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Abstract: Deep whole genome and transcriptome sequencing have highlighted the importance of
an emerging class of non-coding RNA longer than 200 nucleotides (i.e., long non-coding RNAs
(lncRNAs)) that are involved in multiple cellular processes such as cell differentiation, embryonic
development, and tissue homeostasis. Cancer is a prime example derived from a loss of homeostasis,
primarily caused by genetic alterations both in the genomic and epigenetic landscape, which results
in deregulation of the gene networks. Deregulation of the expression of many lncRNAs in samples,
tissues or patients has been pointed out as a molecular regulator in carcinogenesis, with them acting
as oncogenes or tumor suppressor genes. Herein, we summarize the distinct molecular regulatory
mechanisms described in literature in which lncRNAs modulate carcinogenesis, emphasizing epi-
genetic and genetic alterations in particular. Furthermore, we also reviewed the current strategies
used to block lncRNA oncogenic functions and their usefulness as potential therapeutic targets in
several carcinomas.

Keywords: cancer disease; lncRNAs; therapeutic drugs

1. Introduction

Over recent years, advances in genomics have led to the discovery that the genome
is far more pervasively transcribed than was previously appreciated. Much of the newly
discovered transcriptome appears to represent long non-coding RNAs (lncRNAs), a hetero-
geneous group of largely uncharacterized transcripts [1–3]. These lncRNAs share many
features with protein-coding RNA transcripts, such as the presence of epigenetic marks in-
dicating differential expression [4], the presence of introns, transcription mediated by RNA
polymerase II or, in a few cases, by RNA polymerase III and the existence of spliced variants.
Many but not all lncRNAs are polyadenylated, and there is also evidence indicating that
many lncRNAs exist in both polyadenylated and non-polyadenylated forms [5]. LncRNAs
can overlap coding genes, and indeed, it is estimated that 20% of human transcripts display
sense-antisense pairs [6]. These transcripts may overlap the entire gene or only a part of it,
and a non-coding transcript may originate from either the sense or antisense strands [7].

Although the expression levels of lncRNAs are very low compared with the protein
coding RNAs, lncRNAs exhibit a much more restricted temporal and tissular expression [8].
Such specificity is key in the role played by a multitude of lncRNAs in certain biological
processes. At the cellular level, lncRNAs can be located in both the cytoplasm and the
nucleus and can even be found in both subcellular locations. Indeed, its subcellular location
is a reflection of the functional role of these lncRNAs within the cell [9]. Thus, cytoplasmic
lncRNAs have mainly a regulatory function at the post-transcriptional level, while nuclear
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lncRNAs have mainly a regulatory function at the transcriptional level, although there
are examples of nuclear lncRNAs that can be exported to the cytoplasm and thus exert
regulatory functions at the post-transcriptional level [10–12].

In brief, lncRNAs have most commonly been classified into six well-established groups
based on their genomic location and the genetic elements that surround them. The first
is lncRNAs transcribed from the same promoter as the gene adjacent to them. This type
of lncRNA can be transcribed in the 3′ or 5′ directions and can be transcribed from the
same DNA strand or from the complementary strand. Both the expression of the lncRNA
and the messenger RNA of the adjacent gene are usually correlated, with the expression
of the messenger RNA being modulated by the action of the lncRNA. The second group
is lncRNAs located between two protein-coding genes at a distance of approximately
10 kb between them in so-called genomic deserts. These lncRNAs are denominated as
intergenic long non-coding RNAs (lincRNAs) and constitute the main class of lncRNAs in
the genome [13]. The third group is lncRNAs transcribed from introns of genes that code
for proteins or from promoter regions (ilncRNAs). There is a subclass of intronic lncRNAs
called snoRNAs. This subclass does not have the typical structure of other lncRNAs and
has exclusively a nuclear location [14]. The fourth group is lncRNAs derived from promoter
regions located within active promoters that are transcribed (eRNAs) [15,16]. The fifth
group is circular lncRNAs (circRNAs) that can be generated during alternative splicing
of protein-encoding genes [17]. Finally, there is another class of lncRNAs that contains
microRNAs within their genetic structures, as exemplified by H19, whose first exon encodes
miR-675 [18].

The Cancer Genome Atlas Consortium project, together with other large-scale se-
quencing projects aimed at characterizing cancer genomes as well as the possible epigenetic
and genetic dysregulations that configure them, have provided a precise molecular charac-
terization of approximately 11,000 primary cancers, discovering a substantial fraction of
undescribed somatic abnormalities (e.g., point mutations, genetic rearrangements, and copy
number alterations) [19–22]. Khuruna et al. (2013) reported that 99% of somatic SNVs in
different carcinomas occur in non-coding regions (ncRNAs, pseudogenes, and transcription
factor binding sites) [23]. Furthermore, a study based on TCGA and lncRNA expression
data from TANRIC shows that mutational frequencies in lncRNAs, whose expression is
affected by somatic alterations (MutLncs), are low, and that to some extent, their alteration
tends to be specific to the type of disease [24].

Interestingly, numerous studies revealed a previously uncovered role for lncRNAs as
conditional and constitutive oncogenes or tumor suppressor genes through their facility
to regulate each and every characteristic of cancer, such as aberrant proliferation, cellular
invasion, altered lipid metabolism, metastasis, and immune escape. Furthermore, regula-
tion exerted by lncRNAs can be carried out both at the transcriptional level - epigenetic
and genetic - or at the post-transcriptional level [25–30]. These findings, and especially the
cancer-specific expression of most of them, pointed to lncRNAs as possible biomarkers or
therapeutic targets. In this manuscript, we summarize the main mechanisms by which
lncRNAs modulate different carcinomas and the current strategies used to downregulate
the oncogene lncRNA expression involved in carcinomas.

2. Genetic and Epigenetic Contributions of lncRNA Dysregulation in Cancer

The nuclear distribution of lcnRNAs and their interaction with a several nuclear
elements, such as transcription factors, chromatin remodeling complexes, or even with a
DNA establishing a DNA-RNA complex, have revealed their importance in the regulation
of both gene transcription and its epigenetic landscape [31–33]. Most types of cancer require
numerous changes in nuclear transcription homeostasis in order to escape cellular control
systems. These changes translate into upregulation and downregulation of a multitude
of genes, oncogenes, and tumor suppressor genes by different mechanisms that result in
tumor initiation, progression, and metastasis [34]. In line with this, many studies have
pointed out lncRNAs as pivotal modulators of nuclear transcription, altering both the
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transcriptional and epigenetic cellular context responsible for increasing or repressing
tumorogenesis as described below (Figure 1).
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Figure 1. Representative scheme of the main human carcinomas and related lncRNAs. Note that the
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Cancer’s underlying epigenetics has been widely studied, given its pivotal role in
the initiation, progression, and metastasis of most types of cancer, as well as its potential
as a target for different gene therapies [35–37]. Epigenetics can be defined as the set of
modifications that alters the structure or state of chromatin, differentially regulating its
gene expression without changes in the DNA sequence [38]. Epigenetic alterations can be
included in two basic groups. The first is modifications in the DNA, basically produced
by the addition of methyl groups at the 5′ end of certain cytosines located in the so-called
CpG islands, where long stretches of CG dinucleotides harbor the promoter regions of
the genome that present high, precise, and intense gene regulation [39]. Methylation
of the cytosines prevents binding of the transcription factors to the promoter regions,
which results in gene repression. Interestingly, many types of cancer display a specific
pattern of hyper-methylated CpG islands in several tumor suppressor gene promotors,
inhibiting their expression and leading to an increase in different subpopulation cancer
cells and thus enhanced tumor development [40–42]. The second group is modifications
in the histone tail, essentially caused by methylation, acetylation, or phosphorylation of
certain lysines located in the N-terminal region of histones 3′, altering the nucleosome
charge, affecting the chromatin state, and thus allowing or preventing the recruitment of
transcriptional co-activators to it [43]. These modifications are carried out by chromatin
remodeling complexes that add open or close marks to the genome, making it accessible
to the transcriptional machinery [44]. Unlike the hyper-methylation of the CpG islands,
in many types of cancer, hypo-methylation of the genome is observed, leading to ectopic
activation of specific oncogenes, whose expression is inhibited in homeostatic conditions.
Ectopic activation of these oncogenes is essential for the cell to acquire an oncogenic
phenotype and escape from cellular control systems [45,46]. In the same way, some of these
chromatin remodeling complexes show enhanced or reduced activity in malignant cells,
which leads to dysregulation in the chromatic structure, promoting the expression of genes
that enhance tumor development [47–49].
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Emerging studies about the role of lncRNAs in carcinogenesis have pointed out as
complex regulators in the epigenetics of cancer. As a consequence, many reports of cancer-
related lncRNAs have been described as pivotal modulators of the epigenetic landscape
by interaction with chromatin at four levels, which are described below: (1) lncRNAs
as modulators of histone methylation; (2) lncRNAs as modulators of histone acetylation;
(3) lncRNAs as modulators of DNA methylation; (4) lncRNAs as post-transcriptional
regulators of the epigenetic apparatus and (5) (Figure 2).
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Figure 2. Epigenetic mechanism involved in carcinogenesis. (A) Histone methylation exerted
by HOTAIR-PRC2 complex to repress expression of several genes such as Hoxd10, PGR, PCDH,
or Jam2 with a protective role against metastasis in breast cancer cell line. (B) TCF21 promoter
demethylation exerted by TARID1-GADD45A, which positively modulates expression of the TCF21
gene, a protective factor against head and neck squamous cell carcinoma (HNSCC). (C) Ubiquitination
of EZH2, a subunit of PRC2, by ANCR reducing negative marks at Hoxd10 or E-Cadherin genes,
exerting a protective role against EMT and metastasis in breast cancer cell line. (D) Required binding
SPKQ-Neat1 for the formation of paraspeckles. Downregulation of Neat1 is translated in the high
availability of SPKQ and therein the upregulation of apoptosis genes such as BLC2 or BAX.
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2.1. lncRNAs as Modulators of Histone Methylation

The interaction between the chromatin remodeling complex PRC2 and HOTAIR
was the first reported example of an lncRNA involved in the epigenetic regulation of
chromatin [50]. In breast cancer, HOTAIR is necessary to recruit PRC2 to its genomic
targets, which is required for the latter to establish the repressor marks H3K27me3 in
certain tumor suppressor genes that play pivotal roles in the inhibition of metastasis such
as Hoxd10, PGR (progesterone receptor), PCDH (Protocadherin 10) or Jam2 (junctional
adhesion molecule). Furthermore, a loss of HOTAIR function is sufficient to prevent cell
invasion and metastasis in breast cancer, reflecting the role of this lncRNA as a potent
oncogene and pointing it out as a possible therapeutic target [51].

PRC2 subunits can interact with different nuclear proteins or transcription factors,
forming protein complexes that establish epigenetic marks on their genomic targets [52].
Tug1, an upregulated lncRNA in different gliomas, acts as a scaffold molecule necessary
for PRC2 to interact with YPP1, a neuronal transcription factor. Such a new complex can
increase the expression of different genes involved in neuronal differentiation, such as
BDNF, NGF, or NFT3, maintaining the pluripotency of malignant cells and thus increasing
the aggressiveness of the glioma. Interestingly, the expression of Tug1 is detected in the
cytoplasm too, where it acts as a sponge for miR-142, protecting SOX2 and MYC from
degradation [53].

Maintenance of the epigenetic marks induced by PRC2 requires the participation of
another complex: PRC1 [54]. ANRIL, a long non-coding RNA located in a genetic desert
with a high prevalence of SNPs [55–57] (to date, many of these SNPs have been related
to a higher prevalence of cancer), interacts with both PRC1 through the CBX7 subunit
and PRC2 through the SUZ12 subunit to repress the expression of the CDKN2A/B locus
and thus maintaining its silence. This locus is downregulated in many types of cancer,
such as leukemia, breast cancer, pancreatic cancer, ovarian cancer, and gliomas [58–62].
Repression of the CDNK2A/B locus by ANRIL increases the cell proliferation of malignant
cells, promoting progression and metastasis. On the contrary, ANRIL depletion reduces
cell proliferation and decides the balance toward cell death, therefore reducing the risk of
metastasis, pointing to ANRIL as a potent therapeutic target, especially in leukemia and
prostate cancer, where it is upregulated [63,64].

HOTTIP provides another example of lncRNA upregulated in several types of cancer,
such as hepatocellular carcinoma, gastric cancer, colorectal cancer, pancreatic cancer, lung
cancer, prostate cancer, and osteosarcoma [65–71]. HOTTIP interacts with WDR5, inducing
the chromatic opening through the WDR5/MTT complex. This complex upregulates the
expression of the HOXA locus through the H3K4me3 marks. In turn, HOXA locus genes
repress the expression of several tumor suppressor genes. Additionally, the detection of
HOTTIP in the exosome samples of patients has been recognized as a possible prognosis
marker in colorectal cancer [72].

Unlike the lncRNAs described above, MEG3 represents an intergenetic lncRNA associ-
ated with chromatin repressive marks that acts as a potent tumor suppressor gene. MEG3
physically interacts with the EZH2 subunit of the PRC2 complex to repress the expression
of several genes involved in TFG-β signaling (e.g., SMAD2 or TGFBR1), increasing the
aggressiveness of cancer by promoting invasion and metastasis. This repression is mediated
by the formation of a triplex DNA-RNA complex in the GA-rich regions of a gene’s silenced
promoters [73].

2.2. lncRNAs as Modulators of Histone Acetylation

Few cases of lncRNAs involved in histone acetylation have been described to date.
Wan et al. (2013) described a pivotal role of lncRNA JADE in the earliest steps of DNA
damage response (DDR) mechanisms by the modulation of acetylation machinery. As
suggested in basic and preclinical studies, DDR is one of the primary anti-cancer barriers
during tumorigenesis and is under complex and tight regulation, including alteration of
the acetylation patterns of numerous gene promoters [74–76]. Clinical studies performed
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in breast cancer patients have shown lncRNA JADE upregulated expression compared
with controls. Mechanistically, lncRNA JADE is required for correct JADE1 expression, a
protein necessary to determinate the histone H4 substrate specificity of HBO1, which in
turn mediates histone H3–H4 acetylation [77]. Several types of cancer display upregulation
of HBO1, positively modulating the expression of proliferation-promoting genes linked to
a poor cancer prognosis [78,79]. The depletion of lncRNA JADE is translated in the reduced
growth of breast cancer in vivo, as well as in HBO1 deficient cells, suggesting a potential
effect as inductors of the proliferation of maligned cells [74].

Another case of histone acetylation mediated by lncRNA was reported for lncPRESS1,
which plays a pivotal role in the switching of the pluripotent or differentiated state of
embryonic stem cells (ESCs) by acting as a decoy molecule from SIRT6. LncPRESS1
competes with SIRT6 for their genomic targets, avoiding that this enzyme can de-acetylate
and thus the active gene expression required for promoting cell differentiation [80].

2.3. lncRNAs as Modulators of DNA Methylation

The patterns of aberrant methylation of lncRNA promoters have been described in
many types of cancer, pointing out their importance in the epigenetic control of carcino-
genesis [81]. However, only a few cases of lncRNAs involved in DNA methylation have
been deeply studied, and their functions remain to be fully elucidated. TARID1 is an
intergenic lncRNA whose promoter region is located within the third CpG island of the
TFC21 promoter, a known tumor suppressor gene. TARID1 binds GADD45A, a DNA
repair protein that promotes active demethylation in numerous promoters. The TARID1-
GADD45A complex directs it, together with TDG, a protein necessary for GADD45A to
interact with its genomic targets, to the TFC21 promoter, where it eliminates methylation
and allows for the expression of TFC21, which in turn plays a key role in protection against
head and neck squamous cell carcinoma (HNSCC). Interestingly, TARID1 formed an R-loop
with the TCF21 promoter, which was recognized by GADD45A as a region marked for
demethylation [82,83].

Merry et al. (2015) uncovered a total of 148 lncRNAs that are associated with DNMT1
in colon cancer cells through RIP-seq. Among them, one lncRNA was highlighted, named
DNMT1-associated colon cancer repressed lncRNA 1 (DACOR1), which is highly and
specifically expressed in normal colon tissue while it is repressed in colon cancer cell lines.
Furthermore, overexpression of DACOR1 in colon cancer cells resulted in a gain in DNA
methylation at multiple loci without changing the DNMT1 expression level. Interestingly,
DNTM1 is an important repressor of tumorigenesis [84]. ChIRP-seq analysis demonstrated
that DACOR1 occupies a total of 338 genomic loci, of which 161 peaks are near 150 an-
notated genes. Remarkably, 31 of these sites overlapped with differentially methylated
regions previously found in colon cancer samples with respect to normal tissues. These
findings indicate that DACOR1, cooperating with both chromatin and DNMT1, targets the
DNMT1 protein complex toward exact genomic loci. Furthermore, DACOR1 was found to
repress the expression of cystathionine β-synthase (CBS) and, in turn, increase methionine,
which is the substrate to produce S-adenosyl methionine (SAM). SAM is a necessary methyl
donor for DNA methylation in mammalian cells. Thus, DACOR1 may also impinge on
DNA methylation through orchestrating cellular SAM levels [85,86].

2.4. lncRNAs as Post-Transcriptional Regulators of Related Epigenetic Proteins

The interaction between lncRNAs and the related epigenetic protein landscape is
not limited to recruitment, scaffold, or active element functions required for chromatin
remodeling. Furthermore, lncRNAs have been reported as pivotal players in modulat-
ing the chromatin protein complex stability by promoting protein degradation, exerting
protectives roles in most of cases to trigger pro-oncogenic epigenetic marks or inhibit
protein degradation, acting as oncogenes. For example, ANCR is capable of directly bind-
ing to the EZH2 subunit, promoting its degradation. ANCR-EZH2 binding is required
for CDK1 to target EZH2 for ubiquitin–proteasome degradation via Thr-345 and Thr-487
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phosphorylation in breast cancer cells. Curiously, in breast cancer, ANCR expression is
inactive, leading to hyperactivity of EZH2, which in turn sets up several repressive marks
in tumor suppressor genes such as Hoxa10 or E-Cadherin, which are involved in progres-
sion and EMT signals [87]. Note that the modulation of ANCR has been probed in other
carcinomas [88,89].

EZH2 degradation is not modulated solely by ANCR. MEG3 promotes EZH2 ubiq-
uitination, leading to upregulation of LATS2, a tumor suppressor kinase that inhibits cell
proliferation and metastasis through the Hippo signaling pathway in several types of
cancer [90]. Gallbladder cancer also displayed a downregulation of MEG3 accompanied by
LAST2 downregulation and thus increased cell proliferation and metastasis [91].

Unlike ANCR or MEG3, LUCAT1 is considered an oncogene by protecting the pro-
tein degradation of DNMT1 in esophageal squamous cell carcinoma. A depletion in
LUCAT1 expression is correlated with reduced levels of DNMT1 expression together with
the upregulation of UHRF1, a protein involved in ubiquitination and therefore DNTM1
degradation [92].

2.5. lncRNAs as Nuclear Environment Modulators

The nuclear compartment not only encloses the chromatin in its different phases and
the nucleolus but also contains different structures of mostly irregular shapes, known as
nuclear bodies [93]. These structures exert pivotal roles in the transcriptional regulation of
several pathways related to distinct cellular processes, such as the differentiation, prolif-
eration, or maintenance of homeostasis and, therefore, disease development too [94–97].
Many reports have highlighted the role of these structures in cancer pathogenesis, involv-
ing them in the underlying transcriptional regulation of tumorigenesis [98–100]. Along
different nuclear bodies, paraspeckles, substructures located on the periphery of the nu-
cleus, were first discovered in 2002 [101] and have emerged as pivotal regulators of nuclear
function modulating. First, they distribute nucleus proteins and are available to interact
with chromatin or transcriptional machinery [102]. Second, they retain mRNAs, avoiding
their transport to the cytoplasm and thereby translation. Interestingly, mRNAs retained
by paraspeckles are exported later to the cytoplasm, considerably increasing the number
of messenger RNA molecules and their translation. However, the underlying biological
processes that determine the export time lapse are poorly understood [103,104]. Third
and finally, they sequester proteins related to miRNA biogenesis and processing [105].
The formation of paraspeckles requires the presence of NEAT1, or long non-coding RNA
nuclear paraspeckle assembly transcript 1 [106,107]. NEAT1 is transcribed in two isoforms—
Neat1.1 and Neat1.2—displaying different RNA processing, which results in the generation
of two different transcripts both in their length and in their structural motifs. While the first
isoform is dispensable in paraspeckle biogenesis [108], the second isoform is responsible
for paraspeckle assembly, constituting a limiting factor for the formation of these nuclear
bodies and thus determining the tendency of the nucleus to form them [109]. Zeng et al.
(2018) reported the pivotal importance of Neat1.2 and therein paraspeckles as promotors
of the aggressiveness of Chronic myeloid leukemia (CML). SPKQ, a bivalent protein that
can act as a splicing factor required in paraspeckle formation or as a transcription factor
exerting the activation of apoptotic proteins such as BLC2, BBC3, or BAX, is associated with
Neat1.2 through the C motif. Neat1.2-SPKQ binding reduces the availability of this protein
to act as a transcription factor, thus reducing the expression of apoptosis factors BLC2,
BBC3, and BAX and leading the cell to escape apoptosis, thereby enhancing the growth and
proliferation of CML. Curiously, Neat1.2 expression is downregulated by c-Myc, a known
repressor of CML progression. Neat1.2 repression mediated by c-Myc reduces paraspeckle
formation and leads to SPKQ binding to the promoters of the apoptotic genes referred to
above, activating their expression and consequently promoting apoptosis and achieving a
better prognosis [102].
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3. Transcriptional Gene Modulation by lncRNAs

The 3D architecture of the genome is essential for gene transcriptional regulation. RNA
polymerases require contact with the promoter regions of the genes to be transcribed [110].
Contact between the distal regions of the genome is facilitated by the transcription factors
and active enhancer regions, which generate chromosomal looping. Altering the 3D
structure of the chromatin allows RNA polymerases to recognize the distal promoter regions
and initiate the synthesis of different transcripts [111]. Active enhancers are indispensable
for leading transcription genes that are located far from each other in the genome at the same
time [112–114]. Under homeostatic conditions, active enhancers control the maintenance
of different cell types. However, they are deregulated in many human cancers. Along
with them, lncRNAs derived from the transcription of active enhancers are differentially
expressed in cancer tissues and have been revealed to act as oncogenes, promoting the
transcriptional activation of the oncogenic pathways and even inducing chromosomal
rearrangements and genomic instability [115–118].

The regulatory impact of enhancer-related lncRNAs has been elucidated, especially
in human T cell acute lymphoblastic leukemia (T-ALL). Leukemia-induced non-coding
activator RNA-1 (LUNAR1) was recognized in an integrated transcriptome profile from
T-ALL patients as a specific lncRNA involved in cell growth both in vitro and in vivo in the
early stages. LUNAR1 is upregulated by the Notch1/Rbp-jk activator complex, which plays
a pivotal role in the initiation of T-ALL carcinogenesis [119,120]. LUNAR1 expression is
necessary to promote the IGF1R mRNA levels and to maintain the IGF1 signaling required
to stimulate tumor growth. The depletion of LUNAR1 leads to downregulation of IGF1R
and a reduction of both the Mediator complex and RNA Pol II binding to both the IGF1R
enhancer and promoter [119].

Recently, Tan et al. (2019) described ARIEL, an ARID5B-inducing enhancer associated
long non-coding RNA - another example of eRNA involved in T-ALL pathogenesis. The
expression of ARIEL is associated with the ARID5B enhancer activity and is required
for the recruitment of the Mediator complex toward the ARID5B promoter and thereby
increasing the expression of this transcription factor. ARID5B is necessary to activate the
TAL1-induced transcriptional program and the MYC oncogene [121]. Curiously, TAL1
positively modulates ARIEL expression, showing a feedback regulatory system. While
ARIEL knockdown in cells is translated into growth inhibition, murine model mutants to
ARIEL display a block in disease progression, reflecting the importance of this lncRNA in
T-ALL pathogenesis and pointing out a possible preventive therapeutic target [122].

4. Post-Transcriptional Gene Regulation by lncRNAs Involved in Cancer

Post-transcriptional gene regulation includes the modulation of mRNAs, promoting or
inhibiting their stability, interaction with ribosomal machinery facilitating or blocking the
protein translation process, and finally affecting alternative splicing to generate different
transcripts. Although epigenetic and genetic regulation have historically been considered
the pivotal axis for the development of most carcinomas, emerging evidence has shown
that post-transcriptional regulation of several genes involved in cancer diseases also exerts
a key role [123,124].

The functional complexity of lncRNAs, together with their dynamic cellular localiza-
tion, allows them to exert post-transcriptional gene regulation at different levels within both
the cytoplasm and the nucleus [125,126] as follows: (1) competing by binding to microRNAs
and thus acting as a sponge that eventually prevents triggering their targets; (2) promoting
or inhibiting the translation of mRNA; (3) interacting with ribosomal machinery, modulat-
ing the biogenesis, translocation, and binding of ribosomal subunits; and (4) interfering
in the splicing process through the modulation of different splicesome proteins [127,128]
(Figure 3).
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Figure 3. Main regulatory mechanisms of lncRNAs at the post-transcriptional level. (A) Competing
sponge lncRNAs act to form an lncRNA-miRNA complex, avoiding the degradation of 3′UTR target
genes, therein repressing the translation of them. (B) lncRNAs binding mRNA targets and avoiding
the ribosome-initiated translation process. In sharp contrast, the mRNA-lncRNA complex attenuates
the binding of repressed protein translation. (C) lncRNAs can act as positive modulators of rRNA
synthesis, increasing the ribosome pool necessary for the increased protein demand in cancer cells.
(D) lncRNAs can modulate the splicing process, leading to transcription of different isoforms that
exert pivotal roles in several carcinomas.
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4.1. lncRNAs Acting as Competing Endogenous RNAs

Many cytoplasm-located lncRNAs exert themselves as master regulators of post-
transcriptional gene modulation by competing with protein coding RNA 3′UTRs and
thus binding to microRNAs [129,130]. Mechanistically, competing endogenous features
reside in the similarity between the sequence of a certain lncRNA and the 3′UTR region of
an mRNA containing repetitive binding sites for a determined microRNA. The lncRNA-
microRNA binding complex prevents it from being loaded into the AGO2/RISC complex,
and therefore, microRNA is incapable of physically interacting with its mRNA targets.

Phosphatase and tension homolog pseudogene 1 (PTENP1) was the first provided
example of ceRNA involved in carcinogenesis [131]. PTENP1 displays high homology
with the PTEN gene, preserving its sequence-binding sites for the different microRNAs
that recognize the 3′UTR region of PTEN (miR20a, miR19b, miR21, miR26a, and miR214).
The expression of both genes is downregulated in different carcinomas, although PTENP1
expression is not dependent to PTEN. Knockdown of both genes is translated into growth
acceleration, while upregulation of PTENP1 is enough to promote growth suppression
in prostate cancer. To date, many reports have pointed out that the inhibitory role of
PTENP1-PTEN genes is not exclusive to prostate cancer, and it is extensible to several type
cancers such as colorectal cancer, breast cancer, or oral squamous cell carcinoma [132–134].
Thus, PTENP1 is considered a master tumor suppressor gene, as demonstrated by the
inhibition of functional conservation between different carcinomas.

In sharp contrast, HULC provides an example of the oncogenic sponge long non-
coding RNA involved in several carcinomas, promoting tumor angiogenesis in liver cancer
and aberrant cell proliferation in leukemia and impairing lipid metabolism in hepatoma
cancer [135–139]. For example, sequestering miR-107 by HULC in liver cancer is indis-
pensable for promoting angiogenesis and increasing the aggressiveness of maligned cells.
The miR-107 targeting E2F1 mRNA, a pivotal protective factor, promotes angiogenesis
by inhibiting SPHK1, a specific kinase upregulated in liver cancer [140]. HULC is not an
exclusive example of an lncRNA capable of recognizing and binding to miR107. Neat1,
with nuclear functions that were described above, also exerts a pivotal role as an oncogene
in both laryngeal squamous cell cancer and glioma, sequestering miR107 and repressing
the miR107/Cdk6 pathway, which plays a protective role in inducing apoptosis and cell
cycle arrest at the G1 phase [141,142]. Furthermore, a large subset of miRNAs is recognized
and targeted by Neat1 (which, in all cases reported, acted as a potent oncogene) in several
tumors, such as miR-214 in endometrial and thyroid carcinoma [143,144], miR-101, miR-218,
and mR-211 in breast cancer, or miR-506 in pancreatic carcinoma [145–148]. Therefore,
Neat1 binding to sponge miRNAs is translated into the promotion of tumor cell growth,
proliferation, migration, invasion, metastasis, and maintaining a stem cell-like phenotype.

4.2. lncRNAs Promoting or Inhibiting the Translation of mRNA-Targets

Many lncRNAs modulate mRNA expression, promoting or repressing the transla-
tion of specific mRNA targets that interact directly with them. Analysis of the transcrip-
tome of human cervical carcinoma (HeLa) cells has clarified a post-transcriptional role of
lncRNA-p21, which is located in the cytoplasm in a close relationship with the ribosomes.
lincRNA-p21 interacts with the mRNA of two apoptotic cell-protective proteins—CTNNB1
and JUNB—both of which are upregulated by the HuR gene [149–151]. Interestingly,
lncRNA-p21 expression is inhibited by HuR, a known inducer of cell migration and tumor
aggressiveness in HeLa cells [152,153]. The RNA-RNA complex formed by the mRNA of
lncRNA-p21 and the CTNNB1 and JUNB 3′UTR regions triggers the association of these
mRNAs with the translational repressors RCK and FMRP, which leads to the attenuation of
their translation [151,153].
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4.3. lncRNAs Interact with Ribosome Machinery, Modulating the Biogenesis, Translocation, and
Binding of Ribosomal Subunits

Few lncRNAs have been described as modulators of protein biogenesis at the ribo-
some level, affecting biogenesis, translocation, or ribosomal subunit formation. SLERT
is a clear example of lncRNA being involved in the regulation of ribosome biogenesis.
SLERT (Sno-RNA-terminated lncRNA enhances pre-ribosomal RNA transcription) acts
as an oncogene in several human cancer cell lines that positively modulates pre-rRNA
transcription [154]. Tumor development requires increased protein biogenesis and, conse-
quently, increased ribosome biogenesis to meet the demand for de novo protein synthesis
from carcinoma cells [155]. Mechanically, SLERT interacts directly with DEAD-box RNA
helicase DDX21 and prevents it from coating polymerase I and thus reducing the tran-
scription of ribosomal RNAs. Furthermore, the binding of SLERT and DDX21 allows RNA
polymerase I to transcribe pre-rRNAs. Consistent with this, the inhibition of SLERT reduces
the tumorigenic potential both in vitro and in vivo, showing a positive role for this lncRNA
in carcinogenesis [154,156].

4.4. lncRNAs Involved in Splicing Alternative Mechanisms

Alternative splicing is a complex regulatory system that allows the generation of differ-
ent RNA transcripts from the same gene. The modulation of alternative splicing by lncRNA
molecules is still unclear, but some cases have been reported. ZEB2-NAT was described first
as an antisense transcript of ZEB2, a pivotal gene involved in reducing EMT by repressing
E-Cadherin [157]. Curiously, ZEB2 shows an IRES sequence harboring an intron located
upstream between the first and second exon. The IRES sequence plays an essential role in
recruiting ribosomes, initiation factors, and RNA-binding proteins. E-cadherin repression
by ZEB2 requires such an IRES sequence. Retention of the IRES sequence in the mature
mRNA of ZEB2 is mediated by the activity of ZEB2-NAT, which interacts directly with
the IRES sequence and avoids splicing processing. The downregulation of E-Cadherin by
ZEB2-NAT points it out as a possible oncogene, since it promotes the maintenance and
metastasis of several human carcinomas [158].

5. Development of Strategies to Obtain the Blocking Oncogene Functions of lncRNAs

Theragnostics is the nexus point of therapeutics and diagnostics and describes a
system to customize healthcare using molecular and genetic tools for treatment decisions
tailored to an individual patient [159]. The emerging functions of many lncRNAs as
oncogenes in several carcinomas promoting different steps in carcinogenesis, such as
escape to control cellular systems, cell proliferation and migration, aberrant and enhanced
metabolism, impaired and deregulated epigenetic landscape, and metastasis, have pointed
out lncRNAs as potential therapeutic targets in the breaking of tumorigenesis [160,161].
The importance of lncRNAs in each and every one of these processes has led to the design
of different strategies and molecules that allow repressing the function or expression of
the lncRNAs, since in most of the examples described, blocking the lncRNA function
would be translated in repression of the aggressiveness of cancer accompanied by the
reduction of several promoting processes related to carcinogenesis [162]. Thus, lncRNAs
are pinpointed as having the perfect theragnostics to design personalized medicines based
upon the molecular features of each tumor. Currently, against lncRNAs with direct or
indirect oncogenic function, several targeting strategies have been designed by modulation
at the (1) genome-level, repressing the expression levels of lncRNAs or oncogene targets
by a deletion gene, and (2) post-transcriptional RNA-level, affecting the stability of the
lncRNA molecules and triggering degradation.

5.1. Genomic Modulation of lncRNAs by a CRISPR-Based System Edition

The intricate genomic architecture of lncRNAs, together with the limited knowledge
of the biology of their promoters and the underlying transcriptional context, limits the use
of a type II CRISPR-system, a classical and basic CRISPR-based system that was briefly
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widespread in genetic edition assays. Curiously, Goyal et al. (2017) identified that around
62% of the total lncRNAs can be classified as “non-CRISPable” because of the presence of
internal or bidirectional promoters in their sequence [163]. Furthermore, in many cases,
bidirectional promoter lncRNAs are related with the transcription of neighboring genes
and the correct expression of them. Currently, several CRISPR system modifications have
been performed for the knockdown expression of lncRNAs, including the double-excision
CRISPR knockout (DECKO) system and a tandem of the CRISPR interference (CRISPRi)
and “dead”-Cas9 (dCas9) systems [164–166]. The efficiency of both in the downregulated
expression of lncRNAs has been probed for more than 500 lncRNAs involved in cancer
diseases [167–169]

5.2. Post-Transcriptional Modulation of lncRNAs by Inhibitory Molecules

Antisense oligonucleotides (ASOs) are single-strained antisense oligonucleotides con-
taining a central stretch of deoxyribonucleotides flanked on both sides by RNA nucleotides.
The DNA stretch is often phosphorothioated to improve the nuclear stability of the ASO,
and chemical modifications are added into the nucleotides to enhance the efficiency activity
and promote nuclear translocation. At the nucleus, the DNA contained in the ASO se-
quence recognizes a small fragment of a complementary lncRNA DNA-RNA heteroduplex,
which is then cleaved by nuclear endogenous RNAase H1, triggering degradation and
thus a reduction in lncRNA expression [170,171]. ASOs are widely used to repress the
expression of nuclear lncRNAs or cytoplasmic lncRNAs that exert their functions at the
nuclear level [172–175]. Different modifications of a basic sequence of ASOs have provided
additional types of repressive molecules with different specifications, among which it is
important to highlight LNA GapmeRs, antagoNATs and mixmers. First of all, they are very
similar to ASOs, with the exception of adding LNA to the flanking arm to improve the
binding affinity and nuclease resistance [176]. LNA GapmeRs function as efficient regu-
lators to target epigenetic modifications in vivo for therapeutic applications, as has been
demonstrated [177]. AntagoNATs are short, single-stranded oligonucleotides that display a
high homology to specific antisense lncRNA. The complex formed by AntagoNATs and
lncRNA avoids the latter being recognized as their targets. Modarresi et al. (2012) achieved
downregulation of BDNF-AS1 using a specific AntagoNAT with LNA substitutions at
each end and phosphorothioate-modified backbones. BDNF-AS1 repression upregulates
BNDF expression and activates the brain-derived neurotrophic factor, which is a protective
modulator in several gliomas. Unlike LNA GapmeRs and AntagoNATs, the repression
exerted by mixmers is not mediated by RNAaseH1 [178].

Small interfering RNAs (siRNAs) are short double-stranded RNAs that, once inside a
cell, are cleaved into a single-stranded RNA capable of creating a base pair complementary
for an lncRNA of interest. The RNA-lncRNA base pairing is recognized by the RNA-
induced silencing complex (RISC) that follows its Argonautic degradation [179]. Many
types of siRNAs have been probed in cancer treatment to silence lncRNAs trying to attain
better knockdown expression. Although several reports have exemplified the repression of
cancer-related lncRNAs using classical siRNA, it represents a temporal limitation, since the
treatment effect disappears after 24–72 h, depending on the lncRNA cellular expression
and location. For example, Prensner et al. (2013) reduced the cell proliferation and inva-
siveness of several prostate cell lines using different siRNAs against SChLAP1, a known
prostate-related lncRNA that promotes aggressive prostate cancer through the inhibition
of the tumor-suppressive activity of the SWItch/Sucrose Non-Fermentable (SWI/SNF)
complex [180]. A more stable and efficient form of siRNA is provided by short hairpin RNA
(shRNA). This type of siRNA is capable of DNA integration and consists of two comple-
mentary 19–22 bp RNA sequences linked by a short loop of 4–11 nt to the hairpin found in
the miRNA. Following transcription, the shRNA sequence is exported to the cytosol, where
it is recognized by an endogenous enzyme Dicer and processed, generating double-strand
RNA duplexes [181]. shRNAs are widely used for both in vitro and in vivo treatment. For
example, Sun et al. (2016), using a Malat-shRNA vector, were capable of preventing metas-
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tasis and invasion in vitro and in vivo in cervical cancer. Malat-shRNA vector treatment
was translated into the downregulation of Malat1 and, therein, downstream targets such
as β-catenin, Snail, or vimentin, markers of EMT in cancer cells [182]. Curiously, shRNA
vectors not only can contain a sequence of lncRNA that is of interest, but they can also
harbor sequences that recognize other oncogenic factors, generating more than one shRNA
within the cell and resulting in a more efficient reduction of the cancer phenotype. An
example of this was provided by Zong et al. (2019) in the treatment of glioma carcinoma.
In this type of tumor, LMX1A activates NLRC5 expression, stimulating the Wnt/β-catenin
signaling pathway, which promotes malignancy of the glioma cells. LMX1A expression is
repressed by protector miR-499, which recognizes 3′UTR LMX1A and triggers its mRNA
degradation. Furthermore, glioma cells exhibit upregulation of SCAMP1, a sponge lncRNA
that binds to miR-499, avoiding LMX1A repression. The downregulation of SCAMP1 is
translated into lower cell proliferation, migration, and invasion and enhanced apoptosis,
suggesting that sequestering miR-499 via SCAMP1 exerts a critical role in the pathogenesis
of glioma carcinoma [183].

5.3. Small Molecules against lncRNAs as Therapeutic Drugs

Currently, searching for small molecules that can bind to lncRNAs and block their
action is the main goal in the design of effective and pioneering treatment of several cancers.
Exploring the type of approach in order to find out the possible blocking molecules of Malat
oncogene functions in breast cancer, Fardokht et al. (2019) carried out a small molecule
microarray strategy, obtaining two different ligands with the capacity to specifically rec-
ognize the ENE triplex of Malat1, which protects them from degradation, leading to the
accumulation of high levels of Malat1 transcripts in the nucleus. Ligand administration
is translated into the downregulation of Malat1 expression both in the cell lines of breast
cancer and the branching morphogenesis in a mammary tumor model by inducing struc-
tural changes. Curiously, the structure of one ligand is similar the Neat1 ENE triplex too.
However, despite sharing a high degree of homology, it is not capable of interacting with
Neat1 or reducing its expression levels, showing that the design of these repressor ligands
is specific to a single lncRNA [184].

6. Conclusions and Future Perspectives

The study of the human transcriptome has shifted our understanding of gene expres-
sion and regulation. lncRNAs taking part in multiple cellular regulatory networks have
revealed their importance in homeostasis, their implications in cancer, and their revolu-
tionary effects on our perspective of the disease from its origins to the design of novel
therapeutic strategies. Theoretically, the effects of lncRNA networks modulating cellular
metabolism in cancer can impact the regulation of cellular metabolism and energy home-
ostasis. The studies, however, are still in their infancy and far from using lncRNAs in their
actual state in the clinical arena, with one of the greatest challenges being identifying the
sequences and structural elements that allow lncRNAs to carry out their cellular functions.
lncRNAs are promising molecules for applications in therapy, especially for regulatory
networks of cancer cells, but one major requirement is a better understanding of lncRNA
functions and mechanisms in terms of both physiological and pathological conditions. It is
necessary to concentrate our efforts on their functional study, and hence, intensive research
paired with lncRNA characterization will lead to progress in understanding the lncRNA
code. Finally, the structural and functional novelty of lncRNAs offers promising anti-cancer
therapeutics that may avoid the emergence of drug resistance like that displayed with
currently used therapies. Further studies to better understand the molecular mechanisms of
lncRNAs in cancer offer the prospect of the development of more effective cancer therapies.



Int. J. Mol. Sci. 2022, 23, 764 14 of 21

Author Contributions: Conceptualization, C.G.-P. and C.L.-S.; writing—original draft preparation,
C.G.-P. and C.L.-S.; writing—review and editing, C.G.-P.; Á.D.; V.G.-L.; A.A.; D.F.; V.G.-M. and C.L.-S.;
visualization, C.G.-P.; Á.D.; V.G.-L.; A.A.; D.F.; V.G.-M. and C.L.-S.; supervision, D.F.; V.G.-M., C.L.-S.;
project administration, V.G.-M. and C.L.-S.; funding acquisition, C.L.-S. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was financed with research grants IB18123 (to CL-S) and GR21174 (to VG-M,
CTS005) from the Junta de Extremadura, with FEDER as a co-financier.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Gonzalez, D.; et al.

The GENCODE v7 Catalogue of Human Long Non-Coding RNAs: Analysis of Their Structure, Evolution and Expression. Genome
Res. 2012, 22, 1775–1789. [CrossRef] [PubMed]

2. De Hoon, M.; Shin, J.W.; Carninci, P. Paradigm shifts in genomics through the FANTOM projects. Mamm. Genome 2015, 26,
391–402. [CrossRef] [PubMed]

3. Ramilowski, J.A.; Yip, C.W.; Agrawal, S.; Chang, J.-C.; Ciani, Y.; Kulakovskiy, I.V.; Mendez, M.; Ooi, J.L.C.; Ouyang, J.F.; Parkinson,
N.; et al. Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Res. 2020, 30, 1060–1072.
[CrossRef] [PubMed]

4. Guttman, M.; Amit, I.; Garber, M.; French, C.; Lin, M.F.; Feldser, D.; Huarte, M.; Zuk, O.; Carey, B.W.; Cassady, J.P.; et al.
Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009, 458, 223–227.
[CrossRef]

5. Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016, 17, 47–62.
[CrossRef] [PubMed]

6. Long, Y.; Wang, X.; Youmans, D.T.; Cech, T.R. How do lncRNAs regulate transcription? Sci. Adv. 2017, 3, eaao2110. [CrossRef]
7. Engreitz, J.M.; Haines, J.E.; Perez, E.; Munson, G.; Chen, J.; Kane, M.; McDonel, P.E.; Guttman, M.; Lander, E.S. Local regulation of

gene expression by lncRNA promoters, transcription and splicing. Nature 2016, 539, 452–455. [CrossRef] [PubMed]
8. Bridges, M.C.; Daulagala, A.C.; Kourtidis, A. LNCcation: lncRNA localization and function. J. Cell Biol. 2021, 220, e202009045.

[CrossRef]
9. Noh, J.H.; Kim, K.M.; McClusky, W.G.; Abdelmohsen, K.; Gorospe, M. Cytoplasmic functions of long noncoding RNAs. Wiley

Interdiscip. Rev. RNA 2018, 9, e1471. [CrossRef]
10. Guh, C.-Y.; Hsieh, Y.-H.; Chu, H.-P. Functions and properties of nuclear lncRNAs-from systematically mapping the interactomes

of lncRNAs. J. Biomed. Sci. 2020, 27, 1–14. [CrossRef]
11. Chen, Q.W.; Zhu, X.Y.; Li, Y.Y.; Meng, Z.Q. Epigenetic regulation and cancer (Review). Oncol. Rep. 2013, 31, 523–532. [CrossRef]

[PubMed]
12. Ulitsky, I.; Bartel, D.P. lincRNAs: Genomics, Evolution, and Mechanisms. Cell 2013, 154, 26–46. [CrossRef]
13. Yin, Q.-F.; Yang, L.; Zhang, Y.; Xiang, J.-F.; Wu, Y.-W.; Carmichael, G.G.; Chen, L.-L. Long Noncoding RNAs with snoRNA Ends.

Mol. Cell 2012, 48, 219–230. [CrossRef]
14. Ounzain, S.; Burdet, F.; Ibberson, M.; Pedrazzini, T. Discovery and functional characterization of cardiovascular long noncoding

RNAs. J. Mol. Cell. Cardiol. 2015, 89, 17–26. [CrossRef]
15. Ounzain, S.; Pedrazzini, T. The promise of enhancer-associated long noncoding RNAs in cardiac regeneration. Trends Cardiovasc.

Med. 2015, 25, 592–602. [CrossRef]
16. Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.;

et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495, 333–338. [CrossRef] [PubMed]
17. Liu, L.; An, X.; Li, Z.; Song, Y.; Li, L.; Zuo, S.; Liu, N.; Yang, G.; Wang, H.; Cheng, X.; et al. The H19 long noncoding RNA is a

novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc. Res. 2016, 111, 56–65. [CrossRef] [PubMed]
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