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Abstract

Pesticides are widely used in agricultural and other settings, resulting in continued human

exposure. Pesticide toxicity has been clearly demonstrated to alter a variety of neurological

functions. Particularly, there is strong evidence suggesting that pesticide exposure predisposes to

neurodegenerative diseases. Epidemiological data has suggested a relationship between pesticide

exposure and brain neurodegeneration. However, an increasing debate has aroused regarding this

issue. Paraquat is a highly toxic quaternary nitrogen herbicide which has been largely studied as a

model for Parkinson’s disease providing valuable insight into the possible mechanisms involved in

the toxic effects of pesticides and their role in the progression of neurodegenerative diseases. In

this work, we review the molecular mechanisms involved in the neurotoxic actions of pesticides,

with a particular emphasis on the mechanisms associated with the induction neuronal cell death by

paraquat as a model for Parkinsonian neurodegeneration.
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1. INTRODUCTION

Much progress has been made in identifying genes involved in familial, or inherited, forms

of different neurodegenerative diseases, including Parkinson’s disease (PD). However, the

majority of disease cases are sporadic (not inherited) and their origin(s) still remain largely

undetermined. The environment is a key contributor to human health and disease.

Epidemiological evidence suggests that environmental factors play a role in the etiology of

✉Rodrigo Franco. Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences. 114 VBS 0905. University of
Nebraska-Lincoln, Lincoln, NE 68583. Tel: 402-472-8547. Fax: 402-472-9690. rfrancocruz2@unl.edu.

CONFLICT OF INTEREST

The author declares that there is no conflict of interest

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our

customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of

the resulting proof before it is published in its final citable form. Please note that during the production process errors may be

discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Chem Biol Interact. Author manuscript; available in PMC 2011 November 5.

Published in final edited form as:

Chem Biol Interact. 2010 November 5; 188(2): 289–300. doi:10.1016/j.cbi.2010.06.003.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



neurodegenerative diseases. For example, epidemiologic studies implicate the exposure to

pesticides, metals, polychlorinated biphenyls, solvents and particulate matter as risk factors

for PD [1–20]. Cells respond and adapt to the environment through multiple mechanisms

that involve communication pathways or signal transduction processes [21].

Neurodegenerative diseases are most commonly associated with selective neuron loss by

apoptosis. Environmental stressors are known to mediate a wide variety of toxic effects

including cell death. However, the molecular mechanisms involved in the positive effects of

environmental exposures in the progression of neurodegenerative diseases are still unknown.

2. PESTICIDES AND PARKINSONIAN NEURODEGENERATION

Pesticides are defined as any substance or mixture of substances intended for preventing,

destroying, repelling or mitigating pests. Pesticides consist of multiple classes and

subclasses and exhibit a vast array of chemically diverse structures. They are commonly

referred to by the organisms designed to control (e.g., herbicides, insecticides, or fungicides)

or by their chemical class (organophosphate, triazine) [22–24]. However, pesticides are not

always selective for their intended target species, and adverse health effects can occur in

non-target species including humans. Pesticide toxicity has been clearly demonstrated to

alter a variety of physiological functions. In addition, evidence suggests that pesticide

exposure increases the risk of cancer and neurodegenerative diseases. Recent evidence also

demonstrates the ability of pesticides to act as endocrine disruptors, contributing to various

adverse effects associated with reproductive and developmental toxicity [4,25–30].

Parkinson’s disease (PD) is characterized by abnormalities of motor control such as resting

tremors, bradykinesia (slowness of voluntary movement), rigidity, and a loss of postural

reflexes. The majority of cases of PD are not inherited and thus it has been proposed that

environmental factors are associated with this disease. A number of epidemiologic studies

have found an association between PD and exposure to pesticides. Furthermore, increased

levels of pesticides have been found in the brains of PD cases versus controls. Contradictory

studies have also been published demonstrating no association between PD and pesticide

exposure. [2,3,5,8,14,31,32]. It is clear now that PD is a multi-factorial disease with a

complex etiology including genetic risk factors, environmental exposure and aging [33–35].

3. PARAQUAT AND PARKINSONS’S DISEASE

Paraquat (1,1′-dimethyl-4,4′-bipyridinium dichloride) is a highly toxic quarternary nitrogen

herbicide. Because of its low cost, rapid action, and environmental characteristics, paraquat

is a widely used herbicide around the world. Many cases of acute paraquat poisoning and

death have been reported over the past few decades. Paraquat is not readily absorbed from

the gastrointestinal tract, and is even more slowly absorbed across the skin. Upon

absorption, independent from the route of exposure, paraquat accumulates in the lung and

the kidney where it exerts its major acute toxicological effects. It has been suggested that

paraquat metabolites might be more readily absorbed than the parent compound, but their

identities and toxicities are unknown. However, paraquat is very poorly metabolized and is

excreted almost unchanged in the urine, although there is some controversy as to the

possibility and extent of its metabolism by the gut microflora. Metabolism of paraquat has

been reported to occur via demethylation (monomethyl dipyridone ion) or oxidation

(paraquat pyridone ion and paraquat dipyridone ion) [36,37].

On the other hand, chronic paraquat exposure has been suggested as an etiological factor for

PD. Animal studies have demonstrated that paraquat can cause neurodegeneration of

dopaminergic neurons [38,39]. However, there is still a lot of controversy regarding whether

the neurotoxicological actions of paraquat represent an accurate experimental model for

studying the pathogenesis of PD [40–42]. Nevertheless, the study of paraquat’s neurotoxic
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properties has provided valuable information regarding the potential mechanisms involved

in the progression of neurodegeneration associated with environmental toxicity. It is clear

now that because PD is not found around the world, it is impossible for a single toxin such

as paraquat, to be the sole environmental risk factor for PD. Thus, it is thought that a

complex array of environmental exposures and gene interactions might exert synergistic

effects toward the predisposition to sporadic PD. Paraquat is thought to be transported

across the blood-brain barrier by the action of a neutral amino acid transporter carrier such

as the system L carrier (LAT-1), which normally carries amino acids L-valine and L-

phenylalanine, whose administration has been reported to prevent paraquat-induced

neurotoxicity [39,43]. However, a recent study found that paraquat is excluded from the

rhesus macaque brain by the blood-brain barrier, arguing against the causative role of

paraquat exposure in idiopathic Parkinson’s disease [44]. Paraquat has been largely

demonstrated to induce cell death in a variety of cell types and tissues [45,46]. We will

focus next on the possible mechanisms involved in the regulation of cell death signaling in

neural cells due to their relevance to PD.

4. MOLECULAR MECHANISMS OF PARAQUAT INDUCED NEUROTOXICITY

4.1 Environmental toxicity, oxidative stress and redox signaling

Environmental toxicants are known to induce oxidative stress by: 1) the induction of

reactive oxygen species (ROS) as byproducts of detoxifying metabolism, 2) alterations in

the mitochondrial metabolism or 3) by their own redox (reduction oxidation) cycling

properties per se. Thus, redox signaling has been proposed as the central mechanism for the

toxicological effects of environmental toxicants including pesticides. Toxicant-induced

oxidative stress is well known to mediate a wide variety of toxic effects such as DNA

damage or genotoxicity. However, it is known that many of the toxic effects induced by

environmental toxicants are mediated by the regulation/induction of cell death, whose

deregulation has been associated with the etiology of several environmental diseases [47–

52]. Oxidative stress has been widely shown to regulate apoptosis [47,50,53]. However, the

exact mechanisms are still unclear.

Oxidative stress is caused by an imbalance between the production of reactive oxygen and

the ability to: 1) detoxify the reactive intermediates produced, or 2) repair the resulting

damage. Ultimately, oxidative stress conveys the biomolecular alteration in cellular function

caused by the reaction of reactive species with cellular constituents. Reactive oxygen species

(ROS) include oxygen (O2)-derived free radicals (defined as molecules with one or more

unpaired electrons in an outermost valence shell) such as superoxide anion (•O2
−) and the

hydroxyl radical (•OH), as well as nonradical derivatives of O2 such as hydrogen peroxide

(H2O2). ROS production is the result of an aerobic environment. A significant amount of O2

consumed by mitochondria is converted to •O2
−, although it can be produced through

various enzymatic oxidation reactions catalyzed by cytochrome P450, other oxidoreductases

and also by NADPH (nicotinamide adenine dinucleotide phosphate)-oxidase. •O2
− reacts at

diffusion-controlled rates with nitric oxide (•NO) produced by •NO-synthases (NOS)

leading to the formation of a wide diversity of oxidizing and nitrosating/nitrating species

such as peroxynitrite (ONOO−). •O2
− is also dismutated nonenzymatically or enzymatically

with the aid of superoxide dismutases (SODs) to hydrogen peroxide (H2O2). H2O2 can be

also utilized by myeloperoxidases (MPO) to produce hypochlorous acid and other noxious

chlorine derived oxidants. Furthermore, H2O2 can be reduced to •OH− through Fenton type

reactions. Thus it is clear that the formation of a reactive species can ultimately lead to an

amplification chain generating other more toxic reactive species.

Cells have intrinsic antioxidant mechanisms to detoxify ROS generated under both

physiological and pathological conditions. Reduced glutathione (GSH) is the most important
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antioxidant molecule in the cell, and due to its high cytosolic concentration, it can directly

scavenge ROS such as •O2
−, •OH and •NO. H2O2 is reduced to H2O by GSH peroxidases

(GPX) and catalase. The GSH reductase (GR) and thioredoxin (Trx)/thioredoxin reductase

systems regenerate cellular GSH or reduced Trx, respectively, at the expense of NADPH.

Other antioxidant molecules (such as ascorbate or vitamin E) and enzymes (such as

peroxiredoxins) are important defenses against oxidative stress. Oxidative stress arises if

detoxification systems and antioxidants are compromised or if ROS production is excessive,

resulting in DNA, protein, and lipid oxidation [47,50,54].

The regulatory role of oxidative stress in signal transduction in physiological settings must

exhibit substrate specificity. Until recently the study of the biomolecular alterations caused

by the reaction of reactive species has been undertaken. Oxidative damage to DNA leads to

the formation of lesions such as 8-oxo-deoxyguanosine, 8-oxo-deoxyadenosine, and

deoxythymidine glycol which are selectively excised from DNA by DNA glycosylases.

Lipid peroxidation refers to the oxidative degradation of lipids. Lipid peroxidation is

initiated through a radical-mediated abstraction of a hydrogen atom from polyunsaturated

fatty acids to make water and a fatty acid radical. Lipid peroxyl radicals (LOO•) are formed

by the reaction of free fatty acid radicals with oxygen that subsequently reacts with another

free fatty acid producing a different fatty acid radical and a lipid peroxide propagating the

damage. Lipid peroxidation generates a number of lipid hydroperoxide products such as

malondialdehyde, 4-hydroperoxy-2-nonenal, 4-oxo-2-nonenal and 4-hydroxy-2-nonenal

(4HNE). These aldehyde products react with individual nucleotides and nucleophilic amino

acids, thus inducing several signaling effects [50]. Oxidative protein modifications have

been shown to regulate the activity of a wide variety of proteins such as kinases,

phosphatases, proteases (caspases), molecular adaptors and chaperones, and transcription

factors. Specific amino acid modifications in cysteine, methionine, tryptophan, and tyrosine

residues are prone to oxidative modification. Oxidative protein modifications in general can

be classified as reversible and irreversible modifications. Highly reactive oxidant species

such as hypochlorous acid, ONOO−, and •OH are thought to oxidize biomolecules leading

to the irreversible formation of, for example, 3-nitrotyrosine and protein carbonyls.

Physiological oxidants such as •NO, •O2
− and H2O2, have been implicated in reversible

protein modifications at the cysteine level (nitrosylation, hydroxylation, glutathionylation,

disulfide bond formation) that underlie homeostatic control and diverse biological responses.

A wide variety of enzymes regulate these post-translational modifications including

sulfiredoxins, thioredoxins, peroxiredoxins, glutaredoxins and methionine sulfoxide

reductases [55,56].

4.2 Paraquat-induced oxidative stress and its association with Parkinson’s disease

Parkinson’s disease (PD) is characterized by a selective degeneration of dopaminergic

neurons in the substantia nigra (SN) pars compacta attributed to toxic accumulation and

aggregation of proteins, mitochondrial dysfunction and oxidative stress. The occurrence of

oxidative stress has been observed in the SN of PD brains as evidenced by increased lipid,

protein, and DNA oxidation, increased total iron content, and significant decreases in GSH

and GSH/glutathione disulfide (GSSG) ratio [57]. The main pathway of cell toxicity in PD

involves misfolding and aggregation of α-synuclein [58]. Failure of α-synuclein clearance

by the ubiquitin–proteasome system (UPS) leads to its accumulation over time and to the

formation of fibrillar aggregates and Lewy bodies. α-Synuclein protofibrils can directly lead

to oxidative stress that can further impair the UPS by reducing ATP levels, inhibiting the

proteasome, and by the oxidation of parkin. Exposure to paraquat has been shown to induce

proteasome dysfunction and α-synuclein aggregation [59–63]. Furthermore, paraquat has

been shown to potentiate α-synuclein-induced toxicity [64,65]. It has been hypothesized that

mutated α-synuclein induces a reduction in vesicle number and the accumulation of
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cytoplasmic dopamine in association with enhanced ROS generation and initiation of the

apoptotic cascade [66]. In the cytosol, dopamine is metabolized by monoamine oxidase

which generates H2O2, or is auto-oxidized generating •O2
−, H2O2, and dopamine-quinone

species [67]. Autosomal recessive PD-associated genes, parkin, DJ-1, and PINK-1 (PTEN

induced putative kinase 1) are involved in mitochondrial function, which suggests that

mitochondrial dysfunction and the generation of ROS is a central event in the pathogenesis

of PD. Interestingly, paraquat-induced toxicity and proteasome dysfunction is potentiated in

DJ-1 deficiency [68–71]. Paraquat has also been demonstrated to induce parkin aggregation

[72]. Mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson’s disease.

LRRK2 overexpression has also been shown to protect against paraquat-induced toxicity

[73]. These results support the hypothesis that environmental and genetic factors act

cooperatively in PD neurodegeneration.

Pesticide-induced redox signaling has been demonstrated to mediate many of the

toxicological effects of these chemicals. Exposure to a wide variety of pesticides induces

oxidative stress reflected as the accumulation of ROS, lipid peroxidation and DNA damage

[74]. In general, pesticides have been shown to alter cellular redox balance by different

mechanisms including: 1) their enzymatic conversion to secondary reactive products and/or

ROS; 2) depletion of antioxidant defenses; and 3) impairment of antioxidant enzyme

function [49,75]. Initially, structural similarity between paraquat and the toxic metabolite

MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), raised the possibility that both

toxicants could have similar mechanisms for the induction of neurotoxicity. MPTP crosses

the blood-brain barrier and is biotransformed by glial monoamine oxidases and two-electron

oxidation to MPP+ (1-methyl-4-phenylpyridinium). MPP+ is uptaken by neurons through

dopamine transporters (DAT) and induces neuronal cell death by inhibition of mitochondrial

complex I and induction of oxidative stress. Some studies have reported that inhibition of

DAT protects against paraquat-induced toxicity suggesting a role for DAT in the cellular

uptake of paraquat [76–79]. In fact, DAT genetic variability and pesticide exposure have

been shown to interact, increasing PD risk [80]. However, recent studies report that paraquat

is neither a substrate nor inhibitor of DAT [81].

Parkinson’s disease has been associated with impaired oxidative phosphorylation and

decreased complex I activity, which induces reactive oxygen species (ROS) formation and

oxidative stress. The role of mitochondria in paraquat toxicity is still unclear. In contrast to

MPP+, paraquat has been reported to be a weak inhibitor of complex I of the electron

transport chain (ETC) [81,82]. Furthermore, paraquat induced toxicity has been reported to

be independent from complex I inhibition [83]. Recently, paraquat was reported to act at the

level of complex III to generate ROS [84,85].

In other tissues including the lung, paraquat toxicity have been shown to be mediated by its

cytosolic reduction by a NADPH-cytochrome P450 reductase to the mono-cation radical

PQ+ (Figure 1). This radical reacts spontaneously with O2, leading to the generation of •O2
−,

regenerating the original paraquat dication, which can undergo the reduction-oxidation cycle

again. Oxidation of NADPH by paraquat impairs GSSG recycling to GSH and thus the

activity of several antioxidant systems. Although depletion of NADPH can stimulate the

pentose phosphate and fatty acid synthesis pathways, restoration of NADPH cellular

reducing equivalents promotes a continuous redox reaction involving paraquat and O2 and

the formation of •O2
− [86]. In the brain, specific cell types have been reported to express

cytochrome P450 enzymes. The presence of cytochrome P450 enzymes in the brain should

also be important in inducing bioactivation and cellular damage of pesticides. Many results

support the possibility of a local metabolism of pesticides and other pollutants in the brain

by cytochrome P450 enzymes into neurotoxic compounds, suggesting that brain metabolism

could be a factor modulating the individual susceptibility to Parkinson’s disease during
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pesticide exposure. Although cytochrome P450 enzymes content in the brain is lower than in

other tissues, local metabolism of pesticides by isoforms highly expressed in the brain might

be an underestimated factor in pesticide-induced neurotoxicity [87,88]. Other enzymes

capable of initiating the redox cycling process of paraquat have been identified in

microsomal, plasma membrane, and cytosolic components which include nitric-oxide

synthase, NADPH-oxidase and thioredoxin reductase [89–91]. Uptake of paraquat into the

mitochondria through a carrier-mediated membrane potential-dependent transport across the

mitochondrial inner membrane and its reduction by complex I, have been reported to

mediate its redox cycling and toxicity at the mitochondria [92]. More recently, paraquat has

been shown to mediate oxidative stress by induction/activation of NADPH-oxidase [93–96].

Xantine oxidase system has also been reported to mediate the generation of ROS in neurons

exposed to paraquat [97].

Although paraquat-induced ROS might arise from a number of cellular sources, it is clear

that oxidative stress is a central player in the regulation of paraquat-induced neuronal cell

death (Figure 2). The ability of paraquat to cause oxidative damage through a free radical

mechanism may explain the selective vulnerability of dopaminergic neurons which are

highly susceptible to oxidative damage due to the pro-oxidant properties of dopamine. In

fact, a recent report suggests that paraquat toxicity is associated with an increase in the

oxidative pathway of dopamine metabolism [98]. As mentioned above, redox cycling or

mitochondrial function impairment by paraquat induces ROS formation, particularly •O2
−.

•O2
− can promote the formation of other ROS, such as H2O2 and •OH [99]. SODs have been

shown to protect against paraquat-induced neurotoxicity [100–102]. Accordingly, copper

deficiency, which impairs Cu/Zn-SOD, was shown to potentiate paraquat induced cell death

[103]. Paraquat has also been shown to induce GSH depletion in neurons [98,104].

Accordingly, GSH/antioxidant supplementation has been clearly shown to prevent paraquat-

induced toxicity in animal models [86,97,105,106]. Overexpression of the antioxidant

enzymes SOD and glutathione peroxidase has been shown to protect against paraquat/maneb

neurotoxicity [107]. Finally, NF-E2-related factor-2 (Nrf2)-dependent regulation of

antioxidant responsive element (ARE)-mediated gene expression has been shown to protect

against paraquat by induction of heme-oxygenase 1, which is the rate-limiting enzyme

involved in the oxidative degradation of free heme, preventing the heme-catalyzed

production of •OH from H2O2 [108].

4.3 Paraquat-induced cell death

It is well known that environmental toxicants exert their toxicity, at least in part, by

triggering cell death. Cell death is classified by biochemical and morphological criteria.

According to the recommended classification of cell death [109], three distinct types of cell

death pathways can be defined according to morphological criteria which are necrosis,

apoptosis and autophagy, although there are numerous examples in which cell death displays

mixed features. Necrotic cell death is characterized by a gain in cell volume, swelling of

organelles, plasma membrane rupture and subsequent loss of intracellular contents. It is now

recognized that execution of necrotic cell death may be regulated by a series of signal

transduction pathways and catabolic processes [109]. Paraquat has been reported to induce

necrosis when injected into different areas of the rat brain. However, this effect might be

observed just at high doses [110].

Autophagy is a major catabolic pathway by which eukaryotic cells degrade and recycle

macromolecules and organelles. It plays an essential role in differentiation and development,

as well as in cellular response to stress. Autophagy can be activated during amino acid

deprivation and has been associated with neurodegenerative diseases. Autophagy is initiated

by the surrounding of cytoplasmic constituents by the crescent-shaped isolation membrane/

phagophore, which forms a closed double-membrane structure, called autophagosome. The
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autophagosome subsequently fuses with a lysosome to become an autolysosome, and its

content is degraded by acidic lysosomal hydrolases. Autophagic cell death is

morphologically defined by massive autophagic vacuolization of the cytoplasm in the

absence of chromatin condensation [109]. Neurons from patients with PD display

characteristics of autophagy. Recent studies have demonstrated that low concentrations of

paraquat induce autophagy which is followed by apoptosis. In this work, autophagy was

shown to be modulated by DJ-1. Surprisingly, because inhibition of autophagy potentiated

apoptosis induced by paraquat, it was proposed that autophagy might be acting as a

protective mechanism against cell death progression [111–113].

Neurodegenerative diseases are most commonly associated with selective neuron loss by

apoptosis. Paraquat-induced neuronal cell death has been demonstrated to involve primarily

the activation of apoptosis. Apoptosis, or programmed cell death, is an evolutionary

conserved process involved in a variety of biological processes. Under physiological

conditions, apoptosis is important not only for the constant turnover of cells in all tissues but

also during the normal development and senescence of the organism. Moreover, apoptosis

deregulation has been widely observed to occur as either a cause or a consequence of

distinct pathologies [114]. Apoptosis is a highly organized process characterized by the

progressive activation of precise signaling pathways leading to specific biochemical and

morphological alterations. Initial stages of apoptosis are characterized by cell shrinkage, loss

of membrane lipid asymmetry and chromatin condensation, while later stages are associated

with the activation of execution caspases (cysteine-dependent aspartate-directed proteases)

and endonuclease, apoptotic body formation and cell fragmentation [115,116]. Both

extrinsic and intrinsic pathways have been described for the activation of apoptosis.

Induction of apoptosis via the extrinsic pathway is triggered by the activation of death

receptors leading to the formation of the death-inducing signaling complex (DISC) by the

recruitment of the Fas-associated death domain (FADD) and initiator caspase 8. Death

receptor-induced apoptosis is amplified by cleavage of the Bcl-2 (B-cell lymphoma 2)-

family protein Bid by caspase 8, which triggers the mitochondrial pathway of apoptosis

[117,118]. Paraquat induced cytotoxicity has been recently suggested to be mediated via the

activation of the Fas extrinsic pathway of apoptosis [119], but its relevance to the

progression of PD remains unclear.

Apoptosis induced by paraquat has been demonstrated to involve mainly the intrinsic

mitochondrial pathway (Figure 2). The intrinsic pathway of apoptosis, also referred to as the

mitochondrial pathway, is activated by a wide variety of cytotoxic stimuli or environmental

stressors. Although the mechanisms by which these stimuli trigger apoptosis differ between

them, they convey the release of proapoptotic proteins from the mitochondria including

cytochrome C. However, the exact mechanisms mediating cytochrome C release are still

controversial [120,121]. Distinct mitochondrial components and mitochondrial released

proteins such as AIF (apoptosis inducing factor), EndoG (Endonuclease G), ANT (adenine

nucleotide translocase), cyclophilin D, Bit1, p53AIP (p53-regulated Apoptosis Inducing

Protein 1), GRIM-19 (gene associated with retinoic-interferon-induced mortality 19), DAP3

(death associated protein 3), Nur77/TR3/NGFB-1 (Nerve Growth factor IB), HtrA2 (HtrA

serine peptidase 2)/Omi and Smac (second mitochondria-derived activator of caspases)/

Diablo have been proposed to participate in the mitochondrial pathway to apoptosis [122].

The intrinsic pathway is also regulated by the Bcl-2 family of proteins. The BH3 (Bcl-2

homology domain 3)-only proteins Bad (Bcl-2-associated death promoter), Bid (Bcl-2

interacting domain), Bim, Bik (Bcl-2-interacting killer), NOXA, and PUMA (p53

upregulated modulator of apoptosis) regulate the anti-apoptotic Bcl-2 proteins Bcl-2 and

Bcl-xl (B-cell lymphoma-extra large) to promote apoptosis. Bcl-2 and Bcl-xl inhibit Bax

(Bcl-2–associated X protein) and Bak (Bcl-2 homologous antagonist/killer). BH3-only

proteins de-repress Bax and Bak by direct binding and inhibition of Bcl-2 and other anti-
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apoptotic family members. Bax and Bak are known to mediate the release of cytochrome C.

Released cytochrome C leads to the recruitment of APAF1 (apoptotic protease activating

factor 1) into the apoptosome and activation of caspase-9 [121,123,124]. Once activated,

initiator caspases converge in the cleavage/activation of execution caspases 3, 6 and 7 which

further cleave different cellular substrate leading to the organized demise of the cell. A wide

variety of enzymes such as protein kinases, phosphatases, calpains, transcription factors and

several other adaptor or scaffolding proteins have been described to participate in several

pathways of apoptosis in distinct ways [123,125–128].

In PD, cell death by apoptosis has been proposed to result from mitochondrial dysfunction,

leading to an increase in oxidative stress and a decline in ATP production. Paraquat induces

cytochrome C release [59,97] and caspase 9 activation, which are preceded by the induction/

activation of pro-apoptotic Bax and Bak [59,129]. Activation of Bak has been proposed to

be associated to the induction of Bid, BNip3 (Bcl-2/adenovirus E1B 19 kDa protein-

interacting protein 3) and NOXA [59]. Interestingly, exposure to maneb and paraquat

enhances Bax-dependent cell death through an increased induction of Bax-activators Bik

and Bim [107,130]. Induction of pro-apoptotic Bax and apoptosis in response to paraquat

were also reported to be dependent on p53 [103,129]. Finally, absence of Bcl-2 enhances

paraquat-induced oxidative stress by regulation of GSH-dependent antioxidant enzymes

[131]. Paraquat neurotoxicity has also been reported to require the activation of stress

activated protein kinases (SAPK) [132–138].

Other intrinsic pathways of apoptosis, such as endoplasmic reticulum (ER) stress and DNA

damage, have been described, which can be dependent or independent from the

mitochondrial pathway. The ER is highly sensitive to stresses that perturb cellular energy

levels, the redox state and/or Ca2+ concentration. Such stresses result in the accumulation

and aggregation of unfolded proteins which are toxic to cells. ER stress leads to the

activation of the SAPK c-Jun N-terminal kinases (JNK) and induction of C/EBP

homologous protein (CHOP), which by impairment of the anti-apoptotic function of Bcl-2,

lead to the activation of Bim, Bax and Bak, transmission of the signal from the ER to the

mitochondria and execution of death by activation of caspases [139,140]. DNA damage is

also known to trigger apoptosis. Blockage of DNA replication associated with DNA damage

leads to the activation of p53 which induces the transcriptional activation of pro-apoptotic

factors. However, non-transcriptional regulation of apoptosis by p53 and p53-independent

pathways has also been described [141,142]. Although the mitochondrial pathway of

apoptosis has been largely linked to paraquat-induced cell death, other signaling pathways

have also been implicated in paraquat toxicity. Recently, paraquat has been shown to induce

DNA damage and ER stress. ER stress was associated with the activation of the inositol-

requiring enzyme 1 (IRE1), apoptosis signal regulating kinase 1 (ASK1), and JNK

[137,138].

The molecular mechanisms linking paraquat-induced oxidative stress and apoptosis are still

largely elusive. Recently, paraquat-induced oxidation of Trx has been reported as a possible

mechanism for the activation of the ASK1/JNK signaling pathways [136–138]. Accordingly,

Nrf2 dependent regulation of trx levels determines the sensitivity of paraquat toxicity by

activation of the ASK1/JNK-p38 signaling [138]. Paraquat–induced tyrosine nitration and

lipid peroxidation (4HNE) has been recently demonstrated [104,143]. However, the

molecular targets for these signaling events remain to be elucidated. It was recently

demonstrated that oxidative stress induced by paraquat generates protein aggregation of the

plasma membrane Ca2+-ATPase (PMCA) and its degradation by calpain [144].

Most of the studies regarding the molecular mechanisms of paraquat-induced apoptosis have

been directed towards neuronal cell types. However, it is obvious that the complexity of
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brain tissue organization is given by the interaction of different neurons with glial cell types.

Compared to neurons, astrocytes have been demonstrated to be more resistant to paraquat-

induced oxidative stress by the responsive induction of a variety of antioxidant systems

including catalase and SODs [104,145,146]. Initial studies have demonstrated that

microglial cells react to pro-oxidant conditions suggesting that they can contribute to

environmental stress-induced neurotoxicity [119]. Paraquat induces microglial activation

which seems to precede PD neurodegeneration [93,147,148]. Low paraquat concentrations

have been recently demonstrated to be toxic to neurons only in the presence of microglial

cells. In this study it was observed that in neuron-microglia cultures exposed to paraquat,

microglia was a source of paraquat-derived oxidative stress [95]. Interestingly, NADPH

oxidase from glial cells has been proposed to mediate the generation of ROS [93,95,149],

which seems to be regulated by the activation of protein kinase C (PKC) and ERK

(extracellular signal-regulated kinase) signaling pathways [96,149].

The extensive geographical overlap of paraquat use with other environmental agents has

suggested the possibility of synergistic effects of other environmental toxicants with

paraquat on the progression of PD [150–152]. Epidemiological studies have recently

reported that exposure to paraquat/maneb increases the risk of developing PD [153]. Recent

studies have undertaken the task to study this hypothesis. For example, simultaneous

exposure to paraquat and maneb (manganese ethylene-bis-dithiocarbamate) induces

additive/synergistic toxic effects in nigrostriatal dopamine systems in vivo [154,155].

Paraquat/maneb-induced neuronal cell death was associated with the induction/activation of

Bax but not Bak [130]. Furthermore, developmental exposure to paraquat/maneb has been

reported to produce permanent and progressive damage to the nigrostriatal dopaminergic

system enhancing adult susceptibility to these pesticides in the induction of

neurodegeneration [156–158]. α-synuclein pathology has also been shown to be potentiated

by paraquat/maneb treatment [65]. It has been demonstrated that iron increases paraquat/

NADPH-cytochrome P450 reductase-dependent formation of •OH [159]. Interestingly, a

recent study has also demonstrated that the combined environmental exposure to paraquat

and iron accelerates the degeneration of nigrostriatal dopaminergic neurons [14]. These data

support the notion that environmental exposures may act synergistically to produce

neurodegeneration.

4.4 Neurotoxicity-induced by other pesticides

4.4.1 Diquat—Diquat (1,1′-ethylene-2,2′-dipyridylium dibromide) is used agriculturally

for the same purposes as paraquat. Exposure to diquat has also been associated to PD [160].

Although structurally similar to paraquat, diquat toxicity has been demonstrated to be

mediated by a somewhat different mechanism than that of paraquat. The ability of diquat to

induce oxidative stress and ROS has been also suggested to be associated to its cycling

properties [91,161–163]. Like paraquat, diquat can be reduced to form a free radical and

then reoxidized in the presence of oxygen, with the concomitant production of •O2
−. Diquat

has also been proposed to induce ROS by inhibition of complex I and III of the

mitochondrial ETC [85]. Furthermore, diquat has also been shown to induce ROS formation

from glial cells [161].

4.4.2 Maneb—Exposure to the fungicide maneb has been also associated with the

induction of oxidative stress and PD [164–167]. Maneb has been shown to induce oxidative

stress, protein carbonylation and α-synuclein aggregation due to proteasomal dysfunction,

which were shown to be modulated by intracellular GSH [168,169]. Both extracellular

(microglial) and intracellular oxidases have been suggested to mediate ROS formation via

redox cycling of maneb [170].
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4.4.3 Rotenone—Rotenone (Rotenoid) is a broad-spectrum agricultural insecticide.

Rotenone-induced apoptosis is considered to contribute to the etiology of Parkinson’s

disease PD [171,172]. It has been largely thought that rotenone induces ROS by inhibition

the mitochondrial respiratory chain complex I [173]. Rotenone has been shown to inhibit the

transfer of electrons from iron-sulfur centers in complex I to ubiquinone, which prevents

NADH from being converted into ATP [171]. However, recent results have demonstrated

that the pro-apoptotic effects of rotenone seem to be independent from complex I inhibition

[83]. Rotenone enhances the amount of mitochondrial ROS production, which mediate

cytochrome C release and caspase-dependent apoptotic cell death [174–180]. Accordingly,

Bcl-2 overexpression protects against apoptosis induced by rotenone [181]. Antioxidant

supplementation prevents while Nrf-2 deficiency augments rotenone-induced cell death

[180,182]. Rotenone has also been shown to induce caspase-independent cell death

[183,184]. Rotenone induces accumulation of α-synuclein [185,186] and recent reports

demonstrated that overexpression of α-synuclein, deletion of parkin, PINK1, and knock-

down of DJ-1 enhance rotenone–induced toxicity [187–189]. In contrast, overexpression of

LRKK2 protects against rotenone-induced mitochondrial dysfunction [73]. Rotenone also

induces parkin aggregation [72] and oxidation of mitochondrial Trx [136]. Rotenone has

been demonstrated to induce activation of GSK-3 (glycogen synthase kinase 3), JNK and

p38 kinases, whose activity seems to be required for the progression of apoptosis [190–192].

Rotenone has also been reported to trigger ER stress and the activation of kinases IRE1 and

PERK (PKR-like ER kinase) [193]. Recent reports demonstrated that ROS induced by

rotenone are involved in dopamine redistribution to the cytosol, whose pro-oxidant

conditions might potentiate rotenone-induced apoptosis of dopaminergic cells

[182,194,195]. Similar to paraquat, rotenone activates microglial cells which might act as an

important source for ROS [196]. Although rotenone has represented a useful experimental

model of neurotoxicity, it lacks significant specificity for the central nervous system.

Furthermore, there is no evidence of PD in association with rotenone exposure.

4.4.4 Other pesticides—Organochlorine insecticides (also called chlorinated

hydrocarbons) have both neurotoxic and carcinogenic effects and have been banned from

use in the United Sates. Initial studies demonstrated the presence of the organochlorine

pesticides dieldrin in post-mortem brains of PD cases [197]. Dieldrin has been shown to

induce apoptosis via GSH depletion and oxidative stress, triggering the intrinsic

mitochondrial apoptotic pathway [198,199]. Proteasomal inhibition was also recently shown

to precede cell death after dieldrin treatment, which was potentiated by α-synuclein [200].

Dichlorodiphenyltrichloroethane (DDT) derivatives have been shown to induce neural cell

death by apoptosis through the activation of MAPKs (mitogen-activated protein kinases)

[201]. The organotins di-n-butyltin dichloride (DBTC) and tri-n-butyltin chloride (TBTC)

have been demonstrated to induce ROS formation, SAPK activation and Ca2+ overload

which precede cytochrome C release and apoptosis [202].

5. CONCLUSIONS AND PERSPECTIVES

Pesticide toxicity has been clearly demonstrated to alter neurological functions.

Epidemiological studies have suggested a relationship between pesticide exposure and brain

neurodegeneration. Particularly, paraquat exposure has been largely associated with

Parkinson’s disease (PD). However, there are still a number of controversies regarding the

relevance of these observations and the validity of paraquat neurotoxicity as a model for

sporadic PD. Nevertheless, the study of paraquat-induced neurotoxicity has provided

valuable insight into the mechanisms regulating neuronal cell death by environmental

toxicants. To date, the molecular mechanisms involved in neuronal cell death by paraquat

are still unclear. Research so far clearly demonstrates a role for oxidative stress and ROS in

paraquat-induced neurotoxicity, which seems to be mediated by both mitochondrial and ER
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stress pathways. Several mechanisms including a) redox cycling, b) mitochondrial ETC

inhibition, and c) activation of NADPH oxidases have been proposed as potential sources

for paraquat-induced ROS formation, particularly for the accumulation of •O2
−. However,

the molecular targets being regulated by oxidative stress and ROS in response to paraquat

remain elusive. Recent reports suggest that oxidation of signaling molecules such as

thioredoxin might be a central event regulating the activation of specific signal transduction

pathways such as ASK-1/SAPK and p53, which is translated into the regulation of pro-

apoptotic protein expression. Because of the complexity of the effects of environmental

exposures on human health, it has been proposed that the study of the exposure to the

combination of several toxicants might be a more relevant area of research, which could

uncover new mechanisms by which environmental exposures regulate neurodegenerative

diseases. In this way, it has been demonstrated that exposure to paraquat together with other

pesticides (maneb) or metals (iron) exert their toxicity by mechanisms involving synergistic

processes or the activation of completely different signal transduction pathways. Indeed, this

is an area of research whose results certainly have great potential to be translated in

important advances in public health.
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Abbreviations

APAF1 apoptotic protease activating factor

ARE antioxidant response element

ASK1 apoptosis signal regulating kinase 1

Bcl-2 B-cell lymphoma

Bak Bcl-2 homologous antagonist/killer

Bax Bcl-2–associated X protein

BH3 Bcl-2 homology domain 3

Bid Bcl-2 interacting domain

Bik Bcl-2-interacting killer

BNip3 Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3

Caspases cysteine-dependent aspartate-directed proteases

CHOP C/EBP homologous protein

DAT dopamine transporters

Diquat 1,1′-ethylene-2,2′-dipyridylium dibromide

ER endoplasmic reticulum

ERK extracellular signal-regulated kinase

ETC electron transport chain

GPX glutathione peroxidaxe
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GR glutathione reductase

GSH reduced glutathione

GSSG glutathione disulfide

H2O2 hydrogen peroxide

4HNE 4-hydroxy-2-nonenal

IRE1 inositol-requiring enzyme 1

JNK c-Jun N-terminal kinase

Nrf-2 NF-E2-related factor-2

LAT-1 large neutral amino acid transporter

LOO• lipid peroxyl radicals

LRRK2 leucine-rich repeat kinase 2

Maneb manganese ethylene-bis-dithiocarbamate)

MPO myeloperoxidases

MPP+ 1-methyl-4-phenylpyridinium

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NADPH nicotinamide adenine dinucleotide phosphate

•NO nitric oxide

NOS nitric oxide synthase

•O2
− superoxide anion

•OH hydroxyl radical

ONOO− peroxynitrite

PERK PKR-like ER kinase

PD Parkinson’s disease

PINK-1 PTEN induced putative kinase 1

PQ+ mono-cation radical

Redox reduction oxidation

ROS reactive oxygen species

SAPK stress activated protein kinases

SN substantia nigra

SOD superoxide dismutase

Trx thioredoxin

UPS ubiquitin-proteasome system
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Figure 1. Redox cycling by paraquat

Paraquat is a highly toxic quarternary nitrogen herbicide which has been shown capable to

redox cycle in some cell types. Dication paraquat (PQ2+) is reduced to PQ+ by an NADPH-

cytochrome P450 reductase. In the presence of O2, PQ2+ is oxidized with the concomitant

production of superoxide anion (•O2
−). SOD dismutates •O2

− to H2O2 which is further

metabolized by GPX. •O2
− also reacts •NO leading to the formation of ONOO−.

Overexpression of SOD and GPX protects against paraquat-induced toxicity [107].

However, PQ2+ can redox cycle again, leading to a continuous generation of ROS and

oxidative stress, and depleting the intracellular pools of GSH and NADPH (required for

GSSG recycling to GSH by GR). Accumulation of H2O2 is reduced further to •OH− through

Fenton type reactions.
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Figure 2. Molecular mechanisms involved in paraquat-induced neurotoxicity

The mechanisms by which paraquat enters the cell are still unknown. However, it is clear

that paraquat can promote the generation of ROS in the cytoplasm by three distinct

mechanisms including: 1) redox cycling, 2) inhibition of mitochondrial electron transport

chain, and/or 3) induction/activation of ROS generating enzymes such as NADPH-oxidases.

Paraquat has also been shown to induce neuronal oxidative stress through the activation of

glial cells. Accumulation of ROS leads to oxidative stress observed by the oxidative

modification of lipids, proteins and nucleic acids which mediate the activation of cell death

signaling cascades. Neuron loss in PD is mostly associated with apoptosis, and paraquat-

induced apoptosis has been demonstrated to involve mainly intrinsic pathways. Oxidative
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stress can directly induce the activation of the mitochondrial pathway of apoptosis.

However, paraquat-induced oxidative stress has also been suggested to trigger the activation

of ASK1/JNK signaling cascade through the induction of endoplasmic reticulum stress and

the activation of IRE1, and also by the direct oxidation of Trx. Activation of SAPKs such as

JNK has been demonstrated to regulate the activation/induction of pro-apoptotic Bcl-2

family members, which can further trigger the mitochondrial pathway of apoptosis by

inducing cytochrome C (Cyt C) release and the activation of caspases.
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