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Abstract

Non-alcoholic fatty liver disease (NAFLD) is currently the world’s most common liver disease, estimated to affect up to 

one-fourth of the population. Hallmarked by hepatic steatosis, NAFLD is associated with a multitude of detrimental effects 

and increased mortality. This narrative review investigates the molecular mechanisms of hepatic steatosis in NAFLD, focus-

ing on the four major pathways contributing to lipid homeostasis in the liver. Hepatic steatosis is a consequence of lipid 

acquisition exceeding lipid disposal, i.e., the uptake of fatty acids and de novo lipogenesis surpassing fatty acid oxidation 

and export. In NAFLD, hepatic uptake and de novo lipogenesis are increased, while a compensatory enhancement of fatty 

acid oxidation is insufficient in normalizing lipid levels and may even promote cellular damage and disease progression by 

inducing oxidative stress, especially with compromised mitochondrial function and increased oxidation in peroxisomes and 

cytochromes. While lipid export initially increases, it plateaus and may even decrease with disease progression, sustaining 

the accumulation of lipids. Fueled by lipo-apoptosis, hepatic steatosis leads to systemic metabolic disarray that adversely 

affects multiple organs, placing abnormal lipid metabolism associated with NAFLD in close relation to many of the current 

life-style-related diseases.
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Introduction

Affecting 25% of the adult population, non-alcoholic fatty 

liver disease (NAFLD) is currently the most common liver 

disease in the world [1]. Regional prevalence rates are cur-

rently highest in the Middle East (32%) and South America 

(30%) and lowest in Africa (13%), but prevalence rates are 

even higher in specific subpopulations such as severely 

obese (90%) and patients with type 2 diabetes (76%) [1]. 

Furthermore, NAFLD in lean individuals is far from uncom-

mon with prevalence rates around 16% [2, 3]. NAFLD is 

associated with increased mortality, particularly due to car-

diovascular disease, hepatocellular carcinoma, and liver-

related events [4]. The escalating prevalence, particularly 

during the last decades, has made NAFLD the second most 

common cause of liver transplantation in the United States 

[5]. The hallmark of NAFLD is hepatic steatosis, but the 

disease also encompasses non-alcoholic steatohepatitis 

(NASH) characterized by hepatic inflammation, hepatocyte 

damage, and fibrosis, highlighting the potentially progres-

sive nature of the disease. The stage of hepatic fibrosis 

predicts both overall and liver-related mortality and is the 

strongest predictor of long-term clinical outcomes, with 

advanced fibrosis (stages 3 and 4) conveying the highest 

risk of mortality [6]. However, progression to fibrosis also 

occurs in patients with steatosis alone [7], although rates 

of progression and overall mortality rates are increased in 

NASH [1, 8]. In addition, metabolic dysfunctions, such as 

insulin resistance, dyslipidemia, and cardiovascular disease 

are all associated with hepatic steatosis, and seem to be more 

related to hepatic fat accumulation and NAFLD than obesity 

status per se [2, 9, 10].

The liver constitutes an essential organ in lipid metabo-

lism. As a central regulator of lipid homeostasis, the liver 

is responsible for orchestrating the synthesis of new fatty 

acids, their export and subsequent redistribution to other 

tissues, as well as their utilization as energy substrates [11] 

(Fig. 1). These processes are closely regulated by complex 
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interactions between hormones, nuclear receptors, and tran-

scription factors, keeping hepatic lipid homeostasis under 

tight control [12]. The disruption of one or more of these 

pathways may precipitate the retention of fat within the 

liver and the subsequent development of NAFLD. Hepatic 

fat accumulation results from an imbalance between lipid 

acquisition and lipid disposal, which are regulated through 

four major pathways: uptake of circulating lipids, de novo 

lipogenesis (DNL), fatty acid oxidation (FAO), and export 

of lipids in very low-density lipoproteins (VLDL) (Fig. 2). 

However, the molecular mechanisms underlying the patho-

logical aggregation of fat within the liver are not fully elu-

cidated. This review explores current insights to these four 

pathways and the molecular mechanisms regulating hepatic 

lipid homeostasis in NAFLD, discussing processes that 

may be instrumental in the development and progression of 

hepatic steatosis.

Hepatic lipid uptake

The uptake of circulating fatty acids by the liver is largely 

dependent on fatty acid transporters, while passive diffusion 

contributes less [13]. The transport is predominately medi-

ated by fatty acid transport proteins (FATP), cluster of differ-

entiation 36 (CD36), and caveolins located in the hepatocyte 

plasma membrane [14] (Fig. 3). Of the six mammalian FATP 

isoforms, FATP2 and FATP5 are found primarily in the liver 

[14]. Knockdown of FATP2 in mice decreases uptake of 

fatty acids and ameliorates hepatic steatosis induced by 

a high fat diet [15]. Likewise, knockout or knockdown of 

FATP5 in mice reduces hepatocyte fatty acid uptake, hepatic 

triglyceride content, and reverses steatosis [16, 17] indicat-

ing a role of FATP-mediated lipid uptake as a facilitator 

of hepatic steatosis. FATP2 and 5 gene expression was 

increased in adolescents with NASH (n = 27) compared to 

normal controls (n = 6) [18]. In contrast, a small study found 

no difference in hepatic FATP5 gene expression between 

individuals with (n = 16) and without (n = 8) hepatic steato-

sis [19]. FATP5 promotor polymorphism (rs56225452), rep-

resenting a putative gain-of-function mutation in the FATP5 

promotor, correlated with BMI-dependent hepatic steatosis 

in males with biopsy proven NAFLD (n = 103) [20], suggest-

ing that genetic variation may underlie part of the contribu-

tion of FATP5 in NAFLD. However, additional studies are 

required to extend our present understanding of the role of 

FATP in clinical NAFLD.

The fatty acid translocase protein, CD36, facilitates the 

transport of long-chain fatty acids and is regulated by peroxi-

some proliferator-activated receptor (PPAR) γ, pregnane X 

receptor, and liver X receptor [21]. Mice fed a high fat diet 

develop hepatic steatosis alongside increased mRNA and 

protein expression of CD36 [22, 23]. Adenovirus-mediated 

overexpression of CD36 enhances hepatic fatty acid uptake 

and fat accumulation [22], while liver-specific knockout of 

CD36 decreases hepatic lipid levels in both genetic and diet-

induced steatosis [23]. This suggests a causal role of CD36 

in steatosis supported by abnormally increased CD36 levels 

in NAFLD patients: a small study reported increased CD36 

mRNA levels in obese subjects with high amounts of intra-

cellular fat (66.0 ± 6.8%, n = 5), compared to subjects with 

low liver fat content (6.4 ± 2.7%, n = 5) [24]. In adolescents 

and adults of both genders, diagnosed with NASH or hepatic 

steatosis, CD36 gene and protein expression were increased 

compared to healthy controls; however, CD36 levels did not 

differ between patients with steatosis and NASH [18, 25]. 

In contrast, hepatic levels of CD36 were found to be similar 

in morbidly obese women with hepatic steatosis compared 

to morbidly obese controls with normal livers [26]. How-

ever, the conflicting findings of expression patterns may not 

adequately illustrate a functional consequence of the role 

of CD36. Immunohistochemistry of liver sections showed 

CD36 as located in the hepatocyte plasma membrane in 

patients with steatosis and NASH, compared to a weak 

CD36 expression confined to the cytoplasm of hepatocytes 

in normal livers, suggesting that the translocation of CD36 

protein from cytoplasm to membrane may be a triggering 

event in NAFLD progression [25].

The caveolins comprise a family of three membrane 

proteins contributing to lipid trafficking and formation of 

lipid droplets [14]. Caveolin 1 was increased in the liver 

of mice with NAFLD, and located mainly in the centri-

lobular zone 3, where the steatosis was most severe [27]. 
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Fig. 1  Hepatic lipid acquisition and disposal. Intrahepatic lipid levels 

are governed by the balance between lipid acquisition and disposal 

constituting the four major pathways of hepatic lipid homeosta-

sis. The liver acquires lipids through the uptake of circulating fatty 

acids and via de novo lipogenesis. Conversely, lipids may be dis-

posed of through oxidation (in the mitochondria, peroxisomes and 

cytochromes) and through export as very low density lipoprotein 

(VLDL) particles. Consequently, lipid accumulation is the result of 

lipid acquisition pathways exceeding disposal pathways
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Similarly, zone 3 predominant hepatic steatosis is reported 

in adult NAFLD patients [28]. Whole-body caveolin 1 

knockout (cav1−/−) reduced hepatic steatosis in high fat 

fed mice in response to 24 h of fasting, whereas liver-

specific caveolin 1 knockout did not affect hepatic fat con-

tent [29]. Reduced hepatic steatosis in fasted cav1−/− mice 

was suggested to be secondary to compromised metabolic 

function in the adipose tissue, resulting in reduced hepatic 

DNL (and possibly increased FAO) [29]. In contrast, 

decreased caveolin 1 expression has been reported in the 

livers of high fat fed mice with NAFLD [30]. Furthermore, 

caveolin 1 knockout augmented steatosis both in vitro and 

in vivo by enhancing the expression of genes involved in 

DNL [30], contradicting earlier studies, and suggesting 

a protective effect of caveolin 1 in NAFLD [30]. Differ-

ential observations suggest that the role of caveolin 1 in 

hepatic lipid accumulation may differ depending on how 

the steatosis is induced, e.g., via high fat diet or fasting. 

However, long-term fasting is typically not the primary 

cause of NAFLD, and results from such models should 

consequently be translated with caution.

Following uptake, hydrophobic fatty acids do not diffuse 

freely in the cytosol and must instead be shuttled between 

different organelles by specific fatty acid binding proteins 

(FABP) of which FABP1, also known as liver FABP, is the 

predominant isoform in the liver [13]. FABP1 facilitates 

the transportation, storage, and utilization of fatty acids 

and their acyl-CoA derivatives and may exert a protective 

effect against lipotoxicity by binding otherwise cytotoxic 

free fatty acids and facilitating their oxidation or incorpora-

tion into triglycerides [31]. FABP1 also affects the expres-

sion of PPARα and PPARγ by mediating the transport of 

PPAR ligands to the nucleus of hepatocytes, and intracel-

lular FABP1 concentrations are correlated with PPARα 

and PPARγ activities [32]. Hepatic triglycerides and lipid 

disposal pathways (fatty acid export and oxidation) are 

decreased following FABP1 ablation in fasted mice, sug-

gesting that reduced levels of liver triglycerides are linked to 
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Fig. 2  Overview of hepatic lipid metabolism. (1) Uptake of circulat-

ing lipids are facilitated by specific fatty acid transporters located in 

the hepatocyte plasma membrane and is regulated by PPARγ. FABP1 

facilitates the transport of hydrophobic fatty acids to the different cel-

lular compartments within the cytoplasm. (2) De novo lipogenesis 

converts acetyl-CoA (originating from excess carbohydrates) to new 

fatty acids, which subsequently can be esterified and stored as tri-

glycerides. Regulation of de novo lipogenesis is complex, but broadly 

controlled by two key transcription factors: SREBP1c and ChREBP. 

(3) Fatty acid oxidation is controlled by PPARα and reduces intra-

hepatic fat levels by utilizing lipids as an energy source. While the 

process primarily occurs in the mitochondria, lipid overload and/or 

compromised mitochondrial function forces a higher degree of fatty 

acid oxidation to take place in the peroxisomes and cytochromes, 

thereby, generating ROS. (4) The liver can export lipids by packaging 

them into water-soluble VLDL-particles, which may then be utilized 

or stored in other tissues. ChREBP carbohydrate regulatory element 

binding protein, CPT carnitine palmitoyltransferase, FABP fatty acid 

binding protein, PPAR peroxisome proliferator-activated receptor, 

ROS reactive oxygen species, SREBP1c sterol regulatory element 

binding protein 1c, VLDL very low density lipoprotein
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a reduced hepatic lipid uptake, at least in the fasted state in 

which lipid flux to the liver is increased [33, 34]. In patients 

with NAFLD, hepatic FABP1, FABP4, and FABP5 mRNA 

levels were increased compared to non-NAFLD controls 

and FABP4 and 5 correlated with the percentage of liver 

fat [19, 35]. Thus, enhanced intracellular trafficking of fatty 

acids in the lipid laden liver of NAFLD patients may be 

shunting harmful fatty acids to storage, thereby promoting 

steatosis. FABP levels may vary according to disease sever-

ity as FABP1 protein levels were overexpressed in obese 

patients with steatosis (n = 10) compared to obese controls 

(n = 10), but decreased in NASH patients with mild fibro-

sis (n = 10) and declining further in NASH with advanced 

fibrosis (n = 10) [36]. Thus, increased FABP1 in the earlier 

stages of NAFLD may enhance lipid flux as a compensatory 

mechanism to limit lipotoxicity. As the disease progresses, 
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Fig. 3  Effects on hepatic lipid metabolism in NAFLD. While the role 

of hepatic caveolins is still unclear, CD36, FATP2 and -5 mediates 

increased uptake of circulating lipids in NAFLD. Initially, FABP1 

is increased, but levels may decline with disease progression, poten-

tially limiting the mobility of fatty acids and sustaining steatosis. 

Enhanced SREBP1c-mediated de novo lipogenesis is a key feature of 

NAFLD contributing significantly to the accumulation of lipids. At 

the same time, ChREBP which could be hepatoprotective, appears to 

be downregulated in NAFLD. Although data relating to the regula-

tion of fatty acid oxidation are conflicting, mitochondrial dysfunction 

is an important feature of NAFLD resulting in increased generation 

of ROS and utilization of cytochrome- and peroxisome-mediated 

oxidation. This further promotes oxidative stress, in turn inducing 

damage to the mitochondrial membranes, compromising cellular res-

piration and metabolism, and impairing liver function by direct and 

indirect cellular damage. Lastly, lipid export increases with hepatic 

triglyceride levels. However, in the setting of NASH, levels of MTTP 

and apoB100 may be decreased, hereby, limiting VLDL export and 

instead facilitating lipid accumulation. The net result is an escalating 

vicious circle, driven by chronic dyslipidemia and hepatic lipid over-

load, leading to detrimental consequences for liver metabolism and 

function and ultimately promoting irreversible liver damage. Green 

arrow: increased expression. Red arrow: decreased expression. Purple 

arrow: expression different between steatosis and NASH. ACC  acetyl-

CoA carboxylase, ApoB100 apolipoprotein B100, CD36 cluster of 

differentiation 36, ChREBP carbohydrate regulatory element binding 

protein, ELOVL elongation of very long chain fatty acid, FABP fatty 

acid binding protein, FASN fatty acid synthase, FATP fatty acid trans-

port protein, MTTP microsomal triglyceride transfer protein, PPAR 

peroxisome proliferator-activated receptor, ROS reactive oxygen spe-

cies, SCD1 stearoyl-CoA desaturase 1, SREBP1c sterol regulatory 

element binding protein 1c, VLDL very low density lipoprotein
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diminishing levels of FABP1 potentially leads to increased 

levels of lipids, with ensuing lipotoxicity promoting disease 

progression by damaging essential organelles and cells in 

the liver (Fig. 3).

De novo lipogenesis

In short, DNL enables the liver to synthesize new fatty 

acids from acetyl-CoA. Initially, acetyl-CoA is converted 

to malonyl-CoA by acetyl-CoA carboxylase (ACC) and 

malonyl-CoA is then converted to palmitate by fatty acid 

synthase (FASN). New fatty acid may then undergo a range 

of desaturation, elongation, and esterification steps before 

ultimately being stored as triglycerides or exported as VLDL 

particles (Fig. 3). Thus, increased DNL can cause hepatic 

steatosis and/or hypertriglyceridemia, but may also induce 

steatohepatitis, as saturated fatty acids, such as palmitate, 

can cause inflammation and apoptosis [37]. Studies using 

stable isotope tracers suggest that an important characteristic 

of NAFLD patients is abnormally elevated DNL regardless 

of fasting. Accordingly, a small study reported increased 

DNL in NAFLD patients (n = 5) compared to controls (n = 6) 

[38]. These findings are supported by enhanced DNL in 

overweight/obese subjects with high liver fat (18.3 ± 3.6%, 

n = 13) compared to those with lower liver fat (3.1 ± 2.7%, 

n = 11) while being matched for adiposity and circulating 

lipids [39]. In addition, DNL was independently associated 

with intrahepatic triglyceride levels [39], and inadequate 

suppression of DNL during fasting could be a key feature 

in NAFLD patients [38, 39]. The importance of DNL in 

NAFLD is further supported by studies, showing that in 

obese patients with NAFLD, approximately 26% of hepatic 

triglycerides were derived from DNL and that these patients 

were unable to regulate DNL when transitioning from fast-

ing to fed state [40]. While limited, the available clinical data 

collectively indicate that failure to regulate DNL is a central 

feature of liver lipid accumulation in NAFLD patients.

The transcriptional regulation of DNL is mainly orches-

trated by two key transcription factors: sterol regulatory 

element-binding protein 1c (SREBP1c), which is activated 

by insulin and liver X receptor α, and carbohydrate regula-

tory element-binding protein (ChREBP), which is activated 

by carbohydrates [41–43] (Fig. 2). SREBP1c expression is 

enhanced in patients with NAFLD, and in agreement with 

its lipogenic role, hepatic triglyceride levels are higher in 

transgenic mice overexpressing SREBP1c [44, 45], while 

SREBP1c knockout mice display decreased expression of 

lipogenic enzymes [46]. SREBP1c ablation also promotes a 

compensatory upregulation of SREBP2, leading to increased 

hepatic cholesterol synthesis and cholesterol accumulation, 

linking DNL to cholesterol metabolism [46]. While the phe-

notypic insulin resistance in NAFLD would be expected to 

counteract insulin-mediated SREBP1c activation, a state 

of selective insulin resistance ensures that insulin retains 

its ability to promote DNL through SREBP1c while being 

unable to suppress gluconeogenesis [41]. This helps may 

explain the observed elevated rates of hepatic DNL under 

insulin resistant conditions. In addition, SREBP1c indirectly 

contributes to the development of hepatic insulin resistance, 

since enhanced lipogenesis and subsequent accumulation of 

harmful lipid species, such as diacylglycerides, may inter-

fere with insulin signaling (as discussed below). ChREBP 

mediates carbohydrate, but not fat-induced DNL as high 

fat diets do not activate ChREBP and may even decrease 

ChREBP activity [43, 47]. In mice, knockout of ChREBP 

has been shown to reduce hepatic fatty acid synthesis by 

65% compared to wild-type controls, but also to promote 

insulin resistance, delayed glucose clearance, and severe 

intolerance to simple carbohydrates, such as sucrose and 

fructose (resulting in death in the majority of animals) due 

to an inability to shunt fructose into glycolytic pathways 

[48]. This emphasizes the essential role of ChREBP in both 

lipid and glucose metabolisms and suggests that ChREBP 

is required for a normal lipogenic response following the 

ingestion of carbohydrates [48]. In ob/ob mice, silencing 

ChREBP reduces hepatic triglyceride content specifically 

through inhibition of glucose-induced lipogenesis [49]. 

Likewise, ChREBP knockout protected against fructose-

induced steatosis in mice, but substantially increased his-

tological liver damage as a result of enhanced cholesterol 

synthesis and subsequent cytotoxicity [50]. By limiting 

levels of cytotoxic-free cholesterol and the subsequent liver 

injury, ChREBP may confer a hepatoprotective effect [50]. 

Increased ChREBP levels in NAFLD could then constitute a 

potential defense mechanism shielding the liver from further 

injury and progression towards NASH. Supporting this con-

cept, lipogenesis has been reported to be dissociated from 

NASH progression, i.e., elevated DNL may induce steatosis, 

but may be protective in relation to disease progression [51]. 

High ChREBP expression was found in biopsies from NASH 

patients, but levels declined in patients with severe insulin 

resistance, indicating that ChREBP may segregate hepatic 

steatosis from insulin resistance [52]. In high fat fed mice, 

adenovirus-mediated ChREBP overexpression resulted 

in hepatic steatosis and increased DNL. However, insulin 

sensitivity and glucose tolerance were maintained, likely 

owing to an increased conversion of saturated fatty acids 

(known to cause insulin resistance) to monounsaturated 

fatty acids mediated by stearoyl-CoA desaturase-1 (SCD1) 

[52]. ChREBP was down-regulated in patients with NAFLD 

(n = 22) compared to healthy controls (n = 10), and instead, 

SREBP1c was reported to be one of the predominant regu-

lators of DNL in NAFLD, upregulating genes coding for 

ACC1 and FAS [53].
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In response to elevated SREBP1c, the expression of 

downstream targets ACC and FASN was increased in 

both patients and animal models with NAFLD [18, 44, 45, 

53–57]. Liver-specific knockout of ACC1 decreased hepatic 

lipid accumulation in mice and DNL in hepatocytes [58]. 

However, knockout mice were not protected from hepatic 

steatosis induced by a high fat diet, potentially due to 

decreased fatty acid oxidation caused by a compensatory 

increase of ACC2, which in turn inhibited mitochondrial 

β-oxidation [58]. Accordingly, inhibition of both ACC1 and 

ACC2 was required to improve hepatic steatosis in mice 

[59], implying that both isoforms are important in NAFLD. 

Paradoxically, liver-specific FASN knockout promoted 

hepatic steatosis in mice on a zero-fat diet [60], in which 

steatosis developed alongside defective PPARα signaling 

and with a phenotype that could be corrected by dietary 

fat or a PPARα agonist [60]. The study identified ‘new’ 

lipids, formed either through DNL or originating from the 

diet, as potential PPARα ligands contributing to the regu-

lation of hepatic lipid homeostasis [60]. As mentioned, 

conversion of saturated fatty acids to mono-unsaturated 

fatty acids by SCD1 may be protective in NAFLD [52]. In 

agreement, incubation of hepatocytes with saturated fatty 

acids decreased cell viability, while incubation with mono-

unsaturated fatty acids enhanced lipid accumulation without 

affecting cellular viability [61]. Despite preventing steato-

sis, SCD1 knockout exacerbated hepatic fibrosis and cellular 

apoptosis in mice with NASH induced by a methionine and 

choline deficient diet [61]. The end-result of SCD1 inhi-

bition may, therefore, be an aggravation of NASH due to 

intracellular accumulation of cytotoxic saturated fatty acids 

[51, 62], placing the partitioning of saturated fatty acids to 

mono-unsaturated fatty acids as a protective factor in delay-

ing NAFLD progression. In view of the considerable cross-

talk between the molecular pathways in hepatic lipid homeo-

stasis, inhibition of DNL is not a trivial task, even though it 

may constitute an attractive therapeutic target.

Ectopic lipid deposition directly promotes insulin 

resistance, which is a common feature of patients with 

NAFLD-associated diseases [63, 64]. Insulin sensitivity in 

liver, muscles, and adipose tissue was reduced in subjects 

with high amounts of hepatic lipids (25.3 ± 3.5%, n = 10) 

compared to individuals with normal levels of hepatic 

lipids (3.6 ± 0.5%, n = 10) matched for visceral adipose 

tissue volume [65]. Furthermore, hepatic insulin sensitiv-

ity was only compromised in obese individuals (n = 20) 

when NAFLD was present [66]. As not all patients with 

fatty livers develop NASH, some individuals must pos-

sess protective mechanisms to shield them from lipotoxic-

ity, e.g., lipid desaturation and inhibition of lipid-induced 

inflammation [67]. In the promotion of insulin resistance, 

diacylglycerides have emerged as potential mediators. Dia-

cylglycerides are precursors of triglycerides, and hepatic 

accumulation of diacylglycerides has been associated 

with hepatic insulin resistance through the induction of 

protein kinase Cε [68]. Transgenic mice overexpressing 

diglyceride acyltransferase 2—catalyzing the conversion 

of diglycerides to triglycerides—increased hepatic triglyc-

eride content fivefold without affecting insulin sensitivity 

[69]. Likewise, antisense oligonucleotides against protein 

kinase Cε protected rats from diet-induced hepatic insu-

lin resistance [70]. Conversely, inhibition of diglyceride 

acyltransferase 2 with antisense oligonucleotides in db/db 

mice fed a methionine and choline-deficient diet-reduced 

hepatic steatosis, but augmented hepatic inflammation, 

fibrosis, and apoptosis [71]. Based on magnetic resonance 

spectroscopy, livers of obese subjects were classified with 

no steatosis (< 5.56%, n = 52), mild steatosis (5.56–15%, 

n = 41), or severe steatosis (> 15%, n = 40), revealing that 

the presence of NAFLD, but not the amount of hepatic 

triglycerides, was associated with hepatic insulin resist-

ance [72]. When investigating liver biopsies from a subset 

of the subjects (n = 27), only cytoplasmic diacylglyceride 

levels, and not total or membrane-associated diacylglyc-

erides, predicted hepatic insulin resistance [72]. Enhanced 

membrane translocation of protein kinase Cϵ (i.e., activa-

tion) provides a potential mechanism for diacylglyceride-

induced insulin resistance, suggesting hepatic diacylg-

lyceride to be a relevant predictor of insulin resistance 

in NAFLD [72, 73]. In patients with steatosis (n = 9) or 

NASH (n = 9), hepatic diacylglyceride levels were equally 

increased compared to controls (n = 9) [74]. In addition, 

diglyceride acyltransferases 1 and 2 were not differentially 

expressed between patients with steatosis (n = 51) and 

NASH (n = 53) [75]. It appears that once steatosis is estab-

lished, further NAFLD/NASH progression does not pro-

mote additional alterations in diacylglyceride-linked lipid 

metabolism, rendering diacylglycerides to exert an adverse 

effect already during the early stages of NAFLD develop-

ment. The ongoing accumulation of hepatic triglyceride 

may represent a compensatory measure implemented to 

convey some degree of protection against more harmful 

lipid species. Though possibly an appealing thought, stea-

tosis should not be interpreted as being beneficial, since 

chronic hepatic steatosis is associated with several seri-

ous conditions, including dyslipidemia and hypertension, 

imposing considerable negative effects on the quality of 

life as well as increasing mortality in afflicted patients 

[76].

Collectively, lipid accumulation in NAFLD is supported 

by enhanced lipogenesis, denoting DNL as a potential thera-

peutic target. However, blocking specific enzymes related to 

DNL may, in some cases, exacerbate NASH and the accom-

panying metabolic deterioration by promoting accumulation 

of cytotoxic lipid species, indicating the importance of the 

composition of the fatty acid pool in the liver (Fig. 3).



3319Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease  

1 3

Oxidation of fatty acids

Oxidation of fatty acids is controlled by PPARα and occurs 

mainly in the mitochondria, providing a source of energy 

to generate ATP especially when circulating glucose con-

centrations are low [14, 77–81]. In mammalian cells, the 

mitochondria, peroxisomes, and cytochromes mediate 

FAO [78, 82]. Entry of fatty acids into the mitochondria 

relies on carnitine palmitoyltransferase 1 (CPT1) situated 

in the outer mitochondrial membrane [80], but as the mito-

chondria lack the ability to oxidize very long chain fatty 

acids [79], these are preferably metabolized via peroxi-

somal β-oxidation. In case of lipid overload—such as in 

NAFLD—ω-oxidation in the cytochromes also contrib-

utes [78]. However, these processes generate consider-

able amounts of reactive oxygen species (ROS), oxidative 

stress, and toxic dicarboxylic acids, potentially promoting 

inflammation and disease progression [78] (Fig. 3).

Activation of PPARα induces the transcription of a 

range of genes related to FAO in the mitochondria, per-

oxisomes, and cytochromes, thereby reducing hepatic 

lipid levels [77, 80, 81, 83]. Knockout of PPARα in ob/

ob mice results in hepatic steatosis, supporting a role of 

PPARα in the regulation of hepatic lipid metabolism [84]. 

A 24 h fasting period of WT or ob/ob mice, upregulated 

PPARα and PPARα-target genes related to mitochondrial 

(medium- and long-chain acyl-CoA dehydrogenases), per-

oxisomal (acyl-CoA oxidase (ACOX) 1 and enoyl-CoA 

hydratase), and cytochrome-mediated (CYP4A1 and 

CYP4A3) FAO [85]. This response was less pronounced 

in PPARα knockout animals and coincided with hepatic 

steatosis, again emphasizing the critical role of PPARα in 

promoting FAO and preventing hepatic lipid accumula-

tion [85]. In humans, hepatic PPARα levels did not differ 

between patients with steatosis (n = 16) and healthy con-

trols (n = 8) [19]. However, PPARα was downregulated 

in patients with NASH compared to patients with stea-

tosis and healthy controls [75, 86], and the expression of 

PPARα decreased with increasing NAFLD activity score 

and fibrosis stage [86]. In addition, a longitudinal analy-

sis after a 1-year follow-up associated increased PPARα 

with histological improvements in NASH [86]. Decreased 

PPARα in NASH also enhanced the DNA-binding capacity 

of c-Jun N-terminal kinase 1 (JNK1) and nuclear factor 

kappa-light-chain enhancer of activated B cells (NF-κB) 

leading to increased hepatic inflammation [87]. Thus, 

PPARα expression may be related to several aspects of 

NASH progression, modulating not only lipid homeosta-

sis, but inflammation as well.

The expected consequence of hepatic lipid accumu-

lation would be increased FAO. However, studies of 

FAO in patients with steatosis or NASH are conflicting, 

reporting enhanced [88–92], unchanged [93], or decreased 

FAO [94]. The broad range of hepatic states covered by 

the term NAFLD makes it difficult to compare studies 

directly, and oxidation of fatty acids may differ based on 

the severity of the disease. Furthermore, FAO capacities 

may vary inter-individually rendering some subjects more 

susceptible to NAFLD. Indeed, rats selectively bred for 

low intrinsic aerobic capacity display decreased mitochon-

drial FAO and were predisposed to diet-induced hepatic 

steatosis [95]. Expression of genes related to mitochon-

drial and peroxisomal β-oxidation was higher in patients 

with more severe steatosis (n = 11) compared to patients 

with less severe steatosis (n = 21) or non-steatotic con-

trols (n = 16) [96]. β-Oxidation, measured indirectly as 

plasma β-hydroxybutyrate levels, was higher in patients 

with NASH (n = 6) compared to steatosis (n = 6) or normal 

controls (n = 6) [90]. Increased FAO may be an adaptive 

response in patients with NAFLD attempting to reduce 

the lipid overload and lipotoxicity, but also produces ROS 

and excessive FAO may overwhelm the capacity of the 

anti-oxidant defense system and induce oxidative stress. 

Accordingly, hepatic oxidative stress and changes in mito-

chondrial ultrastructure were increased alongside FAO in 

patients with NASH [90]. Glutathione, glutathione per-

oxidase, and superoxide dismutase were decreased in liver 

biopsies from NAFLD patients and in mitochondria from 

animal models of NAFLD [82, 87], closing the loop on 

a vicious cycle in which the diminishing capacity of the 

antioxidant defense system is continuously being depleted 

by rising ROS levels. In NASH patients (n = 10), oxida-

tive DNA damage was significantly increased compared 

to healthy controls (n = 16) despite similar rates of FAO 

following an intravenous infusion of lipids, suggesting 

increased susceptibility to oxidative stress in these patients 

[89].

Lipid oxidation and oxidative damage to mitochondrial 

DNA further diminish mitochondrial function, establish-

ing a self-perpetuating vicious cycle to exacerbate mito-

chondrial dysfunction and oxidative stress [80]. Decreased 

activity of the mitochondrial respiratory chain was reported 

in overweight/obese patients with NASH compared to 

controls [97, 98], and alterations in mitochondrial ultra-

structure have been observed prior to NAFLD develop-

ment in the Otsuka Long–Evans Tokushima Fatty rat [99] 

as well as in patients with steatosis preceding progression 

to NASH [100]. The decrease in mitochondrial function 

may result in the utilization of alternative FAO pathways. 

Mice heterozygous for mitochondrial trifunctional protein 

have compromised mitochondrial β-oxidation and develop 

hepatic steatosis alongside a compensatory upregulation of 

CYP2E1-facilitated FAO and oxidative stress [101, 102]. In 

NASH patients, hepatic CYP2E1 activity was increased and 

expression specifically localized to steatotic areas compared 
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to patients with steatosis and healthy controls [103–105]. 

CYP2E1 activity correlated with disease severity suggesting 

an involvement of CYP2E1 in FAO particularly during later 

disease stages, i.e., NASH [104]. In contrast, other studies 

have reported no difference in CYP2E1 expression between 

patients with NASH (n = 30) and those with only steatosis 

(n = 10) [106]. Thus, enhanced CYP2E1 did not differentiate 

bland steatosis from NASH, but could still play a role in dis-

ease progression. In agreement with enhanced cytochrome-

mediated FAO, increased CYP4A11—another key fatty acid 

metabolizing enzyme located in the cytochromes—has been 

reported in patients with NAFLD [45, 107]. Increased FAO 

in cytochromes may then be an important event in steatosis 

and NASH, with the excessive amount of ROS produced by 

the CYP enzymes exacerbating hepatic oxidative stress and 

consequently worsening liver damage.

The last of the three organelles important to fatty acid 

metabolism and hepatic lipid homeostasis is the peroxi-

somes. Targeting this system, either by hepatocyte-specific 

knockout of peroxisomes or by deficiency in ACOX (which 

catalyzes the initial step in peroxisomal FAO), results in 

hepatic lipid accumulation and fibrosis, oxidative stress, 

and inflammation, emphasizing the role of peroximal FAO 

in NAFLD and NASH [108]. A massive upregulation of 

PPARα was observed during ageing in ACOX deficient 

mice, suggesting ACOX substrates as endogenous activa-

tors of PPARα [109]. ACOX and branch-chained acyl-CoA 

oxidase (another peroxisomal enzyme involved in FAO) 

mRNA levels were higher in patients with NAFLD com-

pared to controls, indicating that peroxisomal FAO upregu-

lation may be a compensatory response aiming to resolve 

the progressing steatosis in NAFLD [45, 107]. However, 

similar to ω-oxidation in the cytochromes, the peroxisomes 

generate ROS as they oxidize fatty acids, and likewise, the 

peroxisomes may induce oxidative stress and promote dis-

ease progression [83].

In summary, the current data on FAO in NAFLD are 

conflicting, but even in studies suggesting enhanced FAO, 

augmented oxidation of fatty acids appear inadequate in 

clearing the liver of lipids. FAO in dysfunctional mitochon-

dria—a characteristic of NAFLD—produces excessive ROS 

and may also favor the utilization of the peroxisomes and 

cytochromes for FAO. This ultimately facilitates disease 

progression by inducing oxidative stress and inflammation.

Lipid export

In addition to FAO, export of triglycerides is the only way 

to reduce hepatic lipid content [68]. Due to their hydropho-

bic nature, fatty acids can only be exported from the liver 

after being packed into water-soluble VLDL particles along-

side cholesterol, phospholipids, and apolipoproteins [110]. 

VLDL particles are formed in the endoplasmic reticulum, 

where apolipoprotein B100 (apoB100) is lipidated in a 

process catalyzed by the enzyme microsomal triglyceride 

transfer protein (MTTP). The nascent VLDL particle is then 

transferred to the Golgi apparatus, and during this process, 

the particle is further lipidated until a mature VLDL particle 

is formed [111]. While one molecule of apoB100 is associ-

ated with each VLDL particle, and is required for VLDL 

export, the triglyceride content of the VLDL particle can 

vary considerably [9, 110]. Consequently, apoB100 and 

MTTP are key components in hepatic VLDL secretion and 

in maintaining hepatic lipid homeostasis. As such, hepatic 

steatosis, secondary to compromised triglyceride export, 

is common in patients with genetic defects in the apoB or 

MTTP gene (hypobetalipoproteinemia and abetaproteine-

mia, respectively) [112, 113]. Although moderate exposure 

to fatty acids increased apoB100 secretion, prolonged expo-

sure leads to ER stress and posttranslational degradation of 

apoB100, and consequently decreased apoB100 secretion, 

both in vivo and in vitro hereby linking ER stress to NAFLD 

progression through apoB100 inhibition [114, 115] (Fig. 3). 

MTTP gene transcription is positively regulated by PPARα 

and increased MTTP expression is paralleled by a change in 

apoB100 secretion, but a paradoxical decrease in circulating 

triglycerides in mice [116]. This could be due to a PPARα-

mediated inhibition of apoCIII, promoting the clearance of 

apoB100-associated lipoproteins [116]. Notably, whereas 

PPARα agonism increases plasma HDL in humans, this is 

not the case in most applied rat and mouse models, as they 

lack the PPAR response element in the promotor region of 

ApoA1 (the major apolipoprotein of HDL); in fact, HDL 

may even be decreased in response to PPARα these species 

[117]. Thus, PPARα not only exerts its catabolic effect via 

FAO, but also through the regulation of lipoprotein metabo-

lism. Conversely, both apoB100 and MTTP are negatively 

regulated by insulin, which reduces hepatic lipid export by 

inducing apoB100 degradation and suppressing MTTP syn-

thesis [111]. High insulin levels in the post-prandial state 

decrease hepatic VLDL production, favoring chylomicron-

mediated delivery of dietary lipids to the periphery [111], 

but the selective hepatic insulin resistance in patients with 

NAFLD allows insulin to stimulate DNL without inhibiting 

VLDL production [118]. VLDL secretion was increased in 

patients with NAFLD [65, 110, 119] and liver triglyceride 

content was directly associated with VLDL-TG secretion 

rates [65, 66, 110, 119]. However, while VLDL-TG export 

increased with intrahepatic lipid content, secretion pla-

teaued when hepatic fat content exceeded 10%, surpassing 

the compensatory capacity to prevent increasing hepatic 

lipid accumulation [110]. Despite higher VLDL-TG secre-

tion in patients with hepatic steatosis compared to healthy 

individuals, VLDL-apoB100 secretion was unchanged, 

suggesting that NAFLD patients do not secrete additional, 
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but instead larger and more triglyceride-rich, VLDL par-

ticles [110]. However, very large VLDL particles cannot 

be secreted if their diameter exceeds that of the sinusoidal 

endothelial pores, and this limitation may ultimately result 

in lipid retention and NAFLD [120]. Failure to increase the 

number of secreted VLDL particles could indicate subopti-

mal apoB100 levels as a precipitating factor in NAFLD, and 

while mRNA levels of apoB100 and MTTP was found to be 

higher in patients with NAFLD compared to controls [35, 

121], apoB100 synthesis rates were lower in patients with 

NASH (n = 7) compared to lean (n = 7) or BMI-matched 

obese (n = 7) controls without NASH [122]. Likewise, 

hepatic mRNA levels of apoB100 and MTTP and serum 

VLDL-TG were higher in patients with steatosis (n = 51) 

compared to patients with NASH (n = 53), marking dete-

rioration of VLDL assembly and export as important in the 

progression from steatosis to NASH [75]. NAFLD patients 

with more advanced steatosis (> 30%) had decreased MTTP 

levels compared to healthy controls, suggesting that lipid 

export may also become compromised directly by the accu-

mulation of substantial amounts of intracellular lipids [35]. 

Consequently, vector-mediated overexpression of MTTP in 

the Fatty Liver Shionogi mice decreased liver triglycerides 

and improved NASH [123]. Given the effect of PPARα on 

lipoprotein metabolism, it could be speculated that declining 

PPARα levels with NAFLD progression [75, 86] contrib-

ute to lower MTTP levels and apoB100 secretion rates. In 

contrast, similar expression levels of MTTP and apoB100 

between patients with steatosis, NASH, and healthy controls 

have also been reported, denoting the considerable disease 

heterogeneity associated with NAFLD [124].

Despite the variation between studies, lipid export in 

NAFLD seems to be biphasic, initially increasing followed 

by a plateau or even decrease. The diminished export results 

in hepatic lipid overload and subsequent intracellular lipid 

accumulation, leading to steatosis, lipotoxicity, and liver 

damage, and promoting disease progression and fibrosis.

Pre‑clinical models and current clinical 
management

There is currently no approved pharmacological treatment 

for NAFLD. A major limiting factor in the development of 

new treatments is the lack of predictive pre-clinical models 

that accurately reflect human disease with regard to liver 

histology, pathophysiology, and metabolic abnormalities. 

The available animal models can be characterized as dietary, 

genetic or as a combination of these two. However, as muta-

tions are rarely the cause of human NAFLD, this section will 

highlight some of the most commonly applied dietary mod-

els. These models attempt to replicate the unhealthy Western 

dietary pattern associated with NAFLD in humans, which 

are often high in fat, sugar, and cholesterol. However, to 

ensure translatability, it is important to maintain physiologi-

cally relevant levels of dietary macro- and micronutrients.

The methionine and choline-deficient diet (commonly 

applied in mice and rats) and choline-deficient L-amino-

defined diet rapidly induce NASH, but fail to reproduce the 

pathophysiological response corresponding to clinical obser-

vations [125, 126]. Atherogenic diets can induce NASH 

and fibrosis, but the exceedingly high levels of cholesterol 

(1–2%) and the inclusion of cholic acid differ from the clini-

cal situation and may even improve glucose tolerance and 

insulin sensitivity [127–129]. The addition of a high-fat 

component returns these to, at least, normal glucose/insulin 

levels [127]. Noticeably, a major limitation of the current 

models utilizing Western diets, not employing micronutri-

ent deficiency or abnormally high amounts of cholesterol, is 

the absence of progressive, advanced hepatic fibrosis [129]. 

Using a human-like Western diet, the diet-induced animal 

model of non-alcoholic fatty liver disease (DIAMOND) 

mouse was developed as a promising pre-clinical model 

resembling human liver histology, pathophysiology, meta-

bolic signatures, and advanced fibrosis as well as hepato-

cellular carcinoma after 52 weeks [130]. Unlike mice and 

rats, guinea pigs naturally resemble the human lipoprotein 

profile and develop human-like NASH histopathology, dys-

lipidemia, and hepatic oxidative stress when fed a Western 

diet [131–133]. Advanced hepatic fibrosis develops after 

20–24 weeks [132], allowing interventions to be evaluated 

on advanced disease stages within a relatively short time 

frame. Nevertheless, while animals represent a tool to study 

NAFLD and NASH, it is unlikely that any single animal 

model will reflect all aspects of human NASH and research-

ers must critically select the model(s) best suited for the 

subject of investigation.

Diet and lifestyle interventions are mainstay in the treat-

ment of NAFLD, and weight-loss ≥ 7% confers histological 

improvements of NASH [134]. However, lifestyle interven-

tions are notoriously difficult to maintain [135], suggest-

ing that some patients may benefit from pharmacological 

therapy. When validated in randomized clinical trials, only a 

few drugs have shown efficacy on NASH liver histology and/

or fibrosis. These include vitamin E, pioglitazone (PPARγ 

agonist), obeticholic acid (farensoid X receptor agonist), 

cenicriviroc (CCR2/CCR5 antagonist), selonsertib (apop-

tosis signal-regulating kinase 1 inhibitor), and liraglutide 

(glucagon-like peptide 1 analogue) [136–141]. However, 

adverse effects may limit the treatment potential, e.g., gli-

tazones are associated with phenotypical weight gain [136] 

and obeticholic acid induced pruritus and elevated LDL-C 

[137], the latter a potential concern in patients already at risk 

for cardiovascular disease. Cenicriviroc—despite not meet-

ing its primary endpoint of NAFLD activity score improve-

ment—[138] and obeticholic acid [137] were both able to 
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improve hepatic fibrosis, and were currently undergoing 

phase III investigation. In addition, promising results have 

been reported for several phase II clinical trials and addi-

tional trials are currently ongoing, reflecting the growing 

research effort in developing novel treatments for NASH. 

Given the heterogenic nature of NAFLD, targeting meta-

bolic, anti-inflammatory, or anti-fibrotic disease pathways 

simultaneously may exert an additive or synergistic effect 

and combination therapy may prove to be a an important 

tool in the future development of pharmacological treatment 

options.

Conclusion

In NAFLD, hepatic lipid acquisition—mediated by increased 

fatty acid uptake and DNL—is enhanced despite the pres-

ence of steatosis. Lipid disposal may be increased, but is 

ultimately incapable of counteracting the growing intrahe-

patic fat deposition. While lipid export is enhanced in early 

disease stages, it decreases or plateaus with disease sever-

ity as hepatocyte metabolism becomes increasingly com-

promised. Efforts to reduce lipid levels can even promote 

disease progression, as FAO may induce oxidative stress, 

exhausting antioxidant competences and promoting damage 

to cellular organelles and DNA. The molecular mechanisms 

governing hepatic lipid homeostasis and the counter regu-

latory mechanisms related to a chronic lipid overload and 

NAFLD are both complex and tightly interconnected. Thus, 

any intervention targeting one or more pathway is likely to 

have consequences on multiple cellular signaling pathways. 

This, as well as inter-individual differences, should be taken 

into careful consideration when developing future treatment 

options for NAFLD.
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