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Abstract
To target complex, multi-factorial diseases more effectively, there has been an emerging trend of multi-target drug
development based on network biology, as well as an increasing interest in traditional Chinese medicine (TCM)
that applies a more holistic treatment to diseases. Thousands of years’ clinic practices in TCM have accumulated a
considerable number of formulae that exhibit reliable in vivo efficacy and safety. However, the molecular mechanisms
responsible for their therapeutic effectiveness are still unclear. The development of network-based systems biology
has provided considerable support for the understanding of the holistic, complementary and synergic essence of
TCM in the context of molecular networks. This review introduces available sources and methods that could be
utilized for the network-based study of TCM pharmacology, proposes a workflow for network-based TCM pharma-
cology study, and presents two case studies on applying these sources and methods to understand the mode of
action of TCM recipes.
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INTRODUCTION
Traditional Chinese medicine (TCM) has a history

of thousands of years. Considerable knowledge has

been accumulated concerning in vivo efficacy and

safety of TCM in targeting complex chronic diseases.

Compared with the principles of western medicine,

the TCM approach treats the function and dysfunc-

tion of living organisms in a more holistic way. In

TCM theory, disease status is considered as the unba-

lance of the whole body system, and concoctions of

natural products are formulated to regain the balance

of the system. Currently, due to the emerging

systems-based multi-target drug development para-

digm [1–5], the drug discovery field is showing an

increasing interest in TCM and considers it to be

a source of inspiration [6–8]. However, a huge

obstacle for the advancement of TCM is that, in

most cases, the mode of action of TCM related to

the therapeutic effectiveness is generally not known.

A TCM formula is a complex combination of

many natural species such as plants, animals and

minerals, each of which contains considerable num-

bers of chemical compounds. Its therapeutic effects

mainly depend on the composition and content of

effective substances. From the viewpoint of chemical

structures, there is a high extent of overlap between

TCM components and western drugs [9]. Therefore,

at the molecular level, TCM formulae are multi-

component and multi-target agents, essentially

acting in the same way as the combination therapy

of multi-component drugs [10]. It could be deduced

that the therapeutic effectiveness of a TCM formula
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is achieved through collectively modulating the

molecular network of the body system by its active

ingredients.

During the past decade, the fast development in

‘omics’ technology and systems biology has facili-

tated systems-level understanding of biological pro-

cesses concerning the interactions of genes, proteins

and environmental factors, thus affording new pos-

sibilities for uncovering the molecular mechanisms

related to the therapeutic efficacy of TCM from

a systematic point of view [11]. Systems biology

depicts the complex interactions at different levels

as various networks and elucidates the underlying

mechanisms of biological systems by studying these

networks [12]. Applying network-based systems

biology to the study of TCM pharmacology may

open up the possibility to understand the explicit

targets of TCM active ingredients and their interac-

tions in the context of molecular networks. In this

paper, we survey available sources and developments

concerning molecular networks that could be

applied in the study of TCM pharmacology. We

then present two case studies on applying these

sources and methods to understand the mode of

action of TCM.

DISEASE-ASSOCIATEDNETWORKS
In cells, there are many interactions at different levels

between genes and gene products. These interactions

are deeply involved in the pathogenesis of diseases.

Most diseases, especially complex chronic diseases,

are not caused by changes in a single causal gene

but by an unbalanced regulating network resulting

from the dysfunctions of multiple genes or their

products [13–16]. On the one hand, genes associated

with the same disorder tend to share common func-

tional features and be co-expressed in specific tissues,

and their protein products have a tendency to inter-

act with each other [16]. On the other hand, differ-

ent disorders are related to each other through

the functional networks or pathways shared by

their disease genes [16–19]. Moreover, a complex

disease as a networked system also exhibits redun-

dancy and robustness [20], like other molecular net-

works [21–24]. Usually, blocking one target cannot

change the phenotype [3]. Instead, alternative com-

pensatory signaling routes can be activated to bypass

the inhibition of a single target protein [20, 21],

counteracting the drug’s efficacy and causing unde-

sired side-effects. Thus it has been realized that,

to treat these diseases, drugs should target a disease-

associated network rather than a single target.

From a pharmacological perspective, genes and

proteins suspected to be involved in a pathophysio-

logical process can also be potential drug targets

for intervening in that disease process. The Online

Mendelian Inheritance in Man (OMIM) database

[25, 26] contains information on all known

Mendelian disorders and associated genes. It is a

valuable source for finding drug targets. On the

other hand, genes associated with some categories

of diseases are less related to the treatment.

Specifically, the network analysis of the relationship

between drug targets and disease genes suggested that

known targets for some categories of diseases, such as

endocrine, hematological, cardiovascular and psychi-

atric disease, are preferentially associated with their

disease genes, whereas targets for other disease cate-

gories, such as cancer, muscular, skeletal, gastrointes-

tinal and dermatological disease are associated with

fewer disease genes than average [27]. For the latter

situations, targeting proteins interacting with the

disease genes, or directly targeting the interactions

could be other options [28].

In recent years, some efforts have been made to

identify the biological process or molecular network

underlying one specific disorder by the integrated

analysis of heterogeneous data sources, including

genetics, transcriptomics, proteomics and interac-

tome data, combined with computational methodol-

ogies. Many specific disease-associated networks

have been constructed, including those related to

diabetes mellitus, cancers, asthma, Alzheimer’s dis-

ease, and cardiovascular diseases [29–39]. In addition,

some cellular network or signaling pathway databases

have systematically collected pathways associated

with specific diseases reported in literature [40, 41].

For example, the KEGG database [41, 42] includes

over two hundred pathways partitioned into five

sections, in which the section of human diseases

consists of pathways concerning cancers, immune

disorders, neuro-degenerative diseases, metabolic

disorders and infectious diseases, and the information

is updated regularly.

We conducted a comprehensive literature search

about the interactome of disease genes and proteins

and found nearly 50 publications about disease

networks concerning six classes of diseases (metabolic

disorders, cancers, central neural system diseases,

cardiovascular diseases, immune diseases and

others). We list the disease-associated networks and
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the references in details in the Supplementary

Table 1. It can be seen that some disease networks

in the table were constructed from gene expression-

level data, but drugs usually act on proteins. This

kind of network can also be useful in pharmacology

study, because several studies have revealed the cor-

relation between mRNA and protein expression

levels [43, 44]. The table also shows that some dis-

eases, such as type-2 diabetes mellitus [36, 45, 46],

colon cancer [47, 48] and asthma [37, 49–51], have

been studied by different groups of researchers, and

thus several networks have been constructed for one

specific disease. Naturally, different approaches and

data sources could generate different networks,

which help to explain the underlying mechanisms

of the disease from various perspectives, while the

common components of the networks may suggest

the key factors involved in the disease. For instance,

all the four overlapping genes (CCL11, IL13,

IL4, IL9) in the four asthma-associated networks

[37, 49–51] appear in the list of genes mentioned

most often in asthma-related literature [50]. Earlier

studies suggested that IL13, IL4 and IL9 are proin-

flammatory cytokines that activate the JAK-STAT

pathway [52, 53], an important pathway to induce

inflammation in asthma [54]. Although diseases with

constructed networks are far from comprehensive

compared with those in the OMIM database, the

methodologies used to construct them could be

applied to obtain the networks for other diseases.

Refer to ref. [55] for a review on computational

approaches for identifying disease-associated genes

and protein networks.

The disease-associated networks have the promise

of allowing for the identification of potential target

sets for therapeutic intervention in the corresponding

diseases. Studies in network biology have suggested

a correlation between topology and function of

molecular networks [12, 21, 24, 56]. Thus, it is

important to consider the topology of disease-

associated networks, as well as the network positions

of proteins, when identifying potential target com-

binations. Several metrics that quantitatively measure

the importance of nodes or edges in networks have

been used to identify potential targets. Betweenness

measures the degree to which a node is participating

in communication between pairs of other nodes.

A study on an asthma-associated protein network

indicated that protein nodes with large degrees and

large betweenness metrics could be putative targets

for asthma [37]. Similarly, Hwang et al. suggested

that bridging nodes, i.e. linkers of modular subre-

gions of a network, are promising drug targets

from the standpoints of high efficacy and low side

effects [57]. Choke points in the metabolic network

correspond to enzymes that either uniquely produce

or consume a given metabolite. It was found that

choke points in bacteria metabolic networks could

be potential targets for antibiotics [58]. From the

perspective of network regulation, in order to treat

a disease efficiently while minimizing undesired side

effects, a drug should act only on those overactive

signaling pathways while preserving other normal

cellular processes. Some mathematical models and

algorithms have accordingly been set up to identify

potential target combinations, such as the minimum

knockout problem [59], the min-interference prob-

lem [60], the OPMET model [61], and the multiple

target optimal intervention (MTOI) model [62].

Recently, a software TIde (Target Identification)

was developed to detect optimal inhibitor positions

in disease-associated networks and pathways by

simulating the effects of different modifications of

reaction combinations [63].

DRUG-ASSOCIATEDNETWORKS
Small-molecule drugs generally perform their thera-

peutic functions by binding to cavities of proteins,

thereby influencing their biological activities. To

understand the therapeutic mechanisms of a drug,

it is critical to identify the biological processes its

targets participate in, the drug–target interactions

and target–target interactions.

The DrugBank database [64, 65], Therapeutic

Target Database (TTD) [66, 67], SuperTarget

[68, 69], Matador [68, 70], and Potential Drug

Target Database (PDTD) [71, 72] have collected

known information of drug targets. The search

tool for interactions of chemicals (STITCH) database

[73, 74] integrates information about interactions of

chemicals and proteins from different types of data-

bases. The information provided by each database

has its own focus. Thus they could be complemen-

tary in application. For instance, we searched the

targets of an anticholesteremic agent simvastatin

in each database and got different results

(Supplementary Table 2), with HMG-CoA reduc-

tase (HMGCR), the primary target of simvastatin, as

their intersection. The PDTD database focuses on

targets with known 3D-structures and provides a

web server TarFisDock to predict the potential
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binding targets of a drug in silico. The TTD also

provides target similarity and drug similarity search

to enable a user to find similarity targets or drugs of

an input protein sequence or drug structure. These

tools provided by the PDPD and TTD could be

applied to predict the putative targets of the active

compound extracted from TCM recipe. Matador is a

manually annotated subset of SuperTarget which

provides additional binding information and indi-

rect interactions. The Therapeutically Relevant

Multiple-Pathways (TRMP) database [75, 76] inte-

grates information on therapeutic targets and

disease-associated signaling pathways. Once the

targets of the main active compounds of TCM for-

mula are identified by in-silico predictive or experi-

mental approaches, they can be mapped onto specific

disease-associated networks or pathways and target

databases of known western drugs to construct

drug-associated networks of TCM compounds. See

the two case studies in the following section for

illustration.

Constructing the target protein network for a

specific disease or drug could help us to understand

the effects of drugs on diseases. Hopkins constructed

a network between the literature reported 44 poten-

tial targets associated with asthma [4], in which each

node denotes a drug target, and two nodes are linked

if there is at least one drug targeting both of them.

This network could be applied to explore combina-

tion therapy for asthma by multi-component drugs.

Cases and Mestres collected a curated list of 214

cardiovascular targets by literature mining [77].

This target set could be utilized to construct a

therapeutic network for cardiovascular diseases by

mapping the proteins to the human protein interac-

tome [78–82].

NETWORK-BASEDTCM
PHARMACOLOGY
The material sources of TCM are natural products,

including plants, animals and minerals, each of which

includes many chemical constituents. Although

a TCM recipe usually contains hundreds even thou-

sands of components, only a few bioactive com-

pounds contribute to the therapeutic effects. On

the other hand, compounds isolated from natural

products have been important sources of new drugs

or drug leads. As can be seen in Supplementary

Table 3, many compounds identified from TCM

materials are also drugs approved by the FDA.

Therefore, identifying the effective bioactive

compounds of TCM is very important for TCM

pharmacology study, as well as modern drug

discovery.

Once the active compounds of a TCM recipe are

known, the remaining tasks are to identify the targets

of each compound, and to study the targets in the

context of disease networks and drug-associated

networks. Here we propose a workflow for

network-based TCM pharmacology study, as

shown in Figure 1.

In this section, we survey major approaches for

the identification of TCM effective active com-

pounds and their targets, and then present two case

studies that investigate the molecular mechanisms of

TCM from a network-modulation point of view.

A herbal drug and a TCM formula are studied

respectively. Existing research results are surveyed

and applied to construct drug-associated networks.

Figure 1: Workflow for network-based TCM pharma-
cology study.
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Identification of TCM effective active
compounds and their targets
To identify the bioactive compounds from the

complex constituents of a TCM recipe, the conven-

tional method is to extract and separate some com-

ponents directly from the TCM recipe, and then

conduct pharmacological evaluation on each com-

ponent respectively. In this way, the compound

Astragaloside IV (AGS-IV) was extracted from the

TCM material Astragalus membranaceus and developed

as a new drug. Astragalus membranaceus has long been

used in TCM for the treatment of cardiovascular

diseases but its bioactive components were still

unknown. Our laboratory isolated AGS-IV from

aqueous extract of Astragalus membranaceus, performed

a series of in vivo and in vitro pharmacological exper-

iments, and validated the cardioprotective effects

of AGS-IV [83, 84]. AGS-IV was thus identified

as active compound of Astragalus membranaceus. In

Supplementary Table 4 we list the specific tech-

niques usually used for isolating active components

from TCM.

Since only a few compounds are responsible for

the therapeutic effects of TCM, biochromatography,

which is based on the biological interactions between

bioactive compounds and immobilized proteins,

enzymes and antibodies, has been applied to quickly

eliminate the interference of non-viable components

and to identify bioactive compounds from TCM.

The bioactive components in Artemisia capillaris
Thunb were thereby identified in such a way based

on their affinity to human serum albumin (HSA)

which binds with most synthetic drugs [85]; and

those of Radix Angelica Sinensis were screened out

by immobilized liposome chromatography (ILC)

which mimics the filtering ability of a cell membrane

system to drug molecules [86].

As most TCM is taken orally, only the compo-

nents that eventually appear in blood could be

considered to have the chance of exerting their

effects. Some of the components may actually be

metabolites of the original compounds. A serum

pharmacological screen strategy was thus proposed

to identify the main components absorbed in blood

after administration of TCM [87]. Applying this

methodology, we studied the absorbed components

in rat plasma after oral administration of Shexiang
Baoxin Pill (SBP), a Chinese traditional patent med-

icine for the treatment of cardiovascular diseases.

Totally 21 components, including 17 components

from SBP and 4 metabolites, were observed from

a comprehensive analysis of the chromatography of

SBP, controlled plasma and dosed plasma. Fourteen

of the identified compounds, which were present in

high concentration and reported to have effects on

cardiovascular diseases, were identified as main active

compounds [88]. Further study will be carried out to

identify the targets, investigate the mode of action,

and conduct comparative pharmacological evalua-

tion on the active compound combinations and

SBP itself. Along these lines, it may be possible to

develop a new multi-component drug consisting

of a rational combination of the SBP active com-

pounds for the treatment of cardiovascular diseases

in the future. We list some TCM recipes whose

main bioactive ingredients have been identified in

Supplementary Table 5.

Several databases have been constructed for

providing information concerning constituent

herbs, bioactive compounds and other aspects of

TCM recipes. The TCM database includes informa-

tion about Chinese medicinal plants and bioactive

compounds [89]. The 3D structure database of

components from Chinese traditional medicinal

herbs provides the basic molecular properties and

optimized 3D structure of herbal compounds [90].

TCMID database (Traditional Chinese Medicine

Information Database) collects comprehensive infor-

mation of TCM including prescriptions, constituent

herbs, herbal ingredients, molecular structure and

functional properties of active ingredients, therapeu-

tic and side effects, clinical indication and application

and related matters [91]. These databases could be

applied for data mining of effective bioactive com-

pounds of TCM.

Proteomic technologies could profile changes

in protein expression in response to drug treatment

and identify differentially expressed proteins, and

have been proved effective for the identification of

protein targets of TCM active compounds [92].

From a technological point of view, the current

applicable tools are two-dimensional gel electro-

phoresis (2-DE) for separation of proteins in a

proteome, and mass spectrometry (MS) for protein

identification [93]. On the other hand, in silico virtual

screening approaches could provide alternative ways

for low-cost and rapid predictions of targets of TCM

active compounds. The methodologies for target

prediction can be roughly grouped into two classes:

the first class predicts targets of new compounds from

those with known targets only based on compound

chemical information [94–98], while the second class
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utilizes 3D information about both the compound

and the target protein to perform ligand–protein

docking [99–102]. Recently, considerable efforts

have been made to infer unknown drug-target inter-

actions by integrating more information about drugs

and targets, such as drug chemical structure, side-

effects, target protein sequence, and drug-target net-

work topology [103–106]. These approaches could

be complementary when being applied to predict

targets of TCM active compounds in silico.
Ganoderma lucidum is a medicinal mushroom used

in TCM for the prevention or treatment of a variety

of diseases including cancers [107, 108]. Triterpenes

in Ganoderma lucidum have been regarded as the main

anti-cancer active ingredients due to their ability to

inhibit growth, induce apoptosis and cause cell cycle

arrest of cancer cells [109–111]. In a work by

Yue et al., a proteomic approach was applied to

investigate the possible targets of ganoderic acid D

(GAD), a main compound of Ganodema triterpenes,

in cancer cells, and 21 differentially expressed

proteins were identified [112]. These possible

GAD-target related proteins were evaluated by the

in silico ligand-protein inverse docking software

INVDOCK [101]. Totally 7 of the 21 proteins

were found to bind with GAD by the software.

The protein–protein interaction network between

the 21 putative targets was constructed, and the

enrichment of 14-3-3 proteins and their central

localizations in this network indicated that they

could be important targets of GAD in cancer cells.

Refer to ref. [113–115] and [92] for detailed

reviews about approaches and strategies to screen

bioactive compounds from TCM recipes, to predict

protein targets of small molecules in silico, and to

identify targets of natural compounds by proteomics,

respectively.

Case study 1: Antidepressant activity
of St. John’sWort
St. John’s Wort (SJW) is an extract from the

plant Hypericum perforatum L. Numerous clinical trials

have shown that SJW had significant antidepres-

sant efficacy and lower side effects than standard anti-

depressants [116–119]. In many countries, it has been

widely used for the treatment of mild to moderate

forms of depression. SJW has been included in the

pharmacopoeias of Germany and the US.

The main active ingredients of SJW are hyper-

forin (HP), hypericin (HY), pseudohypericin (PH),

amentoflavone (AF), and several flavonoids

(FL) [120]. Experimental results have suggested that

HP, HY, PH and AF are able to pass the blood-brain

barrier [121–123]. Furthermore, the antidepressant

activity of SJW is highly associated with these

active compounds [120, 124–128].

We conducted a comprehensive literature search

and collected the neurotransmitter receptors, trans-

porter proteins, and ion channels on which the SJW

active compounds show effects (Supplementary

Table 6). By mapping these proteins onto KEGG

pathways, it was found that SJW intervenes in

mainly three pathways, neuroactive ligand–receptor

interaction, the calcium signaling pathway, and

the gap junction related pathway. In Figure 2 we

show the effects of the SJW active compounds on

the system of neuroactive ligand–receptor interac-

tion. It can be seen that the SJW active compounds

act on different receptors respectively so as to regu-

late the uptake and transport systems of neurotrans-

mitters in a multi-target pattern. In this way, SJW

blocks the reuptake of multiple neurotransmitters

such as serotonin, norepinephrine and dopamine

and stimulates the release of these neurotransmitters.

We then extracted all the FDA-approved antidepres-

sants, i.e., the drugs whose first four ATC code

(Anatomical Therapeutic Chemical code) is N06A,

and their targets from the DrugBank database.

Integrating these data with information in Supple-

mentary Table 6, we constructed the drug-target

network for FDA approved antidepressants and

SJW compounds, as shown in Figure 3. This net-

work shows that the active compounds of SJW share

same targets with different types of antidepressants

such as monoamine oxidase (MAO) inhibitors and

monoamine reuptake inhibitors, respectively, sug-

gesting that the effect of SJW is similar to that of a

combination of different classes of antidepressants.

However, the inhibitory effects of the SJW active

compounds on each of the targets are lower than

individual therapeutic dosages, thus it is inadequate

to explain the antidepressant effect of the herb only

from the inhibition of any single target [120]. For

instance, SJW inhibits MAO only in millimolar

concentrations, which is much weaker than conven-

tional antidepressant MAO inhibitors [128, 130].

Therefore, it is likely that the actions of multiple

active compounds of SJW result in an additive

or synergistic antidepressant efficacy [131, 132],

making SJW realize the same antidepressant efficacy

as normal monotherapy at much lower doses of

separate compounds.
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In fact, many potential targets for central nerve

system (CNS) drugs participate in multiple signaling

pathways that keep normal physiological functions

of cells. Only in overactive or unbalanced conditions

do they hurt nerve cells [133]. CNS drugs that work

by specific and high-affinity binding to their targets

could block all activity including normal cellular

processes. Thus they usually result in intolerable

side effects. Therefore, in the treatment of CNS dis-

eases, low-affinity binding agents [133] and drug

combination strategy have been proved useful

in reinforcing efficacy, limiting side effects, and

improving compliance [134]. Accordingly, the sig-

nificant antidepressant efficacy and lower side effects

of SJW could be attributable to the synergetic actions

of the low-dose combination of multiple active

compounds.

Case study 2:The effect of
Realgar-Indigo naturalis formula on
acute promyelocytic leukemia
Acute promyelocytic leukemia (APL) is a subtype of

acute myeloid leukemia (AML) caused by a specific

Figure 2: Inhibitions of single SJW compounds on different neurotransmitter receptors.This plot is modified from
KEGG pathway map.
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chromosome translocation t(15;17). It is a malig-

nancy of the bone marrow in which there is an

excess of immature cells (called promyelocytes) and

a deficiency of mature blood cells in the myeloid line

of cells. APL can be effectively controlled by the

differentiating agent all-trans-retinoic acid (ATRA),

which activates the retinoid receptor RAR and

induces the promyeloctes to differentiate toward

mature granulocytes [135]. A TCM formula,

Realgar-Indigo naturalis formula (RIF), has been

applied in China to treat APL since the 1980s.

Clinical trials showed that 60-day RIF treatment

on APL patients resulted in a complete remission

(CR) rate of 98.3% [136]; while a CR rate of 95%

for relapsed APL [137], and 5-year survival rate of

86.88% [138] were achieved after RIF treatment.

RIF is a TCM formula consisting of four kinds of

materials, realgar, Indigo naturalis,Salviamiltiorrhiza, and

Radixpseudostellariae. In TCM theory, multiple agents

contained in one formula must work synergistically.

Realgar is regarded as the principal component of

the formula RIF, and the other three are adjuvant

components to assist the effect of realgar. Studies in

recent years showed that the main active compounds

of realgar, Indigo naturalis and Salvia miltiorrhiza are

tetraarsenic tetrasulfide (As4S4, A) [139], indirubin

(I) [140] and tanshinone IIA (T) [141], respectively.

Applying approaches of modern biological research,

a group of Chinese scientists investigated the

multi-target, synergetic actions of the three active

compounds in RIF and successfully illustrated the

therapeutic mechanism of the TCM formula at

Figure 3: Drug-target network of FDA approved antidepressants and SJW compounds. A target protein node and
a drug node are linked if the protein is targeted by the corresponding drug. This graph is drawn with the software
Cytoscape [129].
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molecular level [142]. Their in vivo experiments on a

murine APL model showed that mono-therapy with

A significantly prolonged the overall survival, while

ATI combination exhibited the most potent thera-

peutic efficacy compared with mono- or bi-therapy

of A, T, and I. In vitro experiments showed that A or

T alone induced a certain degree of differentiation of

APL cells, and ATI combination resulted in syner-

gistic effects that caused APL cells to differentiate

toward mature cell types. At the molecular level,

ATI combination strengthened the regulation on

APL associated proteins such as PML-RARa and

C-Myc.

To understand the therapeutic mechanism of RIF

in the context of network regulation, we collected

the results of ref. [142] concerning the effects of A,

T, I alone and their different combinations on APL

associated proteins and listed them in Supplementary

Table 7. We also searched the OMIM database and

found six APL disease genes. We called the proteins

in Supplementary Table 7 and those encoded by the

six APL genes as RIF-associated proteins.

We first constructed a protein–protein interaction

network for the human genome based on the

HPRD [78] data and mapped the RIF-associated

proteins onto this network. Then we adopted the

Steiner minimal tree algorithm [143] to identify a

minimum sub-network, which includes as many

RIF-associated proteins and as few other proteins

as possible, while each RIF-associated protein can

interact with another through at most one bridge

protein. We used the P-value [51] to quantitatively

measure whether a network is more enriched with

proteins of a specific Gene ontology (GO) term

than what would be expected by chance. Given

significance level �¼ 0.05, a P-value smaller than �
demonstrates low probability that the proteins of

same GO term appear in the network by chance.

As can be seen in Figure 4A, the RIF-associated

proteins are tightly connected together due to their

direct interactions, while the network is significantly

enriched with proteins whose GO terms are regula-

tion of cell differentiation and cell proliferation

(P¼ 1.26� 10�6, 1.09� 10�10), two biological pro-

cesses highly associated with the progress of cancers.

Specifically, the GO suggests that five of the proteins

(CEBPA, CEBPB, PML, RB1 and NCOA6) are

involved in the biological process of myeloid

cell differentiation (P¼ 1.72� 10�9). This protein–

protein interaction network indicates a possible

concerted functional mechanism of RIF on the

APL associated proteins.

We also mapped the RIF-associated proteins onto

KEGG pathways and generated a bipartite graph of

protein-pathway association, in which a protein and

a pathway were linked if the protein appeared in

the pathway. Figure 4B shows that the

RIF-targeted proteins are involved in a series of

cancer pathways, five of which participate in the

acute myeloid leukemia (AML) pathway, suggesting

that the pathway is the key pathway modulated by

RIF. In Figure 5 we show the targets of RIF on the

Figure 4: Functional networks of APL disease gene-encoded proteins and RIF-targeted proteins. (A) Protein
interaction network. (B) Protein-pathway association network. [D]: Gene Ontology (GO) of the protein: regulation
of cell differentiation; [P]: GO: regulation of cell proliferation; [B]: GO: regulation of cell differentiation, and regula-
tion of cell proliferation. This graph is drawn with the software Cytoscape [129].
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AML pathway and the effects of RIF on them. It can

be seen that, on the one hand, by up-regulating C/

EBPa and PU.1 proteins and down-regulating

PML-RARa oncoprotein, RIF stimulates APL cell

to differentiate; on the other hand, by inhibiting

PML-RARa and c-Myc, RIF deters the promye-

loctes from proliferating. In conclusion, RIF inter-

venes in the AML pathway by targeting multiple

proteins localized at its two distinct but associated

branches, hence resulting in a synergetic anticancer

action on APL.

Figure 4B shows that RIF also targets on multiple

proteins at the pathways of chronic myeloid leuke-

mia pathway (CML) and small cell lung cancer

(SCLC), indicating that it is probably efficacious

against these cancers. More research deserves being

done in this direction.

PERSPECTIVES
Network-based TCM pharmacology seeks to

develop a systematic understanding of the actions

of TCM by considering their targets in the context

of molecular networks. The sources and methods of

molecular networks introduced here may facilitate

the network-based study of TCM pharmacology.

The examples in this paper suggest that by integrat-

ing information from different sources, network-

based TCM pharmacology provides a perspective

for better understanding of the holistic, complemen-

tary and synergic essence of TCM at a molecular

level. TCM, in essence, is combination therapy by

multiple active compounds. Rich experience in the

combinatorial use of natural products has been accu-

mulated in TCM to achieve a synergetic therapeutic

efficacy and reduced side-effects. By a combination

of multiple chemical ingredients, TCM remedies

elicit their beneficial effects by tinkering with

different proteins in networks in a gentle way,

achieving the same therapeutic efficacy of normal

mono-ingredient agents at much lower doses of sep-

arate compounds. Thus the side effects of TCM are

usually weaker than the monotherapy of western

medicine. A great value of TCM is in its application

for thousands of years and considerable knowledge

accumulated concerning in vivo efficacy and safety,

Figure 5: Regulations of single RIF compounds on different proteins on AML pathway. M0: Acute myeloblastic leu-
kemia with minimal differentiation; M1: Acute myeloblastic leukemia without maturation; M2: Acute myeloblastic
leukemia with maturation; M3: Acute promyelocytic leukemia; M4: Acute myelomonocytic leukemia; M5: Acute
monocytic leukemia; M6: Erythroleukemia; Oncogenes: AML1-ETO, PML-RARa, PLZF-RARa; Tumor suppressors:
AML1, C/EBPa, PU.1. This plot is modified from KEGG pathway map.
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two of the confounding problems facing new

designed drugs. Thus drug discovery starting with

well-validated TCM remedies is promising in devel-

oping new multi-target agents, or potent drug

combinations that are individually less therapeutic

but efficacious in combination. This approach also

has the advantage of controlling the pharmacoki-

netics and drug – drug interactions of multiple com-

ponents. We expect that, along this reverse drug

discovery path, it is possible to develop new-entity

drugs or efficient drug combinations at a lower cost

of time and money.

Key Points

� At the molecular level, TCM recipes are multi-component and
multi-target agents, essentially acting in a similar way as combi-
nation therapy usingmulti-component drugs.

� Network-based systems biology provides new tools and per-
spectives for the understanding of themode of action of TCM.

� Identifying the effective bioactive compounds from the complex
constituents of TCM is the foundation forTCM pharmacology.

� Disease-associated network and drug-associated network are
proper context networks for elucidating the holistic, comple-
mentary and synergic essence of TCM frommolecular level.
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