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First published October 19, 2016; doi:10.1152/ajprenal.00485.2016.—The kid-
ney collecting duct is an important renal tubular segment for regulation of body
water homeostasis and urine concentration. Water reabsorption in the collecting
duct principal cells is controlled by vasopressin, a peptide hormone that induces
the osmotic water transport across the collecting duct epithelia through regu-
lation of water channel proteins aquaporin-2 (AQP2) and aquaporin-3 (AQP3).
In particular, vasopressin induces both intracellular translocation of AQP2-
bearing vesicles to the apical plasma membrane and transcription of the Aqp2
gene to increase AQP2 protein abundance. The signaling pathways, including
AQP2 phosphorylation, RhoA phosphorylation, intracellular calcium mobiliza-
tion, and actin depolymerization, play a key role in the translocation of AQP2.
This review summarizes recent data demonstrating the regulation of AQP2 as
the underlying molecular mechanism for the homeostasis of water balance in
the body.
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Body water homeostasis is mainly established by the kidney
function, such as tubular reabsorption of water and sodium
through water channel proteins (aquaporins: AQPs) and so-
dium cotransporters (3, 34, 58, 61, 82, 98). As water can slowly
diffuse through biomembranes composed of lipid bilayers, all
membranes exhibit some degree of water permeability (27).
Nonetheless, the plasma membranes of the renal tubular epi-
thelia have distinctly high water permeability for water trans-
port. Water reabsorption in the kidney tubule depends on the
driving force (i.e., high interstitial osmolality/tonicity) and
osmotic equilibration of water across the tubular epithelia (i.e.,
high osmotic water permeability of the membrane). The ma-
jority of fluid filtered in the glomerulus is constitutively reab-
sorbed in the proximal tubules and descending thin limbs (60,
115). The subsequent renal tubular segments, i.e., ascending
thin limbs, thick ascending limbs, and distal convoluted tu-
bules, are relatively water impermeable and hence the tubular
fluid could be delivered into the connecting tubules and col-
lecting ducts (11, 120).

The connecting tubule and collecting duct are important
tubular segments for the regulation of body water homeostasis,
where vasopressin regulates water reabsorption (24, 59, 121,
127, 128). Vasopressin is a peptide hormone that controls
plasma osmolality and extracellular fluid volume. It is synthe-
sized in the hypothalamus, stored and released from the neu-
rohypophysis, and has a physiological role in the kidney
connecting tubules and collecting ducts via vasopressin V2

receptor (V2R) (58, 59). Epithelial water permeability in the
collecting duct principal cells is low in the absence of vaso-
pressin stimulation, but it increases substantially to the high
levels, when the principal cells are stimulated by vasopressin.
Vasopressin binds to the G protein-linked V2R in the basolat-
eral plasma membrane and promotes osmotic water reabsorp-
tion across the epithelia of the collecting duct via osmotic
equilibrium with the hyperosmotic interstitium (64, 97, 98).
Previously, expression of V2R mRNA was found in medullary
and cortical thick ascending limb, macula densa, distal convo-
luted tubule, connecting tubule, and cortical and medullary
collecting duct in rat, mouse, and human kidney (23, 90). In the
present review, we mainly focused on the short-term regulation
of water channel protein aquaporin-2 (AQP2) through AQP2
phosphorylation and intracellular trafficking of AQP2, which
are induced by vasopressin stimulation in the kidney collecting
duct principal cells.

Vasopressin-Regulated AQP2

Aquaporin is water channel protein that transports water
molecules across the biomembrane (109, 110). In particular,
AQP2 is the critical water channel protein for vasopressin-
mediated water reabsorption, which is localized in the kidney
connecting tubules and collecting ducts (29, 121). Vasopressin
induces a rapid increase of the osmotic water permeability in
the collecting duct principal cells by promoting the transloca-
tion or trafficking of AQP2 between an intracellular reservoir
in vesicles and the apical plasma membrane, i.e., short-term
regulation of AQP2 (10, 93, 145, 153). V2R-mediated stimu-
lation of adenylyl cyclases (ACs), elevation of cAMP, and
activation of protein kinase A (PKA) are the principal signaling
pathways for triggering both the subsequent increases of AQP2
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trafficking and AQP2 protein abundance (17, 64, 98, 99, 156;
summarized in Fig. 1). AC6 is the principal AC mediating
these responses, as only AC6-deficient mice have urine con-
centration defects (54, 55, 118, 122). However, cAMP-inde-
pendent mechanisms for AQP2 trafficking also exist, as previ-
ously demonstrated, e.g., stimulation of prostanoid receptors
EP2 and EP4 and short-term exposure to peroxisomal prolif-
erator-activated receptor subtype �-agonist (102, 111).

In the renal collecting duct cells without vasopressin stim-
ulation, AQP2 is present mainly in the recycling endosome
where AQP2 and Rab11 proteins are colocalized (4, 91). In
contrast, when the collecting ducts are stimulated by vasopres-
sin, AQP2 is translocated to the apical plasma membrane,
associated with an increase of osmotic water permeability (97).
Nevertheless, AQP2 was also found at the basolateral plasma
membrane, as previously demonstrated in rats with lithium-
induced nephrogenic diabetes insipidus (NDI) and normal rats
after aldosterone treatment (19, 96). Moreover, the AQP2
water channel is not only just for water moving but also
involved in cell migration and epithelial morphogenesis (13).
The actions of vasopressin are accompanied by the changes in
AQP2 phosphorylation at four different serine sites (S256,
S261, S264, and S269) in the carboxy terminus (40, 41, 81).
On the contrary, long-term regulation or adaptation of AQP2 is
presented by changing AQP2 protein abundance (98). Recently
Schenk et al. (129) quantified vasopressin-induced changes in
the nuclear proteome of cortical collecting duct cells by large-
scale proteomics profiling and demonstrated a number of
transcription factors that have putative binding sites in the

5=-flanking region of the gene coding for the AQP2. In addi-
tion, nuclear receptors affecting AQP2 expression are also
recently summarized (160). When vasopressin stimulation is
removed, endocytosis and intracellular degradation of AQP2
could occur (49, 66). AQP2 degradation was inhibited by either
MG132 (a proteasome inhibitor) or chloroquine (lysosomal
pathway blocker) treatment in primary cultured inner medul-
lary collecting duct (IMCD) cells of the rat kidney (66). This
finding suggests that ubiquitination and subsequent proteo-
somal and/or lysosomal degradation of AQP2 could also be
important in regulation of AQP2 abundance (49).

In clinical conditions, a number of previous studies demon-
strated that dysregulation of AQP2 plays a critical role in the
pathophysiology of both water-losing disorders with poly-
uria and water retention disorders with dilutional hypona-
tremia (6, 7, 58, 62, 64, 98, 100). Moreover, mutations in the
AQP2 gene lead to autosomal recessive NDI in human
patients (71, 87, 88, 147).

Role of cAMP/PKA Pathway on AQP2 Phosphorylation and
Intracellular Trafficking of AQP2

The signaling transduction pathways involved in the apical
trafficking or endocytosis of AQP2 and the changes of AQP2
protein abundance have been extensively studied (summarized
in Table 1) (25). In the process of exocytosis and endocytosis
of AQP2, several phosphorylation sites in the carboxy terminus
of AQP2 (40, 81–83) are targeted by various kinases. Among
them, cAMP and PKA signaling pathways have widely been
studied for AQP2 trafficking. Vasopressin binding to the G
protein-linked V2R stimulates ACs, leading to elevation of
cAMP levels and activation of PKA. This leads to the recruit-
ment of PKA to AQP2-bearing vesicles by PKA-anchoring
proteins (AKAPs) (56). Consistent with this, AQP2 is colocal-
ized with AKAP 18 delta in the intracellular vesicles (38).
Moreover, rolipram treatment, an inhibitor of cAMP-specific
phosphodiesterase-4D, increases AKAP-tethered PKA activity
in the AQP2-bearing vesicles and hence AQP2 is subsequently
translocated to the apical plasma membrane (134). A recent
study demonstrated that AKAP220 also interacts with the
Rho-family GTPase effector protein IQGAP and enhances the
actin polymerization (151). Accordingly, AKAP220 null mice
revealed that RhoA and AQP2 accumulate at the apical mem-
brane domains of the renal collecting duct cells with inappro-
priate water reabsorption (151).

Recruitment of PKA to the AQP2-bearing vesicles results in
phosphorylation of AQP2. One of phosphorylated residues of
AQP2 is serine 256 (pS256-AQP2), part of consensus motif
(RRQS) for phosphorylation by PKA (28, 51). In the kidney
collecting duct principal cells, the observed immunolocaliza-
tion of pS256-AQP2 at the plasma membrane and intracellular
vesicles (17) suggests that it is constitutively phosphorylated
even in response to low circulating vasopressin levels. Vaso-
pressin stimulates the translocation of AQP2 from the intracel-
lular vesicle to the apical plasma membrane, where AQP2
exists as a tetramer, with minimally three monomers in an
AQP2 tetramer to be phosphorylated (48). Semiquantitative
immunoelectron microscopy of AQP2 in rat kidney demon-
strated that 11% of total AQP2 observed in the apical plasma
membrane in the absence of dDAVP stimulation was increased
to 25% in the apical plasma membrane following dDAVP
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Fig. 1. Summary of intracellular molecular mechanisms for aquaporin 2
(AQP2) regulation in renal collecting duct cells. Water permeability of col-
lecting duct cells is regulated via AQP2 under various physiological and
pathophysiological conditions through 2 mechanisms. Short-term regulation:
trafficking between intracellular vesicles and plasma membrane is associated
with posttranslational modification of AQP2 and vesicle-transporting systems
dependent on cell signaling; long-term regulation: change of protein abun-
dance is regulated by transcription and mRNA/protein stability. PTM, post-
translational modification.
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injection (152). Importantly, vasopressin or forskolin treatment
failed to induce translocation of AQP2 when AQP2-S256A
mutant (from Ser to Ala) was transfected to LLC-PK1 cells
(28, 51). Moreover, in a mouse strain with an amino-acid
substitution at S256 (from Ser to Leu) for preventing phos-
phorylation, congenital progressive hydronephrosis, polyuria,
and urinary concentrating defect were observed, in which
vasopressin treatment was not effective (78).

Phosphoproteomics study in the rat IMCD cells has deter-
mined that AQP2 is further phosphorylated on S264 and S269
in the carboxy terminus after vasopressin stimulation (41).
While AQP2 trafficking is mainly associated with S256 phos-
phorylation (51), S269 phosphorylation was exclusively found
in the apical plasma membrane of the collecting duct cells and
was dependent on the prior phosphorylation of S256 (40).
Semiquantitative analysis revealed that phosphorylation of
S269 was increased from 3 to 26% of total AQP2 in rat IMCD
cells after treatment of dDAVP (152). S269 phosphorylation
reduces K270 polyubiquitination-mediated AQP2 endocytosis,
which could accumulate AQP2 in the plasma membrane (79).
Moreover, interaction of AQP2-S269D (mutant protein mim-
icking S269 phosphorylation) with proteins involved in the
endocytosis, e.g., Hsc70 and dynamin, was decreased (117),
suggesting that S269 phosphorylation may play a role in AQP2
retention in the apical plasma membrane. The role of pS264-
AQP2 is unknown, but immunohistochemistry revealed that
pS264-AQP2 was translocated to both the apical and basolat-
eral plasma membrane of the collecting duct cells in Brattle-
boro rats after dDAVP treatment in a time-dependent manner
(26). In addition, pS264-AQP2 was seen in early endosomes
but not in lysosomes during withdrawal of vasopressin stimu-
lation, suggesting that phosphorylation of AQP2 could affect
intracellular compartmentalization of AQP2 (26).

In contrast, vasopressin decreases S261 phosphorylation by
decreasing the activity of MAP kinases (92, 119), which was
associated with reduced stability of AQP2 (92). It was also
demonstrated that phosphorylation of S261 stabilizes AQP2
ubiquitination and intracellular localization (142). These re-
sults suggest that vasopressin-induced AQP2 accumulation in
the plasma membrane is likely to be regulated by both AQP2
phosphorylation and protein-protein interactions.

Role of Phosphatidylinositol-3-Kinase/Akt, GSK3, and
Cyclin-Dependent Kinases on AQP2 Phosphorylation and
Intracellular Trafficking of AQP2

cAMP treatment in rat kidney IMCD cells increased phos-
phorylation of AQP2 at S256, S264, and S269, whereas the
phosphorylation was inhibited by the PKA inhibitor H-89 (40).
Interestingly, when a nonphosphorylated synthetic peptide cor-
responding to the AQP2 carboxy terminus was incubated with
PKA in the presence of ATP in vitro, phosphorylation at S256
occurred, whereas phosphorylation at the other three sites
(S261, S264, and S269) was not observed (40). PKA, there-
fore, phosphorylates S256; however, it is unlikely that PKA
phosphorylates the other three serine sites directly (40). This
finding suggested that other kinases could also be involved in
the phosphorylation of AQP2. Bradford et al. (9) proposed
probable kinase candidates for the S256 phosphorylation by
integrating information extracted from multiple experimental
data sets that had been conducted in rat IMCD cells. Among
total kinases that were evaluated, top likely kinases were
Ca2�/calmodulin-dependent protein kinase II (CAMK2) and
protein kinase B (Akt) as well as PKA. These vasopressin-
responsive kinases were also suggested by other previous
experimental studies (52, 108, 119). However, it should be
emphasized that while other kinases are involved as men-
tioned, PKA is the principal kinase for AQP2 trafficking and
body fluid homeostasis, which was also demonstrated by a
study exploiting a dominant negative PKA regulatory subunit
(RI�B) to disrupt kinase activity in vivo (30). The results
showed that dehydration in RI�B-expressing mice did not
significantly increase AQP2 protein expression levels and urine
was not fully concentrated (30).

G protein-coupled receptor (GPCR)-mediated signaling
pathways, including V2R-signaling pathway, are complex and
multiple downstream signaling pathways could be associated,
e.g., the cross talk between cAMP/PKA signaling pathway and
phosphatidylinositol-3-kinase (PI3K) pathway (104). Dimer of
G protein subunit-� and -� is associated with PI3K signaling
pathway (67), suggesting that the PI3K/Akt signaling pathway
is likely to play a role in V2R-mediated AQP2 trafficking. An
in vitro study on recycling mechanism of AQP2 in Madin-

Table 1. Intracellular signaling pathways for AQP2 trafficking or endocytosis

Pathways Protein Modification of AQP2* Reference

Trafficking
cAMP/PKA Phosphorylation (S256) Christensen et al. (17)

Katsura et al. (51)
Intracellular calcium (Ca2�) mobilization (calcium-calmodulin-mediated

myosin activation) Phosphorylation (S256) Chou et al. (16)
PI3K-dependent activation of AKT Phosphorylation (S256) Pisitkun et al. (108)
AS160 phosphorylation N.A. Kim et al. (52)
RhoA-dependent cytoskeletal dynamics Phosphorylation (S256) Tamma et al. (139)

Endocytosis
Clathrin-mediated endocytosis Sun et al. (136)
Ubiquitination of AQP2 Ubiquitination (K270) Kamsteeg et al. (49)
PGE2 Phosphorylation (S256) Olesen et al. (103)

Phosphorylation (S264)
Phosphorylation (S269) Zelenina et al. (159)

Dopamine Ubiquitination (K270) Boone et al. (8)
Phosphorylation (S261) Nejsum et al. (94)

AS160, Akt substrate of 160 kDa; AQP2, aquaporin-2; PGE2, prostaglandin E2; PI3K, phosphatidylinositol-3-kinase. *Protein modification of AQP2 is found
within the pathway.
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Darby canine kidney (MDCK) cells stably expressing human
AQP2 revealed that apical AQP2 was retrieved to subapical
storage compartment through EEA1-positive endosomes
within 90 min after withdrawal of forskolin (137). PI3K
inhibitors, wortmannin and LY294002, markedly prolonged
this retrieval process to 120 min (137). Moreover, vasopressin
stimulates the PI3K/Akt signaling pathway in renal collecting
ducts. For example, studies on global network of kinases
associated with vasopressin signaling in IMCD tubule suspen-
sion showed that Akt phosphorylation (T308 and S473) was
increased within 5 min of vasopressin stimulation, resulting in
Akt activation (108). Akt signaling was also stimulated by both
cAMP and increased osmolality, even in the absence of vaso-
pressin stimulation (108). Consistent with this, immunoblot-
ting and fluorescence resonance energy transfer (FRET)-based
imaging analysis in mouse collecting duct cell lines demon-
strated an increase of the Akt phosphorylation (S473) and Akt
activity within 10 min of dDAVP stimulation (52).

Although these arguments provide an evidence of vasopres-
sin-induced PI3K/Akt signaling in the renal collecting duct
cells, direct regulation of AQP2 phosphorylation sites and the
intersected components at the downstream of cross talk be-
tween cAMP/PKA and PI3K/Akt signaling pathways still need
to be explored. In addition to the collecting ducts, vasopressin
acting through the V2R can also stimulate PI3K pathways in
the distal convoluted tubule and subsequently activate AC and
increase cAMP (14).

AQP2 trafficking to the apical plasma membrane was de-
creased in the lithium-induced nephrogenic diabetes insipidus
(NDI) (63, 74). Lithium is an inhibitor of GSK3�, which is a
crucial component of Wnt signaling pathway (114, 133). A
proteomics study demonstrated that lithium-induced inactiva-
tion of GSK was associated with intracellular accumulation of
�-catenin, which could affect the Wnt signaling cascade (95).
Dysfunction of GSK3, two isoforms (GSK3� and GSK3�), by
gene deletion and inhibitor showed reduction of urine concen-
trating ability, accompanied by decreased expression of AQP2
and pS256-AQP2 (101, 113). Since diminution of AC activity
was observed in GSK3�- or GSK3�-knockout mice, further
studies are required to figure out the cross talk between GSK
activity and AQP2 phosphorylation. Although several studies
proposed potential roles of components of Wnt signaling in
vasopressin-mediated AQP2 regulation (46, 73, 113, 129),
regulatory mechanisms associated with GSK family of Wnt
signaling in AQP2 trafficking have not been well elucidated
yet.

Cell cycle-related proteins could be involved with vasopres-
sin signaling of collecting duct cells due to rapid turnover of
protein abundance (126). Accumulation of pS256-AQP2 at the
cell surface was observed when pharmaceutical inhibitor of
cyclin-dependent kinases (CDKs) was treated in MDCK cells
(119, 141). Increase of apical AQP2 by CDK inhibitor is likely
to be induced by diminished activity of protein phosphatase 2A
(PP2A), which is counteracting protein of CDK as well as
intracellular Ca2� level. In addition to the involvement of
PP2A in AQP2 regulation, protein phosphatase 2B (PP2B), one
of components of AKAPs-containing multiple complex has
also been proposed to dephosphorylate endosome-bounded
AQP2 (44). A recent study demonstrated that multiple phos-
phatases are involved in the subcellular localization of phos-
phorylated AQP2, and particularly PP1/PP2A plays a role in

the AQP2 phosphorylation and AQP2 expression in the apical
plasma membrane (116). Comprehensive understanding of the
effects of multiple kinases under different conditions, such as
activity and specificity against each phosphorylation site of
AQP2 and the interaction with other proteins, could provide
information for better understanding of the phosphorylation-
mediated AQP2 trafficking.

Role of Cytoskeleton and Small GTPase on AQP2
Phosphorylation and Intracellular Trafficking of AQP2

Earlier observation in toad urinary bladder demonstrated that
microtubular network was involved in the vasopressin-stimu-
lated translocation of particle aggregates from the cytoplasm to
the membrane (89). The cytoskeleton has been demonstrated to
be involved in the AQP2 trafficking in kidney collecting duct
cells. This was demonstrated by the findings showing that
chemical disruption of microtubules inhibited the vasopressin-
induced osmotic water permeability in both the toad bladder
and the mammalian collecting duct (21, 106, 107, 124). Intra-
cellular translocation of vesicles occurred along microtubules
is likely to be driven by microtubule-associated motor proteins
(130). Consistent with this, the motor proteins dynactin and
dynein were present in the immunoisolated AQP2-bearing
vesicles (76), suggesting that microtubule motor proteins play
a role in AQP2 trafficking. Actin-based motor proteins, e.g.,
myosin 1C, nonmuscle myosins IIA and IIB, and myosin VI
were identified by proteomics analysis in AQP2-immunoiso-
lated vesicles from IMCD suspension of rat kidney (4). A
recent proteomics study in the apical plasma membrane of the
mouse cortical collecting duct cells further highlights the role
of the actin cytoskeleton following vasopressin (70). In addi-
tion, Rab proteins control vesicle trafficking via regulation of
cytoskeleton-based motor proteins (4, 45, 47, 135).

Vasopressin- or forskolin-stimulated AQP2 trafficking is
associated with depolymerization of actin cytoskeleton (20, 36,
132). Okadaic acid, a phosphatase inhibitor, induced actin
depolymerization and AQP2 translocation to the plasma mem-
brane in CD8 cells, which were similar to the findings induced
by forskolin (144). Interestingly, okadaic acid-induced actin
depolymerization and AQP2 translocation were visible in CD8
cells despite pretreatment of H89 (a selective PKA-inhibitor)
(144). This suggests that the reorganization of the actin net-
work per se plays an important role in the enhancement of
AQP2 translocation to the plasma membrane, even though
PKA pathway was inhibited. Consistently, in primary cultured
IMCD cells of rat kidney, arginine vasopressin-induced redis-
tribution of AQP2 to the plasma membrane was observed when
microtubules were depolymerized by nocodazole (148). Inter-
estingly, perinuclear positioning of AQP2 was prevented by
the depolymerization of microtubules in the cells during AQP2
internalization after removal of vasopressin stimulation (148).
This suggests that microtubules play a role in the regulation of
AQP2 compartmentalization.

The Rho GTPases are small GTP-binding proteins, includ-
ing RhoA, Rac1, and Cdc42 proteins, and play a role in a
variety of cellular functions such as cytoskeleton organization
and cell migration. Small GTPase Rho affects AQP2 traffick-
ing via reorganization of the actin network (139). For example,
in primary cultured rat IMCD cells, inactivation of Rho by
Clostridium toxin or Rho-kinase inhibitor treatment induced
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both actin depolymerization and translocation of AQP2 to the
membrane despite an absence of vasopressin (46). Conversely,
transfection of these cells with a constitutively active RhoA
mutant induced formation of actin stress fibers and inhibited
the cAMP-induced AQP2 translocation (46). The data indicate
that active Rho is likely to act as an inhibitor of AQP2
trafficking through its induction of actin polymerization.

Vasopressin could inactivate RhoA by serine phosphoryla-
tion and increased formation of the Rho-GDP dissociation
inhibitor (RhoA-RhoGDI) complex, resulting in actin depoly-
merization. Based on the differential centrifugation methods
for isolating AQP2-bearing vesicles (31, 32, 42, 75), proteom-
ics analysis in native IMCD cells isolated from rat kidneys and
cultured collecting duct cells identified the proteins associated
with intracellular vesicles (4, 66, 125, 154, 155). Exposure to
vasopressin for 30 min induced a change of AQP2 expression
ratio between 17,000-g plasma membrane fractions and
200,000-g intracellular vesicle fractions (66, 125). The in-
creased expression of AQP2 in 17,000-g membrane fractions
by vasopressin stimulation was due to the activation of exo-
cytic processes in which myosin and GTPase proteins were
involved (91). Vasopressin induced actin depolymerization
(20), which allowed AQP2-bearing vesicles to access to the
apical plasma membrane through inhibition of the GTPase
activity of the Rho family proteins, Rac/Cdc42 exchange factor
complex, and Rho A (57, 138). On the other hand, liquid
chromatography-mass spectrometry/mass spectrometry (LC-
MS/MS) proteomics analysis in AQP2-bearing vesicles iso-
lated from 200,000-g fractions of rat IMCD cells identified
several Rab GTPases, Rab4, Rab5, Rab7, Rab11, Rab18,
Rab21, and Rab25 as the Rab proteins enriched in AQP2-
bearing vesicles (4). Existence of various Rab GTPases in the
fractions containing AQP2-bearing vesicles indicates that
AQP2-bearing vesicles are distributed from early endosomes to
recycling endosomes (5, 149).

Both clathrin- and caveolin-mediated endocytosis were ex-
amined for AQP2 translocation. AQP2 is located in the clath-
rin-coated pits in the apical membrane domain in the principal
cells and it was demonstrated that AQP2 was endocytosed by
a clathrin-mediated mechanism (136). Colocalization of clath-
rin with AQP2 in the recycling endosome was observed during
endocytosis (33, 136). However, caveolin-mediated endocyto-
sis of AQP2 was also suggested. For example, AQP2 internal-
ization was dynamin dependent (136), which is also involved
in caveolin-1-mediated endocytosis (37). The association be-
tween AQP2 and caveolin-1 was also demonstrated by
proteomics analysis of detergent-resistant membrane
(caveolin-1 containing lipid raft) proteins from rat kidney
collecting duct (157). Moreover, AQP2 and caveolin-1 co-
immunoprecipitated in the MDCK cells (2). In rat kidney in
vivo, caveolin-1 is localized in the basolateral membrane of
collecting duct principal cells, where it is associated with
caveolae (105). In response to vasopressin stimulation,
caveolin-1 was translocated to the apical plasma membrane
in rat kidney and was colocalized with AQP2 (105). How-
ever, importantly caveolae were not observed in the apical
plasma membrane of principal cells (105), suggesting that
caveolae are unlikely to play a major role in the internal-
ization of AQP2 in vivo after removal of vasopressin stim-
ulation.

Role of Altered Microenvironment (e.g., Osmotic Stress, pH,
and Fluid Shear Stress) on AQP2 Phosphorylation and
Intracellular Trafficking of AQP2

The characteristic phenotype of renal medullary cells is that
they survive and functionally adapt to high osmolality/tonicity
in the interstitium. Despite the absence of vasopressin stimu-
lation, hypertonicity alone induced a rapid accumulation of
AQP2 in the plasma membrane of collecting duct principal
cells in rat kidney in vivo (35). Moreover, the hypertonic
condition for the cultured AQP2-expressing LLC-PK1 and
mCCDc11 cells attenuates AQP2 endocytosis by activation of
MAP kinases, independent of intracellular cAMP concentra-
tion (35). Accumulation of the pS256-AQP2 at the plasma
membrane by osmotic stress was disrupted by MAP kinase
inhibitors (35), indicating that acute hypertonicity significantly
alters AQP2 trafficking and hypertonicity-induced AQP2 ac-
cumulation at the plasma membrane is in part dependent on
MAP kinase activity. However, additional studies on the ex-
pression levels of other phosphorylation sites (S261, S264, and
S269) of AQP2 under the different osmotic stress conditions
are required. This could provide more detailed regulatory
mechanisms of AQP2 phosphorylation by p38, ERK1/2, and
JNK MAPK pathways, which could be activated by osmotic
stress. Inhibition of p38, ERK1/2, and JNK MAPK pathways
by vasopressin is likely to be part of cAMP/PKA-dependent
cascade (92, 108). Quantitative phosphoproteomics analysis by
Rinschen et al. (119) revealed that vasopressin decreases phos-
phorylation of ERK1/2 and JNK 1/2. Concurrence of the
abolished p38-MAP kinase activity and the decreased phos-
phorylation of AQP2 (S261) in response to vasopressin sug-
gests the potential correlation between these events in vaso-
pressin signaling.

Kidney collecting duct cells are continuously exposed to the
changes of extracellular pH. Thus it is interesting to examine
the effects of altered luminal or interstitial pH on the AQP2
phosphorylation and apical trafficking of AQP2 in collecting
duct cells. Previous studies demonstrated the decrease of va-
sopressin binding affinity to V2R under acidic pH, compared
with that at neutral pH (158). Urinary excretion of AQP2 was
decreased in rats with metabolic acidosis, whereas AQP2
mRNA and protein expression in the kidney was increased
(86). Moreover, urine alkalinization was associated with higher
excretion of urinary exosomal AQP2, which was independent
of vasopressin stimulation in rats (39). Consistently, a recent
study demonstrated that phosphorylation levels at the S256,
S264, and S269 and vasopressin-induced AQP2 trafficking
were significantly decreased in primary cultured IMCD cells
under acidic conditions (15). Vasopressin-induced increase of
PKA activity was attenuated when LLC-PK1 cells were ex-
posed to acidic pH, compared with neutral or alkaline pH. In
contrast, forskolin-induced PKA activation was not affected
under acidic pH, suggesting that exposure to acidic pH atten-
uates vasopressin-induced phosphorylation and trafficking of
AQP2, likely via an inhibition of V2R-G protein-cAMP-PKA
actions. A recent study showed that the water permeability
through AQP4 can be increased at conditions of low pH, and
AQP4 is directly gated by pH changes (50), which have not
been examined for AQP2 yet.

Renal tubular epithelia including collecting duct principal
cells are exposed to fluid shear stress. Interestingly, a simple
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collecting-duct-on-a-chip approach was recently demonstrated
that luminal fluid shear stress induces AQP2 translocation
associated with actin depolymerization in primary cultured
IMCD cells of rat kidney in the absence of vasopressin stim-
ulation (43). It was revealed that fluid shear stress modulates
the activity of small GTPases in the endothelial cells (69, 143).
Thus further studies are needed to understand the mechanistic
details of how small GTPases regulate the response of collect-
ing duct cells to the luminar fluid shear stress. In addition, fluid
shear stress has been demonstrated to modulate nitric oxide
production and increase intracellular concentration of Ca2� in
the IMCD cells (12), both of which play a role in AQP2
trafficking.

AQP2-Binding Protein Complex in AQP2 Trafficking

Changes in the posttranslational modification of the func-
tional region of AQP2 affect AQP2 trafficking to the plasma
membrane or internalization. This could be through interaction
with regulatory proteins that facilitate the intracellular move-
ment of the vesicles containing membrane-bound proteins.
Previous studies exploiting yeast two-hybrid system identified
Hsc70 and Hsp70 as the binding partners of AQP2 (72).
Vasopressin stimulation increases the interaction of Hsc70 and
AQP2, and membrane accumulation of AQP2 with reduced
endocytosis was observed in the cells with Hsc70 knockdown
(72). Consistent with yeast two-hybrid screening assay, these
heat shock proteins have been found consistently in proteomics
analysis, which identified proteins interacting with carboxy-
terminal peptides of AQP2 (161). Importantly, these studies
showed that the binding affinity between AQP2 and its binding
proteins could be influenced by the phosphorylation status of
AQP2.

The 14–3–3 proteins, which are phospho-serine/phospho-
threonine binding proteins (1, 85), have also been reported as
AQP2-binding partners, depending on the phosphorylation of
AQP2 (84). The levels of two isoforms of 14–3–3 proteins,
14–3–3� and 14–3–3� were increased by short-term vasopres-
sin stimulation. However, the levels of ubiquitination, half-life,
and the expression levels of AQP2 were changed differently,
when each isoform was knock-downed, separately (84). More-
over, in the degradation process of AQP2, lysosomal traffick-
ing regulator-interacting protein 5 (LIP5) interacted with the
carboxy-terminal region of AQP2, independent on phosphor-
ylation (S256) and ubiquitination (K270) of AQP2 (146).

Extracellular loop of AQP2 protein has binding domains that
interact with other proteins in the plasma membrane. Unlike
cytosolic proteins that interact with the cytoplasmic region of
AQP2 protein, the interaction between extracellular domains
of AQP2 and other membrane proteins is less likely to regulate
AQP2 trafficking directly. RGD domain in the extracellular
loop of AQP2 stimulates the binding partners controlling
AQP2 through activation of intracellular cAMP and Ca2�

signaling (140). RGD-binding integrins are associated with
various G protein-coupled receptor signaling affecting cAMP
and Ca2� signaling pathway (22, 123, 131).

Long-term Regulation of AQP2 Protein Abundance

The long-term adaptation of AQP2 occurs as a result of a
vasopressin-induced increase in total abundance of the AQP2
protein in collecting duct cells, which is associated with reg-

ulatory processes at the transcriptional or posttranscriptional
level. Transcription of the Aqp2 gene is significantly increased
by vasopressin stimulation, resulting in increased cellular
mRNA levels and translation of AQP2 (77). In cultured mp-
kCCD cells, vasopressin stimulation increases the half-life of
AQP2 protein from 9 to 14 h (126). Stability of AQP2 protein
also affects AQP2 protein abundance. Vasopressin increases
AQP2 protein abundance by regulating the proteasomal
degradation through PKA- and p38-MAP kinase-dependent
pathway (92). The process of AQP2 endocytosis and sub-
sequent degradation of AQP2 in the proteasome and lyso-
some could be mediated by ubiquitination of AQP2 protein
at lysine 270 (49, 66).

MicroRNA (miRNA) is a posttranscriptional regulator, in-
hibiting the translation of target mRNA via translational re-
gression of the RNA-induced silencing complex (65). Re-
cently, miRNAs targeting AQP2 expression were predicted by
in silico analysis, and hence the predicted AQP2-targeting
miRNAs (miR-32 and miR-137) have gained focus to under-
stand the novel cellular and molecular mechanisms of AQP2
protein regulation (53).

Summary and Conclusions

This review highlights some of new understanding in the
regulation of AQP2 trafficking and AQP2 protein abundance.
Vasopressin induces both intracellular translocation of AQP2-
bearing vesicles to the apical plasma membrane and transcrip-
tion of Aqp2 gene to increase AQP2 protein abundance. In
particular, for the AQP2 trafficking, the main underlying sig-
naling pathways are AQP2 phosphorylation, RhoA phosphor-
ylation, intracellular Ca2� mobilization, and actin depolymer-
ization. Additional signaling pathways including angiotensin
II, aldosterone, prostaglandins, and vesicle-targeting receptors
have been reported in previous studies and reviews (18, 34, 64,
68, 80, 98, 100, 102, 103, 112, 145, 150). Detailed studies on
the AQP2 in the kidney collecting ducts will provide new
insights in the treatment of patients with body water balance
disorders, including NDI, and water retention conditions, such
as congestive heart failure and liver cirrhosis.
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