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Abstract: The coronavirus disease (COVID-19) pandemic is a leading global health and economic
challenge. What defines the disease’s progression is not entirely understood, but there are strong
indications that oxidative stress and the defense against reactive oxygen species are crucial players.
A big influx of immune cells to the site of infection is marked by the increase in reactive oxygen and
nitrogen species. Our article aims to highlight the critical role of oxidative stress in the emergence and
severity of COVID-19 and, more importantly, to shed light on the underlying molecular and genetic
mechanisms. We have reviewed the available literature and clinical trials to extract the relevant
genetic variants within the oxidative stress pathway associated with COVID-19 and the anti-oxidative
therapies currently evaluated in the clinical trials for COVID-19 treatment, in particular clinical trials
on glutathione and N-acetylcysteine.

Keywords: COVID-19; oxidative stress; antioxidant enzymes; genetics; anti-oxidative therapies;
glutathione; N-acetylcysteine

1. Introduction

Coronavirus disease (COVID-19) is the disease caused by a new coronavirus called
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), originated from Wuhan,
China [1]. The COVID-19 pandemic is a leading global health and economic challenge and
is associated with high mortality and morbidity rates [2–4]. However, the new Omicron
strains are associated with higher infectivity and lower mortality (https://www.who.int/
en/activities/tracking-SARS-CoV-2-variants/; accessed on 12 July 2022). According to
the World Health Organization (WHO), since the COVID-19 outbreak and until the 15th
of June 2022, over 409 million confirmed cases and around 6 million deaths had been
reported globally (https://covid19.who.int/?; accessed on 15 July 2022). Regarding the
severity of its symptoms, COVID-19 can be mild, moderate, severe, or critical [5], but also
asymptomatic cases have been reported, which contribute to the spreading of the virus [6].
Patients with mild to moderate symptoms experience dyspnea, fatigue, cough, fever, and
others. In contrast, those with severe COVID-19 complications might experience sedation,
coagulopathy, acute kidney and myocardial injury, renal failure, and others [7,8].

Factors like age, sex, and concomitant diseases are associated with COVID-19 severity
and mortality [9–12]. However, what defines the disease’s progression is not entirely
understood. Still, there are strong indications that oxidative stress and the defense against
reactive oxygen species (ROS) are crucial in COVID-19 pathogenesis on various mechanistic
levels [13]. Upon the binding of SARS-CoV-2 Spike (S) protein to the ACE2 receptor on
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the cell membrane, the virus enters the cell by endocytosis, leading to RNA replication
and translation of viral structural proteins, such as Spike (S), Nucleocapsid (N), Membrane
(M), Envelope (E), as well as viral open reading frames (ORFs) and activation of oxidative
stress and inflammatory pathways. ROS are released, and NRF2 and glutathione levels are
decreased, leading to decreased antioxidant capacity. At the same time, NF-kB levels are
increased by ROS and activate the NLRP3 inflammasome, leading to cytokine activation
and inflammation (Figure 1).
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loenzymes that convert the O2• into hydrogen peroxide (H2O2) and O2 [17]. Then, H2O2 
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to oxidative-stress damage through other biological reactions [17]. CAT is a heme-con-
taining enzyme in the peroxisomes of nearly all aerobic cells [19]. GPX is a substrate-spe-
cific enzyme requiring glutathione (GSH), which is one of the essential thiol groups con-
taining antioxidants [20] in our body [21]. Serum concentrations of SOD and GPX were 
significantly higher in COVID-19 patients [22]. 

Figure 1. COVID-19 and oxidative stress. Abbreviations: ACE2: Angiotensin-Converting Enzyme 2,
SARS-CoV2: severe acute respiratory syndrome coronavirus 2, TMPRSS2: Transmembrane protease,
serine 2, ORF1a: open reading frame 1 alpha, ORF1b: open reading frame 1 beta, ORF3a: open
reading frame 3 alpha, ORF6: open reading frame 6, ORF7a: open reading frame 7 alpha, ORF7b:
open reading frame 7 beta, ORF8: open reading frame 8, ORF10: open reading frame 10, ROS: reactive
oxygen species, NRF2: Nuclear factor erythroid 2-related factor 2, NF-kβ: Nuclear factor kappa B,
NLRP3: nucleotide-binding domain (NOD)-like receptor (NLR) family pyrin domain containing
3, IL-1β: Interleukin 1 beta, IL-6: Interleukin 6, IL-18: Interleukin 18, IL-10: Interleukin 10, TNF-α:
tumor necrosis factor-alpha. Created with BioRender.com (accessed on 9 August 2022).

Oxidative stress results from the imbalance between ROS production and the cell’s
antioxidant capacity [14]. ROS disrupts cellular biochemical pathways by causing DNA
strand breaks, lipid peroxidation, and protein modification and degradation [15]. An-
tioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GPX) represent a vital defense mechanism against ROS [16]. SODs are metal-
loenzymes that convert the O2

• into hydrogen peroxide (H2O2) and O2 [17]. Then, H2O2
may be further converted into water via CAT and GPX [16,18] or may further contribute to
oxidative-stress damage through other biological reactions [17]. CAT is a heme-containing
enzyme in the peroxisomes of nearly all aerobic cells [19]. GPX is a substrate-specific
enzyme requiring glutathione (GSH), which is one of the essential thiol groups containing
antioxidants [20] in our body [21]. Serum concentrations of SOD and GPX were significantly
higher in COVID-19 patients [22].

The imbalance between oxidative stress promoting mechanisms and the defense and
repair mechanisms can lead to molecular and cellular damage and trigger the activation
of stress response and inflammatory pathways. Therefore, treating patients to prevent or
diminish those effects is highly important. Various therapeutic approaches that reduce
oxidative stress and are based on antioxidative and anti-inflammatory agents may benefit
COVID-19 patients. Since these strategies were used to overcome septic shock and were
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also successfully applied in other conditions such as acute respiratory distress syndrome
and acute lung injury to improve oxygenation rates and glutathione levels and strengthen
the immune response, a computational study suggested that they could also be used in
COVID-19 [23]. N-Acetylcysteine (NAC) is a derivative of the amino acid L-cysteine and,
as such, a thiol compound with a dual antioxidant mechanism. It may directly neutralize
free radicals, and it may also act as a donor of cysteine for endogenous GSH production.
NAC restores the physiological pool of GSH, exerts direct and indirect antioxidant activity
and anti-inflammatory activity, and improves immune T-cell response (Figure 2) [24]. Due
to their antioxidant and anti-inflammatory properties, NAC and GSH can be promising
interventions to reduce the COVID-19 risk [25]. Studies have also shown that high doses of
NAC may prevent the severe symptoms of COVID-19 [26–28].

Antioxidants 2022, 11, x FOR PEER REVIEW 3 of 40 
 

The imbalance between oxidative stress promoting mechanisms and the defense and 
repair mechanisms can lead to molecular and cellular damage and trigger the activation 
of stress response and inflammatory pathways. Therefore, treating patients to prevent or 
diminish those effects is highly important. Various therapeutic approaches that reduce 
oxidative stress and are based on antioxidative and anti-inflammatory agents may benefit 
COVID-19 patients. Since these strategies were used to overcome septic shock and were 
also successfully applied in other conditions such as acute respiratory distress syndrome 
and acute lung injury to improve oxygenation rates and glutathione levels and strengthen 
the immune response, a computational study suggested that they could also be used in 
COVID-19 [23]. N-Acetylcysteine (NAC) is a derivative of the amino acid L-cysteine and, 
as such, a thiol compound with a dual antioxidant mechanism. It may directly neutralize 
free radicals, and it may also act as a donor of cysteine for endogenous GSH production. 
NAC restores the physiological pool of GSH, exerts direct and indirect antioxidant activity 
and anti-inflammatory activity, and improves immune T-cell response (Figure 2) [24]. Due 
to their antioxidant and anti-inflammatory properties, NAC and GSH can be promising 
interventions to reduce the COVID-19 risk [25]. Studies have also shown that high doses 
of NAC may prevent the severe symptoms of COVID-19 [26–28]. 

 
Figure 2. Glutathione and N-acetylcysteine as antioxidant and anti-inflammatory agents. Abbrevi-
ations: ROS: reactive oxygen species. Created with BioRender.com (accessed on 9 August 2022). 

Our article aims to highlight the critical role of oxidative stress in the pathogenesis 
and severity of COVID-19 and to shed light on the underlying molecular mechanisms. We 
have also systematically reviewed published findings on the role of oxidative stress levels, 
antioxidative enzymes, genetic, genomic, and transcriptomic factors affecting their activ-
ity, oxidative stress markers, and antioxidant capacity in COVID-19, as well as the pub-
lished studies and clinical trials on the potential antioxidative therapies in COVID-19. It 
should be noted that since the most suggested potential therapeutic candidates for 
COVID-19 are GSH and NAC, this review is mainly focused on these two antioxidant 
agents. 

2. Methods 
To identify the role of oxidative stress in COVID-19, we systematically searched the 

PubMed database, using the term (COVID-19 or SARS-CoV-2) and (“oxidative stress”). 
We have narrowed the search of the PubMed database by adding the terms (genetics 

or genomics or genes or polymorphism or “genetic variations”) to identify the genetic 
association studies and by adding the keyword (transcriptomics) to identify 
transcriptomic studies focusing on genetic polymorphisms in antioxidative enzymes and 
oxidative stress-related pathways in COVID-19. 
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Our article aims to highlight the critical role of oxidative stress in the pathogenesis
and severity of COVID-19 and to shed light on the underlying molecular mechanisms. We
have also systematically reviewed published findings on the role of oxidative stress levels,
antioxidative enzymes, genetic, genomic, and transcriptomic factors affecting their activity,
oxidative stress markers, and antioxidant capacity in COVID-19, as well as the published
studies and clinical trials on the potential antioxidative therapies in COVID-19. It should
be noted that since the most suggested potential therapeutic candidates for COVID-19 are
GSH and NAC, this review is mainly focused on these two antioxidant agents.

2. Methods

To identify the role of oxidative stress in COVID-19, we systematically searched the
PubMed database, using the term (COVID-19 or SARS-CoV-2) and (“oxidative stress”).

We have narrowed the search of the PubMed database by adding the terms (genetics
or genomics or genes or polymorphism or “genetic variations”) to identify the genetic
association studies and by adding the keyword (transcriptomics) to identify transcriptomic
studies focusing on genetic polymorphisms in antioxidative enzymes and oxidative stress-
related pathways in COVID-19.

We have also searched the GWAS catalog for GWAS studies in COVID-19 patients. We
have identified 11 studies and have included them in the pathway enrichment analysis, as
described in details in the Supplementary Material File S1.

Regarding the antioxidative therapies currently evaluated in the clinical trials for
COVID-19 treatment, we systematically searched the PubMed database and the clinicaltrials.
gov website. For the PubMed search, we used the keywords (SARS-CoV-2 OR COVID-19)
(n-acetylcysteine OR NAC) (ther* OR treat*) and (SARS-CoV-2 OR COVID-19) (glutathione
OR GSH) (ther* OR treat*). For the clinical trials, we searched on condition or disease as
COVID-19 with keywords “N-Acetylcysteine” and “Glutathione.”

clinicaltrials.gov
clinicaltrials.gov
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More information about the search strategies and the records retrieved can be found
in the Supplementary Material File S1.

The Preferred Reporting Items for the Systematic Review and Meta-analysis (PRISMA)
statement were used as the reference standard [29]. A PRISMA flow diagram of the
systematic search in this review, following Page et al. [29] is shown in Figure 3.
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3. The Role of Oxidative Stress in COVID-19 Pathogenesis

Several studies found that oxidative stress markers are higher in COVID-19 patients
than in healthy subjects [30–32] and more severe forms of COVID-19 compared to mild
conditions and healthy controls [33]. Although ROS generation is a standard process in the
organism with no negative effects while controlled, this balance is disrupted in COVID-
19. Mechanisms for the high production of ROS are activated [34,35], while antioxidant
mechanisms of cells are reduced [34]. Generally, high ROS production is often seen in
respiratory viral infections [36]. Generation of ROS has an essential role in pathology,
lifecycle, and/or establishment of RNA viruses such as rhinoviruses [37], neuropathogenic
retrovirus ts1 [38], influenza viruses [39], hepatitis C, and human immunodeficiency virus
(HIV) [40]. In experiments on mice, SARS-CoV-2 increased ROS production and induced
apoptosis in plasma cells producing antibodies against the virus [35]. Moreover, oxidative
stress induced the activity of 3CLpro, a key proteinase for SARS-CoV-2 replication [41],
interacting with the SARS-CoV-2 nucleocapsid protein involved in the viral life cycle [42].
Twelve SARS-CoV-2 proteins were found to induce oxidative stress, affect proliferation
and induce cell death in the yeast cell-based system. SARS-CoV-2 ORF3a protein induced
oxidative stress, inflammatory response, and cell death in human pulmonary and kidney
epithelial cell lines [43]. Oxidative stress was also induced by SARS-CoV-2 spike protein
in human microglial cells [44], THP-1 macrophages, peripheral blood mononuclear cells
(PBMCs) [45], and primary bovine aortic endothelial cells [46].

Oxidative stress is often associated with mitochondrial dysfunction [44] and apop-
tosis [45]. Mitochondria are the primary sources of ROS in cells and are also involved
in pathological inflammatory processes and programmed cell death in COVID-19 [47].
Activation of the inflammasomes, loss of mitochondrial membrane potential, and metabolic
shift from OXPHOS to glycolysis were observed in monocytes from COVID-19 patients
with different disease severity. These changes were observed after short-term recovery,
independent of the disease severity [30]. Reduced mitochondrial function in platelets and
reduced concentration of coenzyme Q10 in blood and platelets were observed four to
seven weeks after COVID-19 infection, both in mild and moderate COVID-19 patients,
compared to healthy individuals [48]., Mitochondrial structure and function changes that
led to nitrosative stress were observed in postmortem samples from COVID-19 patients
with fatal outcomes [49]. Obesity is a risk factor for poor outcomes of COVID-19. Using
bioinformatics, Khitan et al. found that oxidative stress due to deregulated Na+/K+-ATPase
transporter signaling could lead to increased risk for more severe forms of the disease in
obese individuals [50].

Neutrophils are involved in COVID-19-related oxidative stress. After activation, they
produce high levels of ROS as part of their defense mechanisms against pathogens and other
targets that need to be destroyed [51,52]. Elevated levels of neutrophils are characteristic
of severe COVID-19 patients [30], and a high neutrophil to lymphocyte ratio (NLR) was
a predictor of poor prognosis from the early stage of the disease [53]. High NLR was
associated with very high levels of ROS production, leading to tissue damage, thrombotic
complications, and further development of disease severity [34,54]. NADPH oxidases
(NOXs) are enzymes responsible for neutrophils’ ROS production capacity. Mutations
that decrease NOS activity increase susceptibility to infections [51], while the increased
activity of NOXs in neutrophils causes inflammation and surrounding tissue damage [55].
There are six family members of NOX enzymes, each involved in ROS production. Their
hyperactivation is part of several comorbidities related to poor COVID-19 outcomes, such
as diabetes, cardiovascular diseases, and obesity [56]. NOX type 2 (NOX2) is involved in
superoxide anion production [57]. Activation of this enzyme was observed in hospitalized
COVID-19 patients, and this activation was more pronounced in severe forms admitted
to the intensive care unit (ICU). Levels of soluble NOX2-derived peptide, an indicator
of NOX2 activation, were significantly higher in COVID-19 hospitalized patients than in
controls and ICU COVID-19 patients compared to non-ICU patients [58]. Inhibitors of
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this enzyme are used to treat inflammatory disorders related to uncontrolled neutrophil
activity [57].

In healthy cells, increased levels of ROS induce activation of Nrf2 [59]. Nrf2 is a
transcription factor promoting the production of antioxidant enzymes and inflammation
resolution. It is negatively regulated by Kelch-like ECH-associated protein 1 (KEAP1)
inactivated by ROS [60]. Nrf2 has a crucial role in maintaining the respiratory tract’s
homeostasis, and this factor’s dysfunction may lead to various respiratory diseases [61].
Different viruses, including SARS-CoV-2, inhibit Nrf2. In COVID-19 patients’ biopsies,
decreased levels of antioxidant proteins controlled by Nrf2 were found. Moreover, infection
of Vero hTMPRSS2 cells with SARS-CoV-2 decreased levels of Heme Oxygenase 1 (HO-1)
and NAD(P)H quinone oxidoreductase 1 (NQO1) induced by Nrf2 [62]. In children with
COVID-19, decreased levels of Nrf2 with reduced total antioxidant status and increased
total oxidant status and oxidative stress index were observed [63]. Increased levels of
ROS and H2O2 trigger inflammasome as a significant player in cytokine storm-related to
severe forms of COVID-19. Pathological findings of hematological parameters, hypoxia of
cells, and cardiovascular complications were also associated with elevated levels of ROS in
COVID-19 [64]. Increased inflammasome complex formation in monocytes and increased
plasma levels of interleukin-18 (IL-18) was observed in COVID-19 patients with more
severe symptoms. Peripheral blood mononuclear cells (PBMCs) from COVID-19 patients
released IL-1beta, IL-6, and TNF-alpha ex vivo. Inhibition of NLRP3 inflammasome in these
cells led to the decreased production of cytokines [30]. Cytokine levels were positively
correlated with oxidative stress markers in COVID-19 patients [65]. Case-control studies
related to oxidative stress in COVID-19 are summarized in Table 1.

Table 1. Overview of COVID-19 case-control studies related to oxidative stress.

Patients Major Findings References

430 hospitalized patients and
173 controls Decreased thiol levels in patients versus controls [66]

Serum from 263 hospitalized
patients and 280 controls

Increased Level of 2-hydroxybutyric acid in
patients versus controls [67]

182 hospitalized patients and
91 controls

Increased soluble Nox2-derived peptide in
patients versus controls and ICU patients

compared to non-ICU patients
[58]

108 hospitalized patients and
28 controls

Increased levels of SOD, CAT, oxidative cell
damage (protein carbonyls and lipid

peroxidation products MDA and 4-HNE), and
decreased antioxidant capacity (ABTS and

FRAP) in patients versus controls

[32]

72 hospitalized patients and
10 controls

Increased oxidized phospholipids in patients
versus controls [68]

50 hospitalized patients and
43 controls

Increased nitric oxygen levels and decreased
native thiol and total thiol levels in patients

versus controls
[69]

60 hospitalized patients and
24 controls

Increased lipid peroxidation and damage due to
oxidative stress and decreased GSH in patients

versus controls
[31]

52 patients and 34 controls

Increased disulfide, disulfide/native thiol ratio,
and disulfide/total thiol ratio; decreased

meteorin-like protein, native thiol, and native
thiol/total thiol ratio in patients versus controls

and no difference in total thiol levels

[70]

29 patients and 30 controls Decreased serum-free thiols in patients
versus controls [71]
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Table 1. Cont.

Patients Major Findings References

25 hospitalized patients and
25 controls

Increased prooxidant-antioxidant balance in
patients versus controls [72]

33 hospitalized patients

Increased oxidative stress (levels of peroxides in
plasma and oxidative stress index); decreased
Vitamin D and no differences in antioxidant

capacity in more severe COVID-19 cases

[73]

40 pediatric patients and
35 healthy children

Increased total oxidant status and oxidative
stress index and decreased Nrf2 and total

antioxidant status in patients versus controls
[63]

58 patients (42 hospitalized
and 16 outpatients)

Advanced oxidation protein product levels are
significantly higher in hospitalized patients [74]

Hospitalized patients (14 not
admitted to ICU and

10 admitted to ICU) and
24 controls

Increased total oxidant status, CAT and SOD
activity, and total MDA level in patients versus
controls; Total MDA level and SOD activity at
admission to hospital were higher in patients

that were later placed in ICU

[18]

10 mild to moderate
outpatients (4–7 weeks after

infection) and 15 controls

Decreased mitochondrial function in platelets
and concentration of coenzyme Q10 in blood and

platelets in patients versus controls
[48]

Seminal fluid from 84
hospitalized male patients

and 105 male controls

Increased ROS levels and SOD activity in
patients versus controls [75]

Placentas from
12 asymptomatic mothers,

18 symptomatic and
16 controls

Increased DNA oxidative damage and decreased
CAT and GSS activity in placentas of patients

versus controls; a trend of decreased SOD1 and
GSR activities was observed but without

statistical significance

[76]

Autopsy brain tissues from
10 patients and 10 controls

Increased oxidative stress with increased
GSSG/GSH ratio in patients versus controls [77]

Post-mortem cerebral cortex
samples from 3 patients and

3 controls
Decreased GSH in patients versus controls [78]

Post-mortem testis tissue
samples from 6 patients and

6 controls
Decreased GSH in patients versus controls [79]

Post-mortem testes and
epididymis samples from

10 patients who died due to
COVID-19 and 7 controls

Increased oxidative stress damage in patients
versus controls [80]

Post-mortem samples from
15 patients who died due

to COVID-19

Increased nitrosative stress in patients versus
controls; SARS-CoV-2 infection-induced changes

in mitochondrial structure and function
[49]

126 hospitalized COVID-19
patients, 45 hospitalized

patients negative for
SARS-CoV-2, 50 controls

Decreased PON1 activity in COVID-19 patients
versus controls [81]

All studies in the table are of prospective design except the last one, which was a retrospective study. Prospective
studies were sorted based on the number and characteristics of subjects included in the study and the types of
samples analyzed. Abbreviations: SOD: superoxide dismutase, CAT: catalase, MDA: Malondialdehyde, 4-HNE:
4-Hydroxynonenal, GSSG: glutathione disulfide, GSH: glutathione, ICU: intensive care unit, RAGE: Receptor
for advanced glycation endproducts, HMGB1: high mobility group box-1 protein, COX2: cyclooxygenase-2,
NOX4: nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4, coQ10: coenzyme Q10, IMA: ischemia-
modified albumin, PBMC: peripheral blood mononuclear cell, Nrf2: nuclear factor erythroid 2–related factor 2,
PON1: paraoxonase-1.
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4. Oxidative Stress and COVID-19 Severity

Levels of oxidative stress depend on COVID-19 severity [30] and change during the
disease [82], so both factors should be considered when comparing results from different
studies. Levels of superoxide anion increased substantially with increased disease severity,
while hydrogen peroxide levels were similar in all hospitalized patients, independent of
disease severity [83]. Mete et al. found that nitric oxide levels were significantly higher
in COVID-19 patients at the moment of hospitalization than in controls [69]. In contrast,
Cekerevac et al. found that the nitric oxide levels were lower in severe compared to mild
and moderate COVID-19 [83]. Yaghoubi et al. found no significant difference in nitric oxide
levels in mild and severe COVID-19 patients and healthy controls, but decreased levels
were observed with increased COVID-19 severity [84].

Mehri et al. found that total oxidant status was significantly higher in COVID-19
patients at hospital admission than in healthy controls, independent of their later admission
to ICU [18]. The prooxidant-antioxidant ratio was also significantly increased in COVID-
19 hospitalized patients compared to healthy controls [72]. Increased oxidative stress
compared to healthy controls was observed in various disease severities [30], from mild [71]
to moderate and severe COVID-19 patients [48]. Lower levels of vitamin D, higher levels
of peroxides in plasma, and higher oxidative stress index were found in severe compared
to moderate COVID-19 hospitalized patients [73]. Moreover, significantly higher total
oxidant status and oxidative stress index were observed in ICU compared to non-ICU
patients [85]. Nevertheless, some studies found no correlation between oxidative stress
markers’ levels at admission to ICU and COVID-19 outcome [86]. Zendelovska et al. found
a similar oxidative stress index at admission in severe patients independent of outcome.
However, depending on the outcome, oxidative stress levels changed between admission
and seven days after admission. In severe COVID-19 patients with fatal consequences,
increased oxidative stress was observed, while in surviving patients, oxidative stress was
decreased during this period [82]. Karkhanei et al. found that total oxidant status increased
with increased severity of COVID-19 [87]. On the other side, Aykac et al. found that total
antioxidant and total oxidant status were similar for both mild, moderate, and severe
groups of hospitalized pediatric and adult patients [88]. Although both studies included a
similar number of patients, 96 [87] and 86 [88], respectively, it is difficult to compare both
studies as they have used different World Health Organization (WHO) interim guidelines
for categorization of disease severity, the first from March 2020 [87] and the second from
May 2020 [88]. Furthermore, there was insufficient data on inclusion and exclusion criteria
for patients in the Aykac et al. paper [88]. Namely, Karkhanei et al. excluded patients
receiving antioxidant therapy [87], while Aykac et al. did not mention this criterion [88].
Studies related to oxidative stress that focused on COVID-19 severity are summarized in
Table 2.

Table 2. Overview of studies that focused on COVID-19 severity.

Patients Outcome References

144 hospitalized patients
(117 mild to moderate and
27 severe) and 70 controls

Increased disulfide levels in mild to moderate
patients compared to controls; decreased native
and total thiol levels in patients versus controls

and severe compared to mild to moderate
patients; no difference in disulfide levels in

severe patients compared to controls

[89]

60 mild, 60 severe patients
and 60 controls

Decreased total antioxidant capacity in patients
compared to controls and in severe compared to
mild COVID-19 patients; no difference in nitric

oxide levels, and serum activities of SOD
and CAT

[84]
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Table 2. Cont.

Patients Outcome References

160 hospitalized patients
(31 mild, 36 moderate, 36

severe, 57 critical)

With the increased severity of the disease,
increased levels of IMA were observed. With

increased severity of disease, decreased levels of
thiols were observed

[90]

86 hospitalized patients
(46 children, 40 adults) and

67 controls (33 children,
34 adults)

No difference in total antioxidant status and total
oxidant status [88]

127 hospitalized patients
(17 mild, 40 moderate and

70 severe)

Levels of superoxide anion significantly increase
with increased disease severity. CAT activity in
severe COVID-19 compared to moderate and

mild cases. However, moderate forms had
significantly lower CAT activity compared to
mild forms. Decreased nitric oxide levels in

severe compared to mild and moderate
COVID-19 and no difference in TBARS as a

measure of lipid peroxidation, hydrogen
peroxide levels, SOD, and GSH activity

[83]

59 patients (19 mild to
moderate, 23 ICU admitted
and 17 reporting COVID-19

history) and 34 controls

Increased RAGE, HMGB1, and COX2 in patients
admitted to the ICU compared to controls [33]

96 hospitalized patients
(35 non-ICU, 19 ICU with
endotracheal intubation,

24 ICU without endotracheal
intubation) and 18 controls

Increased total antioxidant capacity in ICU
compared to non-ICU patients and association of

total oxidant status with increased severity of
COVID-19. Decreased GSH levels with increased

COVID-19 severity. No difference in total
antioxidant capacity in non-ICU patients

compared to controls

[87]

86 hospitalized patients
(40 ICU and 46 non-ICU)

Increased total oxidant status and oxidative
stress index and decreased thiol levels and total

antioxidant status in ICU patients
[85]

77 hospitalized patients
(44 moderate and 33 severe)

No difference in total antioxidant capacity, GST
activity, H2O2 levels, GSH, oxidized GSH, MDA,

carbonyls, sulfhydryl’s
[91]

60 hospitalized patients
(29 with ARDS and
31 without ARDS)

Decreased total and native thiol levels in severe
compared to mild/moderate patients in both

pediatric and adult populations
[92]

58 hospitalized patients
(35 non-severe, 23 severe) and

30 controls

Increased coenzyme Q10, MDA, NOX4, and IMA
and levels of reduced Q10 in patients versus
controls; In severe compared to non-severe

COVID-19 patients, increased Q10, MDA, and
ischemia-modified albumin were observed while

levels of reduced Q10 were similar

[93]

31 mild, 4 moderate and
12 severe patients and

21 controls

Increased lipid peroxidation, CAT and SOD
activity, ferritin and mitochondrial superoxide in
circulating monocytes, and decreased GSH levels
in PBMC lysates of patients versus controls; no

difference in total antioxidant response and iron
levels; inflammasome activation, loss of
mitochondrial membrane potential, and

metabolic shift from OXPHOS to glycolysis in
patients with different severity; these changes
were still observed after short term recovery,

independently of disease severity

[30]
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Table 2. Cont.

Patients Outcome References

50 hospitalized patients
(20 moderate, 30 severe)

Increased oxidative stress in patients with fatal
outcomes was observed after 7 hospitalization

days, while in surviving patients, oxidative
stress was decreased

[82]

39 patients with
critical COVID-19

Increased plasma H2O2 and damaged serum
albumin in patients with fatal outcome [52]

34 hospitalized patients
(34 mild, 22 moderate

to severe)

Decreased GSH in moderate and severe patients
compared to mild [94]

31 hospitalized patients
admitted to ICU

No relation between oxidative stress markers’
levels at admission to ICU and

COVID-19 outcome
[86]

21 critically ill COVID-19
patient (14 recovered and

7 fatal outcome)

HNE adduct proteins in the first three
hospitalization days were decreased compared
to surviving patients; Total antioxidant capacity

was below the detection limit

[95]

Nine critically ill
hospitalized patients

Systemic oxidative stress strongly altered in
critically ill COVID-19 patients

as evidenced by increased lipid peroxidation and
deficits in vitamin C, glutathione, thiol proteins,

and selenium

[96]

All studies in the table are of prospective design. Studies were sorted based on the number and characteristics of
subjects included in the study. Abbreviations: SOD: superoxide dismutase, CAT: catalase, TBARS: thiobarbituric
acid reactive substances, GSH: glutathione, GST: glutathione-S-transferase, MDA: malondialdehyde, H2O2:
hydrogen peroxide, IMA: ischemia-modified albumin, ICU: intensive care unit, ARDS: acute respiratory distress
syndrome, HNE: 4-hydroxynonenal.

5. Antioxidative Enzymes Studied in COVID-19

The main antioxidative enzymes investigated concerning COVID-19 are SOD, CAT,
and GPX. Yaghoubi et al. found no significant difference in serum activities of SOD and
CAT in mild and severe COVID-19 patients compared to controls [84]. In contrast, Lage
et al. found higher activity of CAT and SOD in plasma of COVID-19 mild, moderate,
and severe patients compared to healthy controls [30]. Martin-Fernandez et al. found
increased levels of SOD and CAT in the first morning after hospitalization of COVID-19
patients compared to healthy controls [32]. Cekerevac et al. found significantly higher CAT
activity in severe COVID-19 compared to moderate and mild forms. However, moderate
conditions had significantly lower CAT activity compared to mild forms. SOD activity
and reduced GSH were similar in all hospitalized patients, independent of the disease
severity [83]. SOD levels were higher in COVID-19 patients, but there was also a difference
depending on subsequent admission to ICU. Patients placed in the ICU had significantly
higher SOD levels [18]. Mehri et al. found that CAT activity was considerably higher in
COVID-19 patients at hospital admission than in healthy controls, independent of their
later admission to the ICU [18]. However, studies found decreased levels of CAT in the
placentas of pregnant COVID-19 female patients [76] and reduced SOD in the seminal
fluid of COVID-19 male patients [75]. Increased DNA oxidative damage and significantly
decreased activity of antioxidant enzymes CAT and glutathione synthetase (GSS) were
found in placentas of asymptomatic and symptomatic pregnant COVID-19 female patients
compared to healthy controls. Moreover, decreased SOD1 and glutathione reductase
(GSR) activities were observed without statistical significance [76]. Hajizadeh Maleki
and Tartibian analyzed ROS and SOD activity levels in the seminal fluid of hospitalized
COVID-19 patients at the baseline and every ten days until sixty days from admission to the
hospital. Hospitalized COVID-19 patients had increased ROS levels compared to healthy
controls during the entire period of 60 days. The highest ROS levels in COVID-19 patients
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were at baseline and ten days. ROS levels were significantly lower than baseline but still
considerably higher than controls at later time points. SOD activity was significantly
lower in COVID-19 patients compared to controls for 60 days, and there was no significant
increase in SOD activity during this period [75]. Decreased SOD activity could be regulated
through the JAK2/STAT1 pathway and precipitation of pSTAT1 and SOD as observed in
mice immunized with SARS-CoV-2 spike protein [35].

GPX requires GSH for its antioxidative activity [16]. GSH is one of the essential antioxi-
dants in our body [21], containing the thiol group [20]. Glucose-6-phosphate dehydrogenase
(G6PD) is involved in the production of NADPH which is required to maintain adequate
levels of GSH by GSR [97]. Patients with G6PD deficiency were found to have more severe
COVID-19 pneumonia with a more extended period of mechanical ventilation [98].

Compounds containing the thiol group interacted with SARS-CoV-2 in vitro, decreas-
ing virus entry into the cell [99]. GSH interacts and, in certain conditions, decreases the
main SARS-CoV-2 protease activity [100]. Bioinformatic tools predicted that SARS-CoV-
2 main protease targets GPX1, an enzyme involved in neutralizing lipid peroxides and
hydrogen peroxide in organisms [101], as well as a glutamate-cysteine ligase, an enzyme
involved in GSH synthesis [102]. In a study on 60 hospitalized COVID-19 patients, GSH
deficiency was observed compared to healthy controls. This deficiency depended on age
and was more pronounced in older persons. Additionally, in COVID-19 patients, increased
lipid peroxidation and damage due to oxidative stress were observed [31]. Compared to
control samples, significantly decreased GSH levels were observed in post-mortem cerebral
cortex samples from COVID-19 patients [78]. Moreover, compared to controls, higher ROS
and lower GSH levels were found in post-mortem testis tissue from COVID-19 patients [79].
SARS-CoV-2 also induced oxidative stress-mediated changes in testes and epididymis from
post-mortem COVID-19 autopsies compared to controls [80]. GSH levels decreased with
the increased severity of COVID-19 [87]. GSH levels were higher in mild than moderate and
severe COVID-19 patients [94]. Lage et al. found decreased GSH levels in PBMC lysates
from COVID-19 patients compared to healthy controls [30]. Autopsy brain tissues from
ten COVID-19 patients were found to have increased oxidative stress with an increased
glutathione disulfide/glutathione ratio compared to controls [77].

Another enzyme that may play an essential role in defense against oxidative stress is
paraoxonase-1 (PON-1). This enzyme had significantly decreased activity in hospitalized
patients generally, and this decrease was more pronounced in hospitalized SARS-CoV-2
positive compared to SARS-CoV-2 negative patients [81].

6. Candidate Gene Studies of Oxidative Stress Pathway in COVID-19

Altered antioxidant enzyme activity has been associated with COVID-19 susceptibility
and severity. The observed alterations in activity and expression levels of SOD, CAT,
and GPX and their associations with ROS and molecular damage levels can be partially
explained by the impact of already known functionally important polymorphisms in these
genes. Understanding genetic variability and its contribution to COVID pathology is
crucial and can lead to disease prevention, prognosis, and therapy. Exploring the genetic
variability of patients with COVID-19 may contribute to a better understanding of genetic
susceptibility and lead to disease prevention, prognosis, and treatment. However, very
few genetic studies with COVID-19 patients that focus on genetic polymorphisms of genes
related to oxidative stress have been published so far (Table 3).
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Table 3. Overview of candidate gene studies that involved genes and genetic variants in oxidative
stress pathways in COVID-19 patients.

Genes and
Variants

Genotyping
Method Cohort Origin Outcome References

GSTM1 and GSTT1
deletions; GSTP1
rs1138272, rs1695;
GSTA1 rs3957357;
GSTM3 rs1332018

Multiple PCR
(deletions),
PCR-RFLP

207 patients,
252 controls Serbian, Caucasian

Association between
rs1695 and rs1332018

heterozygotes and
rs1138272 Val allele

carriers with decreased
COVID-19 risk

[103]

GSTM1 and
GSTT1 deletions Multiple PCR

269 patients
(149 mild and

120 severe)
NA

Association between
GSTM1+/+ and

GSTT1−/− genotypes
and poor survival rate

[104]

Nrf2 rs6721961,
SOD2 rs4880,

GPX1 rs1050450,
GPX3 rs8177412,

and GSTP1 (rs1695
and rs1138272)

haplotype

PCR-RFLP,
real-time PCR,
2-pair primers
(CTPP) PCR

229 patients and
229 controls Serbian, Caucasian

Association between
GSTP1 haplotype and

COVID-19 risk.
The association of the
SOD2*Val allele with

increased levels of
fibrinogen and ferritin and

the association between
the GPX1*Leu allele was

associated with D-dimmer

[105]

MBL2 rs1800450;
NOS3 rs1799983,

intron 4
23bp VNTR

PCR-RFLP 79 patients,
100 controls NA

No statistically significant
difference neither in

genotypic nor allelic level
[106]

NA: not available.

The glutathione S-transferases (GSTs) superfamily has been studied the most among
other oxidative stress-related genes for their potential association with COVID-19. GSTs
catalyze the conjugation of GSH with electrophiles to protect the cell from oxidative
damage and participate in the antioxidant defense mechanisms in the lungs [104]. GSTs
polymorphisms were associated with susceptibility and severity of COVID-19 [103]. Two
candidate gene association studies reported the association of the GSTT1 and GSTM1
gene deletions with the COVID-19 outcomes. Both studies consistently showed that
the GSTT1−/− genotype is associated with a less favorable outcome. The GSTT1−/−
genotype carriers had higher COVID-19 prevalence and higher fatality and mortality rates
due to COVID-19 [107]. Another study showed that the GSTT1−/− genotype carriers had
an increased chance of severe COVID-19. The GSTM1−/− genotype also increased the
odds of a more severe disease course [104]. Both studies indicate that an efficient defense
against ROS is vital in combating the disease.

GSTM1 and GSTT1 gene deletions as well as GSTP1 rs1138272 and rs1695, GSTA1
rs3957357, and GSTM3 rs1332018 polymorphisms have been investigated in a cohort of
207 COVID-19 patients and 252 healthy individuals of Serbian, Caucasian origin. The
findings indicated that GSTM3 rs1332018 and GSTP1 rs1695 heterozygotes and carriers
of the GSTP1 rs1138272 Val allele had decreased risk of developing COVID-19. Moreover,
a borderline association was observed in carriers of the GSTM3 rs1332018 C allele. After
adjustments for age, sex, smoking status, and comorbidities, the association remained
significant only for the GSTP1 rs1695 and GSTM3 rs1332018 heterozygous carriers [103].
As GSTM1 and GSTT1 deletions have been associated with alterations in enzyme activity
and risk of pulmonary fibrosis, a severe symptom of COVID-19, it was suggested that they
might be used as predictors of COVID-19 morbidity and mortality [108].
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When assessing the cumulative effect of the GST genotypes on COVID-19 develop-
ment, it was reported that individuals with one or up to three risk-associated genotypes had
higher odds of developing COVID-19. The higher the number of the associated genotypes,
the higher the risk of developing COVID-19. In addition, carriers of three associated risk
genotypes experienced more severe symptoms than those with reference genotypes. It is
essential to mention that the protective effect of rs1695 has been highlighted in various
respiratory diseases, including asthma, and obstructive pulmonary disease, both in genetic
association studies and meta-analyses [109–114]. The results also align with reports that
GSTP1 rs1695 Val allele frequencies are higher in countries with higher cases and increased
COVID-19 mortality [115].

PON1 is a member of the paraoxonase gene family. After its synthesis, the enzyme
is secreted into the circulation, binding to high-density lipoprotein (HDL), protecting
the HDL proteins against oxidative modification [116]. Two common PON1 functional
polymorphisms can alter enzyme activity. More specifically, it can be increased in the
presence of rs662 and decreased in rs854560 [117]. The potential association between
these polymorphisms and COVID-19 morbidity and mortality was analyzed in data from
48 countries. According to their results, the rs854560 M allele was associated with both the
prevalence and mortality of COVID-19. The prevalence of COVID-19 was further related
to the number of COVID-19 tests and the human development index (HDI), an indicator
of human development. After adjustments for the above confounders, the association
remained, indicating that the higher the frequency of the rs854560 T allele, the higher the
prevalence and mortality of COVID-19 [117]. Furthermore, the author also emphasized the
importance of sex, age, and ethnicity in COVID-19. Mortality rates are higher in males and
Caucasians, probably because they have lower PON1 activity levels and higher rs854560
frequencies than females and are negatively correlated with age. However, it should be
noted that this is an ecological study and cannot safely conclude that carriers of the rs854560
M allele are at higher risk of COVID-19 infection or that the mortality risk is higher than in
carriers of the rs854560 L allele. Moreover, the author concluded that the decreased activity
of the enzyme due to the presence of rs854560 is also a risk factor for the mortality of
patients with hypertension infected by COVID-19. This agrees with the findings of Delgado
et al. regarding the association between decreased activity and the rise of COVID-19 [118].

HO-1 is an essential enzyme in heme catabolism. The heme oxygenase system has a
protective, anti-inflammatory, and antioxidant effect [119,120]. A di-nucleotide repeat of GT
in the promoter of the heme oxygenase 1 gene (HMOX1) has been suggested to participate
in the COVID-19-induced cytokine storm by affecting the transcription of HO-1 to reactive
oxygen species [108,120–122]. The number of repeats is inversely related to enzyme activity
and mRNA levels of HO-1. Additionally, carriers of the long (L) allele have lower expression
levels of HO-1 [119,122,123]. This polymorphism is also associated with acute respiratory
distress syndrome (ARDS). Furthermore, it is known that individuals with larger GT repeats
are more susceptible to cardiovascular diseases, diabetes, and obesity [108,119,124–126]. It
is also well known that patients with comorbidities like diabetes and obesity experience
more severe COVID-19 [108] and higher mortality rates [123]. These patients also have a
higher risk of developing complications [123]. Given the above, the severity of COVID-19
could be partially explained by the repeats of GT in the promoter region of the HO-
1 [108,123]. However, future studies are needed to verify such associations, in which the
ethnic differences should be considered, given that the L allele is more frequent in European
and Japanese populations [122]. rs2071746 is another polymorphism of HO-1 that has also
been suggested to influence COVID-19 severity, with the T allele regulating the expression
of HO-1 [121,122]. The rs2071746 A allele is associated with a low risk of ischemic heart
disease and stroke but not with coronary artery disease or lung function [122].

Nitric oxide is essential in COVID-19, as it develops inflammatory stress to prevent
pulmonary hypertension [106,127]. Prooxidant eNOS enzyme is encoded by the NOS3 gene,
which is highly polymorphic. rs2070744, rs179983, and a VNTR in the 4th intron of NOS3
are functional polymorphisms studied individually or as a haplotype in various diseases



Antioxidants 2022, 11, 1609 14 of 37

compared to the reference haplotype consisting of the wild types of these polymorphisms,
which is the most common. A review article focused on the potential protective role of
eNOS-derived nitric oxide to severe COVID-19 indicated a direct negative correlation
between COVID-19 mortality and the percentage of NOS3 WT haplotype. The research
group used COVID-19 death per 100 K population information extracted from John Hopkins
University Coronavirus Resources Centre, the COVID data tracker of the U.S. Centers for
Disease Control and Prevention, and the U.S. Census Bureau data. It combined it with
reference data for the WT NOS3 haplotype from the US, Columbia, Brazil, China, South
Korea, India, Saudi Arabia, and Spain [127]. Pehlivan et al. investigated the role of MBL2
and NOS3 in a cohort of 79 patients with COVID-19 and 100 individuals with a negative test
for SARS-CoV-2 antibodies and two negative PCR tests. MBL2 rs1800450, NOS3 rs1799983,
and a 23bp VNTR in the intron 4 of NOS3 were analyzed using PCR-RFLP. The results
showed no statistically significant difference in the genotypes and alleles between the
two groups, neither for rs1799983 nor the VNTR of NOS3. However, the genotype and
allele frequencies of rs1800450 differ between positive and negative tested individuals.
The A allele was higher in COVID-19 patients, whereas the B allele and the AB genotype
were higher in individuals with negative tests. NOS enzyme catalyzes superoxide anion
production and promotes nitric oxide synthesis [106].

7. Genome-Wide Association Studies and Oxidative Stress Pathway in COVID-19

Very few genome-wide association studies (GWAS) published so far have indicated
that the patient’s genetic background of the oxidative stress-related pathways affects clinical
outcomes in COVID-19.

According to the GWAS catalog [128], eleven GWAS searching for genetic variants
affecting COVID-19 susceptibility, COVID-19 severity, and other COVID-19-related phe-
notypes have been published so far [129–139]. All eleven identified GWAS studies are
presented in Table 4. Altogether, they showed that genetic variability of 441 unique genes
and genome regions is associated with COVID-19 occurrence or severity. The pathway
enrichment analysis results with the DAVID functional annotation tool showed clusters of
at least two genes involved in a distinct pathway. We observed no gene clusters directly
involved in oxidative stress-related pathways. However, several identified genes play roles
in various inflammatory pathways, which are a great source of ROS and are thus indirectly
involved in oxidative stress pathways [140]. A comprehensive list of genes identified in
the above-listed GWAS is available in Supplementary Table S1. The output of the pathway
enrichment analysis for the GO biological process is available in Supplementary Table S2,
for KEGG in Supplementary Table S3, and Reactome in Supplementary Table S4.

Table 4. Overview of GWAS studies in COVID-19.

Type of Research Number of Participants Ethnicity Number of
Associations References

Meta-analysis 835 patients and 1255 controls from Italy and
775 patients and 950 controls from Spain European 25 [129]

Meta-analysis

1457 genotyped (598/859 with severe/mild
symptoms) and 1141 sequenced (severe/mild:

474/667) Chinese patients.
Further incorporated 1401 genotyped and

948 sequenced ancestry-matched
population controls.

Genome-wide association was tested on
1072 severe cases versus 3875 mild or population
controls, followed by a trans-ethnic meta-analysis

with summary statistics of 3199 hospitalized
cases and 897,488 population controls from the

COVID-19 Host Genetics Initiative

Chinese 0 [130]
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Table 4. Cont.

Type of Research Number of Participants Ethnicity Number of
Associations References

Original research
1723 outpatients with at least one risk factor for

disease severity from the COLCORONA
clinical trial

European 3 [132]

Original research 2244 critically ill patients with COVID-19 from
208 UK ICUs Mixed 8 [133]

Original research 1778 infected cases European 12 [134]

Meta-analysis 3288 COVID-19 patients676,840 controls European 3 [135]

Meta-analysis 1,051,032 23 andMe research participants Mixed 360 [136]

Meta-analysis 1678 COVID-19 cases and 674,635 controls NA 2 [137]

Initiative 105 studies Global initiative 0 [139]

Original research 175,977 participants European 17 [138]

Original research COVID-19 phenotypes: 482 hospitalized and 164
non-hospitalized participants

GWAS: Arabic
trans-ancestry
meta-analysis:

European, American,
South Asian, and

East Asian

8 [131]

ICU: intensive care unit, COLCORONA: Colchicine Coronavirus SARS-CoV2 Trial, NA: not available.

As none of the studies identified via the GWAS catalog specifically reported oxida-
tive stress-related genes, we manually searched the PubMed database to obtain more
information on the published GWAS studies.

A GWAS performed in 2020 included participants of European ancestry with SARS-
CoV-2 test results, 676 positive and 1334 negative from the UK Biobank, and investigated
COVID-19 susceptibility. The GWAS was performed using the Affymetrix Axiom UK
Biobank array or the UK BiLEVE array and indicated that the intronic variant rs286914,
located on EHF on 11p13, was associated with the positive SARS-CoV-2 test results. More
specifically, the rs286914 A allele carriers had an increased risk of positive SARS-CoV-2 test.
EHF encodes a protein that belongs to an ETS transcription factor subfamily characterized
by epithelial-specific expression and plays an essential role in lung inflammation [141].

The study of Qian et al. was based on rs286914, rs11385942, and rs657152 that emerged
from the two GWAS studies mentioned above [129,141]. Starting with eQTL and meQTL
analyses identified the genes regulated by these genetic variants. Then, they performed
protein interaction network analysis, intracellular location analysis, and gene expression
correlation analysis for these genes. According to their results, rs286914 is a cis-eQTL of
CAT, which suggests that EHF genetic variants might have a functional role and alter the
expression levels of CAT. In addition, they observed protein level interactions between CAT
and SARS-CoV-2 related S protein, which is encoded by the ACE2 gene. Both CAT and
ACE2 are part of the cell membrane and extracellular matrix. The above findings support
the authors’ hypothesis that CAT may affect COVID-19 susceptibility. However, future
studies are needed to verify this association [142]. It is worth mentioning that there is
evidence of the involvement of CAT in respiratory diseases, such as asthma and pulmonary
fibrosis [143,144]. Moreover, a study highlights the anti-inflammatory role of CAT through
the regulation of cytokine production and its protective function against oxidative damage
and inhibition of SARS-CoV-2 replication [145].
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8. The Transcriptomic Landscape of the Oxidative Stress Pathway in COVID-19

We have identified 29 transcriptomic studies conducted to elucidate whether a differ-
ential expression of genes in the oxidative stress-related pathways is associated with the
course of COVID-19.

A study in a Greek cohort of 17 asymptomatic and 15 symptomatic COVID-19 patients
assessed gene expression in their blood samples. Altogether, 15 genes were found to be
differentially expressed. Among them, the ectodermal-neural cortex 1 gene (ENC1), be-
longing to the oxidative stress pathway, was increased in asymptomatic patients compared
to symptomatic patients [146]. ENC1 is a negative regulator of NRF2 by suppressing
NRF2 protein translation [147]. It is also crucial in the immune system and is regulated by
interferons [146].

Furthermore, an in-silico study evaluated the expression levels of 125 oxidative stress
genes, including 37 pro-oxidant genes, 32 oxidative stress-responsive genes, and 56 antioxi-
dant genes in the online available transcriptomic datasets. Nine datasets were included
in the analysis. Seven oxidative stress-related genes were upregulated in whole blood
samples and lung autopsies in severe cases compared to non-severe. The upregulated
genes were myeloperoxidase (MPO), S100 calcium-binding protein A8 (S100A8), S100
calcium-binding protein A9 (S100A9), sulfiredoxin-1 (SRXN1), glutamate-cysteine ligase
regulatory subunit (GCLM), sestrin 2 (SESN2), and thioredoxin (TXN). MPO, S100A8, and
S100A9 were the topmost significantly upregulated genes in severe versus asymptomatic
patients [147]. MPO is a pro-oxidative protein catalyzing ROS formation [148], whereas
S100A8 and S100A9 are a part of the calprotectin complex having a tremendous effect on
the net inflammation and redox balance [147].

Another in silico study evaluated one transcriptomic dataset finding out that several
genes related to the cellular response to stress were dysregulated in cases of SARS-CoV-2
infection, such as NOX2 and dual oxidase 1 (DUOX1) [149]. NOX2 participates in ROS
production [149]. It is also involved in regulating both innate and adaptive immunity. It
mediates the function of type I interferons, the inflammasome, phagocytosis, antigen pro-
cessing and presentation, and cell signaling [150]. DUOX1 contributes to ROS production
and the induction of hydrogen peroxide synthesis. It is also involved in immune cells and
is essential for modulating phagocyte activity and cytokine secretion [150].

An in silico study evaluating different data sets dealt with Alzheimer’s disease (AD)
and COVID-19. It was observed that the estrogen receptor alpha gene (ESR1) expression
was downregulated in patients with AD and COVID-19 compared to AD patients only.
ESR1 has neuroprotective properties and protects the central nervous system against beta-
amyloid, oxidative stress, and inflammation [151]. ESR1 was shown to be downregulated in
AD, which causes its inability to subside neurotoxicity and may lead to a worse prognosis
of COVID-19 in AD patients [152].

Another study evaluated one RNA sequencing dataset retrieved from COVID-19
patients and healthy controls and has enriched results for expression in dendritic and
natural killer cells. They found that 15 genes were differentially expressed in dendritic cells
and 44 in natural killer cells. Some of these genes are involved in oxidative stress-related
pathways. Among those are metallopeptidase domain 9 (ADAM9), cathepsin B (CTSB), and
RAR-related orphan receptor A (RORA) [153]. ADAM9 is induced by oxidative stress. It is
related to prostate cancer cell survival and progression [154]. CTSB regulates the activation
of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) by hydrogen peroxide,
which increases CTSB production and, consequently, the induction of the NLRP3 [155].
RORA has strong antioxidant capacities. It increases the production of antioxidant enzymes,
such as SOD2 and GPX1 and decreases the production of cytokines. Agonists of RORA also
reduce oxidative stress in oleic acid-induced stress in primary cultures of hepatocytes [156].

Nevertheless, another transcriptomic study revealed that ROS-related genes are en-
riched in severe cases of COVID-19. Differentially expressed genes from the oxidative
stress-associated pathways are TXN, SRXN1, peroxiredoxin-4 (PRDX4), peroxiredoxin-1
(PRDX1), MPO, microsomal GST 1 (MGST1), late endosomal/lysosomal adaptor, MAPK
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and MTOR activator 5 (LAMTOR5), ferritin light chain (FTL), and cyclin-dependent kinase
inhibitor 2D (CDKN2D) [157]. TXN expression has already been associated with COVID-19
in another study [147]. It has antioxidant properties and reduces influenza A virus (H1N1)-
Induced acute lung injury and inflammation in the lungs of the virus-infected mice [147].
Furthermore, SRXN1 is an endogenous antioxidant protein that may alleviate cell oxidative
stress damage [158]. Similarly, PRDX4, PRDX1, and MGST1 all have antioxidant capacities
with their ROS scavenging abilities [159–161]. LAMTOR5 mediates the interaction between
NRF2 and KEAP1, which regulates oxidative stress, as shown in osteosarcoma cells [162].
It has been reported that defects in the FTL cause an increase in iron levels and, thus,
oxidative stress, contributing to neurodegeneration in mice. This indicates that FTL has
an antioxidative role under physiological conditions [163]. On the other hand, CDKN2B
seems to act as a pro-oxidative agent, as shown in hepatocellular carcinoma cells [164].

Finally, a study on hospitalized children infected with SARS-CoV-2 showed a unique
monocyte/dendritic cell gene signature correlated with severe myocarditis. It was char-
acterized by sustained nuclear factor κB (NF-κB) activity and tumor necrosis factor-alpha
(TNF-α) signaling and was associated with decreased gene expression of NF-κB inhibitors.
They also showed enrichment in hyper inflammation and response to oxidative stress-
related genes. Expression of genes like HIF1A, HMOX1, and high mobility group box 1
(HMBG1) was associated with myocarditis in COVID-19 patients. HIF-1α is a sensor of
oxidative stress. It can induce a switch from oxidative phosphorylation to glycolysis to
limit ROS generation [165]. HMOX1 plays an essential role in oxidative stress defense [166],
while HMBG1 is a sensitive marker of oxidative DNA damage in living cells [167].

9. Oxidative Stress Markers in COVID-19

Several studies evaluated the levels of various oxidative stress markers in COVID-19
patients. Thiol/disulfide misbalance is an indicator of oxidative stress [168], and it was
observed in COVID-19 patients where increased levels of disulfides were found [70]. Kalem
et al. found that disulfide levels are significantly higher in mild to moderate COVID-19
patients compared to control, while severe patients had similar disulfide levels compared
to control [89]. Decreased thiol levels in COVID-19 patients are confirmed in several
studies [66,69,71,88–90,92]. Decreased serum-free thiols could discriminate mild COVID-
19 patients from healthy controls. Serum-free thiols are markers of oxidative stress and
are usually reduced in diseases characterized by increased levels of ROS [71]. At the
moment of hospitalization, levels of native thiol and total thiol were significantly lower in
COVID-19 patients compared to healthy controls [69,89] and in severe compared to mild to
moderate adults [88,89] and pediatric patients [88]. In hospitalized patients, thiol levels
were decreasing with increasing disease severity [90], in COVID-19 patients with acute
respiratory distress syndrome (ARDS) compared to those without ARDS [92], and in ICU
admitted compared to non-ICU COVID-19 patients [85].

Increased oxidative cell damage markers such as increased levels of protein carbonyls
and lipid peroxidation products malondialdehyde (MDA) and 4-hydroxynonenal (4-NHE)
were observed in COVID-19 patients compared to controls [32]. A study comparing
oxidative stress biomarkers in hospitalized versus outpatients found that both groups
had higher MDA and advanced oxidation protein product levels at baseline. In contrast,
levels of 8-hydroxy-2′-deoxyguanosine increased during the first seven days for both
groups. Advanced oxidation protein product levels were significantly higher in hospitalized
patients than in outpatients [74]. Total MDA levels were higher in COVID-19 patients
compared to healthy controls, and there was also a difference depending on later admission
to ICU. Patients placed in the ICU had significantly higher MDA levels [18]. Significantly
increased levels of oxidized phospholipids were found in hospitalized COVID-19 patients
compared to controls [68]. TBARS, as a measure of lipid peroxidation, had similar levels in
all hospitalized patients, independent of disease severity [83]. Lage et al. found elevated
lipid peroxidation and increased ferritin levels in COVID-19 mild, moderate, and severe
patients compared to healthy controls. The same authors found higher mitochondrial



Antioxidants 2022, 11, 1609 18 of 37

superoxide levels in circulating classical monocytes from COVID-19 patients than in healthy
controls [30]. Significantly higher levels of 4-HNE adduct proteins in the first three days
of hospitalization were found in critical COVID-19 deceased compared to critical patients
that survived. 4-HNE is a reactive aldehyde produced by lipid peroxidation [95]. The level
of 2-hydroxybutyric acid was significantly increased in hospitalized COVID-19 patients
compared to controls [67]. While Cekerevac et al. found that hydrogen peroxide levels
were similar in all hospitalized patients, independent of disease severity [83], Badawy
et al. found high levels of plasma hydrogen peroxide and damaged serum albumin can
be used as predictors of mortality in COVID-19 [52]. Moreover, with increased COVID-
19 severity in hospitalized patients, increased levels of ischemia-modified albumin were
observed [90]. Figure 4 summarizes potential biochemical and molecular biomarkers of
COVID-19 development and severity and antioxidative enzymes coded by polymorphic
genes that may lead to interindividual variability in antioxidative capacity.
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Figure 4. Oxidative stress biomarkers in COVID-19 development and severity. During SARS-CoV-2
infection, ROS levels are increased, and an imbalance between thiol and disulfide leads to lipid
peroxidation. More specifically, O2

.− is converted to H2O2 via SOD, which is further converted into
H2O and O2 through CAT. In the Fenton reaction, levels of OH. are increased, which then reacts with
lipids to initiate lipid peroxidation. Different lipid peroxidation products are derived from the process,
ending with acrolein, HNE, and MDA. LOOH and H2O2 are reduced to lipid alcohols and water,
respectively, by GPX. In this enzymatic reaction, reduced GSH is converted to glutathione disulfide,
which is then regenerated with GR. Acrolein, HNE, and MDA are conjugated with glutathione via the
GST enzymatic reaction. Since a lot of glutathione is used in the process, N-acetyl cysteine can be used
to replenish it. Abbreviations: O2

.−: superoxide, H2O2: hydrogen peroxide, OH-: hydroxide, LOOH:
Lipid hydroperoxide, SOD: superoxide dismutase, CAT: catalase, GPX: glutathione peroxidase,
GR: Glutathione reductase, GSH: glutathione, GSSG: glutathione disulfide (oxidized glutathione),
LOH: lipid hydroperoxide, HNE: hydroxynonenal, MDA: Malondialdehyde, GTS: glutathione-S-
transferase. Created with BioRender.com (accessed on 9 August 2022).

10. Antioxidant Capacity in COVID-19 Patients

Besides increased oxidative stress in COVID-19 patients, decreased antioxidant ca-
pacity was observed [34]. As discussed in other parts of this article, some of the main
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reasons for decreased antioxidant capacity could be the inactivation of the Nrf2 transcrip-
tion factor and decrease in antioxidant proteins controlled by Nrf2 [62,63], as well as
alterations in the activity of crucial antioxidant enzymes and processes such as GPX with
GSH [30,31,75,76,78,79,87,94,98], and PON-1 [81].

Yaghoubi et al. found that decreased total antioxidant capacity could be used to
differentiate severe ICU admitted patients from mild COVID-19 outpatients and both
groups of patients from healthy controls [84]. Martín-Fernández et al. found decreased
antioxidant capacity (ABTS and FRAP) in hospitalized COVID-19 patients compared to
healthy controls [32], and significantly lower total antioxidant status in ICU compared to
non-ICU patients were observed [85]. In a pilot study on 21 critically ill patients, total
antioxidant capacity was below the detection limit [95]. However, Karkhanei et al. found
opposite results where total antioxidant capacity was increased in ICU admits compared to
hospitalized non-ICU COVID-19 patients with similar total antioxidant capacity to healthy
controls. The sampling time in this study was at least 24 h after admission, while the
maximum time of sample collection was not indicated in the article [87]. In other arti-
cles, the earlier sampling time was used: Yaghoubi et al. collected samples upon hospital
admission [84], Martín-Fernández et al. at 9 am the morning after hospitalization [32],
Çakırca et al. [85], and Žarković et al. [95] on the first day from hospital admission. As
the levels of oxidative stress and antioxidant capacity may depend on the course of dis-
ease [82], the sampling times could have influenced the results of Karkhanei et al. [87].
Some studies found no difference in antioxidant capacities between evaluated groups.
Atanasovska et al. found that severe and moderate COVID-19 hospitalized patients had
similar antioxidant capacities [73], and Lage et al. found no difference in total antioxidant
response and iron levels in COVID-19 mild, moderate, and severe patients compared to
healthy controls [30]. Additionally, Gadotti et al. found no difference between hospitalized
moderate and severe COVID-19 patients on the first day of hospitalization for hydrogen
peroxide, GSH, and oxidized GSH, MDA, carbonyl, and sulfhydryl levels. Moreover, both
groups had a similar total antioxidant capacity and GST activity [91]. It is important to note
that studies that found no difference in antioxidant capacities between evaluated groups
had a smaller number of patients (Atanasovska et al. 33 COVID-19 patients [73], Lage
et al. 31 mild, 4 moderate, and 12 severe COVID-19 patients and 21 healthy control [30],
Gadotti et al. 44 moderate and 33 severe COVID-19 patients [91]) compared to studies that
found decreased antioxidant capacities (Yaghoubi et al. 60 milds and 60 severe COVID-19
patients and 60 controls [84], Martín-Fernández et al. 108 hospitalized COVID-19 patients
(40 intubated or with fatal outcome and 68 non-intubated or without fatal outcome) and
28 controls [32], Çakırca et al. 86 hospitalized COVID-19 patients, 40 in ICU and 46 non-ICU
patients [85] (Table 2). A smaller sample size could influence the results and lead to no
statistically significant difference between analyzed groups.

11. Potentials for Therapeutic Approaches Based on Antioxidant Therapy

There are many treatment approaches and clinical trials for COVID-19 based on
antiviral drugs (remdesivir, molnupiravir), single or combinational approaches of biologi-
cal agents in oral, injection, or inhalation forms [169–173]. Corticosteroids, convalescent
plasma, and immunomodulators were also widely used. Furthermore, drugs such as
antimalarials were repurposed for COVID-19 treatment, although their efficacy has not yet
been proven [174]. Moreover, blood stem cells, cord blood mononuclear cells, mesenchymal
stem cell (MSC) based strategies [175–177] or targeted therapies with monoclonal antibod-
ies [174,178,179], such as sotrovimab, adalimumab, nivolumab, clazakizumab, are being
investigated in clinical trials. Scientists are trying to find new drugs or implementation ways
to overcome the detrimental effects of the disease, but there is still no effective treatment.

Antioxidative agents are one of these groups of molecules. They were first successfully
used in patients with pulmonary sepsis and then proposed to alleviate septic shock in
COVID-19 patients due to their antioxidant and immune defense activation properties [23].
The upregulation of systemic inflammation with pulmonary dysfunction in COVID-19
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is accompanied by the production of ROS and a concomitant deficiency of antioxidants.
Antioxidative enzymes such as SOD, CAT, and GPX, and nonenzymatic antioxidant and
antiinflammatory molecules such as vitamins A, C, D [92,180] and E, melatonin, resveratrol,
GSH, NAC, silymarin, quercetin, curcumin, propolis, thymoquinone, Boswellia, and hes-
peridin, were suggested as the therapeutic agents against COVID-19 and some of them are
being evaluated in clinical trials [181–191]. Vitamin therapy was not suggested to replace
classical antiviral and antiinflammatory treatments for COVID-19, but it could be used as
an adjuvant therapy with other pharmacological treatments [190]. A prospective, double-
blinded, randomized parallel-controlled interventional clinical study evaluated the effect
of antioxidant supplements in 87 hospitalized COVID-19 patients. They reported that in
patients under oral dietary supplements enriched with vitamins A, E, C, Zinc, and selenium,
the levels of alkaline phosphatase, IL-6, TNF-α, and MCP-1 were significantly lower than
in the placebo group, concluding that oral antioxidant supplementation has a significant
effect on the clinical parameters among patients with non-critical COVID-19 [191].

Another possible strategy could rely on the activation of the nuclear erythroid-related
factor 2 (Nrf2) and Nrf2/antioxidant-related elements (ARE) with the treatment strategies
that are based on resveratrol, sulforaphane, melatonin, and vitamin D [181,192]. Natural
compounds like propolis were suggested for blocking the proinflammatory PAK1 en-
zyme [186], and thymoquinone is suggested for modulating the production of nitric oxide
(NO) and ROS and protection against multiple organ dysfunction syndrome (MODS) [185].
Registered clinical trials on antioxidant treatments in COVID-19 are listed in Supplementary
Table S5.

However, since most studies concern GSH and NAC, as potential therapeutic candidates
for COVID-19, this review mainly focused on these two antioxidant agents (Tables 5 and 6).

11.1. Glutathione

GSH is the most abundant physiological antioxidant in humans. It is a low-molecular-
weight thiol-containing agent detoxifying both xenobiotic and endogenous compounds.
Through its active thiol group, GSH can directly interact with reactive oxygen/nitrogen
species as an antioxidant or indirectly serve as a cofactor for various enzymes [193,194].
Whether the reaction is enzymic or nonenzymic, conjugation with GSH is crucial in detoxi-
fication [195]. GSH’s role in detoxification is accomplished via GSTs and GPX catalyzed
reactions, antioxidant defense, and regeneration of reduced thiols [196]. The intracellular
GSH levels, which are in the range of millimolar concentrations, indicate the vital role of the
molecule not only in detoxification but also in protein folding, regeneration of antioxidant
vitamins C and E, mitochondrial function, signaling, cellular proliferation, and apoptosis.
Besides, the protection of host immune cells through GSH’s antioxidant mechanism pre-
serves the optimal functioning of the immune system. Adequate intracellular GSH levels
are also required for optimal T-lymphocyte function [197].

GSH also inhibits the replication of viruses at different stages of the viral life cycle
and helps the antiviral defense by decreasing the viral load and the subsequent cytokine
storm. Studies have also shown that a delicate disulfide-thiol balance partially regulates
viral entry and fusion in the host cell. Thus any increases in oxidative stress or depletions
in the GSH reservoir, such as those that occur in aging, cigarette smoking, chronic diseases,
or low GSH intake, can contribute to an increased risk of more severe disease pathogenesis
and worse outcomes like in COVID-19 cases [198,199]. Additionally, SARS-CoV-2 affects
oxidative homeostasis and ROS production and inhibits GSH and NRF2, which intercept
ROS damage [200]. Furthermore, there is evidence that GSH and NAC can suppress the
activity of variant spikes from specific strains of the SARS-CoV-2, like alpha and delta
strains [201].

In COVID-19, GSH deficiency was suggested to lead to increased viral replication
and oxidative damage of the lung, resulting in hyperinflammation and ARDS. The SARS-
CoV-2 infection affects the metabolism of GSH in the homeostatic control of the redox and
extracellular thiols [202]. Thiol levels were suggested to be associated with the severity
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of COVID-19, which could be a new, sensitive prognostic biomarker in COVID-19 [66].
In addition, the role of aminothiols, like GSH and its precursor, cysteinylglycine (CG),
has been investigated in patients with COVID-19. Specifically, GSH total content was
associated with advanced oxidation protein product level in moderate or severe symptoms.
Low levels of reduced forms of CG were associated with a high risk of lung damage [203].
Moreover, drugs containing the thiol moiety, such as erdosteine, may be utilized as novel
therapeutics to block NF-kB and address the cytokine storm syndrome and respiratory
distress in COVID-19 pneumonia patients [204].

The limited therapeutic approaches for COVID-19, and the role of GSH deficiency
in severe cases, suggested that restoration of GSH levels in these patients would be a
promising approach. GSH, its precursor NAC and selenium-based natural supplements
that can biologically mimic GPX, either as stand-alone or in combined therapy, can improve
the host response against COVID-19 [205]. A molecular dynamic-based study showed that
GSH could be the best inhibitor to overcome COVID-19 compared to the other vitamins
such as tocopherol (vitamin E), thiamine (vitamin B1), pantothenic acid (vitamin B5),
pyridoxine (vitamin B6), biotin (vitamin B7) [206].

GSH can be administered via oral or intravenous routes. However, oral GSH treat-
ments are approached cautiously because GSH given orally may be degraded by digestive
peptidases. Recent research indicates that GSH in liposomal or sublingual forms is more
readily bioavailable and positively impacts systemic GSH levels compared to oral and
intravenous routes [207].

Published experimental studies and case reports supporting GSH supplementation in
COVID-19 are summarized in Table 5. An in vitro study showed that GSH has a protective
role against peroxynitrite-mediated DNA damage at the site of inflammation [208]. An
in vivo study on IV and nebulization forms of S-Nitrosoglutathione (GSNO) in a mice
model showed that nebulized-GSNO therapy could be used and translated into an af-
fordable treatment in ischemic events such as strokes, especially in limited healthcare
infrastructure [209]. GSH treatment was also administered in two severe COVID-19 pa-
tients with Lyme disease and tick-borne co-infections, cough, and dyspnea. A trial of 2 g of
PO or IV GSH was used in both patients and improved their dyspnea within 1 h of use.
Repeated use of 2000 mg of PO and IV GSH effectively relieved respiratory symptoms.
Thus, oral and IV GSH can be an excellent treatment alternative for regulating NF-κB
signaling and treating “cytokine storm syndrome” in COVID-19 patients [210].

COVID-19 patients had severe GSH deficiency, elevated oxidative stress, and altered
oxidant damage. In a clinical study that included 60 COVID-19 patients, these effects
were more pronounced with older age, although they were also observed in younger
COVID-19 patients [31]. A study in a mice model showed that supplementation with
GSH precursor amino acid glycine combined with NAC had significant potential to treat
GSH deficiency and lower oxidative stress and oxidative damage [211]. It was suggested
that such supplementation might be beneficial also for COVID-19 patients [31]. Published
studies supporting GSH supplementation in COVID-19 are summarized in Table 5.

Table 5. Published studies supporting GSH supplementation in COVID-19.

Therapeutic Agent Objectives of the Study Major Findings Type of Study References

GSH

To explore the role of GSH
and other thiols in

neutralizing the effect of
peroxynitrite-mediated DNA

damage through stable
GSH-DNA adduct formation

Protective role of GSH
against the PN-mediated

toxic effect at the site
of inflammation

In vitro [208]
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Table 5. Cont.

Therapeutic Agent Objectives of the Study Major Findings Type of Study References

GSNO or
GSNO-Nebulization

To explore IV infusion of
GSNO in nebulization

(diabetic stroke, hypoxia
circumstances as COVID-19)

GSNO-nebulization
enhanced collateral

microvascular perfusion in
the early hours of hypoxia

In vivo mice model [209]

GlyNAC To explore the GlyNAC
effect on longevity in mice

GlyNAC mice lived longer
than controls,

improved/corrected
impaired GSH synthesis,

GSH deficiency, OxS,
mitochondrial dysfunction,
abnormal mitophagy and

nutrient-sensing, and
genomic-damage

In vivo mice model [211]

Case 1: a dose of 2 g up
to twice a day

PO + probiotics
Case 2:

liposomal l- GSH +
azithromycin+

hydroxychloroquine

To explore the effects of
using high dose oral and/or
IV GSH in the treatment of

2 patients with dyspnea
secondary to

COVID-19 pneumonia

Oral and IV GSH may
represent a novel treatment

approach for blocking NF-κB
and addressing “cytokine

storm syndrome” and
respiratory distress in

patients with
COVID-19 pneumonia

Case report (2 patients) [210]

GSH: glutathione, NAC: N-Acetylcysteine, IV: intravenous, GSNO: S-Nitrosoglutathione, GlyNAC: combination
of glycine and NAC.

11.2. N-Acetyl Cysteine

NAC is mainly used as a mucolytic and antiviral agent. It is metabolized into cysteine
in the liver by a deacetylation process. This deacetylation can reduce various free radicals
by giving one electron or acts as a nucleophile by giving one or two electrons [212].

NAC is widely used as a prescription drug and dietary supplement. It was first
introduced in the 1960s as a mucolytic drug depolymerizing mucin molecule. This effect
was attributed to NAC’s ability to cleave disulfide cross-bridges in the glycoprotein matrix
of mucous protein complexes [213,214]. Later studies indicated that NAC also improved
mucociliary clearance and modulated the virulence factors of the intrabronchial bacterial
flora [215], and enhanced the antioxidant/antiviral lung defenses [216]. NAC is also an
immune modulating agent with its redox balance changing ability, NF-κB suppression,
controlling cytokine production, and chemotactic signals [217].

The generation of free radicals by phagocytes involved in the inflammatory process
and alterations of the immune response play key roles in viral infections such as the classical
flu or COVID-19. This is not surprising regarding the body’s defenses because of the release
of immunoactive mediators such as interleukins (ILs), interferon-gamma (IFN-γ), and the
tumor necrosis factor (TNF) is required for the elimination of the virus. This cascade of
events, in turn, alters the cell redox equilibrium causing a deficiency in antioxidants. Thus,
any safe treatment that supports the body’s antioxidant pool may be promising in viral
infections. In vitro and in vivo administration of NAC have been reported to lead to anti-
inflammatory (e.g., decreased ILs, IFN- γ, and TNF alpha concentrations) and antioxidant
effects in several pulmonary diseases, including viral pneumonia [218,219]. NAC has also
been investigated in experimental infection by influenza A viruses [220] and in clinical
trials, including influenza patients [221]. NAC reduced the symptoms and the severity
of influenza.

Subsequently, NAC was reported to be an effective antioxidant leading to significant
increases in plasma and alveolar GSH concentrations. This role was attributed to its
thiol (-SH) groups, by which it enriches the intracellular sulfhydryl pool and acts as a
precursor of reduced GSH. Under physiological conditions, the uptake of extracellular GSH
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requires the breakdown of GSH to amino acids, their subsequent transport into the cell,
and intracellular synthesis of the tripeptide from cysteine, glutamate, and glycine. Unlike
cysteine, the rate-limiting amino acid in GSH synthesis, NAC can be effectively transported
across the cell membranes and has very low toxicity [221]. A computational study showed
that thiol-based chemical probes could be a strategy to inhibit the SARS-CoV-2 infection
by shifting the spike glycoprotein redox scaffold [222]. Therefore, NAC could be used as a
potential agent in many clinical applications of pathological conditions involving oxidative
stress, including acute and chronic bronchitis, acute respiratory distress syndrome (ARDS),
and certain cardiovascular diseases.

Table 6 summarizes published studies using NAC as adjuvant therapy in COVID-
19. It was proposed that an increase in angiotensin 2 may induce a redox imbalance in
alveolar epithelium cells that results in apoptosis, increased inflammation, and impaired
gas exchange. NAC was suggested to restore this problem in COVID-19 patients. This
hypothesis was tested in a retrospective, two-center cohort study (42 NAC users, 40 controls)
as 600 mg bid orally for 14 days. The study showed that 1200 mg/day of oral NAC
administration significantly reduced the progression rates to severe respiratory failure
(SRF), mechanical ventilation requirement, and mortality [223]. In addition, a combination
of NAC and bromelain showed even better mucolytic and anti-inflammatory activity ex
vivo in tracheal aspirate samples from COVID-19 patients compared to NAC treatment
ore controls [224]. Another study evaluated the high dose of oral 600 mg NAC every eight
hours. The study reported significantly reduced mortality with the higher NAC dose but
no effect on the mean duration of hospitalization, admission to the ICU, or use of invasive
mechanical ventilation [225].

COVID-19 is known for its negative effects on male fertility via virus division, cytotoxic
effects on testicular tissue, and immunopathological effects. NAC was also suggested to
improve sperm concentration and reduce ROS and the oxidation of sperm DNA. This
hypothesis was tested on 200 men for 3 months with oral 600 mg/day. Results show that
oral NAC consumption significantly improved sperm total motility, sperm morphology,
and sperm concentration after the COVID-19 infection [226].

A few case reports also supported NAC administration in COVID-19 patients. In a
study, NAC inhalation solution was tested for 2 months on a 64-year-old patient with an
esophageal cancer history. This therapy was implemented after the antibiotics, antiviral and
antibacterial medications, respiratory support, expectorant nebulization, and nutritional
support. This study revealed that NAC inhalation lavage might have great potential to
clean the airway and overcome severe pneumonia or respiratory failures like COVID-19.
Nevertheless, for using NAC as a bronchoscopic lavage therapy, a study of the reasonable
dosage, safety, and efficacy in a large sample is urgently required [227]. Another case
report showed that the NAC administration reversed the G6PD deficiency manifesting due
to the GSH depletion. This study also reported that IV administration of different NAC
doses reduced CRP and ferritin levels in nine out of ten G6PD patients. NAC mechanism
of action may include blockage of viral infection and the following cytokine storm [228].
A double-blind, randomized, placebo-controlled trial (14 under NAC, 16 controls) by de
Alencar et al. was based on the hypothesis that NAC administration could restore redox
homeostasis. NAC was administered as 21 g (300 mg/kg) IV to the patient group; however,
it did not affect the evolution of the severe COVID-19 [229]. Single center clinical trial was
conducted by Taher et al. on 92 patients (45 placebo, 47 NAC group) in which IV NAC
treating strategy did not cause improvement [230].
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Table 6. Published studies on NAC administration in COVID-19 patients.

Therapeutic Agent Objectives of the Study Number of Patients Major Findings Type of Study References

NAC + standard
palliative care and

drugs + remdesivir +
dexamethasone

Evaluate NAC effects in
hospitalized COVID-19

pneumonia cases in terms
of SRF progression

and mortality

82 patients (42 NAC
and 40 controls)

Oral NAC provided
lower SRF and mortality

compared to controls

Retrospective,
two-center study [223]

NAC + standard
of care

Explore the potential
benefits of high NAC

dose in COVID-19

19208 patients
(2071 NAC,

17,137 controls)

Oral NAC provided
significantly lower

mortality

Observational
retrospective study [225]

NAC
Explore potential effects
on sperm concentrations

and quality

200 men with
COVID-19 history
last three months

100 NAC,
100 controls)

Oral NAC consumption
significantly improved

sperm total motility,
sperm morphology, and

sperm concentration

Interventional study [226]

NAC inhalation after
treatment with

antibiotics, antiviral
and antibacterial

medications,
respiratory support,

expectorant
nebulization, and

nutritional support

Observe NAC inhalation
solution combined with

routine nebulization
on patient

1 patient Refractory hypercapnia
gradually improved Case report [227]

NAC +
hydroxychloroquine

+ ECMO

Explore whether GSH
deficiency is reversible

with NAC administration

10 patients with
G6PD deficiency

NAC reduced CRP and
ferritin levels of G6PD

deficient patients
Case report [228]

NAC
Explore the effects of

NAC on
COVID-19 severity

30 patients (14 NAC,
16 controls)

No effect on the evolution
of severe COVID-19

Double-blind,
randomized,

placebo-controlled
trial

[229]

NAC

Evaluate the potential
benefits of NAC in

patients with
COVID19-associated

ARDS

92 patients
(45 placebo, 47 NAC)

No improvement in
patients receiving NAC

Single center
clinical trial [230]

NAC inhalation; 5%
saline solution; or

8.4% sodium
bicarbonate + control

group (no
routine inhalation)

Evaluate the effect of
routine inhalation
therapy on VAP in

mechanically ventilated
COVID-19 patients

175 patients who
were treated with

mechanical
ventilation

Routine inhalation
therapy had no effect on
the incidence of bacterial

or fungal VAP nor
all-cause mortality, but a
significant reduction of

Gram-positive and MRSA
VAP was observed in the

treatment groups

Randomized
controlled trial [231]

IV NAC
Investigate whether IV

NAC attenuates the
cytokine storm

10 COVID-19
positive patients No benefit of IV NAC Retrospective case

series [232]

GSH: glutathione, NAC: N-Acetylcysteine, SRF: severe respiratory failure, ARDS: acute respiratory distress
syndrome, G6PD: Glucose 6-phosphate dehydrogenase, ECMO: extracorporeal membrane oxygenator, VAP:
ventilator-associated pneumonia, MRSA: methicillin-resistant Staphylococcus aureus, IV: intravenous.

11.3. Clinical Trials on Glutathione or N-Acetyl Cysteine Supplementation in COVID-19

Searching the Clinicaltrials.gov database, we identified 22 trials using NAC and
10 trials using GSH in COVID-19 patients. Six were duplicates, so the number of trials
using either GSH or NAC supplementations was 25 (Supplementary Table S6). Only
seven of these trials have been completed, while four are enrolling by invitation, three are
recruiting, one is active and not recruiting, six are not yet recruiting, one is terminated, one
has unknown status, and two have been withdrawn. The details of the studies that are
either currently recruiting patients or have been completed can be found in Table 7.

Clinicaltrials.gov
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Table 7. Registered clinical trials on NAC or GSH supplementation in COVID-19 treatment that are
recruiting patients or have been completed.

Clinical Trial
ID Number Title Location Interventions Status Study

Results

NCT04703036 Glutathione, Oxidative Stress and
Mitochondrial Function in COVID-19 United States Glycine, NAC,

alanine Recruiting
No

Results
Available

NCT04458298

A Study to Evaluate OP-101
(Dendrimer N-acetyl-cysteine) in
Severe Coronavirus Disease 2019

(COVID-19) Patients

United States OP-101, placebo Recruiting
No

Results
Available

NCT04573153
Metabolic Cofactor Supplementation

and Hydroxychloroquine Combination
in COVID-19 Patients

Turkey

Hydroxychloroquine
+ metabolic cofactor,
hydroxychloroquine

+ sorbitol

Recruiting
No

Results
Available

NCT04483973 SPI-1005 Treatment in Severe
COVID-19 Patients United States Ebselen, placebo Enrolling by

invitation

No
Results

Available

NCT04484025 SPI-1005 Treatment in Moderate
COVID-19 Patients United States Ebselen, placebo Enrolling by

invitation

No
Results

Available

NCT04797871
Resistance Training and Clinical Status

in Patients With Post Discharge
Symptoms After COVID-19

Spain
Behavioral:

Resistance training,
Standard care

Enrolling by
invitation

No
Results

Available

NCT04569851
Clinical Characteristics and Prognostic

Factors of Patients With COVID-19
(Coronavirus Disease 2019)

Spain NA Enrolling by
invitation

No
Results

Available

NCT04742725
A Study to Evaluate the Efficacy and
Safety of Prothione Capsules for Mild

to Moderate COVID-19
Rwanda Prothione, placebo Completed

No
Results

Available

NCT04792021 Effect of N-acetylcysteine on Oxidative
Stress in COVID-19 Patients Egypt NAC Completed

No
Results

Available

NCT04419025
Efficacy of N-Acetylcysteine (NAC) in

Preventing COVID-19 From
Progressing to Severe Disease

United States NAC Completed
No

Results
Available

NCT04900129

Inhalation of Vapor With Medication
(Diclofenac Sodium, Menthol, Methyl

Salicylate and N-Acetyl Cysteine)
Reduces Oxygen Need and Hospital
Stay in COVID-19 Patients—A Case

Control Study

Bangladesh

Combination of
menthol, methyl

salicylate, NAC and
diclofenac sodium

Completed
No

Results
Available

NCT04570254
Antioxidants as Adjuvant Therapy to

Standard Therapy in Patients
With COVID-19

Mexico
Vitamin C, vitamin
E, melatonin, NAC,

pentoxifylline
Completed

No
Results

Available

NCT04755972

Mucolytics in Patients on Invasive
Mechanical Ventilation Due to Severe

Acute Respiratory Syndrome
Coronavirus 2

Croatia

Inhalation of NAC,
inhalation of sodium
chloride, inhalation

of sodium
bicarbonate

Completed
No

Results
Available

NCT04666753 Retrospective Study of
ImmunoFormulation for COVID-19 Spain ImmunoFormulation Completed

No
Results

Available

NAC: N-Acetylcysteine, NA: not available.
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Most clinical trials focused on NAC or a combination of NAC with other compounds,
such as vitamins and glycine. Two studies focused on ebselen, a synthetic drug with anti-
inflammatory and antioxidant activity that mimics the action of GPX [233,234]. In addition,
one study evaluated the efficacy, safety, and tolerability of dendrimer N-acetyl-cysteine
(OP-101) in patients with severe COVID-19. OP-101 is derived from the conjugation of NAC
to the hydroxyl dendrimer, has anti-inflammatory activity, and is considered a promising
therapy for COVID-19 [235]. NAC usage as an adjunct treatment is recommended in some
countries like the Philippines [236].

Different formulations and application modes may have an important effect on the
bioavailability, distribution, and efficacy of both GSH and NAC. In lung diseases, for
example, oral administration of GSH or nebulization with water or saline was beneficial
for the patients [237,238]. NAC can also be administered orally, in a nebulization form or
intravenously [239]. Interestingly, both orally and intravenously, high doses of NAC were
effective in patients with severe symptoms of COVID-19 [240]. Lung-targeted liposomes
have also displayed an increased accumulation profile in a mice model for ARDS treat-
ment [241]. However, more detailed studies with clinical trials to determine the efficacy of
NAC stand-alone and others for increasing its bioavailability and targeted delivery are still
needed [219].

It is known that anti-COVID-19 drugs may affect apical and hepatocyte transporters of
the liver and can also cause liver toxicity [242]. Therefore, there is always a great demand
for non-toxic or low adverse effects and more efficient drug candidates. Administration
of NAC boosts the reservoir of master antioxidant GSH and supports the immune system
by reducing inflammation and providing healthy liver function. Currently, there is no
evidence-based role for NAC supplementation in preventing COVID-19. However, the
oral administration of NAC, at 600 mg twice daily, may be suggested for preventive
purposes, especially in elderly or chronic diseased people. NAC also has the potential for
preventive mechanisms on endothelial function and limiting microthrombosis in severe
forms of COVID-19 [27]. Although not recommended for wide use in the prevention,
systemic or aerosolized NAC administration may improve outcomes in specific patients
with established COVID-19 and respiratory problems. Since COVID-19 cases manifest
symptoms of systemic inflammation and have thick respiratory mucus preventing adequate
oxygenation, the clinical course of some patients may be complicated by ARDS. Systemic
or aerosolized NAC may be beneficial in this specific patient population. The treatment is
inexpensive, simple, and has no known adverse effects or typical drug interactions. GSH
therapy is also suggested as stand-alone or combined therapy to reduce the oxidative stress
over the cells, relieve sleeping problems, block NF-kB activation, addressing the cytokine
storm syndrome.

12. Conclusions

Our systematic review of published literature and databases identified a growing
body of data indicating that infection with SARS-CoV-2 leads to increased oxidative stress
(Figure 1). It shows that the imbalance between the production of free radicals and the
antioxidant systems, along with the underlying molecular and genetic mechanisms, plays
an important role in the pathogenesis and severity of COVID-19 (Figure 4). However, it
should be considered that most of the studies we identified and elaborated on in our review
were performed in the first year of the pandemic. Given that these findings are preliminary
and might be incomplete, more clinical studies and experimental data are needed to
replicate the associations mentioned in this review. Oxidative stress pathways may be
induced directly by SARS-CoV-2 spike protein and pro-oxidative enzymes or indirectly
via activation of damage response pathways, such as inflammasomes, also resulting in
activation of inflammatory pathways leading to a vicious cycle of increased oxidative
and nitrosative stress. Both trigger lipid peroxidation, protein inactivation, and DNA
damage leading to mitochondrial dysfunction, cell death, and increased inflammatory
response. Indeed, increased oxidative damage markers were observed in COVID-19
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patients compared to controls. Antioxidants such as GSH and antioxidative enzymes
such as SOD, CAT, and GPX play an important role in preventing or reducing oxidative
damage. However, despite higher CAT and SOD levels and activity reported in COVID-19
patients, the ROS levels in patients were increased and correlated with disease severity.

Nevertheless, despite a significant increase in the activity and level of antioxidative
enzymes, decreased reduced thiol levels and decreased total antioxidant capacity were
observed in COVID-19 patients and correlated with disease severity and worse disease
outcome. GSH plays a vital role in defense against oxidative stress, both as a cofactor of
GPX) and as a compound with a thiol group capable of directly reducing reactive species.
NAC is an important donor for the regeneration of GSH and has antioxidant activity
(Figure 2). Therefore, several preclinical studies and clinical trials were conducted and are
ongoing to see if, among other antioxidative therapies, supplementation with GSH, NAC,
their precursors, or other thiols could be used to improve outcomes in COVID-19 ttreatment.
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Table S2: Output of the pathway enrichment analysis for the GO biological process; Supplementary
Table S3: Output of the pathway enrichment analysis using the Kyoto Encyclopedia of Genes and
Genomes database; Supplementary Table S4: Output of the pathway enrichment analysis for the
Reactome database; Supplementary Table S5: Identified registered clinical trials on antioxidants in
COVID-19; Supplementary Table S6: Identified registered clinical trials on GSH or NAC supplemen-
tation in COVID-19. References [243–251] are cited in the supplementary materials.
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