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Alzheimer’s disease (AD) is characterized by cognitive impairment, progressive neurodegeneration and for-
mation of amyloid-B (ApB)-containing plaques and neurofibrillary tangles composed of hyperphosphorylated
tau. The neurodegenerative process in AD is initially characterized by synaptic damage accompanied by
neuronal loss. In addition, recent evidence suggests that alterations in adult neurogenesis in the hippo-
campus might play a role. Synaptic loss is one of the strongest correlates to the cognitive impairment in
patients with AD. Several lines of investigation support the notion that the synaptic pathology and defective
neurogenesis in AD are related to progressive accumulation of A oligomers rather than fibrils. Abnormal
accumulation of Ap resulting in the formation of toxic oligomers is the result of an imbalance between the
levels of A production, aggregation and clearance. A3 oligomers might lead to synaptic damage by forming
pore-like structures with channel activity; alterations in glutamate receptors; circuitry hyper-excitability;
mitochondrial dysfunction; lysosomal failure and alterations in signaling pathways related to synaptic plas-
ticity, neuronal cell and neurogenesis. A number of signaling proteins, including fyn kinase; glycogen
synthase kinase-3p (GSK3p) and cyclin-dependent kinase-5 (CDK5), are involved in the neurodegenerative
progression of AD. Therapies for AD might require the development of anti-aggregation compounds, pro-

clearance pathways and blockers of hyperactive signaling pathways.

INTRODUCTION

It is estimated that over 5 million people live with Alzheimer’s
disease (AD) in the USA, and it is predicted that by the year
2025 there will be an average 50% increase in patients with
AD (1). AD is a leading cause of dementia in the aging popu-
lation (2). Patients with AD experience symptoms including
cognitive alterations, memory loss and behavioral changes
(3,4). The dementia in AD is associated with neurodegenera-
tion that is characterized initially by synaptic injury (5—7) fol-
lowed by neuronal loss (8). This is accompanied by
astrogliosis (9), microglial cell proliferation (10,11) and the
presence of neurofibrillary tangles composed of dystrophic
neurites and hyperphosphorylated tau (5,12—16). More
recent studies have uncovered evidence, suggesting that
another component to the neurodegenerative process in AD
might include the possibility of interference with the process
of adult neurogenesis in the hippocampus (17,18; Fig. 1). In
transgenic (tg) animal models of AD, previous studies have

shown significant alterations in the process of adult neurogen-
esis in the hippocampus (19-23).

Of the various neuropathological features of AD, cognitive
impairment in patients with AD is closely associated with
synaptic loss in the neocortex and limbic system (7,24,25).
Several lines of investigation support the notion that the patho-
genesis of AD is related to progressive accumulation of
amyloid-3 (AB) protein, which is derived from the proteolysis
of AR precursor protein [APP (26—28)]. Abnormal accumu-
lation of AP is the result of an imbalance between the levels
of AB production, aggregation and clearance (Fig. 2). AB
clearance is mediated by proteolytic enzymes such as neprily-
sin (29), chaperone molecules such as apoE (30), lysosomal
[e.g. autophagy (31)] and non-lysosomal pathways [e.g. pro-
teasome (32)]. While in familial forms of AD, mutations
result in an increased AP production or aggregation, in spora-
dic AD, failure of the clearance mechanisms might play a
central role (Fig. 2). Progressive accumulation of AP results
in the formation of AR oligomers (33) and fibrils which are
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Figure 1. Mechanisms of neurodegeneration in AD. Defective cellular pro-
cesses can lead to the accumulation of AR dimers, trimers and oligomers,
which in turn contribute to neurogenesis defects and synaptic damage.

the principal components of the plaque. Most evidence sup-
ports the notion that the AP oligomers rather than the fibrils
are responsible for the synapto-toxic effects of AR [(34,35)
Fig. 2].

Sporadic forms of AD generally afflict patients later in life,
with onset of sporadic AD occurring usually between the ages
of 60 and 70 (36). Although patients with sporadic disease
constitute the majority of the affected population, ~10—-15%
of patients have a genetically-linked familial form of AD
(FAD). These patients often have earlier onset of the
disease, and it is associated with mutations in several genes,
including APP, tau and presenilin-1 [PS1 (37-41), Fig. 1].
Animal models of AD have been developed based on these
familial mutations, and a number of models that express
high levels of mutant APP recapitulate several of the neuro-
pathological, neurodegenerative and behavioral characteristics
of the spectrum of disease in human patients (42—44).

Most efforts toward developing tg models have been
focused on overexpression of mutant APP in combination
with mutant PS1. A summary of the FAD mutations of APP
reproduced in tg mouse models is presented in ref. (16). Pre-
viously developed tg animal models have shown that it is poss-
ible to reproduce certain aspects of AD pathology over a
shorter period of time (42—44).

In one such model, lines of tg mice express hAPP751 cDNA
containing the London (Lon, V717I) and Swedish (Swe,
K670N/M671L) mutations under the regulatory control of
the mThy1 gene [mThy1-hAPP751 (16,45)]. While expression
of mutant hAPP under the PDGF-3 promoter results in the
production of diffuse (and some mature) plaques (46,47), tg
expression of mutant hAPP under the mThyl (48) and PrP
(49,50) promoters favors the formation of mature plaques in
the hippocampus and neocortex.

This suggests that the differential patterns of A deposition
might be dependent on the specific neuronal populations
selected by the promoter, levels of expression and topographi-
cal distribution of the transgene and levels of AR, 40 and
AP _4. Extensive investigation of these animal models has
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led to better understanding of the neuropathological alterations
and some of the pathways involved in AD pathogenesis;
however, the molecular mechanisms are still not entirely
clear, and other deficits may play a role in the cognitive altera-
tions in AD.

Loss of synapses (7,51,52) and axonal pathology (53) are prob-
ably key neuropathological features leading to dementia in these
neurodegenerative disorders; however, other factors may con-
tribute. In addition to the alterations in synaptic plasticity and
neuronal integrity in mature neuronal circuitries, the neurodegen-
erative process in AD has recently been shown to be accompanied
by alterations in neurogenesis (17,18,22,23,54—56). This
suggests that the pathogenesis of AD may represent a two-
pronged attack on the brain, contributing to degeneration of
mature neurons, and disruption of the neurogenic niches in the
adult brain [(16) Fig. 1].

Defective neurogenesis and AD

In addition to the alterations in synaptic plasticity and neuronal
integrity in mature neurononal circuitries, the neurodegenera-
tive process in AD have recently been shown to be accompanied
by alterations in neurogenesis (17,18,22,23,54—56). Although
there are some controversies over whether neurogenesis is
increased (54) or decreased (17,18) in the pathogenesis of AD,
more recent studies suggest that apparent increases in markers
of neurogenesis in the brains of AD patients may be related to
glial and vasculature-associated changes (17).

Animal models of APP overexpression present a more
complex picture; however, in support of the more recent
studies in human AD patients, a number of animal models of
FAD display significantly reduced neurogenesis compared
with non-tg controls [(21,23,56,57), for a more comprehensive
review of neurogenic alterations in FAD-linked mouse models,
see ref. (58)]. Taken together, these studies suggest that the
pathogenesis of AD may be characterized by not only a loss
of mature neurons but also by alterations in neural progenitor
cells (NPCs) in neurogenic niches such as the dentate gyrus
(DG) of the hippocampus. However, the molecular mechanisms
involved in defective neurogenesis in AD and in animal models
of FAD remain to be fully elucidated.

Neurogenesis in the mature healthy central nervous system
occurs throughout adult life (59) in the olfactory bulb, the sub-
ventricular zone (SVZ) and the DG of the hippocampus (60).
Neurogenesis is a complex process characterized by several
progressive steps, including NPC proliferation, migration,
differentiation (cell fate commitment) and maturation, includ-
ing growth and synaptogenesis (Fig. 3). Moreover, during any
one of these stages, survival and apoptosis may play a role in
the net outcome of neurogenesis and numbers of surviving
neural progeny in the adult hippocampus. Furthermore, each
of these phases may be regulated by distinct molecular mech-
anisms, and could be susceptible to changes induced by patho-
logical conditions in disease states. For studies of neurogenesis
in both the SVZ and DG, characterization of different markers
is used to distinguish between stages of the neurogenic process
(Fig. 3); however, there is much overlap in expression of the
different markers and phases themselves. Markers of cell div-
ision (Sox2, PCNA, Ki67, or BrdU in BrdU-treated cells or
animals) or NPC-specific markers (nestin) are often used to
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Figure 2. APP metabolism, AR oligomerization and signaling involvement in the mechanisms of synaptic damage in AD. Proteolytic cleavage of APP by B- and
y-secretase results in the generation of the AP, 4, monomer, which under pathological conditions can assemble into potentially toxic oligomers. Enzymes such
as Neprilysin and insulin-degrading enzyme (IDE) can degrade the A monomer, whereas oligomers can be sequestered into fibrillar aggregates in plaques.
Oligomers may be the toxic AR species that contribute to de-regulation of signaling pathways (Fyn, FAK, GSK38, CDKS5) and result in alterations to cytoskeletal
and synaptic proteins and subsequent synaptic and neuronal damage. A accumulation is mediated by factors including rates of peptide production, aggregation

and clearance.

identify cells in the progenitor cell (proliferative) phase of
neurogenesis [(59,61) Fig. 3]. For later stages in the process,
markers such as doublecortin (DCX) or B-III Tubulin are uti-
lized to detect progeny in the early neuroblast phase (newly
born neurons, often migratory) or immature new neurons,
respectively [(62) Fig. 3]. For cells that are committed to a
neuronal fate, eventually these progeny will be immunoposi-
tive with markers such as NeuN, MAP2 or synaptic markers
(Fig. 3). Neurogenesis in the DG is an active process in the
mature brain and plays a key role in synaptic plasticity,
memory and learning (63). Environmental enrichment has
been shown to stimulate neurogenesis and improve the per-
formance in memory tasks in mice (64—66). Mechanisms of
neurogenesis in the fetal brain have been extensively
studied, and pathways such as the wnt (67) and Notch
(68,69) signaling cascades play an important role in this
process. However, less is known about the factors regulating
neurogenesis in the adult nervous system and their role in neu-
rodegenerative disorders.

Neurodegeneration in AD: the role of A} oligomers

During aging and in the progression of AD, synaptic plasticity
and neuronal integrity are disturbed (5-8,55). Although the
precise mechanisms leading to neurodegeneration in AD are
not completely clear, most studies have focused on the role
of APP and its products in AD pathogenesis (26,33,70).
Recent studies suggest that alterations in the processing of
APP, resulting in the accumulation of A3 and APP C-terminal
products, might play a key role in the pathogenesis of AD

[(71,72) Fig. 2]. In this context, previous studies have shown
that AB;_4», a proteolytic product of APP metabolism
(Fig. 2), accumulates in the neuronal endoplasmic reticulum
(73) and extracellularly (12,74,75). Several products are
derived from APP through alternative proteolytic cleavage
pathways, and enormous progress has recently been made in
identifying the enzymes involved [(33,76—79) Fig. 2].

The primary pathogenic event triggering synaptic loss and
selective neuronal cell death in these disorders is the subject
of debate (51,80); however, recent studies suggest that nerve
damage might result from the conversion of normally non-
toxic monomers to toxic oligomers [(34,81-83) Fig. 2],
whereas larger polymers and fibers that often constitute the
plaques might not be as toxic (84,85). Various lines of evi-
dence suggest that the direct abnormal accumulation of AP
oligomers in the nerve terminals might lead to the synaptic
damage and ultimately to neurodegeneration in AD (33). A
number of recent studies have begun to investigate the possi-
bility that A oligomers might interfere with synaptic function
by altering synaptic proteins such as post-synaptic density-95
[PSD95 (86—89)], scaffold proteins such as Shank (90) and
glutamate receptors (91).

In summary, the potential role of neurotoxic AP oligomers
has emerged as a topic of considerable interest in recent years
(34,35,83,92).

Molecular pathways of neurodegeneration in AD

The mechanisms through which of A monomers, oligomers
and other APP metabolites might lead to synaptic damage
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in various phases of development. (B) Aberrant signaling through CDKS5 and other pathways might disrupt the maturation stage of adult neurogenesis in the

pathogenesis of AD.

and neurodegeneration is not completely clear. A number of
possibilities are under investigation, including the formation
of pore-like structures with channel activity (93-96); altera-
tions in glutamate receptors and excitotoxicity (97—101); cir-
cuitry hyper-excitability (102); mitochondrial dysfunction
(103,104); lysosomal failure (105) and alterations in signaling
pathways related to synaptic plasticity, neuronal cell death and
neurogenesis.

Previous studies have shown that a number of signaling pro-
teins, including fyn kinase (106—109), glycogen synthase
kinase-33 [GSK3p (110-113)] and cyclin-dependent
kinase-5 [CDKS5 (114-116)], are involved in the neurodegen-
erative progression of AD (Fig. 1). Other signaling pathways
that have been investigated include members of the MAPK
family such as ERK (117-121) and JNK (122—-124) as well
as other pathways such as p21-activated kinase (125).

Abnormal activation of signaling pathways might lead to
synaptic failure and altered neurogenesis by promoting abnor-
mal Tau phosphorylation and aggregation (126—128), cyto-
skeletal abnormalities (129), activating caspase pro-apototic
pathways (130—132) and activating calcium and calpain
dependent proteolysis [(133,134) Fig. 2].

Contribution of the CDKS pathway to neurodegeneration
in AD, and potential role for this pathway in the
mechanisms of defective neurogenesis

In AD, the neurodegenerative process has been linked with
hyperactivation of CDKS5 and its activators p35 and p25
(115,116,135). Furthermore, levels of CDKS5 are increased in
the brains of AD patients (136). CDKS5 is the predominant
CDK found in the brain, is highly expressed in neurons and
plays an important role in synaptic plasticity and neuronal
development (137). CDKS5 is a Ser-Thr protein kinase with
postmitotic activity that phosphorylates KSP motifs on cyto-
skeletal (MAPI1D, tau, NF, nestin, DCX, CRMP2), synaptic
proteins (PSD95, synapsin, cadherin) and transcription
factors [MEF2 (138—140)]. While in dividing neurons CDKs

are activated by cyclins, in the nervous system CDKS is acti-
vated by forming a complex with p35 or p39 (139,141). The
primary activator of CDKS5 is p35 (142), which under high
calcium conditions is cleaved by calpain into p25 (134).
While CDKS5 activation via complex formation with p35 is
associated with physiological activation of CDKS5, the trun-
cated p25 form hyperactivates CDKS5 and leads to abnormal
phosphorylation of substrates such as tau (143). Through
these effects, CDKS and p35/p25 may play a critical role in
neuroplasticity in the pathogenesis of AD.

Although the hyperactivation of CDKS5/p35/p25 has been
associated with the pathogenesis of neurodegenerative diseases
such as AD (Figs 1 and 3), its physiological function has been
implicated in critical functions such as neuroblast migration
(144—-146) and synaptic plasticity (147,148). Furthermore, the
Cdk5/p35 complex localizes to the leading edge of axonal
growth cones (149) where it regulates neurite outgrowth in
mature cortical neurons (150). More recently, CDKS5 has been
shown to be essential for adult neurogenesis (151,152). In this
context, it is possible that the neurogenesis deficits in AD
might be related to alterations in CDKS activity in NPCs.

Recent evidence in support of this possibility suggests that the
neurodegenerative process in patients with AD might not only
target mature neurons, but also interfere with the process of neu-
rogenesis (22,23,56). Studies demonstrating that in mice
deficient in this kinase and its activator (p35) neuronal develop-
ment and migration is arrested (137,144,153) support the notion
that CDKS plays an important role in neurogenesis in the
developing brain. In the adult nervous system the role of the
p35-CDKS5 signaling pathway in neurogenesis is less well
understood. The mechanisms through which AD-related
molecular changes interfere with neurogenesis in the adult
brain might involve signaling alterations (e.g. CDK5/p35/p25)
analogous to those involved in the neurodegenerative
process (Fig. 3).

In this context, in models of AD, AP has been shown to
impair neurogenesis via calpain activation and p35 deregula-
tion (154); however, the downstream effectors involved and
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the consequences of CDKS5 and p35/p25 manipulation remain
to be revealed. CDKS5 may mediate alterations in neurogenesis
in AD via aberrant phosphorylation of CDKS5 substrates,
which include cytoskeletal (neurofilaments, nestin) (155),
synaptic proteins [e.g. synapsin (156)], among others
(Fig. 3). Previous studies have shown that the AR/CDKS
neurotoxic pathway may involve the destabilization of micro-
tubules (157) since CDK5 can associate with microtubules
indirectly (158) and its substrates include
microtubule-associated proteins (MAPs). Since CDKS plays
a role both in synaptic function and neuronal integrity, then
abnormal activation of this molecule by AR might impair
the functioning of mature neurons and also contribute to
alterations in neurogenesis by impairing cell maturation
(Fig. 3). Elucidating the signaling pathways and downstream
molecular targets involved in the deregulation of neurogenesis
is important to fully understand the mechanisms of neuroplas-
ticity in AD (Fig. 3).

Therapeutical strategies for AD

The focus in past years for AD therapies has been to improve
memory by activating cholinergic neurotransmission (159)
and, more recently, anti-oxidants (160) and blockers of
calcium channels (161) have been utilized. In recent years,
the focus has been on reducing AP or Tau deposition. The
alternative approach is to protect selective neuronal popu-
lations and promote synaptic formation and neurogenesis.

Several possibilities are currently being tested to reduce AP
accumulation, including (i) anti-aggregation molecules that
block oligomers and fibrils, (ii) regulators of APP proteolysis
by blocking the (- or v-secretase pathways or increasing
a-secretase activity, (iii) regulation of APP processing by
modulating cholesterol and lipid metabolism, (iv) reducing
APP production (e.g. siRNA), (v) increasing A3 clearance
with antibodies, ApoE and other chaperones (e.g. HSP70),
(vi) increasing clearance via lysosomal and proteasomal path-
ways, (vii) increasing A3 clearance by increasing degradation
(e.g. NEP and IDE delivery) and (viii) blocking signaling
pathways and receptors activated by neurotoxic A oligomers
(e.g. Fyn kinase, GSK3p and CDKS inhibitors and glutamate
receptor blockers).

Neuroprotective strategies include the use of neurotrophic
factors (e.g. brain-derived neurotrophic factor, nerve growth
factor), neuroprotective peptides [e.g. cerebrolysin (162)],
anti-oxidants [e.g. curcumin, vitamin E (163)] and calcium
channel blockers [e.g. memantine (164)]. Tau is also an impor-
tant target, and in this context recent studies have shown that
in a Tau-deficient background APP transgenic mice are pro-
tected from the toxic effects of AR (165). Tau has been tar-
geted by reducing Tau synthesis or decreasing Tau
phosphorylation with compounds such as lithium (166,167).
In addition to the traditional delivery methods and strategies
with oral small molecules, new approaches are currently
been tested, including gene therapy, vaccination, changes in
lifestyle that enhance neurogenesis, intra-thecal drug delivery
and use of compounds bound to lipids.
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