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Abstract 

Primary brain tumours are heterogeneous regarding histology, genetics, and outcome. Although the 

World Health Organization (WHO) Classification of Tumors of the Central Nervous System has 

greatly aided in standardizing diagnostic criteria throughout the world, it does not yet consider the 

tremendous progress made recently in the molecular classification of many brain tumours. Recent 

practice-changing academic clinical trials have defined a role for routine assessment of MGMT 

promoter methylation in glioblastoma of the elderly and 1p/19q co-deletions in anaplastic 

oligodendroglial tumours. Moreover, large scale molecular profiling approaches have identified new 

mutations in gliomas, affecting isocitrate dehydrogenases (IDH) 1 and 2, H3F3, ATRX and CIC, and 

allowed to subclassify gliomas into distinct molecular subgroups with characteristic features of age, 

localization, and outcome, although they do not yet predict benefit from therapeutic interventions. 

Similarly, transcriptome-based classification of medulloblastoma has delineated four variants that may 

now be candidate diseases to explore novel targeted agents. 

 

Search Strategy and Selection Criteria section 

References for this review were identified through searches of PubMed with the search terms „brain 

tumo(u)r”, “glioma”, “medulloblastoma”, “meningioma”, “ependymoma”, “molecular”, “predictive”, 

and “prognostic” in various combinations, from 2000 to January 2013. Articles were also identified 

through searches of the authors` own files. Only papers in English were reviewed. Data available only 
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in Abstract form were not included. The final reference list was generated on the basis of originality 

and relevance to the broad scope of this review. 

 

Introduction 

 

The World Health Organization (WHO) Classification of Tumours of the Central Nervous System 

distinguishes tumours by histological criteria and, based on morphological features of anaplasia, 

additionally allocates a malignancy grade ranging from WHO grade I to IV to each tumour, if 

applicable. Traditionally the nomenclature of brain tumours is often assigned based on a presumed cell 

of origin which is mainly deduced from cytological similarities of the tumour cells with the various 

normal cell types occuring in the central nervous system and its coverings (Webappendix).
1
 

From a historical perspective, histopathology thus was the first tool to distinguish brain tumors of 

different grades of malignancy and (presumed) different histogenetic origin, with the overall goal to 

provide clinicians with prognostic information. Histopathological classification alone has its 

limitations, but is greatly aided by immunohistochemical markers that help to discriminate different 

tumour entities with higher certainty, thereby reducing interobserver variability, and allow for a better 

characterization of novel tumour entities and variants. A next level of complexity is added by 

including molecular markers that carry both diagnostic and prognostic information in tumours with 

histologically similar appearance. Nevertheless, molecular markers have become an integral part of 

tumour grading and anatomo-pathological assessment in modern neuro-oncology practice because 

they provide useful information beyond the WHO classification, and molecular marker status now 

guides clinical decision making at least in subtypes of gliomas.
2
 In parallel, several genome- or 

transcriptome-wide molecular approaches of brain tumour classification indicate that single marker 

profiling may only be a transient diagnostic standard which may soon be replaced at reasonable cost 

by tumour genome-wide molecular profiling techniques, including array-based methods as well as 

diagnostic next generation sequencing. The purpose of this review is to highlight recent advances in 

the molecular diagnosis and classification of primary brain tumours and to discuss how these advances 

inform therapeutic decisions. 
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Gliomas: single marker approaches 

 

IDH mutation 

Isocitrate dehydrogenase (IDH) mutations, 1p/19q co-deletions, and O
6
-methylguanine DNA 

methyltransferase (MGMT) promoter methylation are the three molecular markers that are currently 

assessed routinely in many brain tumour centres because of their diagnostic, prognostic, or predictive 

value (Table). IDH mutations are early lesions in the development of gliomas and cluster in the active 

site of theses enzymes at codons 132 of the IDH1 respectively 172 of the IDH2 gene. The selective, 

heterozygous mutational targeting of specific sites of either gene seems necessary and sufficient for 

neoplastic transformation, suggesting that these mutations confer a gain of function and do not simply 

affect wildtype IDH function. They favour a neomorphic reaction catalysing the conversion of α-

ketoglutarate into D-2-hydroxyglutarate, a candidate oncometabolite accumulating to high 

concentrations possibly measurable by MR spectroscopy in situ
3 
and mediating the oncogenic activity 

of IDH mutations.
4
 Most interestingly, IDH mutations have been reported to be causally linked to 

profound epigenetic changes, mediated by high concentrations of 2-hydroxyglutarate that inhibit 

α−ketoglutarate-dependent epigenetic modifiers such as tet methylcytosine dioxygenase (TET) 2, 

resulting in a glioma CpG island methylator phenotype (G-CIMP).
5
 In addition, 2-hydroxyglutarate 

stimulates hypoxia-inducible factor (HIF) prolyl 4-hydroxylases (EGLN1. 2 and 3) which in turn leads 

to diminished HIF levels and enhances proliferation as well as soft agar growth of human astrocytes.
6
 

These insights provided evidence that gliomas with IDH mutations have a distinct pathogenetic origin.  

Hence, the primary molecular approach to classify gliomas of adulthood is to separate gliomas into 

IDH-wildtype versus IDH-mutant gliomas. Among the IDH-wildtype gliomas, there are distinct 

entities such as the grade I pilocytic astrocytomas and primary glioblastomas which originate via 

pathways of tumourigenesis that are independent of the IDH pathway and presumably G-CIMP. 

Conversely, most grade II, grade III and few grade IV gliomas (=secondary glioblastomas) share IDH 

mutations and carry a better prognosis compared to IDH-wildtype gliomas of the same histological 
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grade. In fact, the IDH status was a better discriminator of outcome than histological grade in a pooled 

analysis of 382 WHO grade III and IV gliomas, excluding oligodendroglial tumours.
7 
The prognostic 

effect of the IDH mutation in patients with WHO grade II gliomas appears to be less strong when 

these patients are not treated with RT or chemotherapy.
8
 In fact, IDH-wildtype grade II and III gliomas 

remain poorly characterized groups of tumours that seem to have a less favourable prognosis. 

Accordingly, the IDH status should be incorporated into future brain tumour classifications, especially 

since the IDH-mutant tumours are driven by specific epigenetic alterations, phenotypically 

characterized as G-CIMP-positive, a status that may be suitable for specific therapeutic interventions 

that likely will not be successful on an IDH-wildtype (G-CIMP-negative) background. For the future 

development of clinical trials, stratification and separate treatment strategies need to be defined for 

these distinct subgroups. Pooling IDH-mutant and IDH-wildtype tumours in the same clinical trials 

simply because the tumours look alike and are assigned the same histological grade of malignancy is 

not appropriate anymore. 

The IDH status is of undisputed diagnostic value, in particular in positively identifying diffuse gliomas 

and distinguishing them from reactive gliosis as well as various other tumour entities that constitute 

important histological differential diagnoses but are IDH-wildtype lesions. However, the IDH status 

has no defined role in clinical decision making yet within a given tumour entity. 

 

1p/19q co-deletion 

Combined losses of chromosomal arms 1p and 19q resulting from an unbalanced t(1;19)(q10;p10) 

translocation lead to the loss of one hybrid chromosome and thus loss of heterozygosity.
9
 This 

cytogenetic aberration is strongly associated with oligodendroglial histology and rarely found in other 

tumours. The molecular pathway of oncogenesis associated with this lesion is currently being 

elucidated: most 1p/19q-co-deleted oligodendrogliomas carry mutations in the CIC gene, a homolog 

of the Drosophila gene capicua, on chromosomal band 19q13.2
10,11

 while CIC mutations appear to be 

less common in 1p/19q-co-deleted oligoastrocytomas.
12

 Less frequently there are mutations in the 

FUBP1 gene, which encodes the “far upstream element-binding protein”, on chromosomal arm 1p.
10,11

 

1p/19q-co-deleted tumours have long been known to carry a better prognosis than histologically 
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indistinguishable tumours of the same grade of malignancy. While it remains controversial whether 

1p/19q-co-deleted tumours have a less aggressive natural course, it is well established that they are 

more sensitive to radiotherapy (RT) or alkylating agent chemotherapy. Long-term results of two large 

randomized clinical trials – European Organisation for Research and Treatment of Cancer (EORTC) 

26951 and Radiation Therapy Oncology Group (RTOG) 9402 – that explored the value of 

polychemotherapy using procarbacine, lomustin (CCNU) and vincristine (PCV) either prior to or 

immediately after RT indicate that the inclusion of chemotherapy in the first-line treatment confers a 

survival advantage which becomes evident after follow-up of more than six years rather specifically in 

the subgroup of patients with 1p/19q-co-deleted tumours (Table 2). Thus, 1p/19q co-deletions have 

also predictive value for benefit from chemotherapy, in addition to the characterization of a 

prognostically more favourable subgroup.
13,14

  

The results from these studies led to the suspension of enrolment in the 3-arm CODEL trial which 

aimed at comparing RT plus temozolomide (TMZ) followed by TMZ (RT/TMZ →TMZ) with RT 

alone and TMZ alone. This is because RT alone was no longer considered an appropriate treatment for 

these patients. It has, however, to be noted that these results stem from retrospective analyses and are 

thus explorative, moreover, it remains unclear how many of the long-term survivors treated with RT 

plus PCV experience preserved cognitive function and quality of life. Finally, there is controversy 

whether the same improvement in overall survival could have been achieved with the combination of 

RT and TMZ or even with alkylating agent chemotherapy alone. The German NOA-04 trial which 

compared RT and TMZ or PCV alone
15

 does not yet provide a conclusive answer regarding 

differences in long-term disease control with PCV versus TMZ since follow-up was too short at the 

time of initial publication. Yet, future clinical trials should probably include RT plus PCV 

polychemotherapy as a control arm. 

MGMT promoter methylation 

The DNA repair protein MGMT repairs the chemotherapy-induced alkylation at the O
6
-position of 

guanine, the critical mediator of alkylating agent cytotoxicity, and thus counteracts the effects of 

alkylating chemotherapeutic agents such as nitrosoureas or TMZ. Decreased MGMT protein levels are 

predicted to result in decreased ability of repair and therefore should be associated with improved 
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outcome. Hypermethylation of the MGMT gene promoter may lead to silencing of the gene and thus 

decreased protein levels. Numerous clinical trials and cohort studies have shown that MGMT promoter 

methylation is associated with prolonged progression-free and overall survival in glioblastoma patients 

treated with alkylating agent chemotherapy.
16-22

 In the pivotal trial establishing TMZ chemotherapy 

during and after radiotherapy in newly diagnosed glioblastoma,
23

 the benefit from chemotherapy was 

almost exclusively attributable to patients with a methylated MGMT gene promoter.
18,21

 In 2012, two 

independent randomized trials conducted in elderly patients with anaplastic astrocytoma
24

 or 

glioblastoma
24,25

 reported a comparison of RT alone versus TMZ chemotherapy alone as initial 

treatment. Subgroup analyses of both trials demonstrated a superior outcome for chemotherapy in 

patients with MGMT promoter-methylated tumours, but an inferior survival in patients with 

unmethylated tumours. These results strongly suggest that treatment strategy should be individualised 

depending on the MGMT status when selecting the appropriate treatment for elderly glioblastoma 

patients who are not commonly treated with combined modality treatment (RT/TMZ→TMZ).  

While MGMT determination by immunohistochemistry shows a marked interobserver heterogeneity 

and does not reliably correlate with promoter methylation or outcome, molecular determination of 

epigenetic activation status most commonly performed by methylation-specific PCR – or 

pyrosequencing of bisulfite-modified DNA - has been established as a reliable method. A thorough 

discussion of the challenges, pitfalls and limitations of MGMT promoter methylation analyses has 

been provided elsewhere.
22

 Regarding future developments, it is tempting to speculate that the 

National Cancer Institute of Canada (NCIC)/EORTC Intergroup trial exploring hypofractionated RT 

versus hypofractionated RT/TMZ→TMZ may show a survival signal only in patients with MGMT 

promoter-methylated tumours. None of the trials will answer the question whether patients with 

MGMT promoter-methylated tumours may be managed with TMZ alone or might still fare better with 

RT/TMZ→TMZ. 

Anaplastic gliomas, as opposed to the vast majority of primary glioblastomas, show distinct genetic 

and epigenetic aberration profiles implicating different pathomechanisms of tumourigenesis and 

progression. Somewhat unexpectedly, but at second thought not surprisingly, a specific predictive 

value of MGMT promoter methylation was not observed in two anaplastic glioma trials where patients 
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were treated with RT versus alkylating chemotherapy alone
15

 or with RT versus RT plus alkylating 

chemotherapy.
26

 Nevertheless, a strong prognostic value of MGMT promoter methylation was 

demonstrated independent of the choice of initial therapy. While it was interesting to observe such a 

striking difference between anaplastic glioma and glioblastoma regarding the predictive role of MGMT 

promoter methylation, the biological basis of this phenomenon remains to be elucidated.  

 

Interaction of various molecular markers 

The three molecular markers described above are not entirely independent. For instance, IDH-mutant 

tumours commonly show MGMT promoter methylation, and 1p/19q-co-deleted tumours typically 

harbour IDH mutations.
15,27

 IDH-mutant/CIMP-positive anaplastic gliomas almost always have the 

MGMT promoter methylated, while the rate of MGMT promoter methylation in G-CIMP-negative 

tumours was 40-50%, similar to primary glioblastoma. Hence, in most anaplastic gliomas, MGMT 

promoter methylation is part of the G-CIMP phenotype while G-CIMP is rare in primary 

glioblastoma.
28

 An exploratory analysis of the NOA-04 trial and validation cohorts from NOA-08 and 

the German Glioma Network indicated that a methylated MGMT promoter status is associated with 

superior outcome with chemotherapy with or without RT in the absence, but not in the presence, of 

IDH mutations.
29

 Thus, MGMT promoter methylation may reflect the G-CIMP phenotype of IDH-

mutant tumours, but may have a different, not yet understood genesis and role in IDH-wildtype 

tumours. Conversely, in a large group of anaplastic glioma patients the epigenetic inactivation of some 

CIMP-associated genes may sensitize the tumours to RT, and potentially chemotherapy, too, 

confounding the MGMT-related effect. It will be of utmost importance to uncover the identity of such 

genes and elucidate their biological implications for this phenomenon since they may facilitate the 

design of new treatment strategies. 

 

Changing treatment paradigms based on biomarker assessment 

Figures 1 and 2 summarize how the assessment of IDH, 1p/19q and MGMT status may be built into a 

management algorithm for patients with anaplastic gliomas and glioblastoma. Such algorithms are 

subject to change as new data and concepts emerge and may need to be adapted to institutional 
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preferences. Importantly, the decision for specific treatments must take into account several issues 

such as patient preference, tumour location, volume of radiotherapy and potential comorbidities that 

might increase the risk of toxicity from chemotherapy. Figure 2 does not address the possible role of 

bevacizumab or other experimental treatments currently explored in the treatment of newly diagnosed 

glioblastoma. 

 

ATRX mutations 

The first evidence for a role of α-thalassemia/mental-retardation-syndrome-X-linked (ATRX) 

mutations in gliomas of various grades of malignancy was their association with alternative 

lengthening of telomeres.
30

 It was then shown that ATRX mutations are associated with mutations of 

the TP53 and IDH1 genes across glioma entities.
11,31

 Most importantly, however, these same studies 

established ATRX mutations to be a very specific marker for astrocytic lineage tumours, including 

diffuse and anaplastic astrocytomas as well as a subset of oligoastrocytomas, positioning them as an 

attractive counterpart for 1p/19q co-deletions which appear to be mutually exclusive with ATRX 

mutations. Since the vast majority of mutations detected to date are truncating and thus lead to a 

reduction of protein levels, immunohistochemical demonstration of loss of ATRX may be a reasonable 

surrogate marker of ATRX mutations. Combining 1p/19q and ATRX assessments in a clinical setting 

may thus help in the future to guide the diagnosis within the spectrum of IDH-mutant gliomas and 

eventually to stratify patients for specific treatments. 

 

H3F3A mutation  

Employing exome-wide sequencing of pediatric glioblastomas and pontine gliomas, two recent studies 

identified frequent mutations in the histone H.3.3 gene (H3F3A).
32,33

 These mutations cluster at two 

critical amino acid residues, namely K27 and G34. Interestingly, the two H3F3A mutations appear to 

define distinct epigenetic subgroups of glioblastoma, with H3F3A (G34) mutant tumours showing 

global DNA hypomethylation.
34

 Moreover, H3F3A mutations are mutually exclusive with IDH1 

mutations, with each H3F3A mutation type giving rise to tumours located in separate anatomic 

compartments and showing differential expression of the transcription factors OLIG1, OLIG2, and 
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FOXG1.
34

 This suggests that pediatric glioblastomas with H3F3A K27 or G34 mutations likely arise 

from distinct cellular origins. Moreover, preliminary clinical correlations suggest that these mutations 

are associated with distinct clinical outcome, i.e. patients with H3F3A K27-mutant tumours appear to 

show a particularly poor outcome. From a molecular diagnostic point of view, the demonstration of 

H3F3A mutation, e.g., by DNA pyrosequencing, may help to identify different types of pediatric 

glioblastoma and distinguish these from other gliomas, including pilocytic astrocytoma. More recent 

data indicate mutations in another gene involved in the regulation of histone methylation in 

approximately 15% of pediatric and 8% of adult high-grade gliomas, mostly glioblastomas, namely 

SETD2. These mutations were mutually exclusive with H3F3A mutations but overlapped in part with 

IDH1 mutations in glioblastomas.
35 

Collectively, all of these mutations (H3.3G34R/V and SETD2, and 

H3.3K27M) are believed to directly alter centrally important histone marks such as H3K36 

trimethylation and H3.3K27 trimethylation, respectively. 

 

EGFRvIII rearrangement 

Approximately 25-30% of primary glioblastomas harbour a characteristic deletion mutant of the 

epidermal growth factor receptor (EGFR) gene referred to as EGFRvIII which results in constitutive 

and ligand-independent receptor activity and is considered an important oncogenic mutation. Its 

prognostic relevance remains controversial, but long-term survival may be inferior in patients whose 

tumours carry this mutation. EGFR-targeted approaches have not been effective in glioblastoma.
36

 

However, the EGFRvIII mutation also creates a new epitope which is immunogenic and thus a 

candidate tumour antigen in EGFRvIII-positive glioblastoma. Accordingly, vaccination strategies 

based on this unique peptide sequence have been developed and yielded promising overall survival 

results in various phase II trials which also provided preliminary evidence for target antigen 

elimination in recurrent tumours and a link between immune response to the vaccine and outcome.
37,38

 

A placebo-controlled phase III trial, ACT IV, exploring the efficacy of the EGFRvIII-directed vaccine 

is currently enrolling patients. Finally, EGFRvIII mRNA has also been detected in microvesicles in the 

serum of patients with EGFRvIII-positive glioblastoma,
39,40

 indicating that it may serve as a biomarker 

to monitor response to therapy and detect relapse. 
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BRAF fusion or point mutation 

Tandem duplications of BRAF at 7q34 resulting in KIAA1549:BRAF gene fusions, or sometimes 

alternative fusion partners, have been recognized as hallmark genetic lesions in pilocytic astrocytoma, 

with a particularly high incidence in cerebellar pilocytic astrocytomas.
41,42

 These fusions are only very 

rarely found in other tumours. KIAA1549:BRAF gene fusions are therefore considered a very 

important diagnostic aid to distinguish pilocytic astrocytoma from higher grade astrocytic tumours, a 

distinction that can be both challenging and therapeutically highly relevant given the fact that pilocytic 

astrocytomas and glioblastomas share the morphological feature of microvascular proliferation. Other 

genetic alterations of BRAF including point mutations, in particular the activating BRAF
V600E

 missense 

mutation, have also been observed in low-grade gliomas as well as grade III/IV gliomas.
43,44

 

BRAF
V600E

 mutations are particularly common in pleomorphic xanthoastrocytomas, with two thirds of 

these tumours showing this aberration, which is nowadays easily demonstrated by 

immunohistochemistry using a mutation-specific antibody.
45

 The glioma-associated BRAF alterations 

all exert their oncogenic activity by activating the mitogen-activated protein kinase (MAPK) 

pathway.
42

 More recent studies employing large scale sequencing identified an oncogenic hit in the 

MAPK pathway in (almost) all pilocytic astrocytomas (Pfister, unpublished) while they did not reveal 

any significantly mutated gene outside of this pathway, indicating that this tumour may indeed be a 

single-pathway disease. The availability of small-molecule BRAF kinase inhibitors such as 

vemurafenib (PLX4032), which specifically targets BRAF
V600E

-mutant tumours, provides a new 

therapeutic approach to these subgroups of gliomas and preliminary clinical evidence (Pfister, 

unpublished) suggests that the presence of a BRAF
V600E

 mutation may indeed serve as a potent 

predictive marker for this subset of patients across gliomas of various grades. 

 

Gliomas: unbiased (high throughput) molecular diagnostic approaches 

The notion that high throughput approaches of classifying brain tumours including gliomas are at least 

a valuable addition, if not superior to histopathological grading has been repeatedly supported in large 

datasets. However, due to the complexity in data analysis and interpretation, such techniques have not 
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been introduced into clinical practice (yet). One of the first approaches was to define gene expression 

signatures derived from classical tumour samples and to use these as an aid to diagnose tumour 

samples that were less easily assigned to a specific diagnostic entity by histology alone.
46

 Gene 

expression profiling of 276 gliomas resulted in the definition of 7 subgroups that did not simply reflect 

the histological diagnoses, but were prognostic, and correlated better with survival than histology. In 

fact, unsupervised bioinformatic clustering added to the prognostic information provided by histology 

whereas histology did not add to the information obtained by gene expression profiling.
47

 The same 

approach was also applied to patients enrolled in EORTC 26951
13

 and confirmed the prognostic value, 

moreover, it also allowed to identify a subgroup of patients who specifically benefitted from PCV 

chemotherapy. Superiority of gene expression profiling over 1p/19q testing, however, in predicting 

outcome was not demonstrated.
48

 Gene expression profiling was also used to identify genes associated 

with outcome and let to the identification of candidate genes such as osteonectin, doublecortin, 

semaphorin 3B
49

 or FABP7.
50

 In a subpopulation of 80 glioblastomas from the EORTC/NCIC trial,
23

 

an expression signature dominated by HOX genes was associated with poor survival in patients treated 

with concomitant chemoradiotherapy, and both the HOX signature and EGFR expression were 

independent negative prognostic factors on multivariate analysis.
51 

The poor prognostic value of the 

HOX gene-dominated stem cell related self-renewal signature was validated in an independent dataset 

of the same study. The functional association of the HOX gene signature with glioblastoma stem cells 

has been further substantiated and the negative prognostic effect was confirmed.
52

 

In 2006, Phillips and colleagues proposed a new classification of glioblastomas based on supervised 

gene expression profiling guided by patient outcome and coined the terms of proneural, proliferative 

and mesenchymal glioblastoma subtypes.
53

 Proneural tumours were often anaplastic gliomas, lacked 

phosphatase and tensin homolog on chromosome ten (PTEN) or EGFR alterations, but exhibited 

Notch pathway activation, and had a better outcome. The distinction of proliferative versus 

mesenchymal was less clear, but made on the basis of expression profiles favouring either 

proliferation or angiogenesis. Extending such analyses, a nine gene set was derived from 4 different 

data sets which provided independent prognostic information after adjusting for clinical factors and 

MGMT promoter methylation.
54
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Two very influential high throughput studies at the genomic level were published in 2008: first, The 

Cancer Genome Atlas (TCGA) project demonstrated genetic alterations in three major signalling 

pathways in the majority of glioblastomas: receptor tyrosine kinase (RTK) / RAS / phosphoinositide-3 

kinase (88%), p53 (87%) and retinoblastoma protein (78%),
55

 then, IDH mutations were discovered in 

a minority of glioblastoma patients which were young and had a good outcome, consistent with a 

secondary glioblastoma phenotype.
56

 In 2010, a refined expression-based classification suggested the 

existence of four glioma subtypes: proneural, neural, classical and mesenchymal.
57

 Gene expression 

patterns in these subgroups showed distinct correlations with those of oligodendrocytes, astrocytes, 

and neurons, providing possible clues to putative lineages of tumour origin. The authors also proposed 

differential benefit from therapy by subgroup, but these data need to be interpreted with caution, given 

the retrospective nature of this analysis and the heterogeneous treatments. Interestingly, annotation of 

the data set with the MGMT promoter methylation status revealed that none of the four subgroups 

displayed an association with the MGMT status.
28

 Genome-wide DNA methylation profiling provided 

complementary information and most importantly uncovered the G-CIMP phenotype associated with 

IDH1 mutations. Interestingly, IDH-mutant and G-CIMP-positive tumours turned out to be a subgroup 

of the proneural subtype.
58

 This discovery was instrumental for uncovering the mechanistic link 

between IDH mutations and genome-wide aberration of DNA methylation.
5
 As detailed above, 

mutations in the histone H3 gene (H3F3A) were detected in more than a third of pediatric 

glioblastomas and more than two thirds of diffuse intrinsic pontine gliomas, further supporting the role 

of epigenetic deregulation in gliomagenesis.
31-34

 Accordingly, using Illumina 450K array-based 

methylation profiling, a novel subclassification of glioblastoma into 6 subgroups was proposed across 

age groups: the first three are linked to mutations of IDH or codons 27 or 34 of histone H3, which are 

mutually exclusive, the other groups were labelled receptor tyrosine kinase (RTK) I/PDGFRA, 

mesenchymal, and RTKII/classic. These six subclasses exhibited distinct profiles of age distribution, 

tumour localization, and outcome.
34

 Importantly, this subclassification allowed to further split the 

proneural expression subgroups into basically four subgroups: IDH-mutant, H3F3A (K27)-mutant, 

H3F3A (G34)-mutant, and RTKI/PDGFRA. This is important since only the IDH group of proneural 

glioblastomas remains to be associated with a favourable prognosis, whereas the remaining patients do 
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as poorly as or even worse than patients with mesenchymal, classic, or neural tumours. The clinical 

usefulness of these novel classifiers is currently being tested in prospective cohort studies. 

 

 

Molecular classification of other primary brain tumours 

 

Ependymal tumours 

Ependymomas remain a domain for surgical and radiooncological treatment approaches whereas 

pharmacological strategies have remained largely disappointing, notably in adults.
59

 Although there 

has been significant progress in the molecular characterization of these tumours as well,
60

 this has not 

resulted in the definition of promising new molecular targets for intervention yet. However, it has 

become evident that there is considerable heterogeneity within this group of tumours as well, and 

based on the fact that especially distinguishing between WHO grade II and grade III might very 

challenging from a neuropathology perspective, approaches to molecularly subclassify this disease 

based on published literature are currently being assessed.
61,62

 For example, three prognostically 

relevant molecular subgroups of intracranial ependymomas have been proposed on the basis of DNA 

copy number changes: group 1 tumours have a favourable prognosis and carry gains on chromosomes 

9, 15q and 18 or loss of chromosome 6; group 2 tumours have an intermediate prognosis and largely 

balanced genomic profiles; group 3 tumours have a poor prognosis and are characterized by 1q gains 

or homozygous cyclin-dependent kinase inhibitor 2A (CDKN2A) deletions.
60

 Posterior fossa 

ependymomas have been reported to comprise three genetic subgroups characterized by (i) multiple 

concurrent DNA amplifications, (ii) gain of 1q, or (iii) a balanced karyotype. Moreover, 

ependymomas arising in different CNS regions, spinal, infratentorial or supratentorial, showed distinct 

mRNA expression signatures.
63

 More recent data suggest two distinct subgroups of posterior fossa 

ependymomas based on gene expression profiles: group A tumours with poor prognosis with frequent 

relapse and metastatic seeding are preferentially found in younger patients and more common in 

males. These are typically located in lateral parts of the 4th ventricle and carry mostly balanced 

genomes with frequent gain of 1q and loss of 22. Group B tumours show a more favourable prognosis 
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and are genetically more unstable. These tumours are more prevalent in adults and located in the 

midline.
64

 From a diagnostic perspective it is interesting that these two posterior fossa ependymoma 

subgroups may be distinguished immunohistochemically, with group A tumours expressing LAMA2 

but not NELL2, while group B tumours show the opposite staining pattern.
64.65

 

 

Medulloblastoma 

Medulloblastoma is the most common malignant pediatric brain tumour, but may also occur in 

younger adults. More than any other brain tumour, medulloblastoma has become paradigmatic for the 

power of modern high throughput technology to allow subclassification and assignment to putative 

oncogenic pathways presumably reflecting different cells of origin or stages of neural development. 

Current approaches define four subgroups which, however, may be further subclassified: wingless 

(WNT), sonic hedgehog (SHH), group 3, and group 4, each characterized by differential expression 

profiles and characteristic patterns of age of onset, localization and outcome.
66-69

 Most importantly, the 

pediatric neurooncology community came up with a consensus paper supported by leading groups 

across the world agreeing to this classification approach.
70

 An immediate clinical consequence of this 

ground-breaking work has been that most new studies in North America and Europe account for the 

fact that WNT-driven medulloblastoma patients have an excellent overall survival with current therapy 

regimens, so it is now being tested whether it is safe to reduce the dose of RT for these patients. The 

first clinical experience with the smoothened inhibitor vismodegib as a targeted approach to 

medulloblastoma demonstrated a dramatic, albeit short-lived response.
71

 However, larger studies on 

less-heavily pre-treated patients are forthcoming using either vismodegib or LDE-225 and at first 

glance show promising results in patients whose tumours carry a SHH signature. A French-led 

European trial (MEVITEM, www.clinicaltrials.gov NCT#01601184) compares temozolomide alone 

versus temozolomide plus vismodegib in adult patients with recurrent medulloblastoma with SHH 

signature. Other approaches for the implementation of targeted therapeutic approaches into the 

pediatric and adult medulloblastoma clinical trial portfolio based on novel molecular classifiers are 

ongoing.  
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Meningioma 

Meningiomas are the most common tumors among all primary brain tumours. Although they are 

histologically benign most often (>90%) and histological subgroups have little clinical significance, a 

minority of meningiomas shows histological features of atypia, including most notably elevated 

mitotic activity or brain-infiltrative growth patterns. These atypical meningiomas correspond to WHO 

grade II and are associated with a high likelihood of local recurrence even after macroscopically 

complete resection. The rare anaplastic meningiomas (WHO grade III) are fast growing tumours with 

locally destructive growth that may even produce systemic metastases, mostly in lung, liver and bone 

(Webappendix). Thus, meningiomas represent a major challenge in neurological oncology. Surgery 

and RT are the principal therapeutic measures. Systemic pharmacotherapy has been notoriously 

unsuccessful, and molecular genetic profiling has not provided clues for targeted therapy approaches.
72

 

For decades there has been major interest in hormonal therapies for these tumours because estrogen 

receptors are expressed in approximately 10% and progesterone receptors in more than half of 

meningiomas, but therapeutic targeting of hormone receptors has not been successful. Somatostatin 

receptors may be expressed in 80-90% of meningiomas. Their assessment using 

immunohistochemistry or positron emission tomography (PET) has been proposed to select patients 

for treatment with somatostatin receptor agonists, but a recent prospective study exploring the activity 

of octreotide yielded disappointing results, with no responses and only 2 of 12 patients with prolonged 

stable disease.
73

 Genomic profiling has revealed inactivation of the tumour suppressor gene NF2 on 

22q in about 50% of meningiomas, including the majority of transitional, fibroblastic, atypical and 

anaplastic meningiomas. More recently, recurrent oncogenic mutations have been discovered in 

SMOH and AKT1 by deep sequencing approaches in NF2 wildtype tumours including special 

histological subtypes like the secretory meningioma.
74

 Further, genome-wide analyses of NF2-

wildtype meningiomas do not only point towards different genetic meningioma entities, but also 

revealed potential novel targets for intervention. Almost 25% of the meningiomas showed partly 

recurrent mutations in TNF receptor-associated factor (TRAF) 7, a protein involved in signalling 

processes of differentiation and apoptosis. SMOH mutations, which activate Hedgehog signalling, 

were identified in ~5% of NF2 wildtype meningiomas. These tumours, which were mainly of WHO 
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grade I, usually showed stable genomes, whereas atypical or anaplastic meningiomas often carried 

NF2 mutations, unstable genomes and demonstrated a predominantly hemispheric localization.
75,76

 

 

 

Outlook 

 

Tremendous progress has been made in the molecular classification of primary brain tumours. In the 

case of MGMT promoter methylation in glioblastoma in the elderly and 1p/19q co-deletions in 

anaplastic oligodendroglial tumours, molecular markers determine clinical decision making as of 

2012, based on few practice-changing academic trials.
13,14,24,25

 Depending on the outcome of ongoing 

phase II and III trials of novel targeted agents in newly diagnosed and recurrent glioblastoma, 

biomarkers to predict resistance or sensitivity to angiogenesis inhibition will move into focus, both in 

tumour tissue and in peripheral blood. In medulloblastoma, molecular subclassification is now used 

for selecting targeted agents depending on the dominant oncogenic pathway. Meanwhile, high-

throughput analyses at genetic, epigenetic and expression levels have demonstrated their value in 

classifying brain tumours and prognosticating outcome. These techniques may soon become more 

widely available, easier to standardise and less subject to bias, than single marker assessments, e.g., 

current ways of determining the MGMT status, and may soon become more cost-effective, too. 

Accordingly, we predict that the current histology-dominated diagnostic assessment of brain tumours 

will be increasingly supplemented by molecular diagnostic tests, which eventually may be gradually 

replaced by high throughput profiling techniques, including array-based approaches and next-

generation sequencing. This progress in molecular diagnostics will help to improve the precision of 

histological diagnoses, to select appropriate therapeutic measures, and to enrich patient populations for 

clinical trials.  

Yet, it is also important to realize that array-based approaches will not completely supplant targeted 

analyses. There are still instances where diagnoses are being rendered on miniscule portions of tissue 

obtained by biopsy or from the very edge of infiltrating gliomas where the nature of the lesion, tumour 

or not, is uncertain, and high-throughput techniques might not be as helpful or simply cannot be 
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applied due to limited tissue availability. 

In addition to the complex interdisciplinary dialogue required for optimized clinical decision making, 

the technical challenges associated with assessing molecular markers in brain tumour patients further 

support the call for centralized care of patients with relatively rare tumours, for whom an increasing 

repertoire of novel treatment options is currently being made available. 
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Figure legends 

 

Figure 1. Biomarker-based approach to anaplastic glioma  

Red: new standard practice, blue: to be confirmed: italics: alternative options. 

 

Figure 2. Biomarker-based approach to glioblastoma 

Red: new standard practice, italics: alternative options. 

 



Table 1. Molecular markers in gliomas: biological role, assessment, and clinical value. 

 

 IDH1/2 mutation 1p/19q co-deletion MGMT promoter 

methylation 

EGFRvIII 

rearrangement 

BRAF 

duplication / 

fusion 

BRAF activating 

point mutation 

       

Biological consequence Increased levels of 2-

hydroxyglutarate, link to 

G-CIMP phenotype 

Unclear, candidate 

genes CIC and 

FUBP1 under 

investigation 

Reduced DNA 

repair, association 

with G-CIMP 

phenotype in 

IDH1/2-mutant 

tumors 

Ligand-independent 

pathway activation 

MAPK pathway 

activation 

MAPK pathway 

activation 

       

Methods of assessment Immunohistochemistry 

for IDH1-R132H, 

(pyro)sequencing 

FISH, microsatellite 

analysis for loss of 

heterozygosity 

MSP, MS or 

bisulfite 

(pyro)sequencing 

RT-PCR, 

immunohistochemistry, 

MLPA 

FISH, RT-PCR Immunohistochemistry 

for BRAF-V600E, 

(pyro)sequencing 

       

Incidence       

Pilocytic astrocytoma 0% 0% <10% 0% 50-70% 10%  

Pleomorphic 

xanthoastrocytoma 

0% 0% 10-20% 0% rare 60-70% 

Diffuse astrocytoma 
70-80% 15% 40-50% 0% rare rare 

Oligodendroglioma/ 

oligoastrocytoma 

70-80% 30-60% 60-80% 0% rare rare 

Anaplastic astrocytoma 
50-70% 15% 50% 0% rare rare 

Anaplastic 

oligodendroglioma/ 

oligoastrocytoma 

50-80% 50-80% 70% 0% rare rare 

Glioblastoma 
5-10% <5% 35% 25-30% rare 3-5% 

       



Diagnostic role Important, see above, 

differential diagnosis 

between diffuse glioma 

and gliosis 

Strong association 

with oligodendroglial 

morphology, 

differential diagnosis 

of brain tumors with 

clear cells 

None Strong association with 

glioblastoma 

Yes, see above Yes, see above 

Prognostic role Positive across 

histologies 

Favorable for 

oligodendroglial 

tumors treated with 

RT or alkylating agent 

chemotherapy or both 

Prognostic for 

anaplastic glioma 

patients (? with IDH 

mutations) treated 

with RT or 

alkylating agents 

Negative prognostic 

factor, reduced long-

term survival 

unclear unclear 

Predictive role Absence of mutation 

suggests predictive role 

for MGMT promoter 

methylation 

Patients with 1p/19-

codeleted (anaplastic) 

oligodendrogliomas 

should not be treated 

with RT alone, but 

alkylating agents ± RT 

Predictive for 

glioblastoma (? 

without IDH 

mutations) treated 

with alkylating 

agents, should be 

tested in elderly 

glioblastoma 

patients 

Possible biomarker for 

vaccination 

Possible 

biomarker for 

targeted therapy 

Possible biomarker for 

targeted therapy 

       

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Outcome by 1p/19q codeletion status in the anaplastic oligodendroglioma trials.
13,14

 
 

 EORTC 26951 
(n=368) 

  RTOG 9402 
(n=291) 

  

       

 RT RT→PCV  RT PCV→RT  
All patients       
Progression-free survival 

(years) 
1.1 2.0 HR=0.66 

95% CI 0.52-0.83 
no data in 2013 

update 
no data in 2013 

update 
 

Overall survival (years) 2.5 3.5 HR=0.75 
95% CI 0.6-0.95 

4.7 4.6 HR=0.79 
95% CI 0.6-1.04 

       
Patients with 1p/19q-

codeleted tumors 
      

Progression-free survival 

(years) 
4.2 13.1 HR=0.42 

95% CI 0.24-0.74 
2.9 8.4 HR=0.47 

95% CI 0.3-0.72 
Overall survival (years) 9.3 Not reached HR=0.56 

95% CI 0.31-1.03 
7.3 14.7 HR=0.59 

95% CI 0.37-0.95 

       
Patients with 1p/19q-non-

codeleted tumors 
      

Progression-free survival 

(years) 
0.7 1.2 0.73 

95% CI 0.56-0.97 
1 1.2 HR=0.81 

95% CI 56-116 
Overall survival (years) 1.8 2.1 HR=0.83 

95% CI 0.62-1.1 
2.7 2.6 HR=0.85 

95% CI 0.58-1.23 
 

 

 

 

 

 

 



Table 3. Outcome by MGMT promoter methylation status in the elderly glioblastoma (anaplastic astrocytoma) trials.
24,25

 
 

 NOA-08
1   Nordic trial    

        

 RT 30 x 2 Gy 
(n=178) 

TMZ 7/7 
(n=195) 

 RT 30 x 2 Gy 
(n=100) 

RT 10 x 3.4 Gy 
(n=123) 

TMZ 5/28 
(n=119) 

 

All patients        
Progression-free survival 

(months) 
4.7 3.3 HR=1.15 

95% CI 0.92-1.43 

p non-

inferiority=0.043 

 

 not reported   

Overall survival (months) 9.6 8.6 HR=1.09 
95% CI 0.84-1.42 

p non-

inferiority=0.033 

6 7.5 8.3 3
TMZ: 

HR=0.70 

95% CI 0.52-0.93 

p=0.01 
3
Hypofractionated RT: 

HR=0.85 

95% CI 0.64-1.12 

p=0.24 

        
Patients with MGMT 

promoter-methylated tumours 
       

Progression-free survival 

(months) 
4.6 8.4 HR=0.53 

95% CI 0.33–0.86 

p=0.01 

 not reported   

Overall survival (months) 9.6 not reached HR=0.69 

95% CI 0.35–1.16 

p=0.14 

 8.2
2
 9.7 HR=0.64 

95% CI 0.39-1.04 

        
Patients with MGMT 

promoter-unmethylated 

tumours 

       



Progression-free survival 

(months) 
4.6 3.3 HR=1.95 

95% CI 1.41–2.69 

p=0.01 

 not reported   

Overall survival (months) 10.4 7 HR=1.34 

95% CI 0.92–1.95 

p= 0.13 

 7
1 6.8 HR=1.16 

95% CI 0.78-1.72 

 

1
comprised 11% anaplastic astrocytoma 

2
both RT groups pooled 

3
comparison to standard RT (30 x 2 Gy) 

4
TMZ relative to all patients receiving RT (with or without MGMT promoter methylation) which were pooled because they had a similar outcome in NOA-08 
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