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Molecular mechanisms of prion pathogenesis

Abstract

Prion diseases are infectious neurodegenerative diseases occurring in humans and animals with an
invariably lethal outcome. One fundamental mechanistic event in prion diseases is the aggregation of
aberrantly folded prion protein into large amyloid plaques and fibrous structures associated with
neurodegeneration. The cellular prion protein (PrPC) is absolutely required for disease development,
and prion knockout mice are not susceptible to prion disease. Prions accumulate not only in the central
nervous system but also in lymphoid organs, as shown for new variant and sporadic Creutzfeldt-Jakob
patients and for some animals. To date it is largely accepted that prions consist primarily of PrPSc, a
misfolded and aggregated beta-sheet-rich isoform of PrPC. However, PrPSc may or may not be
completely congruent with the infectious moiety. Here, we discuss the molecular mechanisms leading to
neurodegeneration, the role of the immune system in prion pathogenesis, and the existence of prion
strains that appear to have different tropisms and biochemical characteristics.
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Abstract

Prion diseases are infectious neurodegenerative diseases occurring

in humans and animals with an invariably lethal outcome. One fun-

damental mechanistic event in prion diseases is the aggregation of

aberrantly folded prion protein into large amyloid plaques and fi-

brous structures associated with neurodegeneration. The cellular

prion protein (PrPC) is absolutely required for disease development,

and prion knockout mice are not susceptible to prion disease. Pri-

ons accumulate not only in the central nervous system but also in

lymphoid organs, as shown for new variant and sporadic Creutzfeldt-

Jakob patients and for some animals. To date it is largely accepted

that prions consist primarily of PrPSc, a misfolded and aggregated

β-sheet-rich isoform of PrPC. However, PrPSc may or may not be

completely congruent with the infectious moiety. Here, we discuss

the molecular mechanisms leading to neurodegeneration, the role

of the immune system in prion pathogenesis, and the existence of

prion strains that appear to have different tropisms and biochemical

characteristics.
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INTRODUCTION

Prion Diseases: A Medical
and Economic Crisis

Transmissible spongiform encephalopathies

(TSEs), or prion diseases, are neurodegenera-

tive diseases with an inexorably fatal outcome

for the affected host. As of today, no therapy

other than palliation is available. Prion

diseases have been responsible for entire cen-

turies of tragic episodes: From the end of the

nineteenth to the middle of the twentieth cen-

tury, ritualistic anthropophagy of central ner-

vous system (CNS)-derived tissues in Papua

New Guinea tribes led to kuru, which became

the prime cause of death in some tribes (1). In

the last quarter of the twentieth century, iatro-

genic transmission of prion-contaminated go-

nadotropins into humans caused ≥250 victims

of Creutzfeldt-Jakob disease (CJD). In the

past 20 years, more than 280,000 cattle suffer-

ing from bovine spongiform encephalopathy

(BSE) (Figure 1a) provoked a worldwide, ma-

jor food crisis with so far incomparable eco-

nomic consequences for the European Union

and other countries (2). In addition, trans-

mission of BSE to humans is believed to have

caused ≥200 cases of variant of Creutzfeldt-

Jakob disease (vCJD) (Figure 1b) (3, 4, 5).

The fact that most likely millions of people

have been in contact with BSE-contaminated

meat initiated a widespread health scare.

The good news is that the BSE crisis has

been largely resolved: Few cows succumb to

this disease annually, at least in those countries

that have implemented effective epidemiolog-

ical screening systems. Furthermore, the inci-

dence of vCJD, which for a while was feared to

rise to pandemic proportions, has not shown

a significant rise in the number of total cases

(Figure 1b). Today the number of vCJD cases

is slightly higher in all non–United Kingdom

countries than in the United Kingdom itself.

Despite the encouraging news, the chal-

lenges posed by prions to human and animal

health are far from over. Not only do we lack

answers to many basic questions in the prion

field, but we are also confronted with novel,

emerging problems in the human medical and

veterinary realms.

The United States has witnessed an enig-

matic rise of chronic wasting disease (CWD)

cases affecting elk and deer (7), as well as

the occurrence of the first cases of BSE (8).

Furthermore, there has been a recrudescence

of scrapie outbreaks among European sheep

flocks (e.g., Sweden, Austria, Sardinia). The

resurgence of new cases might be linked to

an increased sensitivity and frequency of the

currently executed testing procedures. These

data also underline our deficit in knowledge

about prion epidemiology and possible trans-

mission routes of prion diseases in humans and

animals.

As an example in the field of human

medicine, four cases of vCJD have been re-

ported to be caused by blood transfusion (9–

11). This indicates that BSE prions can be

recycled among humans, which has caused

considerable alarm that the supply of blood-

derived pharmaceuticals may be threatened

(12). In particular, the report of a subclini-

cal blood-derived vCJD infection in an in-

dividual carrying a heterozygote methion-

ine/valine polymorphism at codon 129 of the

human PRNP gene (10) suggests that trans-

mission of BSE prions to humans enhances

their virulence and broadens the spectrum

of susceptible recipients. In this respect, it

has been demonstrated that polymorphisms

at codon 129 of the human PRNP gene con-

trol susceptibility and incubation time in hu-

man patients (e.g., 129MM versus 129MV or

129VV drastically increases the susceptibility

of humans to BSE prions). It was reported

only recently that most individuals who suf-

fered from kuru and were polymorphic at

codon 129 showed incubation times longer

than 50 years (13).

Moreover, recent reports indicate that

there is still a lot to be learned about the

mechanisms of prion transmission (e.g., hu-

man to human or within scrapie-affected an-

imal flocks) and prion tropism underlining
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the complex alternating distribution patterns

of PrPSc (e.g., PrPSc deposition in lymphoid

tissue, the CNS) and prion infectivity un-

der varying conditions (e.g., chronic inflam-

mation) and hosts (e.g., sheep, elk and deer,

human): Chronic inflammation can alter the

tropism of prion infectivity or PrPSc to or-

gans hitherto believed prion free (e.g., liver,

pancreas, kidney of mice, mammary gland

of sheep, muscle of humans) (14–16). More-

over, PrPSc was reported in spleen and mus-

cle tissue of sporadic Creutzfeldt-Jakob dis-

ease (sCJD) patients (17), and prion infectivity

was demonstrated in muscle, blood, and saliva

of deer suffering from CWD (18, 189). Also,

prion infectivity was shown to be excreted via

urine of prion-infected nephritic mice, a pro-

cess defined as prionuria (19).

These results emphasize the need for fur-

ther assessment of possible public health risks

from TSE-affected extraneural organs. It is

very well possible that preexisting pathophys-

iological conditions of the infected host ad-

ditionally contributed to unexpected distribu-

tion patterns of prion infectivity. For example,

the presence of prion infectivity in the blood

of sheep or deer may influence the deposition

of prion infectivity in various organs previ-

ously deemed prion free. Therefore, it should

be carefully reconsidered whether only organs

of the CNS and the lymphoreticular system

should be included in the current risk classi-

fications of biologicals in the future. It will be

important to test altered prion tropism pro-

files in nonlymphoid organs and body fluids

(e.g., blood, urine, milk, saliva) of ruminants

(e.g., sheep, goat, cattle, elk, and deer) and hu-

man patients suffering from sCJD and vCJD.

In addition to the eminent questions of

the mechanisms of prion transmissions within

herds of ruminants, a number of looming

questions about the safety of foods and drugs

with regard to prion contamination remain

unanswered. Moreover, many aspects of the

basic biology of prions are essentially unclear.

For instance, there is very little understanding

of the mechanisms of prion replication at the

molecular level. Also, the mechanisms under-

lying the phenomena of prion strains, prion

neurotoxicity, and horizontal prion transmis-

sion remain sketchy at best. Diagnostic tools

to detect prions with consistent, high sensi-

tivity are still pending; in particular, no test

is currently available that can detect prion in-

fectivity in human blood. However, prion sci-

ence has attracted a vibrant research commu-

nity that has made scientific and technological

inroads in recent years.

For the reasons described above, prion

diseases still present a major challenge for

biomedical and basic research, representing

a fascinating biological phenomenon that has

elicited a tremendous interdisciplinary re-

search effort at the interface between neu-

roscience, structural and molecular biology,

and neuroimmunology. The fact that proteins

impart their conformational information on

other proteins, replicate in the periphery of

the infected host, and transmigrate into the

CNS, where they induce a fatal neurodegen-

erative disease, has formed a new dogma. It is

very likely that similar posttranslational mod-

ifications occur in many different proteins

routinely in eukaryotic and prokaryotic cells.

These modifications may not always be nox-

ious, and may instead constitute a regulatory

process of posttranslational processing influ-

encing function, aggregation status, stability,

or subcellular localization of many proteins.

Similar phenomena were found for some pro-

teins in yeast and fungi (20).

THE CELLULAR PRION
PROTEIN

The cellular prion protein (PrPC) is a glycosyl

phosphatidyl inositol (GPI)-linked glycopro-

tein undergoing facultative N-linked glyco-

sylation at two sites. Like other GPI-linked

proteins, it is enriched in detergent-resistant

membranes. The structures of mature PrPC

from mouse, human, cattle, and Syrian ham-

ster share common features: a long, flexible

N-terminal tail (residues 23–128), three α-

helices, and a two-stranded antiparallel β-

sheet that flanks the first α-helix (Figure 2a

www.annualreviews.org • Molecular Mechanisms of Prion Pathogenesis 13
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and 2b) (21). The second β-sheet and the third

α-helix are connected by a large loop with

interesting structural properties. This loop is

extremely flexible in most species, but it is al-

most entirely rigid in the prion protein of elk

and deer (22). It remains to be seen whether

this structural peculiarity is in any way con-

nected to the propensity of elk and deer to
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develop CWD. The carboxyl terminus of

PrPC is stabilized by a disulfide bond link-

ing helices two and three (Figure 2a and 2b)

(23).

Even if the N-terminal portion of the

molecule appears unstructured, it contains

two defined, conserved regions. The first con-

sists of a segment with five repeats of an oc-

tameric amino acid sequence (octapeptide re-

peat region) (Figure 2a) (21). This region

has been proposed to be important in cop-

per binding and might be somehow involved

in prion pathogenesis (26). The second re-

gion, downstream relative to the first region,

contains a highly hydrophobic and conserved

profile, which was originally termed trans-

membrane region 1. However, as it is un-

clear whether this domain really functions as

a transmembrane region under physiologi-

cal conditions, we propose to rename this re-

gion the hydrophobic core domain. It is pre-

ceded by a hydrophilic domain termed charge

cluster (Figure 2a).

PrPC is a highly conserved protein in mam-

mals, and paralogs are present in turtles (27)

and possibly even in amphibians (28). No

natural Prnp-null alleles have been described

in any mammalian species. The broad, di-

verse, developmentally regulated (29) expres-

sion pattern of PrPC in skeletal muscle, kid-

ney, heart, secondary lymphoid organs, and

the CNS suggests a conserved and broad func-

tion (30, 31). Within the CNS, high PrPC

expression levels can be detected in synaptic

membranes of neurons, but PrPC is also ex-

pressed in astrocytes (32). In the periphery,

PrPC expression is reported on lymphocytes

and at high levels on follicular dendritic cells

(FDCs) (30).

WHAT IS THE PHYSIOLOGICAL
FUNCTION OF PrPC?

The Prnp gene was identified in 1986 (33) and

Prnp knockout mice have existed since 1992

(34), yet the function of PrPC has not been

fully clarified. Many recent experiments have

focused on elucidating various characteristics

of the infectious prion agent, but there have

been even more attempts to define the physi-

ological function of the PrPC. Wüthrich and

many others have suggested that the phys-

iological role of PrPC may help in under-

standing the pathophysiological properties of

prions in general (35). Many different func-

tions have been attributed to PrPC, including

immunoregulation, signal transduction, cop-

per binding, synaptic transmission, induction

of apoptosis or protection against apoptotic

stimuli, and many others (30). Importantly,

postnatal depletion of PrPC in neurons does

not result in neurodegeneration (36). How-

ever, neuronal apoptosis in the hippocampus

and cerebellum was observed following in-

tracranial delivery of monoclonal PrP anti-

bodies in vivo (37). Only dimerization of PrPC

was shown to induce this phenotype, point-

ing to the fact that PrPC dimerization induces

an apoptotic signal. Moreover, caspase-12 and

endoplasmic reticulum stress were reported

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 1

Incidence of bovine spongiform encephalopathy (BSE) and variant of Creutzfeldt-Jakob disease (vCJD)
cases reported worldwide. (a) Reported BSE cases in the United Kingdom and in countries and states
excluding the United Kingdom. Non–United Kingdom BSE cases include cases from countries of the
European Union and outside the European Union (Canada, Israel, Liechtenstein, Japan, Switzerland,
and the United States). Data are as of the end of 2005 and also include imported cases (4). (b) Reported
cases of vCJD in the United Kingdom and in countries outside the United Kingdom. Non–United
Kingdom vCJD cases include cases reported in France, the Republic of Ireland, Italy, the United States,
Canada, Saudi Arabia, Japan, Netherlands, Portugal, and Spain. Data are as of October 2006, including
cases of vCJD patients with a residential history in the United Kingdom in the 1980s and 1990s (5). Note
that since 2005, the incidence of vCJD in France has surpassed that of the United Kingdom. Reprinted
by permission from Macmillan Publishers Ltd: Nat. Rev. Mol. Cell. Biol. 8:552–61, copyright 2007.

www.annualreviews.org • Molecular Mechanisms of Prion Pathogenesis 15

A
n
n

u
. 
R

ev
. 
P

at
h
o
l.

 M
ec

h
. 
D

is
. 
2
0
0
8
.3

:1
1
-4

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 S

w
is

s 
A

ca
d
em

ic
 L

ib
ra

ry
 C

o
n
so

rt
ia

 o
n
 0

8
/2

1
/0

8
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



a

b

PK

CC

Signal OR MAPK-resistant fragment

HC

CHO

Biochemical properties

PrPC

Rich in α-helices

Soluble

PK sensitiveO

No aggregation

Rich in β-sheets

Insoluble

PK resistant

Aggregation

PrPSc

N-181

CHO

S-S

GPI

N-197
1 22

51 231 254

232

90

Disordered

NMR structure

Well-ordered

NMR structure

111 134 179 214

23

NH

Loop

Mannose

Glucosamine

N-acetylgalactosamine

+
NH3

H3N
+

Lipid bilayer 

Figure 2

Structural features and biochemical properties of the cellular prion protein. (a) Scheme of the primary
structure of the cellular prion protein and its posttranslational modifications. A secretory signal peptide
resides at the extreme N terminus. The numbers describe the positions of the respective amino acids.
The proteinase K (PK)-resistant core of PrPSc is depicted in gray; the approximate cutting site of PK
within PrPSc is indicated by arrows. CC (pink), charged cluster; HC (green), hydrophobic core; S-S, single
disulfide bridge; MA, membrane anchor region; GPI, glycosyl phosphatidyl inositol; CHO, facultative
glycosylation sites; NMR nuclear magnetic resonance. (b) Tertiary structure of the cellular prion protein,
as deduced from NMR spectroscopy, inserted into a lipid bilayer, including the unstructured N-terminal
tail (gray) and the GPI anchor. The α-helices are indicated in red; the antiparallel β-sheets are shown in
turquoise. Sugar residues are shown as colored small circles. See figure for biochemical properties of
PrPC and PrPSc. Figure adapted with permission from References 24 and 25.

to mediate neurotoxicity of the pathological

prion protein in vitro (38).

In addition to the expression of PrPC in

the CNS, on circulating (e.g., T and B cells)

and resident cells of the immune system (e.g.,

FDCs), PrPC is also expressed on long-term

repopulating hematopoietic stem cells (39).

There it is believed to positively regulate the

proliferation of neural precursors during de-

velopmental and adult mammalian neuroge-

nesis (40). Whatever the function of PrPC is,

upon conversion to PrPSc it may be altered,

and this may constitute a plausible cause of

neurodegeneration (35).
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A PARTNER FOR PrPC: DATING
THE PROTEOME

In addition to the unknown function of PrPC,

prionologists are occupied with another cru-

cial question: What are the interaction part-

ners of PrPC? Finding a specific interaction

partner of PrPC might not only be an impor-

tant step forward in explaining PrPC func-

tion, it might also help explain the role of

PrPC and PrPSc in the induction of neurode-

generation. Many efforts have been under-

taken to find interaction partners of PrPC

and indeed many have been found (N-CAM,

laminin receptor, Bax, Bcl-2, etc.) in vitro

and in vivo (41–43). However, none of the

candidates was so far demonstrated to be of

importance in vivo (30, 35), and none of

the identified interaction partners has been

shown to be implicated in prion pathogen-

esis. Therefore, one has to conclude that a

clear understanding of the physiological func-

tion of the PrPC and its interaction partners

is still lacking. The most important discov-

eries in this respect are therefore still to be

made.

MODELS DESCRIBING
THE NATURE OF THE
PRION PROTEIN AND
ITS REPLICATION

The unusual properties of the scrapie agent,

such as resistance to UV light, partial re-

sistance to proteinase K (PK), high-pressure

treatment, and high temperature, led to spec-

ulations that it might consist of protein only

(44), or be devoid of both nucleic acid and

protein (45), or be a polysaccharide (46) or a

membrane fragment (47).

At present, many hypotheses concerning

the nature of the scrapie agent have been dis-

proved, and the most commonly discussed hy-

potheses are outlined here: (a) the protein-

only hypothesis, (b) the virino hypothesis, and

(c) the hypothesis that stoichiometric trans-

formation of PrPC to PrPSc in vitro requires

specific RNA molecules.

The protein only hypothesis (44) is cur-

rently the most widely accepted model, even

though data and scientific opinions do not ab-

solutely conform to this idea (35). As outlined

in general terms by Griffith (44), character-

ized in detailed form by Prusiner (48–51), and

refined by Weissmann (52), it suggests that the

infectious agent causing TSE is devoid of nu-

cleic acid and is identical to a posttranslation-

ally modified form (PrPSc) of a host protein

(PrPC). It is possible that it differs from the

latter only in the conformational state (53).

A large body of epidemiological and exper-

imental evidence is in line with the protein

only hypothesis, and very stringently designed

experiments have failed to disprove it (30).

Knockout mice, carrying a homozygous dele-

tion of the Prnp gene that encodes PrPC, fail to

develop disease upon inoculation with infec-

tious brain homogenate (54) and do not carry

prion infectivity in the brain (55). Reintro-

duction of Prnp by transgenesis restores in-

fectibility and prion pathogenesis in Prnpo/o

mice (30). Additionally, all familial cases of

human TSEs are characterized by PRNP mu-

tations (56). This clearly suggests that PrPC or

mutations thereof are necessary for the devel-

opment of prion disease. On the basis of this,

two different theories explaining the mecha-

nism of PrPSc-induced conversion of PrPC to

PrPSc exist: (a) the heterodimer, or template-

directed refolding, model (57, 58) and (b) the

noncatalytic nucleated polymerization model

(59).

The template-directed refolding model

(Figure 3) proposes that upon infection of an

appropriate host cell, the incoming conforma-

tionally altered PrPC (PrPSc) starts a catalytic

cascade using PrPC or a partially unfolded

intermediate (PrP∗) arising from stochas-

tic fluctuations in PrPC conformations, as a

substrate, converting it by a conformational

change into a new β-sheet-rich protein (see

also Figure 2b). The newly formed PrPSc

will in turn convert a new PrPC molecule

into a new PK-resistant entity. The con-

formational change is kinetically controlled:

A high-activation energy barrier prevents

www.annualreviews.org • Molecular Mechanisms of Prion Pathogenesis 17

A
n
n

u
. 
R

ev
. 
P

at
h
o
l.

 M
ec

h
. 
D

is
. 
2
0
0
8
.3

:1
1
-4

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 S

w
is

s 
A

ca
d
em

ic
 L

ib
ra

ry
 C

o
n
so

rt
ia

 o
n
 0

8
/2

1
/0

8
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



N

C

PrPC

PrPSc oligomer

PrPSc oligomer
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PrPSc-PrPSc  dimerPrPC PrPSc
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Figure 3

Models of PrPC to PrPSc conversion. (a) The antibodies POM3 and POM2 (62) are indicated in black
and red, respectively. In the case of murine PrPC and the Rocky Mountain Laboratory prion strain
(RML), POM2 binds an epitope on the N terminus of PrPC (62) that is also present on PrPSc. In
contrast, upon conversion from PrPC to PrPSc, the POM3 epitope is buried, and therefore accessible
only on the PrPC molecule. (b) The noncatalytic nucleated polymerization model proposes that the
conformational change of PrPC into PrPSc is thermodynamically controlled: The conversion of PrPC

and PrPSc is a reversible process, but at equilibrium strongly favors the conformation of PrPC.
Converted PrPSc is maintained only when it adds onto a fibril-like seed or aggregate of PrPSc. Once a
seed is present, further monomer addition is accelerated.

spontaneous conversion at detectable rates.

The formation of a PrPC into a PrPSc het-

eromeric complex (PrP dimer) may lower the

activation energy barrier to the formation of

new PrPSc from PrPC-PrPSc, leading to fur-

ther recruitment of PrPC, which is an auto-

catalytic process. The extensive unfolding and

refolding process is believed to require chap-

erone activity and energy. Sporadic cases of

CJD are thought to be caused by an extremely

rare spontaneous conversion of PrPC to the

pathogenic conformation without degrada-

tion, with a frequency of about one case per

million people per year, as estimated from

CJD epidemiology (60). The familial forms of

prion disease are tightly linked to certain mu-

tations in the PRNP gene (61). Prusiner (61)

proposed that these mutations allow sponta-

neous conversion of PrPC into PrPSc with a

frequency sufficient to allow the disease to be

expressed within the lifetime of the individ-

ual. This increase in probability could be due

to lowered activation energy for the transition

of the normal to the pathogenic conformation

of mutated as compared to wild-type PrP, as

proposed above.

The activation energy to switch from PrPC

to PrPSc, once the initial event has taken place,

would be far lower, taking in account the cat-

alytic nature of the further process. Alterna-

tively, the noncatalytic nucleated polymeriza-

tion model proposes that the conformational

change is thermodynamically controlled: The

conversion of PrPC and PrPSc is a reversible

process, but at equilibrium strongly favors the

conformation of PrPC. Converted PrPSc is

established and stabilized only when it adds

onto a crystal-like seed or aggregate of PrPSc

(Figure 3b). Once a seed is present, further

monomer addition is accelerated. According
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to this nucleation hypothesis, the aggregated

state would be an intrinsic property of infec-

tivity: Monomeric PrPSc would be harmless,

but might be prone to incorporate nascent

PrPSc aggregates (e.g., generating oligomeric

PrPSc).

The final proof for the protein only

hypothesis would be, for example, the con-

version of noninfectious PrPC into infectious

material by biochemical and/or physicochem-

ical interventions as well as by expressing

truncated PrPC in vitro (e.g., in eukaryotic

or prokaryotic expression systems). In vitro

conversion of radioactively labeled PrPC into

partially PK-resistant (PrPSc) material was

performed by Bessen, Kocisko, Caughey,

and collaborators (63, 64), and brought

direct evidence that PrPSc can induce its own

formation. However, the large amounts of the

infectious agent used in this assay currently

preclude attempts to search for an increase in

infectivity (de novo infectivity) in the in vitro

conversion products. Moreover, infectivity

was never associated with the PK-resistant

isoform converted in vitro (65).

In addition, two studies recently provided

strong evidence that prions may be synthe-

sized in cell-free systems (66, 67), essentially

settling the score as to the nature of the

infectious agent. However, the molecular

mechanisms of the conversion process—for

example, how this is accomplished under

physiological conditions (e.g., pH condi-

tions, cofactors) and exactly where it takes

place in an in vivo setting (e.g., on the cell

surface, in endosomes, in the extracellular

space)—remain elusive.

The virino hypothesis (68, 69) postulates

that the infectious agent consists of an essen-

tial scrapie-specific nucleic acid associated or

coated with a host-encoded protein, for which

PrPC is the most likely candidate. The host

origin of the postulated coat would explain

the lack or reduced degree of immunological

and inflammatory response, whereas the ex-

istence of a nucleic acid would explain how

many different strains of scrapie can be prop-

agated in a single inbred mouse line. A tight

interaction of nucleic acid genome and PrPC

coat, which might cause the infectious parti-

cle to be compact and small, could determine

the unusual physical resistance of the parti-

cle to sterilizing procedures and chemical and

biochemical treatments. Despite considerable

efforts and the high sensitivity of the tools

of modern molecular biology, no evidence

for TSE-specific nucleic acids has yet been

adduced (30, 70, 71).

Recently it has been reported that stoi-

chiometric transformation of PrPC to PrPSc

in vitro requires specific RNA molecules (72).

Notably, whereas mammalian RNA prepara-

tions stimulate in vitro amplification of PrPSc,

RNA preparations from invertebrate species

do not. These findings suggest that host-

encoded stimulatory RNA molecules may

have a role in the pathogenesis of prion dis-

ease. Nevertheless, it must be stated that

all experiments supporting the latter hy-

pothesis were conducted in vitro. Therefore,

these results need to be confirmed in vivo

(30).

PATHOLOGY OF HUMAN PRION
DISEASES

Rapidly progressive dementia, myoclonus,

visual or cerebellar signs, pyramidal/

extrapyramidal signs, and akinetic mutism

clinically characterize fatal neurological

diseases caused by prions. The most common

human prion disease is CJD, of which there

are three subtypes: sporadic, infectious, and

familial.

All CJD subtypes have in most cases been

successfully transmitted to primates by in-

gestion or inoculation of brain tissue (30,

73, 74), thus fulfilling one of the main char-

acteristics of TSE diseases. The transmit-

ted/iatrogenic group consists of kuru, ia-

trogenic CJD, and vCJD. For kuru and

iatrogenic CJD, patients were exposed to the

TSE agent by contact with brain tissues or

contaminated tissue, whereas for vCJD, it is

believed that this disease is associated with

BSE, on the basis of epidemiological evidence
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and biochemical similarities of the prion

strains.

Sporadic Creutzfeldt-Jakob Disease

Approximately 85% of all human prion dis-

eases are sporadic forms of CJD. In coun-

tries that engage in meticulous surveillance,

incidences of 0.4–1.8 cases per million people

per year are reported (75). For sCJD, there is

no association with a mutant PrP allele, nor

is there any epidemiological evidence for ex-

posure to a TSE agent through contact with

people or animals infected with TSEs. How-

ever, heterozygosity (Met/Val) at PrP codon

129 appears to be associated with a lower

risk (76) and/or prolonged incubation time

(10, 13). The lack of routine laboratory test-

ing for preclinical diagnosis makes the search

for agent sources and other risk factors ex-

tremely difficult. At present, the means of ac-

quisition of a TSE agent in these patients re-

mains a mystery. So far, there is no evidence

for spontaneous PrPSc formation in any an-

imal or human TSE. In humans, the peak

age incidence of sporadic CJD is 55–60 years.

However, if spontaneous misfolding were the

primary event, one might expect a continu-

ously increasing incidence with age because

more time would allow more opportunity for

rare misfolding events.

Kuru

Kuru was and still is a slowly progressing neu-

rodegenerative disease in the eastern high-

lands of Papua New Guinea, described at

the beginning of the last century. It was the

first human disease related to scrapie (74)

when it was recognized that the lesions in

the brains of patients were similar to those

observed in scrapie. It was hypothesized that

the propagation of kuru through the soci-

ety occurred by ritual cannibalism and may

have originated with the consumption of tis-

sues that belonged to a sporadic CJD suf-

ferer (77, 78). Successful transmission of kuru-

affected brains to chimpanzees (74) indicated

an infectious agent as the cause of the dis-

ease. The incidence of kuru has decreased to

low levels upon cessation of cannibalistic rit-

uals. It has been proposed that variations in

the human prion gene (PRNP) that protect

against prion infection (e.g., heterozygosity

at codon 129) have disseminated more effi-

ciently among human populations than non-

protective polymorphisms, suggesting selec-

tive pressure. Consequently, prion diseases,

now exceedingly rare, may have ravaged hu-

man populations in the distant past (79). How-

ever, several publications have pointed out

that these conclusions may be incorrect (80–

82). It was recently described that incubation

periods of kuru could be as long as 56 years.

PRNP analysis showed that most of those pa-

tients with kuru were heterozygous at poly-

morphic codon 129, a genotype associated

with extended incubation periods and resis-

tance to prion disease (13).

Iatrogenic Creutzfeldt-Jakob Disease

Iatrogenic CJD has been induced by trans-

plantation of corneal or dural tissue from pa-

tients with TSE, or by neurosurgery, using

instruments incompletely sterilized following

use on TSE patients (30). Moreover, iatro-

genic CJD has been detected after inoculation

of a growth hormone extracted from pituitary

glands pooled from large groups of individu-

als (83). In these circumstances, the extracts

were apparently contaminated with brain tis-

sue from an undiagnosed CJD patient. The

incubation period, or latent period (time from

exposure to the agent until clinical onset), is

long, ranging from two years to greater than

10 years. Interestingly, in disease following

corneal or dural transplant or the use of con-

taminated neurosurgical instruments, the la-

tency is considerably shorter (1–2 years). It

is likely that direct introduction of the agent

into the brain, as in the latter instances, may

account for the clinical differences (e.g., in in-

cubation period and clinical signs) observed.

Houston and colleagues (84) demonstrated

that is possible to efficiently transmit prions
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via blood transfusion in sheep. This route of

potential transmission represents a scenario

for inadvertent amplification of the new vCJD

agent to humans, which was, until recently,

thought to be purely hypothetical. However,

recent reports present cases where exactly that

may have happened (9–11, 85). The first pa-

tient was identified to have developed symp-

toms of vCJD most likely as a consequence of

blood transfusion received from an individ-

ual harboring the vCJD agent 3.5 years prior

to developing clinical signs of prion disease

(9). Six and a half years post blood transfu-

sion, the recipient developed clinical signs of

prion disease (9). These findings raised the

likely possibility that infection was transfusion

transmitted.

Variant Creutzfeldt-Jakob Disease

In 1996, neuropathologists in the United

Kingdom described vCJD (3). This disease is

not a familial disease associated with muta-

tions in the PRNP gene as described below. To

date, all primary vCJD cases are found to carry

the Met/Met allelotype at PrP codon 129, a

common genotype in the Caucasian popula-

tion. vCJD affects primarily young adults and

is clinically characterized as a progressive neu-

ropsychiatric disorder leading to ataxia, de-

mentia, and involuntary movements. vCJD

can be distinguished from sCJD, the most

common human TSE recognized worldwide

for decades, by the early age of onset (vCJD:

19–39 years; sCJD: 55–60 years), longer

duration of illness (vCJD: 7.5–22 months;

sCJD: 2.5–6.5 months), absence of electroen-

cephalographic changes typically found in

CJD, and distinct neuropathological features

(86). In vCJD, significant amounts of patho-

logical prion protein (PrPSc) are detectable

in the lymphoid tissues in preclinical disease

(87). Of note, PrPSc is also detectable in lym-

phoid tissues and extralymphoid tissues of

sporadic CJD patients by western blotting and

immunohistochemistry (17).

The initial occurrence of these patients

in the United Kingdom indicated a possi-

ble association with BSE in cattle (3). Subse-

quent laboratory experiments demonstrated

a strong similarity between BSE and vCJD

on the basis of similar lesion distributions in

mouse brains, PrPSc glycoform gel banding

patterns, and neuropathology after transmis-

sion to cynomolgus macaques (Macaca fascicu-

laris) (88–90). On the basis of these data, vCJD

likely represents a spread of BSE from cattle

to humans.

Although millions of Europeans were most

likely exposed to BSE, only approximately 200

humans have contracted vCJD in past years.

Although most cases have been reported in the

United Kingdom, other European and non-

European countries including France, Italy,

and Canada still have cases of vCJD. There-

fore, susceptibility may be controlled by en-

dogenous or exogenous factors.

Since 2001, however, the incidence of

vCJD in the United Kingdom appears

to be stabilizing (http://www.cjd.ed.ac.uk/

vcjdworld.htm). It may be too early to draw

any far-reaching conclusions on the extent of

the CJD epidemic, but each year that passes

without any dramatic rise in the number of

cases increases the hope that the total num-

ber of vCJD victims will be limited (91). The

incidence of vCJD in the United Kingdom

may already be subsiding (Figure 1b)

(92).

At present, there is concern that some in-

dividuals exposed to BSE might be asymp-

tomatic carriers of the infection (93) and that

these people might, in turn, pose a risk of fur-

ther transmission of the infection to others

(e.g., blood transfusions, donors for corneal

transplantations). Because of this, there has

been an increased need to develop adequate

sterilization procedures for surgical instru-

ments, as conventional sterilization proce-

dures do not completely abolish infectivity.

Moreover, concern that the blood supply

might be contaminated with the vCJD agent,

as discussed above, has been widely publi-

cized. Many countries have, therefore, passed

rules to diminish the use of blood from donors

who might have been exposed to BSE/vCJD
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in the United Kingdom during the peak of the

BSE epidemic.

Familial Transmissible Spongiform
Encephalopathies

Familial TSEs are associated with an auto-

somal dominant PRNP gene alteration (94).

This disease accounts for 10%–20% of all

TSE cases in humans and includes familial

CJD, Gerstmann-Sträussler-Scheinker (GSS)

syndrome, and fatal familial insomnia. There

is variability in the clinical and pathological

findings, the age of onset, and the duration

depending upon the particular PrP mutation

involved. In addition to point mutations in the

PRNP gene, insertions in the octapeptide re-

peat region (Figure 2) of the PRNP gene have

been associated with degenerative brain dis-

ease. Clinical disease usually begins at an early

age and is of a long duration. GSS syndrome

is a rare inherited autosomal dominant dis-

ease, which is associated with mutations in the

PRNP gene (the most common are at codons

102 and 198). GSS syndrome is characterized

by chronic progressive ataxia, terminal de-

mentia, a long clinical duration (2–10 years),

and multicentric amyloid plaques that can be

visualized by antibodies directed against the

prion protein. Fatal familial insomnia is an

inherited disease, which is characterized by

sleep disturbances as well as vegetative and

focal neurological signs as a result of thalamic

lesions. The clinical phenotype depends upon

the D178N point mutation of the PRNP gene

coupled with a methionine at codon 129 (95).

NEUROTOXICITY,
INFECTIVITY, AND PrPSc

It is clear that prions exert their destruc-

tive effects predominantly, if not exclusively,

within the CNS. However, the proximal cause

of neurotoxicity remains unclear. PrPC is re-

quired for prion replication, as mice devoid

of PrPC are resistant to prions (54). Dimeric

PrPC was found to efficaciously bind PrPSc

(96), suggesting that its conversion is some-

how instructed by PrPC. The first evidence for

PrPC-mediated neurotoxicity was provided by

grafting neural tissue overexpressing PrPC

into the brain of PrP-deficient mice (97). After

intracerebral inoculation with scrapie prions,

grafts accumulated high levels of PrPSc and

infectivity, developing characteristic scrapie

histopathology. It was then reported that de-

pletion of endogenous neuronal PrPC in mice

with established prion infection reversed early

spongiform changes and banned neuronal loss

and progression to clinical disease (98).

PrPC depletion during the conversion pro-

cess is unlikely to cause pathology because

ablation of PrPC does not result in scrapie-

like symptoms (34). This is corroborated by

postnatal PrPC depletion, which does not re-

sult in neurodegeneration (36). However, it

could be possible that PrPC function is al-

tered upon conversion to PrPSc, leading to

neurodegeneration (30, 35). Although neuro-

toxic, quite surprisingly, high prion titers in

lymphoid organs are not accompanied by sig-

nificant histopathological changes (99, 100),

even though murine scrapie infection was re-

cently reported to cause an abnormal germinal

center reaction in the spleen (101).

Expression of a PrP variant targeted to

the cytosol was found to be toxic to cultured

cells and transgenic mice, and it was specu-

lated that this feature might be common to

diverse prion-related neurodegenerative dis-

orders (102, 103). Mutant PrPC, lacking GPI

anchor and its signal peptide, retrogradely

transported out of the endoplasmatic retic-

ulum induced the generation of amorphous

PrP aggregates that possessed partial PK re-

sistance in the cytosol (103). The disease was

not reported to be transmissible, which is, af-

ter all, the crucial defining trait of a prion dis-

ease. Subsequent reports have argued against

the contribution of a cytosolic neurotoxic PrP

species to prion pathology (104), and there-

fore this question should be considered unre-

solved at the present stage.

Transgenic mice expressing N-terminal-

deleted variants of PrP were found to suf-

fer from unexpected phenotypes, including

22 Aguzzi · Sigurdson · Heikenwaelder

A
n
n

u
. 
R

ev
. 
P

at
h
o
l.

 M
ec

h
. 
D

is
. 
2
0
0
8
.3

:1
1
-4

0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 S

w
is

s 
A

ca
d
em

ic
 L

ib
ra

ry
 C

o
n
so

rt
ia

 o
n
 0

8
/2

1
/0

8
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



cerebellar granular cell degeneration and

leukoencephalopathy (105, 106). Deletions of

amino acids 32–121 or 32–134 (collectively

termed �PrP) confer strong neurotoxicity to

PrPC in vivo, a pathology that can be ab-

rogated by reintroduction of wild-type, full-

length PrPC (105). The latter phenomenon

suggests that �PrP is a functional antagonist

of PrPC. If so, suppression of �PrP toxicity

may be used for probing the functional in-

tegrity of PrP mutants. This strategy has been

used extensively by us and others, as it al-

lows one to map functional domains within

the Prnp gene, even if the function of PrP is

still not understood.

PrPC contains a highly hydrophobic

stretch at the border between its flexi-

ble N-terminal and its globular C-terminal

part. This particular stretch is believed to

play an important functional role, and its

manipulation may provide significant func-

tional insights: Recent studies suggest that

a small deletion within this hydrophobic

stretch (amino acids 121–134) suffices to pro-

duce a highly neurotoxic molecule (107). An-

other neurotoxic type of PrP was reported

by Hegde et al. (108), who discovered that

the hydrophobic domain acquires a trans-

membrane localization in a small fraction of

PrP molecules in contrast to abundantly GPI-

anchored PrP molecules. Expression levels of

transmembrane PrP (CtmPrP) are elevated in

certain pathogenic PrP mutants, which are

neurotoxic when expressed at high levels in

transgenic animals (109). Surprisingly, when

co-expressed with full-length PrP, CtmPrP

is even more neurotoxic. In this regard, it

behaves very differently from N-terminally

truncated PrP, whose toxicity is reduced or

abolished by the expression of full-length

PrP.

Although the normal function of PrP is

presumed beneficial, there is a growing list

of malicious consequences beyond prion dis-

eases that can be elicited by manipulating PrP.

Such consequences encompass not only the

neurological syndrome (termed Shmerling’s

disease) elicited by �PrP family members.

It was also found that antibody-mediated

cross-linking of PrP in vivo triggers neuronal

apoptosis in the hippocampus and cerebellum

(37). This effect was induced by dimerization

of PrPC through the intracranial stereotaxic

delivery of bivalent immunoglobulins. None

of the molecular mechanisms underlying

these observations have been elucidated, but

there has been much speculation that cross-

linking may induce cytotoxic lethal signaling

cascades. Recently, Chesebro and colleagues

generated an interesting Prnp transgene that

lacks the signal peptide responsible for GPI

anchoring (110). Consequently, transgenic

mice expressed exclusively a secreted form

of PrPC. Although GPI-negative transgenic

mice did not develop clinical disease upon

prion infection, their brains contained PrPSc

plaques. Evidently, removal of the GPI

anchor abolished the susceptibility to clinical

disease while preserving the competence of

the soluble PrPC molecule to support prion

replication (110). This observation fits with

the growing body of evidence that PrPC may

function as a signaling molecule, just like

other GPI-linked proteins (111).

Additionally, the brain, blood, and heart

of GPI-negative transgenic mice contained

both abnormal protease-resistant prion pro-

tein as well as prion infectivity (112). Blood

plasma of GPI-negative transgenic mice was

found to be infectious (>7 log LD50 infec-

tious units ml−1) (112), mimicking a situa-

tion of blood-borne prion infectivity as known

from scrapie sick sheep (84), chronic wasting

diseased elk and deer (18), and vCJD patients

(9, 10). Interestingly, the hearts of these trans-

genic mice contained PrPSc-positive amyloid

deposits, leading to myocardial stiffness and

cardiac disease (112).

Although the exact composition of the in-

fectious prion agent remains elusive, the size

of the most infectious moiety was determined

(113). The PK-resistant core of PrPSc was par-

tially disaggregated, fractionated by size, and

analyzed by light scattering and nondenatur-

ing gel electrophoresis. Analyses revealed that

nonfibrillar particles, with masses equivalent
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to 14–28 PrP molecules, are the most infec-

tious particles. These very exciting data sug-

gest that the Ur prion is indeed an oligomeric

seed, that is, a small, ordered aggregate that

possesses the capability of growing by means

of recruiting monomeric PrP further into

itself.

Harris and colleagues (114) generated

Tg [PrP–enhanced green fluorescent pro-

tein (EGFP)] mice, which express an EGFP-

tagged version of the prion protein. This fu-

sion protein behaves like endogenous PrP in

terms of its posttranslational processing, sub-

cellular localization, and functional activity—

as measured by suppression of Shmerling’s

disease. Although not convertible to PrPSc

when expressed by itself, the fusion protein

was incorporated into scrapie fibrils in brains

of prion-infected animals. Co-expression of

the transgene and wild-type PrP resulted in

progressive accumulation of fluorescent PrP-

EGFP aggregates in neuropil, axons, and the

Golgi apparatus of neurons, upon prion inoc-

ulation. These results identified intracellular

sites of PrPSc aggregation that had not been

visualized thus far (115), and provided a novel

and potentially extremely useful reagent for

the study of PrP aggregation.

PRION PATHOGENESIS:
LESSONS FROM THE MOUSE
MODEL

PrPC itself is involved in transporting prion

infectivity from peripheral sites to the CNS.

Adoptive transfer with wild-type bone mar-

row (BM) into Prnpo/o mice reconstitutes the

capability of the spleen to accumulate high

titers of prion infectivity up to 300 dpi (116,

117). However, reconstitution experiments

with wild-type BM into Prnpo/o mice were

insufficient to restore neuroinvasion. There-

fore, hematopoietic cells (e.g., B and T cells,

macrophages, and dendritic cells) facilitate the

transport of prions from peripheral entry sites

to secondary lymphoid organs, in which pri-

ons accumulate and/or replicate, although the

primary compartment for prion neuroinva-

sion appears to be nonhematopoietic because

it cannot be adoptively transferred by BM

reconstitution (116–118).

But how do prions reach the brain follow-

ing a natural route of exposure, for example,

via ingestion? And which cellular and molec-

ular preconditions enable efficient transport?

These questions were studied intensively in

vitro and in vivo: An in vitro study has shown

that microfold cells, specialized intestinal ep-

ithelial cells that transfer antigens including

pathogens through the epithelium, can trans-

port infectious prions from the apical to the

basolateral surface (119). Subsequently, prion

neural entry and transit to the CNS may oc-

cur with direct prion uptake by nerve endings

in the intestine (or spleen after an intraperi-

toneal exposure) and/or possibly following an

amplification phase in the lymphoid tissue;

Peyer’s patches are required for prion disease

development in the mouse (120). Upon in-

terference with lymphoid prion accumulation,

many studies have shown disruption and de-

lay in the development of prion disease (121,

122).

Some of the lymphoid players crucial to

peripheral prion accumulation have been re-

vealed. Clearly, functional FDCs are essential

(121, 123), but it is not entirely clear whether

they are the only site of lymphoreticular prion

replication or accumulation (116, 117). B lym-

phocytes are also necessary (118), as they pro-

vide maturation signals for FDCs. There is

an ill-characterized BM-derived cell popula-

tion that clearly supports prion replication

(117, 124), although this may not apply to

all prion strains (125). In addition, morpho-

logic evidence based on time-course studies

indicates involvement of the vagal nerve and

the sympathetic nervous system as routes of

peripheral prion transport to the CNS (126).

Glatzel et al. (127) have shown that the sym-

pathetic nervous system is essentially involved

in neuroinvasion: Mice with sympathectomy

show a significantly prolonged incubation pe-

riod, and transgenic mice overexpressing the

nerve growth factor transgene that have sym-

pathetic hyperinnervation of lymphoid organs
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show an accelerated incubation period after a

peripheral prion exposure, illustrating the sig-

nificance of these peripheral nerves in prion

pathogenesis.

In the mouse scrapie model, some forms

of immunodeficiency impair prion replica-

tion and delay disease development, illustrat-

ing the significant contribution of this early

lymphoid phase. For example, severe com-

bined immunodeficient mice, RAG-1−/−, and

µMT mice completely resist intraperitoneal

prion infection (118). However, replacement

of B lymphocyte populations, whether they

express PrPc or not, restores prion infectibil-

ity, possibly owing to the key role of mature B

lymphocytes in the FDC maturation by pro-

vision of tumor necrosis factor and lympho-

toxins. PrPSc heavily decorates FDC mem-

branes in secondary follicles of the spleen

(128), lymph node, tonsils, and Peyer’s patches

in several prion diseases, including vCJD,

scrapie, and CWD.

The importance of FDCs in peripheral

prion pathogenesis may be exploited for prion

prevention strategies. Inhibiting the lympho-

toxin beta receptor (LTβR) pathway in mice

and nonhuman primates by treatment with

LTβR-immunoglobulin fusion protein re-

sults in the disappearance of mature, func-

tional FDCs (129, 130). Indeed, treatment

with LTβR-immunoglobulin fusion protein

was found to impair peripheral prion patho-

genesis (121, 123, 131).

The detection of PrPSc in spleens of

sCJD patients (17) suggests that the inter-

face between cells of the immune system

and peripheral nerves might also be of rel-

evance in sporadic prion diseases. Indeed,

in mouse scrapie studies, there is no doubt

that the microarchitecture of lymphoid or-

gans crucially controls the efficacy of prion

neuroinvasion: Manipulation of the distance

between FDCs and major splenic nerves af-

fects the velocity of neuroinvasion (132). By

ablation of the CXCR5 chemokine recep-

tor, lymphocytes were directed toward spe-

cific microcompartments, which reduced the

distance between germinal-center-associated

FDCs and nerve endings (133). This resulted

in an increased rate of prion entry into the

CNS in CXCR5−/− mice, most likely ow-

ing to repositioning of FDCs in juxtaposi-

tion with highly innervated, splenic arterioles.

It remains to be determined whether the in-

creased rate of neuroinvasion results from a

passive diffusion of prions [e.g., released FDC

exosomes (134, 135)] or whether mobile cells

such as dendritic cells or B cells located in the

germinal center are involved in an active pro-

cess of transport. However, the cells involved

in early transport remain unclear. Some evi-

dence for the involvement of dendritic cells

has accrued (136). However, other mobile el-

ements, including budding viruses, could also

serve as vehicles of infectivity (137).

Because FDCs bind to opsonized antigens

via the CD21/CD35 complement receptors,

is complement involved in prion pathogen-

esis? Indeed, mice that lack various comple-

ment factors including C1q (138), or that have

been depleted of the C3 complement compo-

nent (139), enjoy enhanced resistance to pe-

ripheral prion inoculation. C1q was shown

to directly bind PrP in vitro (140). Human

studies also point to a possible role for mem-

bers of the classical complement cascade in

prion pathogenesis (141); however, their pre-

cise role in prion disease is unknown.

As proinflammatory cytokines and im-

mune cells are involved in lymphoid prion

replication (121, 125, 132, 142), we as-

sessed whether chronic inflammatory condi-

tions within nonlymphoid organs could affect

the dynamics of prion distribution. Indeed, in-

clusion body myositis, which is an inflamma-

tory disease of the muscle, was associated with

large PrPSc deposits in muscle (16). There-

fore, mice with nephritis, hepatitis, or pan-

creatitis were inoculated with mouse prions

(Rocky Mountain Laboratory strain) and were

found to accumulate prions in these otherwise

prion-free organs. The presence of inflam-

matory foci consistently correlated with the

upregulation of lymphotoxins α and β (LTs)

and the ectopic induction of PrPC-expressing

FDC cells (14).
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These data raised concerns that analogous

phenomena might occur in TSE-susceptible

ruminants. Indeed, we found that sheep with

natural scrapie infections and concurrent

mastitis harbored PrPSc in their mammary

glands (15), indicating that inflammatory

conditions induce accumulation of prions in

organs previously believed to be prion free.

Therefore, inflammation might indeed be a

license for prion replication in nonlymphoid

peripheral organs (Figure 4), and other orga-

nized chronic inflammatory disorders could

potentially be sites of prion accumulation and

replication.

In addition, it was hypothesized that in-

flammatory conditions could result in the

shedding of prions via excretory organs (e.g.,

kidney). To investigate this hypothesis, vari-

ous transgenic and spontaneous mouse mod-

els of nephritis were analyzed to ascertain

whether prions could be excreted via urine

(19). Indeed, prion infectivity was observed

in the urine of mice with both subclinical and

terminal scrapie, and with inflammatory con-

ditions of the kidney (19).

The genetic or environmental factors that

enable horizontal prion spread between hosts

have been perplexing. It is possible that the

horizontal spread of prions is mediated by se-

creted body fluids (e.g., urine, milk) derived

from potentially infectious secretory organs

(e.g., mammary gland, kidney). Placenta of in-

fected ewes could provide a source of prion

infectivity for horizontal transmission (143).

However, the set of data supporting the latter

hypothesis is scant at best.

Public health considerations mandate that

we should increase our understanding of the

altered prion tropism observed in ruminants

(e.g., sheep, cattle, goat, elk, and deer) and

the underlying mechanisms. Future experi-

ments should include an analysis of the effect

of other common chronic inflammatory dis-

orders (e.g., granulomatous diseases) in prion-

infected animals.

Does a chronic subclinical disease or a per-

manent carrier status occur in ruminants or in

humans? Evidence that such a carrier status

may be produced by the passage of the infec-

tious agent across species was first reported by

Race & Chesebro (144) and has been confirm-

ed by others (145, 146), at least for the pas-

sage between hamsters and mice. Chesebro

reported that mice inoculated with hamster

prions lived a long symptom-free life and did

not accumulate detectable PrPSc (35). PrPSc-

negative mouse brains were then injected into

naive mice, which had no clinical disease for

>650 days. The brains of the latter mice were

then passaged to hamsters and resulted in

rapid lethality. Therefore, the agent had repli-

cated silently for several years, and could be

adoptively transferred, in mice without induc-

ing any clinical signs or histopathology, but

maintained full virulence toward hamsters.

Immune deficiency can also lead to a simi-

lar situation in which prions replicate silently

in the body, even when there is no species bar-

rier (147). So the problem of animal TSEs

could be more widespread than is assumed and

may call for drastic prion surveillance mea-

sures in farm animals, in which healthy ani-

mals are tested as well as those with clinical

signs of disease. Moreover, people carrying

the infectious agent may transmit it horizon-

tally (148), and the risks associated with this

possibility can be addressed only if we know

more about how the agent is transmitted and

how prions reach the brain from peripheral

sites.

MECHANISTIC
UNDERPINNINGS
OF PRION STRAINS

The phenomenon of prion strains has in-

trigued scientists for decades. Prion strains

are distinguishable by stable incubation peri-

ods and the pattern of histopathologic lesions

within the brain of the same host species. The

protein only hypothesis has difficulty explain-

ing the finding that the propagation of dif-

ferent scrapie strains in mice are homozygous

in regard to their Prnp gene (30, 35): It sug-

gests that an incoming PrPSc strain can con-

vert the same PrP precursor into a likeness of
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Figure 4

Induction of tertiary follicles and prion replication competence in nonlymphoid organs. (a) Hypothetical
hierarchical cascade inducing the generation of tertiary follicles in nonlymphoid organs and possibly
giving rise to ectopic prion replication competence. Autoimmune diseases as well as chronic lymphocytic
inflammatory conditions have been demonstrated to induce prion replication competence in
nonlymphoid organs (green), whereas others have not been investigated (question mark). (b) Schematic
drawing of the events that contribute to the generation of tertiary follicles in response to an inflammatory
stimulus that results in the attraction and activation of lymphocytes and the upregulation of
lymphotoxins α and β (LTs). LTβ receptor positive (LTβR+) stromal precursor cells, activated upon
binding to LTs (LTα3 or LTα1β2) provided by lymphocytes, lead to the expression of homeostatic
chemokines and further LTs, generating a positive feedback loop that leads to the formation of tertiary
follicles containing follicular dendritic cells and other cells of the immune system. Reprinted by
permission from Macmillan Publishers Ltd: Nat. Rev. Microbiol. 4:765–75, copyright 2006.

itself, and that this alone can create distinct

disease phenotypes, varying in clinical signs,

organ tropism, and regions of prion accumu-

lation in the brain.

It is challenging, but maybe not impossi-

ble, to reconcile these intriguing data with

Prusiner’s protein only hypothesis: Epige-

netic, posttranslational strain characteristics
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of prions appear to dominate over the primary

prion protein sequence of the infected host.

The diversity of prion strains is largely be-

lieved to be due to conformational flexibility

of PrPSc. The host PrPSc structure is deter-

mined by both the PrPSc conformation in the

donor inoculum and limitations imposed by

the host primary PrP structure. Circumstan-

tial evidence suggests that strain phenotypes

may be encoded within different conforma-

tions of PrPSc with distinct properties, in-

cluding stability against chaotropic salts and

heat (149), the relative prevalence of the main

glycosylated moieties, and the size of the

PK-digested PrPSc. The strain-specific dif-

ferences in the size of PK-digested PrPSc

molecules are thought to result from individ-

ual conformations, leading to exposure of dis-

tinct cleavage sites. This was first suggested

by experiments with transmissible mink en-

cephalopathy (TME), indicating that prion

diversity could indeed be conferred by a sin-

gle protein with varying three-dimensional

structures (150). Although great strides have

been made toward understanding the molec-

ular origin of strains, the final proof that

conformational variants of PrPSc represent

the biological basis of prion strains is still

lacking.

Recent in vivo evidence indicated that a

similar phenomenon of conformational vari-

ants may occur in Alzheimer’s disease (151).

Here the existence of Aβ strains that can seed

and accelerate aggregation and Aβ pathol-

ogy was posited. These intriguing observa-

tions support the hypothesis that the patho-

genetic mechanisms operating in Alzheimer’s

disease and in prion diseases have more in

common than we often appreciate (152). Per-

haps future studies will address whether dif-

ferent Aβ strains with distinct biochemical or

neuropathological characteristics occur in hu-

mans. Can multiple prion strains coexist and

effect prion replication? Two subtypes of spo-

radic CJD have recently been demonstrated

to coexist in humans (62). Experimental stud-

ies have shown that when two strains infect

the same host, one strain can impede the abil-

ity of the second strain to cause disease (153).

Bartz and colleagues (154) recently suggested

that this might be caused by the suppression of

prion replication of the second strain. Strain

features are useful for tracing prion infections

between species. When transmitted to pri-

mates, BSE causes lesions strikingly similar

to that of vCJD (155, 156). BSE is most likely

transmissible to humans too, and strong cir-

cumstantial evidence (157–159) suggests that

BSE is the cause of vCJD, which has claimed

more than 200 lives in the United Kingdom

(3, 160), as well as a much smaller number in

some other countries (161).

NATURAL TRANSMISSIBLE
SPONGIFORM
ENCEPHALOPATHIES:
WHAT IS NEW?

Cattle Prions

More than a few surprises have come from

further investigations of prion strains in

field cases of TSEs. Until recently, BSE

was believed to be associated with one sin-

gle prion strain, classified by an exclusive

and remarkably stable biochemical profile of

PrPSc. However, distinct molecular signa-

tures have recently been discovered through

the large-scale screening of cattle mandated

by European authorities in the context of

BSE surveillance. These atypical profiles fall

into either of two groups: H-type cases of

protease-resistant fragments with a molec-

ular weight higher than BSE, and bovine

amyloidotic spongiform encephalopathy, or

L type (lower) (162). To test whether these

different biochemical and histopathological

properties correspond to distinct strains, the

Laude laboratory transmitted H-type-PrPSc

isolates from French cattle into transgenic

mice expressing bovine or ovine PrP (163).

The recipient mice developed neurological

signs exhibiting strain-specific features clearly

distinct from that of the classical BSE agent,

providing pivotal evidence that the underly-

ing strains are distinct.
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Atypical Sheep Scrapie

In 1998, aberrant cases of sheep scrapie were

described in Norway and the strain was newly

classified as Nor98 (164). Active European

Union surveillance later revealed additional

cases of atypical scrapie in several other coun-

tries (165, 166). Sheep infected with Nor98,

or atypical scrapie, accumulated PrPSc pri-

marily in the cerebellum and cerebral cor-

tex rather than in the brainstem target in the

classical strain (167). Additionally, on western

blot analysis of atypical scrapie cases, an ad-

ditional small-molecular-weight (10–12 kDa)

PrP fragment appeared after PK digestion and

was shown by epitope mapping to lack both

N and C termini of PrP (167, 168). Further-

more, atypical scrapie cases occurred not only

in the classical scrapie-susceptible genotypes

(A136 R154 Q171), but also in genotypes

associated with high resistance to classical

scrapie (A136 R154 R171) (165, 166). Were

these atypical scrapie cases also infectious? In

2001, atypical scrapie cases were shown to be

transmissible prion diseases after inoculated

ovine PrP-expressing transgenic mice devel-

oped disease and prion aggregates (169). In

the meantime, several countries appear to be

reporting extremely high incidences of atyp-

ical scrapie, and in fact atypical scrapie ap-

pears to be the rule rather than the exception

in some geographical areas.

Chronic Wasting Disease

Among all animal prion diseases, CWD of

cervids is likely the most efficiently trans-

mitted. CWD infections occur in mule deer

(Odocoileus hemionus), white-tailed deer (O.

virginianus), Rocky Mountain elk (Cervus ela-

phus nelsoni) (170), and moose (Alces alces shi-

rasi) (171). Prevalence can reach as high as

30% in dense, free-ranging deer populations

and nearly 100% in captive animals (171).

Hypotheses for CWD transmission range

from spread via direct contact to exposure

through grazing in areas contaminated by

prion-infected secretions, excretions (saliva,

urine, feces), tissues (placenta), or decom-

posed carcasses. Insightful experimental stud-

ies have recently revealed two key findings:

(a) Saliva from CWD-infected deer can trans-

mit disease (18), and (b) CWD-infected car-

casses allowed to decay naturally in confined

pastures can lead to CWD infections in cap-

tive deer (172). Additionally, the abundant

CWD-prion accumulation within lymphoid

tissues may also lead to CWD prion buildup

in nonlymphoid organs with lymphoid folli-

cles, as was recently shown in kidney, poten-

tially shifting shedding routes (173). It is un-

known whether other types of inflammation,

such as the granulomatous inflammation in

the intestine seen in Johne’s disease (Mycobac-

terium avium subsp. paratuberculosis; affects ru-

minants, including deer and elk) or parasitic

inflammation, could lead to or perhaps in-

crease prion excretion by fecal routes. The

environmental prion contamination in CWD

underscores the difficulties of CWD disease

management. Within North America, CWD-

infected deer and elk have been detected in 14

states and two Canadian provinces (170, 174,

175).

CWD surveillance in Europe has been

more limited. However, in Germany, a to-

tal of 7300 captive and free-ranging cervids

were tested for CWD with no sign of infection

(176). Reindeer or caribou (Rangifer tarandus),

from North America or Northern Europe re-

spectively, have a highly homologous prion se-

quence compared with mule deer and thus are

likely susceptible to CWD. Other European

cervids such as moose and red deer (C. elaphus)

are also expected to be CWD susceptible.

The deer and elk primary protein struc-

tures are highly conserved, as seen in other

mammals. Interestingly, a polymorphism at

codon 225S/F may influence CWD sus-

ceptibility in mule deer. When comparing

the frequency of genotypes among CWD-

negative and -positive deer (n = 1482), the

odds that a CWD-infected animal was 225SS

was 30 times greater when compared with

225SF, whereas the frequency of 225SF/FF

genotypes in CWD-negative deer was 9.3%,

but only 0.3% in CWD-positive deer (177).
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Additionally, elk have a polymorphism at

codon 132 (M/L) of Prnp, corresponding to

polymorphic codon 129 (M/V) in humans.

Elk expressing 132ML and 132LL Prnp were

reported to be overrepresented among elk

with CWD when compared with uninfected

controls (178), and 132LL elk experimentally

infected with CWD have resisted infection

for at least four years, whereas 132MM or

132ML elk (n = 2 each) developed termi-

nal clinical prion disease by 23 or 40 months

post inoculation, respectively, confirmed by

immunohistochemistry and western blotting

for PrPSc (179). White-tailed deer also have

Prnp polymorphisms that may affect their

CWD susceptibility. A reduced susceptibility

to CWD was linked to a G96S and a Q95H

polymorphism in a study comparing allelic

frequencies from CWD-positive and CWD-

negative free-ranging Wisconsin white-tailed

deer (180).

PRION STRAINS AND ORGAN
TROPISM

Definitions of prion strains ease nomencla-

ture and classification but certainly do not ex-

plain why distinct strains have different organ

tropisms. Indeed, some prion strains favor the

CNS as a primary target organ but show low

abundance or absence in secondary lymphoid

organs (e.g., classical BSE, with gut-associated

lymphoid tissue being PrPSc positive over a

transient period of time). In contrast, other

prion strains can be detected in the CNS but,

in addition, exist to high extent in secondary

lymphoid organs (e.g., vCJD, CWD, scrapie)

(181). What defines the tropism of a prion

strain? One might speculate that tropism is

defined by the tertiary and quarternary struc-

ture of prions leading to binding or interac-

tion with different molecules (e.g., receptors)

and therefore different cells. It may also be

possible that cellular binding and uptake of

prions remains unaltered, but that efficient

conversion is restricted to those particular

cells that contain a cofactor compatible with

the respective strain. This would necessitate

that cofactors supporting prion conversion of

distinct strains exist in a particular cell.

Bartz and colleagues (182) analyzed the

role of prion infection of lymphoid tissues in

neuroinvasion following oral and intraperi-

toneal (i.p.) inoculation with the hyper (HY)

and drowsy (DY) prion strains of TME. DY

TME agent infectivity was not detected in

spleen or lymph nodes following i.p. or oral

inoculation. Moreover, no clinical disease was

observed following i.p. inoculation. In con-

trast, inoculation of the HY TME agent by the

i.p. and oral route resulted in splenic and nodal

prion replication, inducing clinical scrapie. To

clarify the role of the lymphoid tissue in neu-

roinvasion, the HY and DY TME agents were

inoculated into the tongue, which is highly

innervated and commonly shows lesions in ru-

minants. Following intratongue inoculation,

the DY TME agent induced prion disease,

with deposits both in the tongue and brain-

stem nuclei that innervate the tongue. No

PrPSc was found in the spleen or lymph nodes.

These data support the hypothesis that the

DY TME agent can spread from the tongue

to the brain along cranial nerves without

requiring agent replication in the lymphoid

tissue.

A major challenge in studying various

prion strains from cattle, sheep, goats, or hu-

mans is to find the appropriate, sensitive recip-

ient bioassay, in which the respective strain of

interest or even various strains can be prop-

agated. In most cases, prion transmission of

distinct species (e.g., human prions into ham-

ster) is restricted by the species barrier, pre-

venting the characterization of, for example,

human or ovine prion strains in mouse mod-

els. Therefore, prionologists expressed PrPC

proteins of various species in transgenic mice

to enable transmission or adaptation experi-

ments (183, 184). This worked very well in

many instances of autologous PrP expression,

for example, ovine or human PrP (185, 186).

Furthermore, reduction of species barrier was

shown to be facilitated by high expression lev-

els of heterologous PrP (7). A recent study

by the Agrimi group identified an appropriate
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rodent model, the bank vole (Clethrionomys

glareolus), for efficient primary prion trans-

mission of CJD isolates (187). Voles infected

with genetic and sCJD isolates reproduced

strain-specific neuropathology and accumu-

lated PrPSc with biochemical properties sim-

ilar to the human counterpart. Adaptation of

genetic CJD isolates to voles showed little

or no evidence of a transmission barrier, in

contrast to the striking barriers observed dur-

ing the transmission of mouse, hamster, and

sheep prions to voles. This is highly interest-

ing because, although low prion protein se-

quence homology between man and vole was

detected, transmission efficiency was com-

parable to that reported in transgenic mice

carrying a human prion protein (188). Fur-

ther experiments in this direction could in-

crease our understanding in how sequence and

three-dimensional structure and maybe co-

factors control species barrier or support the

propagation of distinct strains.

FUTURE DIRECTIONS

As discussed in this work, a lot of progress

has been accomplished in the identification

of prion strains as well as in the understand-

ing of the neurotoxic mechanisms of prions.

Although this is extremely encouraging, the

molecular basis for neurodegenerative pro-

cesses observed in prion diseases is poorly un-

derstood. The development and appropriate

use of new tools and technologies enabled pri-

onologists in recent years to answer a couple

long-standing key questions in the field. For

example, analysis of prion aggregates by light

scattering and nondenaturing gels defined the

size of the most infectious prion particle (113).

So what are the open questions of the prion

field? Some of the most important issues in

the field are to understand how neurotoxic-

ity is induced by the prion agent and why it

is not toxic to cells of the immune system.

Another emerging aim is to understand prion

conversion mechanisms and how strain infor-

mation is maintained and transmitted. What

are the mechanisms that define the tropisms of

prion strains? What is the physiological func-

tion of PrPC? And finally, the holy grail of all

questions in the prion field, what is the ex-

act nature of the prion agent? The ability to

answer these questions in the future will rely

mainly on the quality of the tools and tech-

nologies available to the prion field. As the

last years have shown, prionology, a field of

interdisciplinary research attracting scientists

from many different fields, will move ahead to

resolve some of the most important questions

of the prion riddle.
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