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Abstract
Introduction Inflammation is a defensive response of the organism to irritation which is manifested by redness, swelling, 
heat, pain and dysfunction. The inflammatory response underlies the role of various diseases. Ferroptosis, a unique modality 
of cell death, driven by iron-dependent lipid peroxidation, is regulated by multifarious cellular metabolic pathways, including 
redox homeostasis, iron processing and metabolism of lipids, as well as various signaling pathways associated with diseases. 
A growing body of evidence suggests that ferroptosis is involved in inflammatory response, and targeting ferroptosis has 
great prospects in preventing and treating inflammatory diseases.
Materials and methods Relevant literatures on ferroptosis, inflammation, inflammatory factors and inflammatory diseases 
published from January 1, 2010 to now were searched in PubMed database.
Conclusion In this review, we summarize the regulatory mechanisms associated with ferroptosis, discuss the interaction 
between ferroptosis and inflammation, the role of mitochondria in inflammatory ferroptosis, and the role of targeting fer-
roptosis in inflammatory diseases. As more and more studies have confirmed the relationship between ferroptosis and inflam-
mation in a wide range of organ damage and degeneration, drug induction and inhibition of ferroptosis has great potential 
in the treatment of immune and inflammatory diseases.
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Introduction

Ferroptosis, a relatively new form of cell death first dis-
covered in 2012, is induced by small molecule compound 
erastin (an inducer of ferroptosis) and dependent on iron 
and lipid peroxidation, which is different from autophagy, 
pyrosis and other forms of cell death [1]. The morphologi-
cal features are observed as cell swelling, dense electron 
of mitochondria, rupture of outer membrane, reduction or 
disappearance of mitochondrial cristae. Three fundamental 
hallmarks define ferroptosis: the dysfunction of lipid per-
oxide scavenging, the existence of redox active iron and 
the oxidation of phospholipids containing polyunsaturated 
fatty acids (PUFA) [1–3]. The molecular basis of ferropto-
sis includes glutamate/cystine anti-transporter, antioxidant 
system (glutathione peroxidase 4, GPX4), iron metabolism, 
unsaturated fatty acid metabolism, and ferroptosis suppres-
sor protein 1 (FSP1)-ubiquinone system. As a kind of stress 
response, ferroptosis has pathological roles in a wide variety 
of diseases, including neurodegenerative diseases, cancer, 
inflammatory diseases of various organs, ischemia–reperfu-
sion injury (IRI), and brain injury, among others.
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Inflammation is the activation of innate immune cells by 
damage and microbe-associated molecular patterns, mani-
fested as the recruitment of macrophages and neutrophils, as 
well as the appearance of five major signs: rubor (redness), 
calor (heat), tumor (swelling), dolor (pain), and functio laesa 
(loss of function) [4]. On the one hand, inflammation is benefi-
cial to the body. Inflammation benefits the host by promoting 
the removal of invading pathogens and removing cell debris 
after tissue damage. Inflammation also stimulates tissue repair 
and regeneration to restore homeostasis and body health [5, 
6]. On the other hand, immune cells activated by inflamma-
tory responses are usually accompanied by further inevitable 
damages to the host through the release of cytokines such as 
reactive oxygen species (ROS). It is the basis of a variety of 
physiological and pathological processes, which can cause 
serious damage to the body.

The complexity of the known regulatory pathways of fer-
roptosis makes it inevitably play an important pathological 
role in a variety of diseases, such as inflammatory diseases. 
Ferroptosis is accompanied by the release of pro-inflamma-
tory molecules, such as interleukin (IL)-1β and IL-18 [7]. 
Elucidating the relationship between ferroptosis and inflam-
mation may provide valuable insights into developing novel 
targets for inflammatory diseases. In recent years, more and 
more studies have shown that ferroptosis inhibitors are of 
great benefit in the treatment of inflammation [2, 8, 9]. Mito-
chondria are important organelles in inflammatory response. 
Here, we also discussed the relationship among mitochon-
dria, inflammation and ferroptosis. This article reviews the 
molecular mechanisms of ferroptosis, describes the role of 
ferroptosis in inflammation, and summarizes the role of fer-
roptosis inhibitors in the treatment of inflammatory diseases.

Methodology

A systematic literature review of PubMed database was 
conducted with “ferroptosis” and “inflammation” as key-
words. Inflammation, Ferroptosis, Lipid Metabolism, Iron 
Metabolism, IL-6, TNF-α, IL-1β, PUFA, arachidonic acid 
(AA), COX2, Mitochondria, NF-κB, Liposome, acute kid-
ney injury (AKI), acute lung injury (ALI), inflammatory 
bowel disease (IBD), Neurodegenerative Diseases, IRI, etc. 
are the keywords to collect and summarize the articles pub-
lished so far in 2010 to understand the role of Ferroptosis in 
inflammatory diseases (Fig. 1).

Mechanism of ferroptosis

Regulation of intracellular iron homeostasis

Iron is a transition metal that is a basic component of almost 
all living cells and organisms. It is a component of a variety 

of metal proteins, involved in tissue oxygen transport, mito-
chondrial respiratory electron transfer reaction, DNA syn-
thesis and repair, metabolism of exogenous substances and 
other key biochemical process. Overload of iron content can 
cause multiple organ damage (e.g., liver, kidney, spleen, etc.) 
and cell death. Therefore, maintaining the homeostasis of 
iron is crucial to human body.

Iron metabolism is the dynamic process of absorption, 
storage, utilization and excretion. Many mRNAs involved 
in iron metabolism include iron-responsive elements (IREs): 
stem-loop structures located in the 5ʹ- or 3ʹ-untranslated 
regions (UTRs) on the flanking of coding sequence (CDS) 
[10]. Intracellular iron homeostasis is associated with iron 
regulatory proteins 1 and 2 (IRP1, IRP2) and the IRE sys-
tem. IRP is a protein that can bind to the 5ʹ or 3ʹ UTRs 
of IRE mRNAs. These key mRNAs are involved in iron 
regulation, including iron uptake (e.g., DMT1, TFR1), iron 
retention (e.g., ferritin subunits: FTH1, FTL) and iron export 
[e.g., ferroportin (FPN)]. Upon cellular iron deficiency, IRP 
not only binds to the 5′ IRE of ferritin and FPN to inhibit 
their translation, but also binds to the 3′ IRE of TFR1 to 
inhibit their degradation. When iron meets the demand, 
IRP degrades and these bindings stop [11]. Therefore, in 
response to the cell demands for iron, IRE/IRP interaction 
promotes the stability of TFR1 mRNA and inhibits FTH 
translation, thereby regulating the uptake and storage of cell 
iron [12]. Furthermore, hepcidin the main regulator of iron 
homeostasis, involves in iron metabolism through the inter-
nalization and degradation of FPN [13].

Fig. 1  Flowchart of the methodology
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Ferroptosis is a new type of cell death that is distinct from 
other cell deaths. Excessive iron accumulation is easy to 
induce fenton reaction, resulting in a large amount of ROS 
along with membrane lipid peroxidation and further induc-
ing ferroptosis. The signaling pathways affecting iron metab-
olism have been proved to regulate ferroptosis [14]. PPARα 
activation attenuates iron overload-induced ferroptosis in 
mouse liver by promoting GPX4 expression and decreas-
ing TRF expression [15]. One of the markers of liver injury 
after liver transplantation is the high level of serum ferritin. 
Yamada et al. found that the iron chelation of deferoxamine 
(DFO) can significantly inhibit liver ischemia–reperfusion 
(I/R) ferroptosis and reduce liver I/R injury [16]. In culture 
and xenotransplantation models, downregulation of HSPB1 
or HSF1 gene increases the sensitivity of cancer cells to fer-
roptosis through intracellular iron accumulation and related 
lipid peroxidation, while overexpression of HSPB1 inhibits 
ferroptosis [17].

The sensitivity of cancer cells to ferroptosis is affected 
by regulating intracellular iron homeostasis, and the effect 
of cancer treatment is achieved. A recent report shows 
that artemisinin compounds can sensitize cancer cells 
to ferroptosis by regulating iron homeostasis [18]. The 
specific mechanism is the ability of dihydroartemisinin 

(DAT) to induce lysosomal degradation of ferritin in a 
non-autophagic manner, increasing free iron levels and 
making cells more sensitive to ferroptosis [18]. In addi-
tion, by binding to free iron in cells, the binding of IRPs to 
mRNA molecules containing IRE sequence is stimulated. 
Cells contain a small amount of incompatible and redox 
active  Fe2+, the so-called “labile iron pool” (LIP). Fer-
roptosis inhibitors and iron chelators (such as deferiprone 
(DFP)) can inhibit the fenton reaction by reducing the 
availability of iron in the LIP and inhibiting the produc-
tion of free radicals [19]. Therefore, iron homeostasis is 
closely related to ferroptosis, and iron accumulation is a 
necessary condition for ferroptosis (Fig. 2).

DMT1 and TFR1 mediate the transfer of  Fe2+ into cells, 
and Heme in the cytoplasm can release  Fe2+, which is 
stored in LIP and FTH1 in the cytoplasm. FPN mediates 
the release of  Fe2+ from the cytoplasm into the blood. 
Hepcidin can combine with FPN to promote its internali-
zation and degradation. When intracellular  Fe2+ is absent, 
IRP binds with ferritin and FPN to inhibit their transla-
tions, as well as inhibiting the degradation of TFR1, ulti-
mately increasing the content of  Fe2+ in cells.  Fe2+ in the 
cytoplasm generates ROS through fenton reaction, result-
ing in ferroptosis.

Fig. 2  The link between ferrop-
tosis and iron metabolism
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Lipid peroxidation

Lipid peroxidation is a free radical-driven reaction that pri-
marily affects PUFAs in cell membranes. PUFAs undergo 
enzymatic or non-enzymatic oxidation reactions to form 
lipid hydroperoxides. Lipid hydroperoxides can react with 
 Fe2+ to generate toxic lipid free radicals though fenton 
reaction. Lipid free radicals can attack major components 
of cells and cause cell damage, resulting to ferroptosis. 
In addition, lipid free radicals can also transfer protons 
from adjacent PUFAs, restarting the lipid peroxidation 
process. Lipid peroxidation products include initial lipid 
peroxides (LOOHs) and subsequent reactive aldehydes 
(such as malondialdehyde (MDA) and 4-hydroxynonenal 
(4HNE)), which increase during ferroptosis and are also 
among the markers of ferroptosis [1]. Lipid peroxidation 
directly damages phospholipids, and oxidized phospholip-
ids can also play an important role in many inflammatory 
diseases and mediate pro-inflammatory changes [20].

The GPX4, together with glutathione (GSH) as an 
essential cofactor, is an antioxidant enzyme that neutralise 
LOOHs and protect the fluidity of membranes, thus pro-
tecting cells and membranes from peroxidation. GSH can 
be recycled by GSH reductase and nicotinamide adenine 
dinucleotide phosphate (NADPH)/H+ reduction oxidation 
of glutathione disulfide (GSSG) to inhibit ROS production 
[21]. Transcription factor nuclear factor erythroid 2-related 
factor 2 (NRF2) is a key regulator of cellular antioxidant 
response, which controls the expression of genes involved 
in antioxidant and electrophilic stress. Due to gene muta-
tion, endogenous stress-induced modification, competitive 
binding of other interacting partners or exogenous phar-
macological inhibition, NRF2 can be translocated to the 
nucleus to initiate the transcription of genes containing 
antioxidant response elements (ARE). NRF2 targets can 
be divided into three categories: iron/metal metabolism, 
intermediate metabolism and GSH synthesis/metabolism, 
all of which have validated ARE. NRF2 has been proved 
to regulate the activities of several ferroptosis and lipid 
peroxidation-related proteins [22].

Mammalian arachidonic acid lipoxygenases (ALOXs) 
family (arachidonic acid lipoxygenase) can mediate PUFA 
peroxidation to produce AA/AdA-PE-OOHs, which play 
a tissue or cell dependent role, leading to ferroptosis [1]. 
ALOX is not the only regulator of lipid peroxidation in 
ferroptosis. In fact, cytochrome P450 oxidoreductase 
(POR) combines with two cofactors [lutein mononucle-
otide (FMN) and lutein adenine dinucleotide (FAD)] to 
directly provide electrons to P450 enzymes from NADPH, 
the basic electron donor of all organisms, thereby promot-
ing the peroxidation of PUFA in cancer cells in a manner 
independent of ALOX [23]. However, it is unclear whether 

other oxygenase, such as cyclooxygenase (COX) and per-
oxidase, play a similar role in lipid peroxidation.

At present, studies have shown that peroxisomes promote 
ferroptosis by synthesizing polyunsaturated ether phospho-
lipids (PUFA-ePL), which acts as a substrate for lipid per-
oxidation and resulting in the induction of ferroptosis [24]. 
Therefore, peroxisome-driven synthesis of ether phospho-
lipids, rather than other lipids, plays an important role in 
regulating susceptibility to ferroptosis. The prevailing view 
has long been that ferroptosis is mainly caused by peroxida-
tion of long-chain PUFAs through non-enzymatic oxidation 
of free radicals or enzymatic stimulation of lipoxygenases 
(LOXs). There is emerging evidence revealing that long-
chain saturated fatty acids (SFA) may be related to ferrop-
tosis, and FAR1 is a key factor in ferroptosis mediated by 
SFA. FAR1 catalyzes the reduction of C16 or C18 SFA to 
fatty alcohols, which has been identified as a critical role for 
the synthesis of alkyl ether lipids and acetal phospholipids. 
FAR1 inactivation reduces SFA-dependent ferroptosis [25]. 
Therefore, FAR1-mediated ferroptosis depends on peroxi-
some-driven ether phospholipid biosynthesis (Fig. 3).

PUFA is oxidized under the action of ACSL4 and other 
factors, while NRF2 pathway can inhibit the oxidation of 
PUFA, thereby reducing the degree of lipid peroxidation and 
ultimately inhibiting ferroptosis. Cystine is transferred into 
cells mediated by System Xc-, and promotes the expression 
of GPX4 through GSH-GSSG pathway, thereby inhibiting 
lipid peroxidation and ferroptosis.

Regulatory pathway of ferroptosis

Ferroptosis occurs through iron-catalyzed lipid peroxidation, 
which is triggered by non-enzymatic (fenton reaction) and 
enzymatic mechanism (LOX). The accumulation of LOOHs, 
mainly phosphatidylethanolamine-OOH (PE-OOH), eventu-
ally leads to ferroptosis, while iron acts as a catalyst or a key 
regulator of ferroptosis [26]. PUFAs are the main targets of 
membrane lipid peroxidation [27]. It is currently believed 
that the initial signal of ferroptosis induction is the produc-
tion of ROS from various sources, especially iron metabo-
lism, mitochondrial electron transport chain and NADPH 
oxidase (NOX) protein family [28].

The system  Xc–‑GSH‑GPX4 axis

System  xc− consists of a regulatory subunit solute carrier 
family 3 member 2 (SLC3A2) and a catalytic subunit sol-
ute carrier family 7 member 11 (SLC7A11) [29], which 
promotes the exchange of extracellular cystine and intra-
cellular glutamate on the plasma membrane. SLC7A11 is 
a major functional subunit that can transport cystine into 
cells for GSH synthesis. SLC7A11 knockout mice appear 
healthy and fertile, and fibroblasts isolated from these mice 
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undergo cell death, which can be rescued by the presence 
of β-mercaptoethanol (β-ME), N-acetylcysteine (NAC) or 
vitamin E [30]. Badgley MA et al. found that the deletion of 
the system  XC

− subunit SLC7A11 can induce tumor-selec-
tive ferroptosis and inhibit the growth of pancreatic ductal 
adenocarcinoma (PDAC) [31]. Therefore, when the cystine/
glutamate transporter is disrupted, GSH is depleted, thus 
causing inactivation of GPX4, ultimately resulting in lipid 
peroxidation accumulation and ferroptosis. Other than that, 
GPX4 can use tripeptide GSH as a cofactor to detoxify the 
lipid peroxidation formed during oxidative stress, thereby 
inhibiting the occurrence of ferroptosis.

Non GPX4 dependent pathways

Recently, an antioxidant pathway independent of GPX4 has 
been found, which relies on AIFM2-mediated coenzyme 
Q (CoQ) production [32, 33]. CoQ, also known as panqui-
none, is an endogenously generated isoprenoid benzoqui-
none compound, which is ubiquitous in nature. In addition, 
ubiquinol-10 (CoQ10H2), the reduction form of CoQ10, 
was used as an effective lipophilic antioxidant involved in 
the recovery of other antioxidants, such as tocopherol and 
ascorbic acid. CoQ10 is a key component of mitochondrial 
electron transport chain, which can inhibit lipid peroxida-
tion by capturing free radical intermediates in this process 
[34]. AIFM2 (now renamed FSP1) was screened by gene 
screening, which can block lipid peroxidation and inhibit 

ferroptosis by regenerating reduced CoQ, independently of 
any demand for GPX4 or GSH [32, 33]. In addition, recent 
studies have reported DHODH inactivation induces exten-
sive mitochondrial lipid peroxidation and ferroptosis in 
 GPX4low cancer cells, whereas DHODH inactivation syn-
ergizes with ferroptosis inducers to induce mitochondrial 
lipid peroxidation and ferroptosis in  GPX4high cancer cells. 
Mechanistically, DHODH operates in parallel to mitochon-
drial GPX4 (but independent of cytosolic GPX4 or FSP1) 
to inhibit ferroptosis in the mitochondrial inner membrane, 
through reducing ubiquinone (CoQ) to ubiquinol (CoQH2), 
a radical-trapping antioxidant with anti-ferroptosis activity 
[33]. In addition to mediating the reduction of CoQ10 pro-
duction, AIFM2 supports the anti-injury effect of membrane 
AIFM2 by activating the inner sorting complex required for 
plasma membrane transport (ESCRT) -III dependent mem-
brane repair, which is related to ferroptosis resistance [35]. 
In addition, another pathway independent of GPX4 has been 
reported. The metabolic derivative tetrahydrobiopterin/dihy-
drobiopterin (BH4/BH2) synthesized by GCH1 (GTP hydro-
lase 1) may also antagonize ferroptosis by controlling the 
production of CoQ10 [30].

The NRF2‑HO‑1 signaling pathway

NRF2 is a transcription factor and phosphorylated NRF2 
translocate into the nucleus to transactivate its target genes, 
including heme oxygenase-1(HO-1), as well as NRF2 itself 

Fig. 3  The link between ferrop-
tosis and lipid peroxidation
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[36]. HO-1 is an enzyme that exerts anti-inflammatory and 
antioxidant stress effects [37]. NRF2 is a critical modulator 
of the expression of HO-1. HO-1 mediates heme decomposi-
tion into carbon monoxide, iron and biliverdin [38]. Among 
them, biliverdin and its reduced bilirubin have an effective 
ROS scavenging activity to resist peroxides, peroxynitrite, 
hydroxyl and superoxide radicals. It’s proved that tagitinin 
C induces ferroptosis through ER stress-mediated activation 
of PERK-NRF2-HO-1 signaling pathway [36]. So how does 
the NRF2-HO-1 axis regulate ferroptosis? As a matter of 
common knowledge that NRF2 is a key regulator of endog-
enous antioxidant pathways. NRF2 targets play a key role 
in the regulation of iron metabolism. The light and heavy 
chains of ferritin (FTL/FTH1), which is a key iron storage 
protein, and also the FPN responsible for iron flowing out 
of cells, are controlled by NRF2 [39]. In addition to iron 
metabolism, NRF2 is also involved in the regulation of GSH 
antioxidant system. The expression of enzymes involved in 
GSH synthesis was controlled by NRF2, including gluta-
mate cysteine ligase (GCLC/GCLM), glutathione synthase 
(GSS), and SLC7A11 [22]. Iron metabolism and GSH syn-
thesis are important regulatory processes of ferroptosis, and 
NRF2/HO-1 is the main signal pathway regulating ferrop-
tosis. Moreover, activation of NRF2-HO-1 antioxidant ele-
ment signaling pathway is the main mechanism of cellular 
defense against oxidative stress. For example, zinc increased 
the expression of NRF2/HO-1, thereby increasing the con-
tents of GPX4, SOD, and GHS and reducing the levels of 
LOOHs, MDA, and ROS [40], ultimately thereby inhibiting 
the onset of ferroptosis.

Correlation between ferroptosis 
and inflammation

The inducing factors of inflammation are generally divided 
into three types: loss or damage of tissue structure, tempo-
rary or permanent loss of tissue function, and destruction of 
body regulation function [41]. As we all know, controlling 
inflammatory response can play a protective role by enabling 
the body adapt to stimulation, while improper regulation 
may cause harmful stimulus, such as aggravating collateral 
tissue damage [41, 42].

It is reported that as a new form of cell death, ferroptosis 
is closely related to inflammation. Through the mediums of 
some ferroptosis regulators, such as GPX4, ROS, LOXs, 
and inflammatory mediators produced in the process of fer-
roptosis, ferroptosis can aggravate inflammatory response to 
varying degrees. Here, we describe the relevance of several 
inflammatory mediators and metabolic pathways that medi-
ate inflammation and ferroptosis (Fig. 4; Table 1).

Proinflammatory cytokines

The expression of pro-inflammatory cytokines can be regu-
lated by a variety of factors, including cytokines themselves 
or LPS [43]. Previous studies have shown that circulating 
inflammatory mediators, such as IL-1β, IL-6 and tumor 
necrosis factor-α (TNF-α), play a considerable role in the 
induction of endocrine disorder during inflammation [43]. In 
the process of immune response to infection, the activation 
of coagulation pathways leads to the excessive production of 

Fig. 4  The link between fer-
roptosis and inflammation
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proinflammatory cytokines, which ultimately leads to mul-
tiple organ injury.

IL‑6

Iron calmodulin participates in the intestinal absorption 
and release of iron, thus maintaining iron homeostasis, 
and plays a pivotal role in a variety of ferroptosis-related 
diseases [44, 45]. Some studies have shown that IL-6 par-
ticipates in iron metabolism by mediating the expression of 
ferritin, and iron overload in turn promotes the expression 
of pro-inflammatory cytokines, such as IL-6 and IL-1β, via 
regulating the redox balance [46]. IL-6 has been documented 
in a variety of chronic inflammation, such as IBD, multiple 
sclerosis (MS), rheumatoid arthritis (RA) and inflammatory 
lung disease [47]. IL-6, highly expressed in degenerative 
chondrocytes, induces lipid peroxidation and iron imbalance 
through the IL-6/miR-10a-5p/IL-6R axis, which promotes 
the occurrence of ferroptosis and aggravates the inflam-
matory response of intervertebral disc lesions [48]. Some 
chronic diseases are along with the activation of NF-κB 
pathway and IL-6, the downstream factor, while IL-6 further 
plays the role of anti-ferritin through JAK1/STAT3 pathway. 
IL-6 and sIL-6R α synergism can promote inflammation and 
the transformation of inflammatory types through leukocyte 
recruitment [44, 49]. Similarly, IL-6–IL-2 axis can regulate 

and maintain the homeostasis of T17/Treg cells, and then 
regulate the process of inflammation [50].

TNF‑α

The content of serum TNF-α in tissues was significantly 
increased when ferroptosis occurs. Studies have shown 
that ferroptosis inhibitors can inhibit TNF-α [51]. TNF-α 
has complex pathophysiological functions: it participates 
in the formation of vasodilation and edema, as well as the 
adhesion between leukocytes and epithelial cells via the 
expression of adhesion molecules, regulates blood coagula-
tion, and indirectly induces fever [52]. Under the action of 
pro-inflammatory factors (such as virus, infection, etc.), M1 
macrophages polarize and secrete TNF-α and iNOS [53]. 
TNF-α, inducing the production of iNOS, prostaglandins 
(PGE2, PGF2α, PGI2) and ROS, participates in and pro-
motes inflammatory response such as aggravating the oxi-
dative stress at the inflammatory site and participating in 
the formation of edema, which leads to the vicious circle 
of inflammation. The phenomenon of high expression of 
systemic TNF-α is manifested in RA, IBD and sepsis, and 
is associated with the high incidence rate of CVD, as well 
as atherothrombotic events, indicating that TNF-α is closely 
related to pathophysiology [54].

Table 1  Regulation of inflammatory factors in ferroptosis-related 
inflammation. List inflammatory factors that are tightly linked to 
inflammation and ferroptosis (IL-6, IL-1β et  al.), providing a brief 

overview of the ferroptosis-associated inflammatory diseases and the 
specific regulatory mechanisms involved

Regulatory factors Diseases Regulatory mechanism References

IL-6 Intervertebral disc degeneration (IDD) Interferes with iron homeostasis of macrophages and results in iron 
accumulation

[48]

IL-6 Asthma Induces lipid peroxidation [101]
IL-6 Cardiac ferroptosis and inflammation Via IL-6/STAT3/GPX4 axis [44]
IL-6 Iron-related diseases Via NF-κB/IL-6/hepcidin [49]
IL-6 Intervertebral disc lesions Via IL-6/miR-10a-5p/IL-6R [48]
IL-1β OA Induces ROS, lipid ROS accumulation and MDA in chondrocytes [66, 102]
IL-1β Diabetic endothelial dysfunction Via p53-xCT-GSH axis [67]
TNF-α Neurodegenerative disease Activates NLRP3 inflammasome and LMP [103]
TNF-α Inflammation Via TNF/IKK/NF-κB axis [104]
PUFA Atherosclerotic lesions triggers endothelial ROS increase and nitric oxide (NO) decrease [105]
PUFA Asthma and AKI 15-LOX/PEBP1 complex increase in oxidized PEs [106]
PUFA CD Via GPX4-LPO-PUFA axis [3]
AA Inflammation Produces AA-OOH-PE by Oxygenation and Esterification [107]
COX-2 Brain I/R Inhibition of COX-2 / PGE2 pathway and reduction of PGE2 produc-

tion
[80]

COX-2 Renal I/R COX/PGE2 pathway mediates oxidative stress-induced ferroptosis and 
renal I/R

[108]

NF-κB Neuroinflammation Resist ferroptosis and inflammation via NRF2/ARE/NF-κB pathway [109]
NF-κB Sepsis-induced cardiac dysfunction Via TLR4/NF-κB pathway [57]
Liposomes Corneal alkali burn Inhibits accompanying ferroptosis and inflammation [100]
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In addition, LPS induced sepsis and systemic inflamma-
tion are closely related to ferroptosis. Ferrostatin-1 (Fer-1, 
a ferroptosis inhibitor) and lipoxstatin-1 (a kind of ferrop-
tosis inhibitors) have been shown to inhibit elevated levels 
of TNF- α and IL-6 in sepsis [55–57]. In addition, TNF 
treatment of cells can result in sustained downregulation 
of GPX4 expression, which is critical for the production of 
lipid mediators [58]. ROS, one of the markers of ferroptosis, 
activates NF-κB/NOX pathway, which inducing the produc-
tion of inflammatory mediators (including TNF-α).

IL‑1β

IL-1β is one of the IL-1 family members with the most pro-
inflammatory characteristics [59]. As an upstream signal 
of NLRP3 inflammasome assembly, mitochondrial dys-
function, ROS and lysosomal destruction activate NLRP3 
inflammasome, leading to subsequent IL-1β maturation 
[60]. The pro-inflammatory pattern of IL-1β indicates that 
it can participate in the occurrence of a variety of inflam-
matory diseases. It has been reported that IL-1β can induce 
liver injury and inflammation in mice, and participate in 
the formation of systemic inflammation, RA, periodontitis 
and secondary inflammatory injury in the brain caused by 
asthma [61–65].

It is worthy of note that in osteoarthritis (OA), IL-1β can 
inhibit the expression of SLC7A11 and GPX4, the mark-
ers of ferroptosis, and increase the expression of P53 and 
ACSL4, indicating that IL-1β is one of the bridges between 
inflammation and ferroptosis [66]. In addition, the existing 
research results show that IL-1β induces the activation of 
P53-XCT-GSH axis in endothelial cells and inhibits the 
expression of xCT and the uptake of cystine, which leads 
to ferroptosis and endothelial dysfunction. There is no 
doubt that the occurrence of endothelial dysfunction often 
increases the incidence of vasculitis and other symptoms 
[66, 67]. IL-1β and TNF can strongly induce highly active 
COX2 with low GPX4 activity, indicating that IL-1β is 
expected to become a vital target for the treatment of fer-
roptosis-related inflammation.

PUFA

Under oxidative stress, phospholipids and cholesterol esters 
containing PUFA in cell membranes and lipoproteins are 
easily oxidized by free radical-induced lipid peroxidation 
to form complex mixtures of oxidation products. A large 
body of evidence suggests that these oxidized lipids actively 
participate in the inflammatory response of atherosclerosis 
by interacting with immune cells (such as macrophages) 
and endothelial cells [68]. PUFA rich in Western diet plays 
an important role in the induction of inflammation, espe-
cially intestinal inflammation [3], PUFA-induced metabolic 

enteritis as a fuel for Crohn's Disease (CD) [69]. PUFA, such 
as AA, can be metabolized into bioactive lipid mediators 
through COX, LOX and cytochrome P450 enzymes, mediat-
ing the production of inflammatory cytokines in IECs and 
the balance of intestinal microbiota [3, 70]. Moreover, PUFA 
derived lipid mediators, such as AA and docosahexaenoic 
acid (DHA), are synthesized under stress and play a role as 
inflammatory activators [71]. However, studies have shown 
that increasing Omega-3 PUFA intake may reduce the risk 
of inflammatory storms [72].

In the process of lipid peroxidation, oxidants (such as 
ROS) attack lipid carbon double bonds (especially PUFA), 
indicating the importance of PUFA as a substrate of lipid 
peroxidation in ferroptosis [30]. ACSL4 is the key factor 
of sensitivity to ferroptosis, which can catalyze coenzyme 
A to promote the esterification of PUFA to phospholipids. 
This may also reveal a new combined therapeutic strategy, 
blocking ferroptosis by inhibiting ACSL4 and PUFA-ePL 
biosynthesis enzymes [24, 30].

Metabolites of AA

AA, a 20-carbon fatty acid, is the main precursor of AA and 
an integral part of all cells [73]. The oxidation of PUFA to 
AA mediated by ALOX accelerates the occurrence of ferrop-
tosis. COX, a bifunctional enzyme in line with dioxygenase 
and peroxidase, carries out complex free radical reactions 
and participates in the catalytic oxidation and cyclization of 
AA. Under the action of inflammatory stimulation, COX-2 
is rapidly induced and acts at the inflammatory site to accel-
erate the inflammatory process [73, 74]. The state of these 
enzymes is directly affected by the redox state and peroxide 
tone in the cells. Peroxide hue refers to the steady-state level 
of cellular lipid hydroperoxide required for the final activa-
tion of LOX and COX. Therefore, this metabolic process 
is related to the regulation of GSH/GPX4 metabolism [73, 
74]. Consistent with the production of PGs and leukotrienes 
during AA metabolism, PGs is expressed in a variety of cells 
and tissues, and widely regulates life activities. The forma-
tion of bioactive prostaglandins from PGH2 occurs through 
the action of a group of synthases expressed in a selective 
manner of tissue and cell type. These synthase include pros-
taglandin D synthase (PGDs), prostaglandin E synthase 
(PGEs), prostaglandin F synthase (PGFs), prostaglandin I 
synthase (PGIS) and thromboxane A synthase (txas), which 
form PGD2, PGE2 and PGF2 α, PGI2 (also known as pros-
tacyclin) and TXA2. PGE2 and PGI2 are involved in many 
studies, including but not limited to enhancing vasodilation 
and edema formation. Furthermore, PGE2 is related to neu-
roinflammation and participates in allergic inflammation 
by regulating lymphocyte function. Patients with IBD also 
show elevated levels of PG and other AA derived eicosa-
noids in the inflammatory mucosa. In addition, leukotriene 
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produced through PPAR γ-dependent mechanism up regu-
lates the expression of COX-2, leading to the production of 
PGD2, thus forming a vicious circle of enhancing inflamma-
tory response in a positive feedback way [74].

An important feature of ferroptosis-sensitive cells or fer-
roptosis-related cancer cells is the synthesis of a large num-
ber of oxidative lipid mediators. It was previously described 
that AA anchored in phosphatidylethanolamine is a target 
of LOX and can be enriched by ACSL4, thus being one of 
the major components of ferroptosis [75]. Relevant studies 
in gastric and colorectal cancer cells have shown that AA 
supplementation increases their susceptibility to ferropto-
sis [75]. Not hard to find, AA provides a mediator of the 
association between ferroptosis and inflammatory diseases. 
For example, GPX4, a key regulator of ferroptosis, helps 
promote resolution of inflammation by eliminating the oxide 
species produced by the AA metabolic network [76].

COX‑2

I/R is the main cause of many inflammatory diseases and 
cell damage. At present, ferroptosis has been regarded as a 
new target for the treatment of I/R injury. COX-2/prostaglan-
din E2 (PGE2) pathway is closely related to I/R. COX-2 is 
regarded as a marker gene of ferroptosis, and the increase of 
its expression is considered to be an important sign of fer-
roptosis [77]. It has been reported that BMP4/ROS/COX-2 
pathway is involved in cerebral ischemia/reperfusion injury 
(IRI), and the activation and recovery of this pathway can 
mediate the combination of ischemic preconditioning (IPC) 
and resveratrol (RES) to provide brain protection after I/R 
[78].

A study on SH-SY5Y cells showed that the activation of 
COX2/PGE2 pathway could reverse the reduction of iron 
accumulation and lipid peroxidation caused by  EXSmir-137 
co-incubation, and reduce the expression of GSH and GPX4 
which represent the reverse of the inhibition of ferroptosis 
[79]. In addition, in brain I/R, the inhibition of ferroptosis 
by DFO can completely inactivate the synthase and degrad-
ing enzyme in COX-2/PGE2 pathway, and ultimately lead 
to the reduction of PGE2 [80]. Fer-1 reduced the increase of 
pro-inflammatory factors, including COX-2, while inhibiting 
ferroptosis in astrocytes [81].

Mitochondria

Mitochondria are important organelles involved in the regu-
lation of energy metabolism, cell signal transduction and cell 
death pathways (including ferroptosis). Studies have shown 
that mitochondrial fatty acid metabolism genes, including 
citrate synthase (CS) and acyl CoA synthase family member 
2 (ACSF2), may be necessary for ferroptosis induced by 
erastin [82]. Mitochondrial voltage dependent anion channel 

(VDAC) has been proved to be a potential target of erastin. 
The opening of VDAC leads to the production of mitochon-
drial ROS, the increase of mitochondrial potential, and then 
oxidative stress induces cell death [83].

Inhibition of mitochondrial TCA cycle or electron trans-
fer chain (ETC) can reduce mitochondrial membrane poten-
tial hyperpolarization, lipid peroxidation accumulation and 
thus ferroptosis. The blocking of glutamine dissolution has 
the same inhibitory effect and can be offset by the provision 
of intermediates through the downstream TCA cycle. Simi-
larly, the loss of function of fumarate hydratase (a tumor 
suppressor and TCA cycle component) makes people resist-
ant to ferroptosis induced by cysteine deprivation [84].

The increase of mitochondrial ROS can induce the accu-
mulation of lipid peroxidation. There is experimental evi-
dence that activation of NRF2 can protect mitochondria, 
avoid mitochondrial damage and inflammation induced 
ROS accumulation, and regulate the occurrence of ferrop-
tosis. The increase of active iron in mitochondria can lead 
to the accumulation of ROS during ferroptosis, so increas-
ing mitochondrial iron storage may inhibit ferroptosis [83]. 
Consistent with this, mitochondrial ferritin (FTMT) is an 
iron storage protein. It is reported that FTMT regulates iron 
metabolism by regulating the redistribution of iron from 
mitochondria to cytoplasm and inhibits oxidative stress-
dependent injury, especially in some high oxygen consuming 
tissues. FTMT can significantly inhibit the level of LIP, ROS 
and subsequent ferroptosis induced by erastin [85].

There are at least three mechanisms by which mitochon-
dria damage or kill the host: ROS generation, pro-inflamma-
tory signal or mitochondrial membrane permeability [86]. 
Some mitochondrial components may participate in the acti-
vation of PRRS by playing the role of PRR ligands to further 
stimulate the process of inflammatory response. In addition, 
four mitochondrial components, SMAC, N-formyl peptides, 
cardiolipin and cytochrome c, have been shown to promote 
inflammatory response [87]. Mitochondrial dysfunction and 
ROS production are closely related to the assembly and acti-
vation of inflammatory body NLRP3, and then affect the 
inflammatory process of intestinal inflammation and obe-
sity induced inflammation [88–91]. In addition, the change 
of mitochondrial membrane permeability has become an 
important pro-inflammatory signal leading to inflammation 
through the release of mitochondrial DNA (mtDNA) and 
the down-regulation of apoptosis protein inhibitors (IAPS) 
[91]. It can’t be ignored that the transfer of mitochondria and 
mtDNA between cells can promote the spread of inflamma-
tion [92].

NF‑κB

The transcription factor NF-κB is a nuclear factor that 
binds to an enhancer element of the activated B-cell 
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immunoglobulin Kappa light chain (hence the abbreviation 
for NF-κB) [93]. It is a protein with specific DNA-binding 
activity that is expressed in almost all cell types and regu-
lates many target genes with a wide variety of functions. 
Because NF-κB plays a key role in the expression of pro-
inflammatory genes, including cytokines, chemokines, and 
adhesion molecules. NF-κB signaling is considered to be a 
typical proinflammatory signaling pathway. More and more 
evidence indicate that genes/drugs regulate the inflammatory 
response and reduce inflammatory damage by regulating 
NF-κB signaling pathway. In addition, NF-κB is involved 
in the regulation of iron metabolism pathway during inflam-
mation. Transcription factor Spic in macrophages downregu-
lates pro-inflammatory cytokines and promotes iron efflux 
by regulating FPN expression in activated macrophages [94]. 
Iron metabolism is an indispensable process in cell energy 
cycle, and the disturbance of its homeostasis may lead to 
inflammation. Targeting iron metabolism regulates NF-κB to 
regulate inflammatory response and plays a role in the pre-
vention and treatment of inflammatory diseases [95]. Since 
iron metabolism is an important physiological process in 
ferroptosis, we hypothesized that ferroptosis links NF-κB 
with inflammation. In AKI, curcumin inhibits ferroptosis 
by inhibiting TLR4/NF-κB axis and activating HO-1, which 
further reduces inflammation and oxidative stress and plays 
a therapeutic role [96]. Therefore, NF-κB signaling pathway 
checkpoints may be important targets in the regulation of 
inflammatory diseases by targeting ferroptosis.

Liposomes

Liposomes, vesicles with an aqueous core entrapped in one 
or more lipid bilayers, are widely used as drug delivery 
systems. Liposomes can be used as delivery vehicles for 
a variety of drugs and biological agents, including small 
molecules, peptides, proteins, nucleic acids and vaccine anti-
gens. Previous studies show that nanoliposomes can effec-
tively target infected and inflamed tissue [97]. Sea cucumber 
saponin liposomes could effectively alleviate adipose tis-
sue inflammation by reducing pro-inflammatory cytokine 
releases and macrophage infiltration [98]. In addition, folic 
acid and PEG conjugated Pae-loaded liposomes (PAE-LS) 
inhibited STAT1 phosphorylation, decreased the levels of 
proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and 
iNOS expression, and significantly increased the levels of 
anti-inflammatory cytokines (IL-10) and CD206 by increas-
ing p-STAT6, reduce the inflammatory response in RA [99]. 
Recently, it has been reported that Fer-1 liposomes can treat 
corneal injury caused by alkali burn by inhibiting ferropto-
sis, inflammation and neovascularization [100]. Based on 
the close relationship between ferroptosis and inflamma-
tion, Fer-1 liposomes are expected to become a therapeutic 
strategy for more inflammatory diseases. Because liposomes 

can be produced in large quantities with good production 
practices and stored for long periods at high antigen/vesicle 
mass ratios, there is great promise for future development of 
more liposomes to treat inflammatory diseases by targeting 
ferroptosis checkpoints.

The occurrence of ferroptosis promotes the generation of 
AAs, which is metabolized to generate PGs and so on under 
the action of LOX, COX2, and further promotes inflam-
matory responses. Mitochondrial ROS stimulates NLRP3 
inflammatory corpuscles to promote inflammatory factor 
IL-1β, and inhibits the expression of anti-oxidation factor 
GPX4 at the same time, thus weakening the inflammatory 
reaction mediated by the activation of LOX and COX2 
though GPX4. ROS stimulates the NRF2-Keap1 pathway, 
which in turn causes HO-1 to transfer from the nucleus to the 
cytoplasm and inhibits the inflammatory response.

Ferroptosis and inflammatory disease

AKI

AKI, formerly known as acute renal failure (ARF), is a com-
mon and critical disease caused by ischemia, nephrotoxic 
drugs, and urinary tract obstruction. An important feature 
of AKI is a rapid decline in renal function. However, the 
pathogenesis of AKI remains unclear, but it has long been 
recognized that one of the key factors is prolonged or exces-
sive inflammation [110]. A large number of studies have 
shown that renal impairment can be slowed by suppressing 
inflammation in AKI, such as hydrogen sulfide [111], Gas-
dermin E [112] and Gypenoside XLIX [113]. In addition, 
early studies have shown that certain inflammatory cytokines 
can be used as therapeutic targets to reduce renal injury in 
AKI by inhibiting inflammation.

Significant advances have been made in the treatment 
of AKI in recent years, yet there are still no specific drugs 
developed to prevent and treat AKI. The underlying role 
of ferroptosis in AKI has attracted widespread attention, 
and recent findings suggest that ferroptosis is a potential 
avenue for the treatment of AKI. Changes in various ferrop-
tosis metabolic sensors were observed in cisplatin-induced 
AKI models, including lipid peroxidation, GPX4 activity, 
NADPH and reduced GSH levels, and ferritinophagy [114]. 
Ferroptosis inhibitors have anti-inflammatory effects in AKI. 
In a mouse model of oxalate-induced AKI, Fer-1 alleviates 
neutrophil infiltration and pro-inflammatory cytokine release 
[115]. Irisin attenuated renal injury in AKI by upregulat-
ing GPX4 downregulated the inflammatory response and 
inhibited ferroptosis [116]. In addition, it has been shown 
that curcumin can reduce renal injury in AKI by inhibiting 
ferroptosis in renal tubular epithelial cells [116]. How fer-
roptosis participates in the pathogenesis of AKI is still a 
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mystery. Studies have reported that cells with ferroptosis can 
recruit macrophages and stimulate macrophages to recruit 
neutrophils, thereby causing an inflammatory cascade of 
AKI [117]. Future exploration by targeting ferroptosis in 
AKI may be a major breakthrough in the treatment of AKI.

ALI

Acute lung injury/acute respiratory distress syndrome (ALI/
ARDS) is a common and critical disease caused by infec-
tion, trauma, radiotherapy, ischemia reperfusion and other 
factors. The pathogenesis of ALI was previously thought 
to be related to oxidative stress, apoptosis, inflammation 
and hypoxia. Recent studies suggest that ferroptosis may be 
involved in the development and progression of ALI, and 
targeting the ferroptosis pathway has become an important 
approach for the treatment of ALI. AUF1 inhibits ferropto-
sis and attenuates sepsis-induced ALI by regulating NRF2 
and ATF3 [118]. Panaxydol inhibits ferroptosis and inflam-
matory response through the Keap1-NRF2/HO-1 pathway 
that attenuated LPS-induced ALI in mice [119]. Astaxan-
thin attenuates ferroptosis via Keap1-NRF2/HO-1 signal-
ing pathways in LPS-induced ALI [120]. In addition, it has 
also been shown that isoliquiritin apioside attenuates ALI 
induced by intestinal I/R by blocking HIF-1α mediated fer-
roptosis [121]. All these studies suggest that ferroptosis is 
involved in the development of ALI disease pathology. Fer-
roptosis may regulate ALI through neutrophil extracellular 
traps mediate  m6A modification [122]. The future develop-
ment of additional drugs or potential targets is essential for 
the treatment of ALI by targeting ferroptosis.

IBD

IBD is a family of chronic autoimmune diseases of the 
gastrointestinal tract that includes CD and ulcerative coli-
tis (UC). Symptoms can manifest as intermittent relapses 
and quiescent inflammatory remissions. It is well known 
that inflammation caused by an abnormal immune system 
response in the intestinal mucosa plays an important role in 
the pathogenesis of IBD. Ferroptosis has been reported to 
be associated with intestinal epithelial cell death, research 
shows that STAT3-mediated ferroptosis is involved in 
the pathogenesis of UC [123]. Moreover, ferroptosis is 
involved in intestinal epithelial cell death in UC via endo-
plasmic reticulum stress [124]. Pharmacological inhibition 
of MELK significantly alleviates the inflammatory response 
and reduces intestinal injury in mice with colitis. Among 
them, the MELK inhibitor OTSSP167 significantly inhib-
ited ferroptosis in intestinal tissues, suppressed macrophage 
infiltration and M1 polarization, and reduced the secretion 
of pro-inflammatory factors [125]. A study has shown that 
intestinal epithelial cells in CD showed impaired GPX4 

activity and ferroptosis. The diet is rich in ω-6-PUFA-AA, 
which increases the risk of IBD [3]. In the future, finding 
more biomarkers of IBD ferroptosis has great prospects for 
the treatment of IBD.

Brain and neurodegenerative diseases

Neurodegenerative diseases are a kind of chronic progres-
sive degeneration and loss of neurons in the brain and spinal 
cord. Major diseases include Parkinson's disease (PD), Alz-
heimer's disease (AD), Huntington's disease (HD), etc. Iron 
is essential to the physiology of all tissues in the body. How-
ever, in some cases, it can be harmful, especially to the 
brain. Although cellular metabolism in the central nervous 
system requires iron as a REDOX metal for energy produc-
tion and primary ATP production, neural tissue is vulnerable 
to oxidative damage from excess iron and the reduction of 
antioxidant systems. Due to the lack of specific biomarkers, 
several factors that may be involved in the ferroptosis pro-
cess and prevent the unambiguous recognition of iron in the 
body. However, there is substantial evidence that ferroptosis 
is associated with the pathophysiology of neurodegenerative 
changes. Ferroptosis involves the accumulation of iron in the 
brain, consumption of GSH, and lipid peroxidation, while 
triggering a series of events including inflammatory activa-
tion, neurotransmitter oxidation, neuronal communication 
failure, myelin degeneration, astrocyte dysplasia, demen-
tia, and cell death. Iron or free iron overload can trigger 
lipid peroxidation in neurons, astrocytes, oligodendrocytes, 
microglias, and Schwann cells [126]. In addition, low activ-
ity of the GPX4 and GSH systems has been shown to be 
associated with ferroptosis in motor neurodegeneration. The 
level of endogenous α-synuclein can determine the sensitiv-
ity of dopaminergic neurons to ferroptosis, by regulating 
the composition of ether phospholipid membrane [127]. In 
AD, ferroptosis may induce iron homeostasis disorder by 
downregulating FPN, and excess iron exacerbates oxidative 
damage and cognitive defects [128]. This suggests that the 
use of iron chelators (DFO) and ferroptosis inhibitors may 
be an alternative approach to the treatment of neurodegen-
erative diseases.

IRI

I/R is a pathological process that occurs in numerous organs 
throughout the human body, and it is frequently associated 
with severe cellular damage and death. Recently it has 
emerged that ferroptosis plays a significant detrimental 
role in many I/R models. Myocardial reperfusion injury, 
also known as lethal reperfusion injury, results in the death 
of cardiac myocytes, which are viable before reperfusion. 
The destruction of viable cardiac myocytes upon reperfu-
sion ensures that the rate of death or cardiac failure is still 
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high, even with optimally controlled myocardial reperfusion. 
Clinical studies indicate that residual myocardial iron is a 
risk factor for inadequate left ventricular remodeling after 
reperfusion [129]. Notably, evidence indicates that the mito-
chondria-specific overexpression of GPX4 in mitochondria 
alleviates cardiac dysfunction following I/R [130]. Inhibi-
tion of glutaminolysis, a component of the GSH generation 
pathway, can also attenuate I/R-associated heart injury by 
blocking ferroptosis. The cardiac mechanistic target of rapa-
mycin (mTOR) protects the heart against IRI and was found 
to exert protective effects against excess iron and ferroptosis. 
Fer-1 and iron chelation can also ameliorate heart failure 
induced by both acute and chronic I/R [131], consistent with 
the notion that targeting ferroptosis can serve as a potential 
strategy to prevent cardiomyopathy. A recent study found 
that inhibition of ferroptosis reduced endoplasmic reticulum 
damage and myocardial damage. At the same time, inhibi-
tion of endoplasmic reticulum can reduce ferroptosis and 
cell damage [132]. Tissue pigment (HC), with an effective 
antioxidant component and iron chelating capacity, is now 
used in clinical practice. However, data on HC's protective 
effect on ferroptosis in myocardial I/R injury are limited. A 
recent study found that early myocardial intervention prior to 
reperfusion can salvage myocardial I/R injury by preventing 
ferroptosis. Therefore, HC is a promising treatment option to 
provide secondary cardiac protection for patients undergoing 
coronary reperfusion therapy [133].

Indeed, there are many gaps in the specific mechanisms 
of ferroptosis involved in inflammatory diseases. The future 
development of more drugs, targets or mechanisms that tar-
get ferroptosis in inflammatory diseases could help in the 
treatment of inflammatory diseases, and targeting ferroptosis 
could be the dawn of treatment for inflammatory diseases 
(Table 2).

Conclusions and perspectives

The susceptibility to ferroptosis is closely linked to cellular 
metabolism (especially lipids, iron and amino acids), which 
involves a complex network structure. This also provides a 
possible and involvement of ferroptosis in the development 
of various diseases. As inflammation is present in various 
human diseases, further studies on the interaction between 
ferroptosis and the immune system are needed in the future. 
Regulation of ferroptosis is considered to be an effective 
intervention strategy for the prevention and treatment of 
inflammatory diseases. Damage-associated molecular pat-
terns (DAMPs) are immune mediators of various types of 
regulatory cell death (RCD) [30]. HMGB1 (high mobility 
group box 1) is a typical DAMP that is released by ferropto-
sis cells and drives inflammation by activating macrophages 
to produce pro-inflammatory cytokines [167]. This suggests 

that pharmacological induction of ferroptosis is a promis-
ing means of treating inflammatory diseases. However, the 
establishment of drug targets, active ingredients, potential 
side effects, pharmacokinetic studies, and preclinical toxi-
cology studies are all urgent problems to be solved. In addi-
tion, how to control the side effects of ferroptosis regula-
tion in preclinical studies and patient clinical trials is also a 
potential problem.

There is increasing evidence of cross-talk between vari-
ous cell death modes, such as ferroptosis, apoptosis and 
autophagy. Studies have shown that hesperidin can alleviate 
cisplatin-induced AKI by reducing oxidative stress, inflam-
mation and apoptosis [168]. This suggests that ferroptosis 
and apoptosis play a synergistic role in AKI, and inhibition 
of ferroptosis and apoptosis can exert the greatest protective 
effect. Some factors are involved in both apoptosis and fer-
roptosis control, such as P53. P53 is a tumor suppressor that 
can be stimulated by apoptosis stimulating proteins to induce 
apoptosis. In addition, P53 can also regulate ferroptosis by 
regulating SLC7A11. Autophagy is a protective physiologi-
cal process that phagocytoses metabolites produced by cells 
under pressure such as starvation and hypoxia, and protects 
cells from the effects of these harmful metabolites. However, 
NCOA4-mediated ferritinophagy can induce ferroptosis by 
promoting ferritin degradation. This suggests that autophagy 
plays an essential role in the regulation of cell ferroptosis. 
Therefore, therapy combining ferroptosis inhibitors and 
autophagy or apoptosis inhibitors may provide a potential 
therapeutic strategy for treating inflammatory diseases, but 
the mechanisms underlying the interaction between ferropto-
sis and other cell death modes require further investigation.

In this review, we summarize the molecular mechanisms 
of ferroptosis and the possible mechanisms of ferroptosis 
involved in inflammation and inflammatory diseases. Ferrop-
tosis is considered as a target for the treatment of inflamma-
tory diseases. The development of more ferroptosis inhibi-
tors or drugs targeting ferroptosis will greatly improve the 
therapeutic effect of inflammatory diseases. However, practi-
cal applications still face many difficulties. First, it is difficult 
to determine whether the effects of ferroptosis inhibitors or 
drugs that target ferroptosis are specific to a particular class 
of inflammatory diseases with unique characteristics or are 
generally applicable to most inflammatory diseases. Since 
the specific mechanisms by which ferroptosis is involved 
in various inflammatory diseases have not been fully eluci-
dated, a deeper understanding of the mechanisms associated 
with ferroptosis and inflammation will help to achieve this 
goal. Second, besides inflammatory diseases, ferroptosis is 
associated with pathological cell death associated with a 
variety of diseases, such as cancer. While avoiding systemic 
adverse reactions, it is particularly important to develop spe-
cific treatments that inhibit ferroptosis in inflammatory dis-
eases. Third, there is still a lack of ferroptosis biomarkers 
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Table 2  About ferroptosis inhibitors for the treatment of inflammatory diseases. List four typical ferroptosis-associated inflammatory diseases 
(AKI, ALI, UC and PD) as well as the ferroptosis inhibitors treating them and the specific mechanisms

Inflam-
matory 
diseases

Ferroptosis inhibitors Functional mechanisms References

AKI Nec-1f (a solid inhibitor of RIPK1 and weak inhibitor of 
ferroptosis)

NA [133]

AKI Quercetin (a selective ferroptosis inhibitor) By reducing the levels of MDA and lipid ROS and 
increasing the levels of GSH

[134]

AKI VDR agonist paricalcitol By decreasing lipid peroxidation, 4HNE, MDA and 
reversing GPX4 downregulation

[135]

AKI Pachymic acid (PA) The inhibition of ferroptosis in the kidneys through direct 
or indirect activation of NRF2

[136]

AKI XJB-5-131 NA [137]
AKI Irisin By upregulating GPX4; via the SIRT1/NRF2 [116, 138]
AKI HO-1 NA [139]
AKI Rheb1 Via maintaining mitochondrial homeostasis [140]
AKI Maresin conjugates in tissue regeneration 1 (MCTR1) Through the NRF2 signaling [141]
AKI Dexmedetomidine By inhibiting ACSL4 via α2-AR [142]
AKI A-lipoic acid NA [143]
AKI Polydatin Via maintenance of the system  Xc−-GSH-GPX4 axis and 

iron metabolism
[144]

AKI Entacapone By enhancing antioxidant capacity [145]
AKI Farnesoid X receptor By regulating the transcription of genes involved in fer-

roptosis
[146]

AKI Human urine-derived stem cells (USCs)-derived 
exosomes (USC-Exo)

LncRNA TUG1 carried by USC-Exo regulated ASCL4-
mediated ferroptosis by interacting with SRSF1

[147]

ALI iASPP Depends on NRF2 signaling [148]
ALI NRF2 By modulating TERT and SLC7A11; via regulating 

SLC7A11 and HO-1
[149, 150]

ALI Panaxydol By Keap1-NRF2/HO-1 pathway [119]
ALI STAT3 By regulating SLC7A11 [151]
ALI STAT6 Via regulating P53/SLC7A11 pathway [152]
ALI Itaconate Via NRF2 pathways [153]
ALI AUF1 By regulating NRF2 and ATF3 [118]
ALI Sevoflurane By up-regulating HO-1 expression [154]
ALI Obacunone By upregulating Nrf2-dependent antioxidant responses [155]
ALI Isoliquiritin By blocking Hif-1α signaling [121]
UC miR-137 By targeting glutamine transporter SLC1A5 in melanoma [156]
UC MELK inhibitor By inhibiting AKT/IKK/P65 and ERK/IKK/P65 signaling 

cascades
[125]

UC Curculigoside Through the induction of GPX4 [157]
UC Astragalus polysaccharide Via inhibiting NRF2/HO-1 pathway [158]
UC Furin By activating the NRF2-GPX4 signaling pathway [159]
UC STAT3 NA [123]
PD FTH1 Through ferritinophagy [160]
PD PKC inhibitors NA [161]
PD Clioquinol Through AKT/mTOR pathway [162]
PD Thioredoxin-1 Through regulating GPX4 and GSH [163]
PD DL-3-n-butylphthalide NA [164]
PD CuII (atsm) NA [165]
PD Keap1-NRF2 PPI inhibitors NA [166]
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for specific inflammatory diseases. Exploring appropriate 
biomarkers will further promote the development of research 
and treatment of various inflammatory diseases in vivo and 
in vitro. Fourth, even though targeting ferroptosis is consid-
ered a promising approach for the treatment of inflammatory 
diseases, the crosstalk between ferroptosis and other forms 
of cell deaths makes the treatment of ferroptosis-specific 
inhibitors targeting inflammatory diseases limited and resist-
ant. Can combination of ferroptosis inhibitors with other 
cell death inhibitors improve the efficacy of inflammatory 
diseases? To address this issue, further exploration of the 
link between ferroptosis, inflammatory diseases, and other 
types of cell death will be necessary in the future. Last but 
not least, although selective inhibition of ferroptosis has 
been shown to significantly improve inflammatory diseases 
in a variety of animal models, no clinical trials using spe-
cific inhibitors of ferroptosis have been conducted to date. 
More population-based data are urgently needed to deter-
mine whether selective blocking of ferroptosis can improve 
the prognosis of inflammatory diseases in clinical settings.
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