NOS, nitric oxide synthase; p115RhoGEF, 115 kDa guanine-nucleotide-exchange

factor; p190RhoGAP, p190 Rho GTPase-activating protein; Ras, ras gene product; Rho-GDI,

GDP dissociation inhibitor (GDI); Rho-GDl, Rho GDP-dissociation inhibitor 1; ROCK, Rho

kinase; RTK, receptor tyrosine kinase; SAPK, stress-activated protein kinase; SEK, stress-

activated protein kinase/ERK kinase; Sos, Son of sevenless; Src, src gene product.
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