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Abstract

The discovery of robust antidepressant actions exerted by the N-methyl-D-aspartate receptor (NMDAR) antagonist (R,S)-
ketamine has been a crucial breakthrough in mood disorder research. (R,S)-ketamine is a racemic mixture of equal amounts
of (R)-ketamine (arketamine) and (S)-ketamine (esketamine). In 2019, an esketamine nasal spray from Johnson & Johnson
was approved in the United States of America and Europe for treatment-resistant depression. However, an increasing number
of preclinical studies show that arketamine has greater potency and longer-lasting antidepressant-like effects than esketamine
in rodents, despite the lower binding affinity of arketamine for the NMDAR. In clinical trials, non-ketamine NMDAR-
related compounds did not exhibit ketamine-like robust antidepressant actions in patients with depression, despite these
compounds showing antidepressant-like effects in rodents. Thus, the rodent data do not necessarily translate to humans due
to the complexity of human psychiatric disorders. Collectively, the available studies indicate that it is unlikely that NMDAR
plays a major role in the antidepressant action of (R,S)-ketamine and its enantiomers, although the precise molecular
mechanisms underlying antidepressant actions of (R,S)-ketamine and its enantiomers remain unclear. In this paper, we
review recent findings on the molecular mechanisms underlying the antidepressant actions of (R,S)-ketamine and its potent
enantiomer arketamine. Furthermore, we discuss the possible role of the brain–gut–microbiota axis and brain–spleen axis in
stress-related psychiatric disorders and in the antidepressant-like action of arketamine. Finally, we discuss the potential of
arketamine as a treatment for cognitive impairment in psychiatric disorders, Parkinson’s disease, osteoporosis, inflammatory
bowel diseases, and stroke.

Introduction

Depression is a common psychiatric disorder affecting more
than 264 million people from teenagers through to older
adults [1, 2]. The World Health Organization reports that
~800,000 people die from suicide every year, indicating
a serious global public health problem. Delayed effects
(lag time) and treatment failure through high nonresponse

rates are the disadvantages of existing antidepressants such
as selective serotonin-reuptake inhibitors and serotonin
norepinephrine-reuptake inhibitors [3, 4]. Therefore, the
development of rapid-acting antidepressants that are also
effective in treatment-resistant depression is of great
importance.

Abnormalities in glutamatergic neurotransmission via the
N-methyl-D-aspartate receptor (NMDAR) play a role in the
pathogenesis of mood disorders, including major depressive
disorder (MDD) and bipolar disorder (BD) [5–15]. The ser-
endipitous discovery of robust antidepressant effects exerted
by the NMDAR antagonist (R,S)-ketamine was a paradigm
shift in the research of mood disorders [16–18]. In 2000,
Berman et al. [19] demonstrated that a single intravenous
infusion of (R,S)-ketamine (0.5mg/kg) acted within hours to
cause rapid antidepressant effects in patients (n= 7) with
MDD that were sustained for up to 72 h after treatment. Many
subsequent studies showed that a single or repeated intrave-
nous infusions of (R,S)-ketamine (0.5 mg/kg) produced robust
antidepressant and antisuicidal effects in patients with
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treatment-resistant MDD or BD [20–28]. Furthermore, ben-
eficial effects of (R,S)-ketamine were also exhibited
in patients with treatment-resistant post-traumatic stress dis-
order (PTSD) [29, 30]. Despite the lack of long-term data on
efficacy and limited data on safety, off-label use of (R,S)-
ketamine is increasing in the United States of America (USA)
and Europe [31–33].

In 2019, a Johnson & Johnson nasal spray containing the
ketamine enantiomer (S)-ketamine (esketamine) was approved
in the USA and Europe for treatment-resistant depression
[34, 35], although several concerns about the efficacy and the
approval were raised [36, 37]. We have proposed that the
alternative ketamine enantiomer, (R)-ketamine (arketamine),
may be a safer antidepressant than (R,S)-ketamine and eske-
tamine [38–44].

The molecular mechanisms underlying the antidepressant
actions of (R,S)-ketamine remain poorly understood. Pre-
viously, we published review articles on the mechanisms
underlying the antidepressant action of ketamine and its
enantiomers [41–44]. Since these reviews were published,
new studies have shed further light on the molecular
mechanisms of ketamine’s antidepressant effects. Here we
review the recent findings on molecular mechanisms under-
lying the antidepressant actions of (R,S)-ketamine and its
enantiomers. We also discuss the possible role of the
brain–gut–microbiota and brain–spleen axes in stress-related
psychiatric disorders and in the antidepressant-like action of
arketamine. Finally, we discuss the potential of arketamine for
the treatment of nonpsychiatric disorders.

Beyond NMDAR inhibition

Preclinical findings using two enantiomers

In 1975, the first study showing antidepressant-like effects
of (R,S)-ketamine in rodents was published, reporting an
amelioration of phenotype in classic animal models such
as tetrabenazine-induced ptosis, reserpine-induced hypo-
thermia, yohimbine toxicity, and oxotremorine-induced
tremors [45]. (R,S)-ketamine (inhibition constant Ki =
0.53 μM for NMDAR) is a mixture of equal amounts of
arketamine (Ki= 1.4 µM for NMDAR) and esketamine
(Ki= 0.30 μM for NMDAR) (Fig. 1) [46]. We previously
reported that arketamine exhibited greater potency and
longer-lasting antidepressant-like effects than esketamine
in the neonatal dexamethasone exposure, chronic social
defeat stress (CSDS), and learned helplessness (LH) rodent
models of depression [47, 48]. The superior effect of
arketamine compared to esketamine in rodents was sub-
sequently replicated [49–52]. Furthermore, arketamine
acted with greater potency than esketamine for depression-
like behaviors in an organophosphate-exposed rat model
of Gulf War illness [53].

Behavioral abnormalities in rodents (hyperlocomotion,
prepulse inhibition, and abuse liability) were induced less
by arketamine than by esketamine [48, 52]. Furthermore,
repeated intermittent administration of esketamine, but
not arketamine, in mice caused a reduction in parvalbumin
(PV) immunoreactivity in the prefrontal cortex (PFC) [54]
and an increase in locomotion after methamphetamine
administration [55]. These findings suggest a risk for
psychosis in subjects administered repeated doses of
esketamine. A single intravenous injection of esketamine
(0.5 mg/kg), but not arketamine (0.5 mg/kg), reduced the
binding availability of the dopamine D2/3 receptor in the
conscious monkey striatum [56], suggesting that esketa-
mine, but not arketamine, can cause dopamine release in
the striatum. Thus, it has been suggested that esketamine-
induced dopamine release from presynaptic terminals is
associated with the psychotomimetic and dissociative
effects of esketamine in humans. Collectively, data from
preclinical studies suggest that arketamine elicits fewer
side effects than esketamine. Indeed, it was suggested that
the side effects of (R,S)-ketamine are associated with
esketamine but not arketamine [57].

Masaki et al. [58] used functional MRI (fMRI) to inves-
tigate the response of the conscious rat brain to (R,S)-keta-
mine, its two constituent enantiomers, and the potent selective
NMDAR antagonist (+)-MK-801. The positive fMRI
response observed in the rat brain following a single injection
of (R,S)-ketamine (10mg/kg) or esketamine (10mg/kg) was
similar to the positive response observed following (+)-MK-
801 (0.1 mg/kg) injection. In contrast, a single injection of
arketamine (10mg/kg) in the rat brain elicited a negative
fMRI response. Thus, it is possible that the pharmacological

Fig. 1 Major metabolisms of ketamine enantiomers. Arketamine is
metabolized to (R)-norketamine that is metabolized to (2 R,6 R)-
hydroxynorketamine (HNK). In addition, arketamine is also metabo-
lized to (2 R,6 R)-hydroxyketamine that is metabolized (2 R,6 R)-HNK.
Esketamine is metabolized to (S)-norketamine that is metabolized to
(2 S,6 S)-HNK. In addition, esketamine is metabolized to (2 S,6 S)-
hydroxyketamine that is metabolized to (2 S,6 S)-HNK. Ki values for
NMDAR are presented in parenthesis [46, 49].

560 Y. Wei et al.



action of 10mg/kg arketamine, a dose capable of exerting
antidepressant effects, is not dependent upon NMDAR inhi-
bition [58]. Furthermore, other mechanisms to counteract the
NMDAR inhibition-induced brain activation may exist in
the negative fMRI response to arketamine; however, further
study in this area is needed. The findings of Masaki et al. [58]
were supported by data showing the arketamine- and
esketamine-induced opposite patterns of cerebral glucose
utilization in the healthy human brain [59]. Importantly, the
pharmacokinetic profile of the two ketamine enantiomers
was similar [49, 50], indicating that pharmacokinetic differ-
ences do not underlie the difference in the potency of the two
ketamine enantiomers [41, 44]. Furthermore, (R,S)-ketamine
was reported to exert NMDAR-independent, cAMP-
dependent antidepressant-like actions [60]. Taken together,
these data indicate it is unlikely that NMDAR inhibition plays
a major role in the antidepressant-like actions of arketamine in
rodents.

Preclinical findings using ketamine metabolites

Ketamine is metabolized to the intermediate norketamine
(its major metabolite, 80%) via hydroxylation, or can also be
metabolized to 4- and 5-hydroxyketamine (5%). Norketamine
is converted to 4-, 5-, and 6-hydroxynorketamine (HNK)
(15%), making HNKs and hydroxyketamines minor meta-
bolites [44, 61–63]. In 2016, Zanos et al. [49] demonstrated
that (2 R,6 R)-HNK (Ki > 10 μM for NMDAR) (Fig. 1)
derived from arketamine was necessary for the antidepressant-
like effects of (R,S)-ketamine, and that NMDAR inhibition
does not play a role in the antidepressant-like effects of (2 R,6
R)-HNK since it does not bind to NMDAR [49]. In contrast,
we argued that (2 R,6R)-HNK, unlike its parent compound
arketamine, did not show potent antidepressant-like effects in
rodent models of depression, including CSDS and LH models
[64–67]. Treatment with two cytochrome P450 (CYP) inhi-
bitors, ticlopidine hydrochloride and 1-aminobenzotriazole,
prior to arketamine administration, increased the plasma
levels of arketamine, but almost completely blocked genera-
tion of (2 R,6 R)-HNK. It should be noted that the dose at
which arketamine produced antidepressant-like effects
was lower in the presence of CYP inhibitors than in their
absence, which is consistent with antidepressant-like effects
being dependent upon exposure levels of arketamine but not
(2 R,6R)-HNK [68]. Importantly, (R)-norketamine is a major
metabolite of arketamine, while (2 R,6R)-HNK is a minor
metabolite [68]. If (2R,6 R)-HNK is responsible for the
antidepressant-like effects of (R,S)-ketamine, higher doses of
(2 R,6R)-HNK are needed to cause antidepressant-like effects
in rodents [44].

The direct infusion of arketamine into the medial PFC
and hippocampus caused antidepressant-like effects in a
rat LH model, suggesting that arketamine itself, but not its

metabolites, is responsible for causing antidepressant-like
effects [69]. Furthermore, (2 R,6 R)-HNK (10 or 20 mg/kg)
did not cause antidepressant-like effects in the repeated
corticosterone injection model [70]. From the relationship
between antidepressant-like effects and brain concentra-
tions of (2 R,6 R)-HNK, Chaki and Yamaguchi [71] con-
clude that generation of (2 R,6 R)-HNK is not necessary
for the antidepressant action of (R,S)-ketamine. Taken
together, these data indicate that the generation of (2 R,6
R)-HNK from arketamine is not essential for the
antidepressant-like effects of (R,S)-ketamine or arketamine
[41–44, 71–74].

Antidepressant-like effects of (2 R,6R)-HNK in chronic
corticosterone-treated model, CSDS model, chronic restraint
stress model, and modified LH model were demonstrated
[49, 75]. In contrast, several groups reported antidepressant-
like effects of (2R,6R)-HNK in naive rodents without a
depression-like phenotype, although the effects of the parent
compound arketamine were not compared in the same
model [76, 77]. Importantly, in healthy control subjects, (R,S)-
ketamine caused depressive symptoms such as anhedonia
rather than antidepressant effects [78]. Thus, the use of
rodents without depression-like phenotypes may lead to
misinterpretation of the antidepressant-like effects of (R,S)-
ketamine and ketamine-like candidates [79].

Esketamine is metabolized to (S)-norketamine (Ki= 1.07
μM for NMDAR) (Fig. 1) [46] and subsequently converted to
(2 S,6 S)-HNK (Fig. 1). We reported that (S)-norketamine
produced rapid and sustained antidepressant-like effects in
mouse models of depression, with a potency similar to that of
esketamine [80]. However, the antidepressant-like effects of
(S)-norketamine were still less potent than those of arketa-
mine. Antidepressant-like effects of (S)-norketamine were
also reported in the repeated corticosterone-treated model
[70]. (S)-norketamine did not cause the behavioral and bio-
chemical abnormalities such as prepulse inhibition deficits,
reward effects, loss of PV immunoreactivity in the PFC, and
baseline γ-band oscillation increase that have been observed
with esketamine [80]. Esketamine shares the serious detri-
mental side effects of (R,S)-ketamine, such as psychotomi-
metic and dissociative effects as well as abuse liability. These
data support that NMDAR may not play a major role in
antidepressant-like effects of (S)-norketamine, while it may be
related to side effects. Collectively, these data suggest that (S)-
norketamine would be a safer antidepressant than esketamine
[81]. In addition, it is noteworthy that (S)-norketamine is not a
scheduled compound and could be brought by depressed
patients to their home.

Clinical findings

It has been recognized that a major pharmacological effect
of (R,S)-ketamine is NMDAR antagonism, and that this
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inhibition plays a major role in the antidepressant action of
(R,S)-ketamine [16, 17]. Several pharmaceutical companies
developed novel NMDAR antagonists and modulators to
trial as antidepressant candidates without the side effects
of ketamine. However, the non-ketamine NMDAR ligands
memantine, rapastinel, lanicemine, traxoprodil, and L-4-
chlorokynurenine (AV-101) did not mimic the robust anti-
depressant actions of ketamine in patients with MDD
[24, 25, 41–44, 82]. Importantly, it is well known that the
potent selective NMDAR antagonist (+)-MK-801 did not
cause antidepressant actions in patients with MDD
[unpublished data of Merck, 44], although (+)-MK-801 had
rapid antidepressant-like effects in a preclinical CSDS
model [83]. Thus, it seems that the use of behavioral tests
in rodent models of depression may not predict anti-
depressant effects in depressed patients, as the full com-
plexity of human depression cannot be appropriately
mimicked in rodents [84].

A recent meta-analysis concluded that intravenous (R,S)-
ketamine appears more efficacious than intranasal esketamine
for the treatment of depression [85], although the route of
administration is different. A head-to-head study of intrave-
nous esketamine (0.25mg/kg) and (R,S)-ketamine (0.5mg/kg)
in Brazil found that both compounds exerted similar
antidepressant effects in patients with treatment-resistant
MDD; however, the sustained antidepressant effects of (R,S)-
ketamine were more potent than those of esketamine at seven
days after injection, albeit without statistical significance (P=
0.08) [86]. Furthermore, an open-label study in Brazil
demonstrated that a single intravenous infusion of arketamine
(0.5 mg/kg) caused rapid and sustained antidepressant effects
in patients with treatment-resistant MDD, although sample
size (n= 7) was small [87]. A recent randomized, placebo-
controlled, crossover study of (R,S)-ketamine (0.5 mg/kg) in
patients with treatment-resistant MDD showed an inverse
relationship between (2R,6R;2 S,6 S)-HNK concentration and
antidepressant response [88], suggesting that (2R,6 R)-HNK
might not contribute to the antidepressant action of (R,S)-
ketamine [89]. A phase 1 study of (2 R,6 R)-HNK in healthy
control subjects (0.1–4.0 mg/kg, intravenous administration
for 40min, NCT04711005) is underway at Duke University
(sponsored by the National Institute of Mental Health, USA).
A future double-blind, randomized study of arketamine versus
(2R,6 R)-HNK in MDD patients will be of great interest to
confirm whether it is arketamine itself, or its metabolite, which
contributes to antidepressant actions.

Taken together, it is unlikely that NMDAR inhibition
plays a major role in the antidepressant effects of (R,S)-
ketamine and its enantiomers in MDD patients [41–44, 90].
Nonetheless, a double-blind, randomized study of arketa-
mine versus esketamine in MDD patients would be of great
interest in confirming the role of NMDAR in the anti-
depressant action of (R,S)-ketamine.

Ketamine-induced dissociation in humans

NMDAR antagonists such as (R,S)-ketamine and phency-
clidine (PCP) are well known to produce dissociation, such
as an “out-of-body experience”, in humans [91, 92]. It was
previously suggested that dissociative symptoms caused by
(R,S)-ketamine infusion might be associated with the anti-
depressant action in MDD patients [93]. However, Ballard
and Zarate [94] recently reported that dissociation is not
necessary for the antidepressant response to (R,S)-ketamine
and a recent systematic review showed that the association
between (R,S)-ketamine-induced dissociation and its anti-
depressant effects was inconsistent [95]. Intravenous
administration of esketamine (0.2 and 0.4 mg/kg) was also
reported to produce dissociation in patients with treatment-
resistant MDD [96]; in contrast, the incidence of dissocia-
tion after intravenous arketamine (0.5 mg/kg) administration
in patients with treatment-resistant MDD is very low [87]. It
is well accepted that NMDAR antagonists such as ketamine
and PCP cause detrimental side effects, including psychosis
and dissociation in humans in proportion to their potency at
the NMDAR [97], and the difference in NMDAR potency
between the two ketamine enantiomers may explain the
divergence in their dissociative potential. Collectively, these
studies indicate that it is unlikely that NMDAR plays a
major role in the antidepressant actions of (R,S)-ketamine.
Nonetheless, it will be of great interest to compare the
antidepressant and dissociative effects of arketamine and
esketamine in MDD patients [98].

AMPAR activation

Ketamine and its two enantiomers

It has been recognized that the rapid-acting antidepressant-
like effects of (R,S)-ketamine are mediated through block-
ade of NMDARs located on γ-aminobutyric acid (GABA)
ergic inhibitory interneurons, and that subsequent activation
of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor (AMPAR) is required for ketamine’s anti-
depressant effects [99, 100]. Preclinical studies showed that
pretreatment with the AMPAR antagonist 2,3-dihydroxy-6-
nitro-7-sulfamoylbenzo(F)quinoxaline (NBQX) could block
the acute and sustained antidepressant-like effects of (R,S)-
ketamine [101–103], and post treatment with NBQX
reversed the effects of (R,S)-ketamine [104]. Furthermore,
we reported that NBQX blocked the acute and sustained
antidepressant-like effects of both arketamine and esketa-
mine in a CSDS model [48]. Therefore, it appears likely that
AMPAR activation may be necessary for rapid and sus-
tained antidepressant-like effects of (R,S)-ketamine and its
two constituent enantiomers [41–44, 105]. In order to
confirm the role of AMPAR in the antidepressant actions of
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(R,S)-ketamine in humans, two clinical trials using AMPAR
antagonist perampanel (FycompaⓇ) in patients with
treatment-resistant MDD are underway at Yale University
(NCT03367533) and the National Institute of Mental Health
(NCT03973268).

(S)-norketamine

In contrast, we reported that AMPAR antagonists NBQX or
6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) did not
block the rapid-acting antidepressant-like effects of (S)-
norketamine, the major metabolite of esketamine, in a
CSDS model, nor did (S)-norketamine enhance AMPAR-
mediated neurotransmission in hippocampal neurons [80].
Our data suggest that the metabolite (S)-norketamine exerts
AMPAR-activation-independent antidepressant-like actions
in rodents. Further study on the role of AMPAR activation
in the antidepressant effects of (R,S)-ketamine and its
metabolites is needed.

Brain-derived neurotrophic factor and its receptor
TrkB system

BDNF–TrkB system

Multiple lines of evidence suggest that brain-derived neuro-
trophic factor (BDNF) and its receptor tropomyosin receptor
kinase B (TrkB) play a crucial role in depression and in
the therapeutic mechanisms of antidepressants [106–112]. In
2002, Shirayama et al. [113] reported in a rat LH model that a
single bilateral infusion of BDNF into the hippocampal den-
tate gyrus produced rapid antidepressant-like effects that were
sustained for at least 10 days, indicating a key role for BDNF
in antidepressant mechanisms. Garcia et al. [114] reported that
ketamine (10 and 15mg/kg) increased hippocampal BDNF,
which may contribute to the antidepressant-like effect of
BDNF in rats. However, neither acute nor chronic adminis-
tration of ketamine altered hippocampal BDNF levels in rats
exposed to stress [115].

In 2011, Autry et al. [116] demonstrated that (R,S)-
ketamine did not cause antidepressant-like effects in indu-
cible Bdnf knockout (KO) mice, suggesting that the rapid
synthesis of BDNF is necessary for the antidepressant-like
effects of (R,S)-ketamine. Pretreatment with the TrkB
inhibitor ANA-12 in a CSDS model blocked the
antidepressant-like effects of both arketamine and esketa-
mine [48]. Furthermore, arketamine produced more potent
beneficial effects than esketamine on ameliorating the
reduced BDNF–TrkB signaling observed in the PFC and
hippocampus of CSDS-susceptible mice [48]. Moreover,
the regulation of astrocytic glutamate transporter 1 by
TrkB signaling plays a role in the antidepressant-like effects
of (R,S)-ketamine in a chronic unpredictable mild stress

model [117]. We previously demonstrated that mice lacking
the transcription factor Nrf2 (Nrf2-KO mice) show a
depression-like phenotype through decreased BDNF–TrkB
signaling in the PFC and hippocampus [118]. Recently, we
reported that arketamine showed rapid-acting and sustained
antidepressant-like effects in Nrf2-KO mice through TrkB
activation [119]. Taken together, these studies suggest
that activation of the BDNF–TrkB cascade in the PFC
and hippocampus might be implicated in the long-lasting
antidepressant effects of (R,S)-ketamine and its enantiomers
[41–44].

Using conditional Bdnf-KO mice, Anderzhanova et al.
[120] reported that injection of esketamine (10 or 50 mg/
kg) stimulated extracellular levels of mature BDNF in the
medial PFC, in an FK-506- binding protein 51-dependent
manner. Therefore, it would be interesting to determine
the levels of mature BDNF in the medial PFC after
injection of arketamine. Furthermore, D-serine, an endo-
genous co-agonist at NMDAR, showed antidepressant-
like effects in control rats through AMPAR activation
and subsequently increased BDNF expression in rat hip-
pocampus [121]. A recent gene-based genome-wide
association study in Taiwan showed the predictive role
of BDNF–TrkB signaling, glutamatergic signaling, and
GABAergic signaling in the antidepressant actions of
(R,S)-ketamine in patients with treatment-resistant MDD
[122]. Although BDNF plays an important role in
antidepressant-like effects of ketamine and its two enan-
tiomers, the precise molecular mechanisms underlying
ketamine’s actions on BDNF–TrkB signaling remain
poorly understood.

In 2021, Casarotto et al. [123] reported that all anti-
depressants (i.e., imipramine, fluoxetine, venlafaxine,
moclobemide, (R,S)-ketamine, and esketamine) bind to the
transmembrane domain of TrkB. Furthermore, the anti-
depressant candidate (2 R,6 R)-HNK, but not its enantiomer
(2 S,6 S)-HNK, binds to the transmembrane domain of
TrkB, although it should be noted that (2 S,6 S)-HNK, but
not (2 R,6 R)-HNK, showed antidepressant-like effects in
chronic corticosterone-treated mice [70]. Casarotto et al.
concluded that the binding of all antidepressants, including
(R,S)-ketamine, esketamine, and (2 R,6 R)-HNK, to the
transmembrane domain of TrkB, is the common mechanism
of antidepressant effects. However, there are several con-
cerns regarding this paper. First, the effects of arketamine
were not investigated in the same assays, despite arketamine
showing more potent antidepressant-like effects than eske-
tamine and (2 R,6 R)-HNK in rodents. Second, only the
forced swimming test was performed in TrkBWT and
TrkBY433F mice without a depression-like phenotype in
order to investigate antidepressant-like actions. Further
study using several behavioral tests and rodents with
depression-like phenotypes is required to confirm the role of
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TrkBY433F in antidepressant-like actions. In addition, the
inhibition constant of (R,S)-ketamine for TrkB (Ki= 12.30
μM) is less potent than that of esketamine (Ki= 2.86 μM)
and (2 R,6 R)-HNK (Ki= 2.23 μM), which is inconsistent
with their respective potencies for antidepressant-like
effects in rodents. Finally, it is known that (R,S)-ketamine
can elicit robust antidepressant actions in patients with
treatment-resistant MDD or BD who did not respond ade-
quately to two or more courses of other current anti-
depressants. Thus, the conclusion of the article by Casarotto
et al. [123] is contradictory to the clinical evidence from (R,
S)-ketamine in patients with treatment-resistant MDD.
Therefore, further detailed study is needed to confirm the
hypothesis that binding to the TrkB transmembrane domain
is a mechanism common to all antidepressants.

Transforming growth factor β1(TGF-β1) system

As we have discussed here, arketamine has more potent
antidepressant-like effects than esketamine in rodents;
however, the precise molecular mechanisms underlying
the differences between the two enantiomers remain
unclear. Using RNA sequencing in the PFC of a CSDS
model, we found that transforming growth factor β1
(TGF-β1) plays a role in the antidepressant-like effects of
arketamine [124]. TGF-β1 and its receptors are expressed
in microglia, but not astrocytes, in the mouse PFC.
Interestingly, partial depletion of microglia in the PFC by
PLX3397, an inhibitor of colony-stimulating factor 1
receptor (CSF1R), blocked the antidepressant-like effects
of arketamine in a CSDS model, suggesting a potential
role for microglial TGF-β1 in the antidepressant-like
effects of arketamine [124]. Furthermore, intracer-
ebroventricular injection of recombinant TGF-β1 resulted
in rapid and sustained antidepressant-like effects in a
CSDS model [124]. Moreover, we found that intranasal
administration of TGF-β1 elicited rapid-acting and sus-
tained antidepressant-like effects in a CSDS model, and
that the TrkB antagonist ANA-12 blocked these TGF-β1
effects [125], suggesting a role of TrkB signaling in the
antidepressant-like effects of TGF-β1.

Chronic stress has been shown to cause alterations in
BDNF and TGF-β1 levels in different brain regions of
rodents [126–128]. Interestingly, Sometani et al. [129]
reported that TGF-β1 potentiated BDNF expression in
cultured cerebral cortex neurons, partly via the neurotrophic
activity of TGF-β1. Interestingly, alterations in the TGF-β1
system have been reported in MDD patients [130–133].
Given the evident interplay between the BDNF–TrkB and
TGF-β1 systems, we suggest that the BDNF–TrkB system
plays a role in the rapid-acting antidepressant-like actions
of TGF-β1 (Fig. 2), and although further study of this

interaction is needed, intranasal TGF-β1 administration
could be a novel therapeutic approach for depression.

mTORC1, extracellular signal-regulated kinase,
eEF2K, 4E-BPs, and neuregulin-1

In 2010, Li et al. [102] demonstrated that rapamycin, a
mechanistic target of rapamycin (mTOR) inhibitor, blocked
the antidepressant-like effects of (R,S)-ketamine in rodents,
implicating mTOR complex 1 (mTORC1) as a mediator of
(R,S)-ketamine’s antidepressant-like effects. It has been
shown that mTORC1 plays a role in the antidepressant-like
effects of esketamine, but may not play such a role for
arketamine [51]. Rather, the antidepressant-like actions of
arketamine may be mediated by extracellular signal-regulated
kinase (ERK) activation (Fig. 2) [51]. Unexpectedly, pre-
treatment with rapamycin did not block, but rather prolonged,
the antidepressant actions of (R,S)-ketamine (0.5mg/kg) in
patients with treatment-resistant MDD [134]. At present,
studies into the role of mTORC1 in the antidepressant-like
effects of (R,S)-ketamine and its enantiomers have produced
inconsistent results [41–44]. Further study is needed to fully
understand the role of mTORC1 signaling in the actions of
(R,S)-ketamine and its enantiomers.

Eukaryotic elongation factor 2 kinase (eEF2K) is a protein
kinase that regulates the elongation stage of protein synthesis.
Monteggia et al. [135] proposed that eEF2K plays a role in
mediating the antidepressant-like effects of (R,S)-ketamine,
which did not show antidepressant-like effects in Eef2k KO
mice; however, it is noted that these mice did not display a
depression-like phenotype [136]. It is known that mTORC1
controls several functions through translational regulation by
eukaryotic initiation factor 4E-binding proteins (4E-BPs).
In 2021, Aguilar-Valles et al. [137] reported that 4E-BPs play
a role in the antidepressant-like effects of (R,S)-ketamine and
(2 R,6R)-HNK, although they did not use mice with
depression-like behaviors. Further studies in rodents with
depression-like phenotypes are needed to ascertain the role of
eEF2K and 4E-BPs in the antidepressant-like effects of (R,S)-
ketamine and its metabolites.

Ketamine is known to modulate the excitatory and
inhibitory balance in the PFC. The epidermal growth
factor family member neuregulin-1 (NRG1) and its
receptor ErbB4 play a role in the regulation of inhibitory
neural circuits in the PFC [138]. A recent study showed
that the rapid and sustained antidepressant-like effects of
(R,S)-ketamine may be mediated through cortical disin-
hibition via PV-specific NRG1 signaling in the medial
PFC [139]. Future studies using rodents with depression-
like phenotypes are also required to confirm the role of
NRG1 in the antidepressant-like effects of (R,S)-ketamine
and its enantiomers.
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Brain–body crosstalk

Brain–gut–microbiota axis

The gut microbiome and its associated short-chain fatty
acids (SCFAs) play a role in the brain–gut–microbiota axis,
which is involved in psychiatric and neurological disorders
[140–145]. We reported that abnormalities in the compo-
sition of gut microbiota and SCFAs may contribute to
resilience versus susceptibility in rodents exposed to stress
[146–149]. Furthermore, the brain–gut–microbiota axis acts
via the vagus nerve to play a key role in depression-like
phenotypes in mice after transplantation of “depression-
related microbes” [150, 151]. Interestingly, (R,S)-ketamine
and arketamine ameliorated the abnormal gut microbiota
composition in mice with a depression-like phenotype
[152–155]. Thus, the brain–gut–microbiota axis may, at
least in part, play a role in antidepressant-like actions of (R,
S)-ketamine and arketamine, although further studies are
needed to confirm the involvement of this axis [156].

Brain–spleen axis

The spleen is a large immune organ that plays a key role in
the regulation of erythrocytes and the immune system. We
recently reported an abnormality in the composition of mouse
gut microbiota and SCFAs after splenectomy, suggesting
a role for spleen in the brain–gut–microbiota axis [157].
CSDS-susceptible mice showed a larger spleen volume than
in control (no CSDS) and CSDS-resilient mice[158]; inter-
estingly, a single injection of arketamine could ameliorate the
increased splenic weight in CSDS-susceptible mice [158].

Depression-like behaviors, increased spleen volume, and
abnormal composition of gut microbiota following injection
of lipopolysaccharide (LPS) in mice were attenuated after
subdiaphragmatic vagotomy, further suggesting a role of
the brain–gut–microbiota axis via the vagus nerve [159].
Splenectomy prior to chronic sleep restriction abrogated the
enhancement of LPS-induced increases in neuroinflammation
and abnormal cognition and anxiety behaviors, implicating
the spleen in sleep restriction-induced exacerbation of
LPS-induced brain damage [160]. Moreover, stress-activated
corticotropin-releasing hormone neurons control adaptive
immunity in the spleen by direct innervation, suggesting a
brain–spleen axis in the regulation of humoral immunity
[161, 162]. Collectively, it is likely that brain–spleen axis and
brain–gut–microbiota axis via the vagus nerve play crucial
roles in stress-related disorders (Fig. 3). In addition, using
postmortem tissues, we reported correlations between BDNF
propeptide in the brain and spleen [163], and a negative
correlation between CSF1R and transcription factor PU.1
(SPI1) [164], suggesting a role for the brain–spleen axis in
psychiatric disorders such as depression. It will be interesting
to examine whether arketamine influences the observed
abnormalities in the brain–spleen axis in stress-related psy-
chiatric disorders (Fig. 3).

Beyond depression

Cognitive impairments in psychiatric disorders

Cognitive impairments have been shown in a range of psy-
chiatric disorders, including schizophrenia, MDD, BD, PTSD,
general anxiety disorder, obsessive compulsive disorder,

Fig. 2 Proposed signaling pathways underlying the antidepressant-

like actions of arketamine and TGF-β1. Arketamine induces the
expression of TGF-β1 in the microglia through unidentified mechan-
isms. Arketamine-induced TGF-β1 or TGF-β1 bind to its receptor
TGF-β receptor 1/2 in　the microglia. Subsequently, released BDNF

binds to its receptor TrkB, resulting in MEK–ERK–CREB signaling
pathway, leading to synaptogenesis and antidepressant actions. MEK:
mitogen-activated protein kinase, ERK: extracellular signal-regulated
kinase, CREB: cAMP response element binding protein.
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autism spectrum disorder, attention-deficit hyperactivity dis-
order, and panic disorder [165]. In addition to positive
and negative symptoms, intravenous administration of (R,S)-
ketamine (0.5 mg/kg) was reported to produce cognitive
impairments in healthy control subjects [166]. A recent ran-
domized, double-blind, placebo-controlled study in young
healthy subjects demonstrated that intravenous administration
of esketamine (0.1 mg/kg/min for 5 min and 0.006mg/kg/min
for 60min) and (R,S)-ketamine (0.2mg/kg/min for 5 min
and 0.012 mg/kg/min for 60min) produced significant psy-
chopathological and neurocognitive impairment compared
to the placebo [167]. Interestingly, esketamine, but not (R,S)-
ketamine, significantly increased the auditory alterations
subscore of the five-dimensional questionnaire for the
assessment of altered states of consciousness; this finding
suggests that arketamine exerts a potential protective effect
against esketamine-induced psychotomimetic effects [167].

Surprisingly, six infusions of (R,S)-ketamine (0.5 mg/kg)
significantly ameliorated cognitive impairment, as measured
by processing speed, in patients with treatment-resistant
MDD or BD [168–170]. A recent systematic review
revealed that (R,S)-ketamine infusion showed significant
improvements in cognitive impairment in patients with
treatment-resistant MDD, although (R,S)-ketamine did not

worsen cognitive function in depressed patients [171], as
had been observed in healthy controls [166, 167]. Further-
more, it was suggested that the improvement in working
memory may be predictive of the anti-suicidal-ideation
response to (R,S)-ketamine in patients with treatment-
resistant MDD [172]. Thus, it is noteworthy that (R,S)-
ketamine has beneficial effects on cognitive impairment in
depressed patients.

In addition, we reported that PCP-induced cognitive
deficits in mice were ameliorated after subsequent repeated
intermittent administration of arketamine, but not esketa-
mine, and that these effects were mediated by BDNF–TrkB
activation [173]. As cognitive impairment can influence
quality of life, it will be important to investigate whether
arketamine can improve cognitive impairment in patients
with psychiatric disorders (Fig. 4).

Parkinson’s disease

Parkinson’s disease (PD) is a chronic and progressive
neurodegenerative disorder, in which depression is common
[174]. In a mouse model of PD, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced dopaminergic neuro-
toxicity in the mouse striatum was attenuated by treatment

Fig. 3 Role of brain–gut–microbiota axis and brain–spleen axis in

the stress-related psychiatric disorders and beneficial effects by

arketamine. Repeated stress caused gut microbiota dysbiosis and an
increase in spleen size and weight, resulting in abnormalities in
immune system. Stress-induced neuroinflammation might be mediated
by the brain–gut–microbiota axis and the brain–spleen axis through the

vagus nerve. Interestingly, arketamine could ameliorate the abnorm-
alities of gut microbiota, abnormal functions of the spleen, and
depressive symptoms in patients with stress-related disorders. A slight
modification from the previous report [44]. Some materials of the
figure have been designed using resources from Freepik.com.
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with repeated intranasal administration of arketamine, but
not esketamine [175]. Furthermore, pretreatment with the
TrkB inhibitor ANA-12 significantly blocked the beneficial
effects of arketamine against MPTP neurotoxicity, sug-
gesting that TrkB plays a role in the protective effects of
arketamine. Therefore, arketamine could be a potential
novel therapeutic for the treatment of neurodegenerative
disorders such as PD (Fig. 4).

Osteoporosis

Depression is common in, and is a risk factor for, osteo-
porosis, particularly in women. Kadriu et al. [176] reported
that bone inflammation markers might be involved in the
antidepressant actions of (R,S)-ketamine in patients with
treatment-resistant MDD. Arketamine, but not esketamine,
significantly attenuated the increased plasma levels of recep-
tor activator of nuclear factor κB ligand (RANKL) observed
in CSDS-susceptible mice [177]. Interestingly, there was a
positive correlation between sucrose preference and ratio of
osteoprotegerin (OPG) and RANKL [177]. Arketamine, but
not (2 R,6R)-HNK, ameliorated the increased plasma levels
of RANKL and decreased OPG/RANKL ratio found in
CSDS-susceptible mice. Moreover, arketamine, but not its
metabolite (2 R,6 R)-HNK, ameliorated the decreased bone
mineral density in CSDS-susceptible mice [178]. The
decreased bone mineral density observed in ovariectomized
mice was also ameliorated after subsequent repeated inter-
mittent administration of arketamine, but not esketamine

[179]. These findings all suggest that arketamine could
potentially be used as a therapeutic treatment for bone
metabolism abnormalities in patients with MDD or osteo-
porosis (Fig. 4).

Inflammatory bowel diseases

Ulcerative colitis (UC) is a chronic inflammatory bowel dis-
ease (IBD) that causes long-lasting inflammation, ulcers, and
colitis in the gastrointestinal tract. Depression is a common
symptom in patients with UC, and is itself a risk factor for
IBDs [180]. Accumulating evidence suggests that IBD might
increase the risk of PD through the brain–gut–microbiota axis
[181]. In a dextran sulfate sodium (DSS)-induced mouse
model of colitis, repeated administration of arketamine, but
not esketamine, significantly ameliorated the DSS-induced
inflammation and colitis through TrkB activation [182]. These
data suggest that arketamine could be a potential therapeutic
drug for IBD (Fig. 4). Therefore, a further double-blind,
placebo-controlled study of arketamine in IBD patients with
or without depression would be of much interest.

Stroke

Stroke is the most common acute cerebrovascular disease.
Importantly, poststroke depression occurs in a number of
patients with stroke, leading to greater disability as well as
increased mortality [183]. Brain injury and behavioral
abnormalities in mice after middle cerebral artery occlusion

Fig. 4 Potential of arketamine

for cognitive impairments in

psychiatric disorders and

other diseases. Preclinical
findings suggest that arketamine
would be a new therapeutic drug
for cognitive impairments in
psychiatric disorders,
neurodegenerative disorders such
as Parkinson’s disease,
osteoporosis, IBDs (ulcerative
colitis and Crohn’s disease), and
stroke. Importantly, patients with
these diseases have depressive
symptoms as comorbidity. IBD is
a risk factor for PD [180]. Some
materials of the figure have been
designed using resources from
Freepik.com.
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(MCAO) were attenuated by subsequent administration
(1 and 24 h after MCAO) of arketamine but not of esketa-
mine [184]. This study suggests that arketamine may have
potential as a new therapeutic drug for ischemic stroke and
poststroke depression (Fig. 4).

Conclusion

Considering the preclinical findings in studies of the two
ketamine enantiomers, and the inability of non-ketamine
NMDAR compounds to replicate the effects of (R,S)-keta-
mine in MDD patients, it is unlikely that NMDAR plays a
major role in the antidepressant effects of (R,S)-ketamine
and arketamine. However, further study in this field is
required. At present, the primary molecular mechanism by
which arketamine exerts its antidepressant actions is
unknown. Further study using new technologies such as
chemical biology is needed to fully understand the mole-
cular pathways of arketamine and identify novel targets for
treatment intervention.

An open-label study of arketamine in patients with
treatment-resistant MDD showed robust antidepressant
actions [87]; these results must be confirmed in a rando-
mized, placebo-controlled, double-blind study using a large
sample size. A clinical trial of arketamine by Perception
Neuroscience, Inc. (New York, USA) is underway. In
February 19, 2021, Perception Neuroscience announced the
positive data from the first Phase 1 study showing the safety
and tolerability of arketamine [185]. Arketamine was safe
and well-tolerated at all doses up to 150 mg. Furthermore,
arketamine required substantially higher doses to induce
similar perceptional changes than esketamine [185]. Phase
2 study of arketamine in patients with treatment-resistant
depression will be started from the second quarter of 2021.

A future randomized, double-blind study of arketamine
versus esketamine [or (2 R,6 R)-HNK] in patients with
treatment-resistant MDD is needed to ascertain the role of
the NMDAR in the robust antidepressant actions of (R,S)-
ketamine. Finally, we propose that arketamine could prove
beneficial as a treatment for MDD, BD, PTSD, cognitive
impairment in psychiatric disorders, PD, osteoporosis, IBD,
and stroke.
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