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ABSTRACT 

Molecular objects occur frequently in CAD and engineering 
applications. At higher levels of abstraction they are 
treated as atomic unit,s of data; at lower levels they are 
defined in terms of a set of tuples possibly from different 
relations. System R’s complex objects are examples of 
molecular objects. 

In this paper, we present a framework for studying a gen- 
eralized concept of molecular objects. We show that 
abstract data types unify this framework, which itself 
encompasses some recent data modeling contributions by 
researchers at IBM San Jose, Berkeley, Boeing, and Florida. 
A programming language/data structure paradigm is seen 
as a way of developing and testing the power of logical data 
models. A primary consequence of this paradigm is that 
future DBMSs must handle at least four distinct types of 
molecular objects: disjoint/non-disjoint and recursive/non- 
recursive. No existing DBMS presently supports all these 
types. 

1. Introduction 

The relationship of abstract data types to databases is 
becoming progressively more important. Some time ago, 
abstract data types were identified as an important connec- 
tion between programming languages and databases 
([Sch77], [Web78], [Row79], [Was79]). More recently, they 
have been instrumental in supporting CAD, engineering, 
and statistical database applications ([Sto83], [Lor83a-b], 
(Joh83], [S&3], [Bro83a], [Has82]). 

Presently there are two distinct approaches to the 

integration of abstract data types to logical data models. 
One approach introduces sophisticat,ed data types to aug- 
ment the standard data types (e.g., integer, string, real, 
et.c.) that underly relations. The works of Stonebraker et 

al. and Su et al. are instances of this approach. 

Stonebraker et al. ([Sto83]) have advanced the idea 
that user-defined types are fundamental to the support of 
non-traditional database applications, These types and their 
associated operators are called ‘abstract data types’. Exam- 
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ples include linear and multidimensional arrays, polygons, 
and complex numbers. ADT-INGRES is an implementation 
of this proposal ([Ong84]). 

Su et al. ([Su83], [Bro83a]) have proposed that a set of 
system-defined types (e.g., set, vector, matrix, time series) 
are required for DBMS support of statistical database appli- 
cations. In addition, they proposed ways in which these 
types could be used to define new data types. A relation, 
for example, could be defined as a data type and a column 
of a relation could be a system-defined type or a relation. 
The resulting data types and their attendant operators are 
called ‘complex data types’. 

The second distinct approach does not deal with 
columns of a relation, but rather treats collections of 
heterogeneous tuples as objects. These objects, which we 
will call molecular objecta, have the property that they are 
given different representations at different levels of abstrac- 
tion. At higher levels, a molecular object is represented by 
a single tuple. At lower levels, it is represented by a set of 
interrelated tuples from different relations. Molecular 
objects are instances of object types, which are defined in 
terms of more primit,ive types and their interrelationships. 
Thus, molecular objects are analogous to abstract data 
types. Lorie et al. ([Lor83a-b], [Has82]) and Johnson et al. 
([Joh83]) have independently proposed restricted notions of 
molecular objects. Lorie’s objects are called ‘complex 
objects’; Johnson’s are called ‘structures’. 

As an example of molecular objects, consider a catalog 
of data structure diagrams. On each page of the catalog is 
a data structure diagram of some database that is being 

designed. Each diagram is identified by a catalog number 
and is explained by a catalog description. The contents of 
this catalog are to be stored in a computerized database. 
Figure 1 shows a page from this catalog. 

CATALOG#: C53 riiu,:N,( [,,,,,I 

CATALOG- 
DESCRIPTION: 

Grade Database 

CG 

Figure 1. An Entry in a Catalog of Data Structure Diagrams 

Singapore, August, 1994 

112 



Suppose the contents of this database are described 
using the notation of the ER model ([Che76]). An E-R 
diagram of a data structure diagram is shown in Figure 2a. 
A data structure diagram is composed of two types of con- 
structs: boxes and arrows. Each box and arrow has a name. 
An arrow connects one box (the owner record type) to one 
or more different boxes (the member record types). l These 
connections are represented by the PARENT-OF and 
CHILD-OF relationships. 

The underlying tables of Figure 2a and the seven 
tuples that define the data structure diagram of Figure 1 
are shown in Figure 2b. 2 It is this set of seven tuples that 
represents the molecular data structure diagram 
object/entity ‘C53’. Because the ‘C53’ entity and its rela- 
tionship to these seven tuples are not represented, the E-R 
diagram of Figure 2 is incomplete 

weak 
ent 

(a) 

(b) 

Using standard modeling techniques, two possible ways 
of completing this diagram are shown in Figure 3. Both 
utilize the Smith and Smith notion of aggregation 

([Smi77a-b]), h h w ic we will call atomic aggregation. Atomic 
aggregation is denoted in ER diagrams by drawing a box 
around the relationship to be aggregated. Both PARENT- 
OF and CHILD-OF relationships are aggregated in Figures 
3a-b. 

Figures 3a-b show the addition of data structure 
diagram (DSD) entities whose attributes are catalog number 
(CAT#) and catalog description (CAT-DES). Figure 3a 
relates DSD entities to their underlying BOX, ARROW, 
PARENT-OF, and CHILD-OF entities by separate relation- 
ships. Note that BOX, ARROW, PARENT-OF, and 
CHILD-OF entities are shown as lvcck cnfifies as they are 

existent dependent on DSD entities. That is, if a DSD 
entity is deleted, so are its dependent entities. Figure 3b 

BOX(BNAME) ARROW(s, PARENT-BNAME) CHILD-OF(ANAME. BNAE) 

(STUDENT) 

[%ir:E 1 

(SG, STUDENT) 
(CG, COURSE ) 

(SG, GRADE) 
(CG, GRADE) 

Figure 2. An E-R Diagram of a Data Structure Diagram and its Underlying Tables 

(a) 

weak 
a entity 

(b) 

Figure 3. Approximate Models of a Molecular Object 

1 The restriction that owner record types cannot also be member and relationship set of an E-R diagram. In Figure 2, the 

record types of the same set would be expressed by an integrity PARENT-OF(BNAME, ANAME) table has been merged with the 

constraint. ARROW(ANAME) table. This is possible because each arrow 

2 Usually there is a distinct table that underlies each entity set 
starts at precisely one box, so the entries of the PARENT-OF 
table are in 1:l correspondence with entries in the ARROW table. 
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uses the Smith and Smith notion of generalization 
([Smi77a]) t o e d fi ne an entity set DSD-PART which is the 
union of the BOX, ARROW, PARENT-OF, and CHILD-OF 
entity sets. DSD-PARTS are related to DSD entities by the 
COMP-OF relationship. 

Both solutions are unsatisfactory for two reasons. 
First, existing modeling techniques and their notations fail 
to clearly indicate the molecular nature of DSD entities and 
the level of abstraction that separates DSD entities from 
their components. Database users are aware of this distinc- 
tion, but it is not evident from the data model itself. This 
problem is not isolated to just the E-R model. Even models 
that are thought of as being semantically rich do not pro- 
vide the necessary concepts for modeling molecular objects 
satisfactorily ([Cod79], [Shi80], [Che76]). In Section 3, we 
will return to this example and show how it can be modeled 
correctly. 

Second, existing techniques fail to capture the opera- 

tional semantics that are normally associated with molecu- 
lar objects. The retrieval of a molecular object, for exam- 
ple, results in the output of a database of tuples (i.e., multi- 
ple relations and their occurrences) that comprise the object 
(see (Lor83b]). Ag ain, database users are aware of such 
semantics, but there is little or no DML support for such 
operations. 

The interest in molecular objects stems from their 
semantics and utility. There is a growing need to provide 
users with data modeling capabilities and run-time support 
for describing, manipulating, and retrieving molecular 
objects as primitives. It is certainly the case that molecular 
objects can be stored in existing DBMSs. However, the 
semantics and operations associated with these objects are 
completely specified by users and are buried in their appli- 
cation programs. We believe that support for molecular 
objects should be an integral part of future DBMSs. 

As a first step toward this goal, we present in this 
paper data modeling techniques for molecular objects. A 
type of aggregation, called molecular aggregation, is intro- 
duced. Instrumental to the development of our model is 
the programming language/data structure paradigm. This 
paradigm asserts that data structures (trees, lists, etc.) can 
be viewed as molecular objects, and the power of a data 
model can be tested in terms of its ability to accurately 
represent the relationships among the nodes of a data struc- 
ture. The paradigm enables us to identify four distinct 

types of molecular objects: disjoint/nondisjoint and 
recursive/nonrecursive. No existing DBMS that we are 
aware presently supports all of these types. 

We believe our work is a prerequisite to the study of 

operational semantics and DBMS run-time support for 

molecular objects. Although we do not examine run-time 
support in this paper, important contributions to this sub- 
ject in the context of disjoint molecules have already been 
made (]Has82], ILor83bj). 

We begin our discussions with an explanation of the 
programming language/data structure paradigm and its 

relationship to abstract data types and molecular objects. 
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2. The Programming Language/Data Structure 
Paradigm 

Programming languages and databases are coming pro- 
gressively closer ([Bro83b]). Many of the data abstraction 
capabilities that are present in today’s advanced progam- 
ming languages are only now appearing in logical data 
models. Although a unification of databases and program- 
ming languages is a long way off, clues to a unification can 
be found in common examples of abstract data types, 
namely data structures. Data structures are main-memory 
databases where nodes of a data structure can be viewed as 
tuples in one or more (main-memory) relations. Thus, data 
structures can be modeled as molecular objects. This con- 
nection proves to be quite useful in two ways. One is iden- 
tifying different types of molecular objects. Another is test- 

ing the power of logical data models. We will briefly con- 
sider each in turn. 

Molecules are disjoint if the underlying sets of tuples 
that define them are disjoint. The molecular objects that 
are supported by System R (i.e., complex objects) are dis- 
joint molecules. From the programming language/data 
structure paradigm, there are implementations of abstract 
data types (i.e., molecules) that are not disjoint. Figure 4 
shows an example of two nondisjoint molecules. It shows 
two lists that have two nodes in common. Each list is a 
molecule; each node can be represented as a single tuple in 
some relation. Johnson et al. ([Joh83]) present other exam- 

ples of non-disjoint molecules. s 

List-a Molecule 

List-b Molecule 
1 

Figure 4. Two Non-disjoint Molecules 

Molecules are recuraiue if they are composed of other 

molecules of the same type. A linked list, for example, can 
be defined recursively as a node followed by another (possi- 
bly empty) linked list. As another example, a circuit is a 
graph which can be defined recursively as interconnections 

between more primitive circuits (graphs). Most molecules, 
however, are not recursive. The DSD molecule of Figures 2 

and 3 is an example. 

It is our belief that disjoint/nondisjoint and 
recursive/nonrecursive molecules occur naturally and are 
quite common. We conjecture that as more CAD, statisti- 

cal, and other special-purpose applications are supported by 
database systems, restricting the type of molecules that are 
supported (as is done in System R) will not be sufficient to 
handle the needs of many applications. A general facility 

s Our notion of disjointness deals with molecules of a single 
type. The atoms of molecules of diflerent types may overlap, thus 

giving rise to another notion of disjointness. We examine this 
topic in more detail in Section 3.2 
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for handling molecular objects is needed. In the following 
section, we will discuss at length the modeling of these 
different types. 

A second benefit of the programming language/data 
structure paradigm is a way of testing the power (or 
demonstrating the limit,ations) of a data model. This can 
be done by modeling fundamental data structures as found 
in standard texts ((Knu73], [Aho74], [Hor78]). As we did in 
Figure 4, it is easy to devise a data structure with certain 
properties that will reveal the limitations of existing data 
models or data modeling concepts. The advantage of this 
approach is that it provides application independent tests; 
one does not have to be intimately familiar with a peculiar 
database application in order to comprehend the example. 
We will use this t,echnique several times in this paper to 
illustrate and develop the modeling concepts that are pro- 
posed later. 

In the next sertion, we present a general framework 
for studying molecular objects, In Section 4 we give addi- 
tional examples of molecular objects that are taken from 
non-traditional database applications. 

3. A Framework for Studying Molecular Aggrega- 

tions 

Most of the work relating abstract data types and 
data models has involved the Relational model. It is well- 
known that the Relational model has semantic limitations. 
Therefore, attempts have been made to expand it to include 
different types of aggregation ([Smi77a-b], [Cod79], [Dat82], 
[Has82), [Lor83a-b], [Sto83]). 

Afomic aggregafion ((Smi77a-b]) is an abstraction of a 
single relationship into a higher level entity. Molecular 

aggregation is an ext.ension of this concept; it is an abstrac- 
tion of a aef of entit.ies and their relationships into a higher 
level entity. 

We believe that the concept of molecular aggregation 
is independent of the model or notation that is used to 
express it. However, for the purposes of exposition, we have 
found it convenient to use the diagrammatic notations of 
the E-R model ((Che78]). An advantage of using E-R 
diagrams is that they can be reduced to tables which, in 
turn, can be identified with relations. ’ 

In the following sections, models of 
disjoint/noudisjoint and recursive/non-recursive molecules 
are presented. These models are progressively developed 
and are illustrated by a set of examples. 

3.1 Modeling Non-Recursive, Disjoint Molecular 

Objects 

Levels of abstraction allow molecular objects to have 

different representations. At higher levels, a molecular 
object is au atomic entity; at lower levels, the atoms that 

’ There is no guarentee that the tables produced will be in a cer- 
tain normal form. Techniques of normalization may need to be 
applied to reduce these tab& to the desired state (e.g., BCNF). 
We are not proposing that the ER model is a substitute for the 
relational model; we are simply using its diagrammatic conven- 
tions. 
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compose the molecule are seen. At any particular level, 
existing modeling techniques should be adequate to express 
the entities and relationships that may exist. It is the map- 
ping or correspondence of entities, attributes, and relation- 
ships at one level of abstraction to those of another that 
needs to be introduced. This gives rise to the modeling con- 
struct correspondence. Here is an example. 

Recall the data structure diagram catalog. At a higher 
level of abstraction, we are dealing with ‘catalog’ entities or 
data structure diagram (DSD) entities. DSD entities are 
identified by their catalog number (CAT#) and are 
explained by their description (CAT-DES). The E-R 
diagram which represent,s the database at this level of 
abstraction is shown in Figure 5a. 

At a lower level, the implementation details of data 
structure diagrams are captured by the E-R diagram of Fig- 
ure 5b (Figure 2a). The tuples (atoms) that define an 
occurrence of this diagram are combined by disjoint molecu- 
lar aggregation to form a DSD entity. Disjoint molecular 
aggregation is shown by a box drawn around the E-R 
diagram which defines the relationships among atoms of the 
molecule. 6 The dashed line connecting the DSD entity box 
and the molecular box denotes that each molecular entity 
corresponds to precisely one DSD entity, and vice versa. 

A general scenario for non-recursive, disjoint molecules 
is shown in Figure 6a. The tables that underly this 
diagram are formed by separately reducing the E-R 
diagrams at both levels to tables. This can be done using 
standard techniques ([Che76]). At the upper level, there 
will be a MOLECULE table with primary key h4’ and 
descriptive attributes M, . . . M, . At the lower level, there 
are tables T,..s T,. Table T, has primary key K' and 
descriptive attributes A,,1 . . . . The correspondence between 
levels is made by specifying to which molecular entity each 

tuple of tables T, * . . T, belongs. This is accomplished by 
augmenting the primary key of a molecule to its underlying 
tuples. Thus, the primary key of table T, becomes 
(M ’ , K ’ ). All non-recursive, disjoint molecular aggrega- 

tions can be reduced to tables in this way (see Fig. 6b). s 

In the case of Figures Sa-b, this procedure yields table 
DSD(CAT#, CAT-DES) at the upper l”ykA;l 

BOX(CAT#, BNAMF), ARROW(CAT#. 

PARENT-BNAME), and CHILD-OF(CAT#, ANAME: 

BNAME) at th e I ower level. (Primary keys are underlined). 
These tables and their tuples are shown in Figure 5c. 

Note that there may be several data structure 
diagrams that. have a box labeled ‘student’; the names given 
to box and arrow ent,ities are distinct within the confines of 
a particular data structure diagram, but need not be dis- 
tinct throughout the catalog. This is the reason why the 
primary key of the upper-level entity is inherited by each 

’ Note the notational ditlerence between atomic aggregation and 
molecular aggregation. An atomic aggregation is shown as a box 
drawn around a single ER relationship. A molecular aggregation 
is shown as a box drawn around an E-R diagram. 

’ The inheritance of M’ in underlying tables is similar in func- 
tion to System R’s COMPONENT-OF attribute of non-root 
tuples of complex objects. 
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(a) 
upper 
level 

1:l correspondence between 

MOLECULE&, Ml, . . . . Mm) I I MOLECULE 

T#f*, K1, All, . . . I 
T2(M*., A21, . . . ) 

. . . 

T,(M*. K", An1, . . . ) 

k1les DSD(u, CAT-DES) BDX(CAT#, ENAME) 

(C53, Grade Database) (C53, STUDENT) 
(C53, GRADE ) 
(C53, COURSE ) 

kRROW'(CAT#, ANAME, PARENT-BNAME) CHILD-OF(CAT#, ANAME, BNAME) 

(C53, SG, STUDENT) (C53, SG, GRADE) 
(C53, CG. CQURSE ) (C53, CG, GRADE) (a) (b) 

Figure 5. A Non-recursive, Disjoint Entity Figure 0. A Model of Non-recursive, Disjoint Molecules 

(a) 
upper 
level 

(b) 
lower 
level 

(cl 
tables 
I 

-weak 
entity 

SDSD#: Sl 

SDSD-NAME: 

Student 
Subschema 

BOX-CT(CAT#, SDSDX, BNAME) ARROW-CT(CAT#, SDSD#, ANAME) 

(C53, Sl, STUDENT) 
(C53. Sl, GRADE ) 
(C53, S2, COURSE ) 
(C53, S2. GRADE ) 

(C53. Sl, SG) 
(C53, 52, CG) 

CHILD-OF-CT(CAT#, SDSD#, ANAME, BNAME) SDSD(CAT#, SDSD#, SDSD-NAME) 

(C53, Sl, SG, GRADE) 
(C53, 52, CG, GRADE) 

(C53, Sl, Student Subschema) 
(~53, S2, Course Subschema ) 

SDSD#: S2 

SDSD-NAME: 

Course 
Subschema 

plus tables of Figure 5c 

Figure 8. A Non-Recursive, Non-Disjoint Entity Figure 7. Subschemas of Figure 1 
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table at the lower level. In contrast, System R generates 
surrogatea for ‘entit,ics’ that are unique across the entire 
database ([Cod79]). Th is approach avoids the problem of 
key inheritance but requires an internal-level solution to the 
problem of relating a molecule tuple to its underlying atom 
tuples ([Lort)Sb]). 

3.2 Modeling Non-Recursive, Non-Disjoint Molecu- 
lar Objects 

Suppose that data structure diagrams of subschema 
for each catalog entry are also to be present in the database 
(see Fig. 7). This can be modeled at a higher level of 
abstraction by data structure diagram (DSD) entities and 
their dependent subschema data structure diagram (sDSD) 
entities. The HAS relationship relates both entity sets (see 
Fig. 8a). Note that SDSD entities are weak entities because 
they are existence dependent on DSD entities. 

Because different subschemas may share record and set 
types, the sets of tuples that underly two SDSD molecules 
need not be disjoint. In Figure 7, the SDSD molecules for 
subschemas Sl and S2 will share the tuple that describes 

the GRADE record type. We denote non-disjoint molecular 
aggregation by circling the ER diagram whose instances 
define a molecule. Figure 8a-b shows both disjoint and 
nondisjoint aggregations and their correspondences. 

A general scenario of non-recursive, non-disjoint 
molecules is shown in Figure 9a. The tables that underly 
this diagram are formed by separately reducing the E-R 
diagrams to tables at both levels. As before, there will be a 
MOLECULE table and the underlying tables T1 . . . Tn. 
The correspondence betbeen levels is again made by speci- 
fying to which molecular entity each tuple of tables 
T, . . . T” belongs. This is accomplished by creating for 
each table T, a component table or correspondence table 
CT, which pairs the primary keys of Component tuples (K’) 
with the primary keys of their molecular entities (M’ ). 
(M*, K’ ) is the primary key of CT, tupks. All non- 

recursive, non-disjoint molecular aggregations can be 

reduced to tables in this way (see Fig. 9b). 

MDLECLlLE(~, MI> . ..v Mm) 

SDSD-NAME) at the upper level and BOX(CAT#, 
BNAME), ARRO\V(CAT#, ANAME, PARENT-NAME), 
CHILD-OF(GAT#. ANAME, BNAME), BOX-CT(CAT#, 
SDSD#, BNAME), ARROW-CT(CAT#, SDSD#, 
ANAME), and CHILD-OF-CT(CAT#, SDSD#, ANAME, 
BNAME) at the lower level. These tables and their tuples 
are shown in Figure 8c. 

It is worth not,ing that the notion of disjointness on 
which our discussions have centered deals with molecules 
that are of a single type. Disjointness can also be defined 
for molecules of different types. Figure 8 provides an exam- 
ple. A DSD molecule can share atoms with an SDSD 
molecule. The disjointwss or non-disjointness of molecules 
of different types are possibilities that follow naturally from 
our model and do not require special attention. We will 
give additional examples in Section 4. 

3.3 Modeling Recursive, Disjoint Molecular Objects 

A binary tree can be defined as being either empty, or 
a root node with left and right binary (sub)trees. A recur- 
sive disjoint molecular diagram defining binary trees is 
shown in Figure 10a. At a higher level there are only tree 
entities which have tree number identifiers (T#) and tree 
names (TNAME). At t,he lower level, there are node enti- 
ties, which have node number identifiers (N#) and contents 
(CONTENTS). Th ere are also (sub)tree entities, described 
as in the higher level. The left and right subtree relation- 
ships are modeled by LEFT and RIGHT. 

T& ' AI1. . . . ) CT+M*, K1) 

T&c, AZ13 . . . ) CT&M*, K*) (b) NODE-TREE(Tt or Nt CONTENTS, LEFT-T), RIGHT-Tir, TKAME) --I 

. . . 
Figure 10. A Model of Binary Trees 

Tn(c, Anl, . . . ) CT,,(M*, K") 

Once again we see that for each molecular entity (a 

(a) (0) NODE tuple and its associated left and right subTREE 

Figure 9. hlodeling Non-Recursive, Non-Disjoint Molecules tuples) there is a corresponding TREE tuple at the upper 
level. The E-R diagram also shows that there is a 

correspondence bet neen TREE ident,ifiers and NODE 

in thr case of Figures 8a-b, this procedure yields tables identifiers. This has a simple interpretation. The primary 

DsD(CAT~, CAT-DES) and SDSD(CAT#. SDSD#, key of a NODE or TREE can be understood as a pointer: a 
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pointer is used to identify a single NODE and it is also used 
to identify the TREE rooted at that NODE. A distinction 
is made according to the level of abstraction at which the 
pointer reference is made. As this example shows, when 
objects exist at two or more levels of abstraction a shift in 
their semantics is possible in going from one level of 
abstraction to the next. We will see that such shifts are 
common. 

A general scenario for recursive, disjoint molecules is 
shown in Figure 11 a. The MOLECULE and Ti . . . T, 
tables that underly this diagram are formed exactly as if 
the molecules were non-recursive with one exception. The 
upper-level MOLECULE table is unnecessary since a copy 
of it also exists at the lower level. To account for the 
correspondence, the primary key of the upper-level molecule 
(now denoted M *’ ) is inherited as an ordinary attribute of 
each table at the lower level and is not subsumed as a key 
prefix. Thus, table T, has primary key K' and has descrip- 
tive attributes M *’ and A,,, * . . . The MOLECULE table 
has primary key M’ and has descriptive attributes M ** 
and M,.* . M,,, (see Fig. 1 lb). 

MOLECULE($, Ml, . . . . Mm, M**) 

m, T&, AlI. . . . . M**) 

1 w 1 T#, Anl, ..,, M**) 

(a) (b) 

Figure 11. Modeling Recursive, Disjoint Molecules 

Two tables result in applying this procedure to Figure 
10a: TREE(T#, TNAME, PARENT-T#) and NODE(NA, 
CONTENTSTLEFT-T#, RIGHT-T#, PARENT-T#). ’ 
Because of the 1:l correspondence between node numbers 
with tree numbers, data values that are assigned to the 
PARENT-T# and N# attributes of the NODE table are 
identical, and hence can be combined into a single attribute. 
That is, the PARENT-T# of a NODE is the T# of the 
TREE which has that NODE as its root. Moreover, since 

’ A table underlies each entity set and relationship set. In Fig- 
ure 10a there would be tables for the NODE and TREE entity 
sets and tables tor the LEFT and RIGHT relationship sets. Each 
entry in the LEFT (and RIGHT) table is in 1:l correspondence 
with NODE table entries (because each NODE entry has precisely 
one LEFT and one RIGHT aubtree). For this reason, the LEFT, 
RIGHT, and NODE tables can be combined - 88 done above - into 
a single ‘NODE’ table. 
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NODE entities and TREE entities are in I:1 co~espon- 
dence, the NODE and TREE tables can be combined into a 
single table NODE-TREE(T# or NY, CONTENTS, 
LEFT-T#, RIGHT-T#, TNAME, PARENT-T#). The two 
names given to the table’s primary key reflect the possible 
interpretations of its values. 

From our experience it appears that recursive E-R 
diagrams commonly have more than a single upper-level 

entity - molecular aggregation correspondence. In the 
binary tree example, the additional correspondence is that 
between node numbers and tree numbers. In every example 
that we are aware, additional correspondences introduce 
relationships which cause the molecular primary key M *' to 
be redundant, and hence optional. 

The presence of the PARENT-T# attribute in table 
NODE-TREE is redundant. Given any subtree, its parent 
tree is associated with one NODETREE tuple. In the 
parent tuple, the given subtree is referenced as either the 
LEFT-T# or RIGHT-T#. Thus, if PARENT-T# were 
stripped from NODE-TREE, its value could be inferred. 

It is worth noting that when PARENT-T# is 
removed, the table that results (Fig. IOb) is a record layout 
that is commonly used in programs to manipulate binary 
trees. This is evidence that it is possible to derive the intui- 
tive record layouts of data structures (i.e., schemes of inter- 
nal databases) using molecular aggregation modeling tech- 

niques. We will see another example of this in the next sec- 

tion. 

3.4 Modeling Recursive, Non-disjoint Molecular 
Objects 

Earlier we gave the example of two list molecules shar- 
ing the same nodes. Figure 12a shows how this can be 
modeled. It is based on a recursive definition of a list: a list 
is either empty or it is a node followed by another (sub)list. 
There can be any number of nodes that immediately 
preceed a (sub)list. Once again, NODE entities (and their 
primary keys) are in 1:l correspondence with LIST entities 
(and their primary keys). 

A general scenario for recursive, non-disjoint molecules 
is shown in Figure 13. The procedure for reducing such 
diagrams to tables is identical to that of reducing non- 
recursive, non-disjoint molecules with the exception that the 
upper-level MOLECULE table is not represented twice. 
The primary key of the upper-level molecule is denoted by 
MU’. Note that the MOLECULE-CT table pairs the pri- 
mary key M” of a parent molecule with the primary key 
M' of each of its submolecules. 

Applying this procedure, four tables exist at the lower 
level of the list molecule example: LIST&& LNAME), 

NODE(x, CONTENTS, FOLLOWING-L#), NODE- 
CT(PARENT-L#, N#), and LIST-CT(PARENT-L#, L$). 
Because of the 1:l correspondence between node numbers 
(and node entities) and list numbers (and list entities), the 
NODE and LIST tables can be combined into a single table 
NODE-LIST. Also, since the attributes N# and L# always 

assume the same data value in each NODE-LIST tuple, i.e., 
a pointer to a NODE is identical to the pointer to the LIST 

headed by that NODE, N# and L# can be combined into a 
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(a) 

b) NODE-LIST(LX or NX, CONTENTS, FOLLOWING-L#, LNAME) LIST-CT(PARENT-LI, LX) 

(tl. a. X3. list-a) 
(12, b, X4, list-b) 

(null, #I) 
(null, 12) 

( U6, null) 

Figure 12. Non-Disjoint Lists 

MOLECULE&, MI, . . . . Mm) MOLECULE-CT(M**, M*) 

Tl(& All. . . . ) CTI(M**, KI) 

T2(& A21. . . . ) CT2(M*, K2) 

. . . 

T,,&, An19 . . . ) CT&M**, K") 

(a) (b) 

Figure 13. Modeling Recursive, Non-Disjoint Molecules 

single attribute. For this same reason, identical data values 
are assigned to PARENT-L# and N# attributes for each 
entry of a NODE-CT table. That is, NODE-CT tuples are 
ordered pairs where both elements of a pair are equal. 
Therefore, the NODE-CT table is redundant and can be 
eliminated (see Fig. 12b). 

The LIST-CT table is redundant and .also could be 
eliminated. Entries in it are pairs of (parent-list, sub-list) 
identifiers. Just as in the binary tree example, if the LIST- 
CT table were eliminated, its contents could be inferred. 
That is, given the identifier of the parent-list, there is a 
NODE-LIST tuple which corresponds to this list. The 
FOLLOWING-L# data value of this tuple is the sub-list 
identifier. Note that the result of eliminating these redun- 
dancies is NODE-LIST: a record format that is commonly 
used in programs to manipulate linked lists. Here again we 
see molecular aggregation modeling techniques can be used 
to derive record formats of common data structures. 
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3.5 Modeling External Features of Molecular 
Objecta 

The previous sections have described general pro- 
cedures for modeling molecular objects. In this section we 
will show that the programming language/data structure 
paradigm leads us to a better understanding of how molecu- 
lar objects are addressed at higher levels of abstraction. In 
particular, we examine the idea of molecules having external 
features. At the same time, we will also find limitations in 
the E-R model. 

The approach taken in CLU ([Lis77]), ADA ([Geb83]), 
and other programming languages is that instances of 
abstract data types are featureless entities. Very often it is 
useful to give some of the internal features of an abstract 
data type external projections so that they may be refer- 
enced easily. Viewing the element [2,3] of matrix M is such 
an example. For this reason, projection operators (i.e., [i,j]) 
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a 4-input AND oate 

\ \ \ underlyina 
circuit 

implementation 

Figure 14. A Circuit Diagram 

(a) subset 
correspondence 

(cl GATE&, TYPE, PARENT-G#) 

(Gl, Z-AND, 64) 
(62, 2-AND, 64) 
(63, 2-AND, 64) 
(64, 4-AND, - ) 

WIRE&& START-G#, START-P+'. END-G#, END-P#, PARENT-G#) 

(W'. 63, P3, 64, PS, 

64 
64 I 
64) 
G4) 

ii] 
G4) 

POIIfTS(E', Pt, I/O, PARENT-G+) 

(Gl, PI, I, 64 
(Gl. P2, I, 64 
(Cl, P3, 0, Gd 
(62, Pl, I, Gl 
(G2, P2, I, r,r 
(62, P3, 0, 61 
(63, Pl, I, Gf 
(63, P2, I, Gl 

Figure 15. A M&l of a Circuit Diagram 
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are defined for that type. A similar situation applies to 
molecular entities: molecules have internal features that 
need external projections. 

Consider the circuit of Figure 14 which defines a 4- 
input, AND gate in terms of f-input AND gates, wires, and 
terminals. At the higher level there is a GATE entity with 
its dependent PIN entities. PIN entities are ezlernal 

feoturea of GATES (see Fig. 15a). At the lower level there 
are TERMINAL entities (i.e., pins that are not associated 

with lower-level gates), GATE entities and their dependent 

PIN entity features, and WIRE entities which connect pins 
and terminals to other pins and terminals. Note that 
upper-level PINS correspond to lower-level TERMINALS: 
PINS are weak entities; TEMINALS are strong entities. 
Here again is a shift in semantics between levels of abatrac- 
tion, a shift that is similar to that of node and tree 
identifiers. 

The type of correspondence that is shown in Figure 
I5a is slightly different than what we have encountered 
before. It is called subset correspondence. It means that 
every molecular entity is a GATE entity, but not all GATE 
entities are molecular entities. In the example, the 4-input 
AND gate is certainly a molecular entity, but its a-input 
AND gates are primitive and are not defined in terms of 
lower level gates. 

The underlying tables of Figures ISa-b are given in 
Figure 15~. They follow directly from the rules for reducing 
recursive, disjoint molecules in the previous section: 
GATEIG#, TYPE, PARENT-G#), POINTS(F#, PIN& 

I/O, PARENT-G#), and WIRE(W& START-G#, 
START-PIN#, END-G#, END-PIN#, PARENT-C#). 
The PARENT-G# attribute of all three tables is redundant 
and optional for the following reason. It is possible to 
determine the underlying tuplea of a GATE molecule simply 
by starting at the GATE’s terminals and by following wires. 
This is identical to the procedure for determining the nodes 
of a list: start at the head of the list and follow pointers. 
The inclusion of PARENT-G# in these tables may be 
necessary for performance reasons: it is much faster to con- 
sult a single attribute to find component gates than by fol- 
lowing wires. a 

The model of our circuit has some deficiencies. Con- 
aider the POINTS table. It is evident that external features 
of 2-input AND gates are repeated. That is, each tweinput 
AND gate (e.g., Gl - C3) has two input pins (Pl and P2) 
and an output pin (P3). Pin names and their I/O functions 
are external gate features; data on these features are dupli- 
cated in each gate instance. Clearly what is needed is the 
notion of ternplating: a template is a definition; instances of 
a 1,emplate simply refer t.o this common definition. If the 
definition is changed, so are all of its instances. The source 
of the problem in our circuit example is not due to molecu- 
lar aggregations, but rather with the E-R model itself. 

* lt is worth noting that System R handles the problem of 
finding underlying tuples of complex objects efficiently through 
the use of specisl storage structures. This essentially m&es logical 
connections, S.IC~ a.7 PARENT-G#, unnecessary from a prxticd 
viewpoint, although from a purely logical modeling viewpoint _ 
0~ that is impkmentstion independent - it may not be altogether 

satisfactory. 

Templating appears to be a dificult concept to express in 
the E-R model; it requires special notations and rules for 
reducing template diagrams to tables. Expressing such 
tables in the Relational and network models is trivial. (Sys- 
tem R, in fact, supports templating of complex objects). 

A much better design would normalize the POINTS 
table by replacing it with a POINT-TEMPLATE(TYPE, 
I’& I/O) table that lists the external features common to 
all GATE instances. The relationship between the POINTS 
table and the GATE and POINT-TEMPLATE table is 
expressible in relational algebra as a join of GATE aud 
POINT-TEMPLATE: 

POINTS = n (G#,P#.I/O.PARENT-G#) 

GATE [TYPE = TYPE ] POINT-TEMPLATE 

The contents of the POINT-TEMPLATE in our example 
would be: 

POINT-TEMPLATE (TYPE, P#c I/O) 

(2-AND, Pl, I) 
(2-AND, P2, I) 
(2-AND, P3, 0) 

(IbAND, Pl, I) 
(4-AND, P2, I) 
(I-AND, P3, I) 
(4-AND, P4, I) 
(CAND, P5, 0) 

It is clear from the above example that the ER model, 
like the Relational and other models, has its limitations. In 
this and preceeding sections, we have explained and 
developed some basic concepts of molecular aggregation; 
concepts that can be applied to any model. It is beyond the 
scope of this paper to correct problems that are peculiar to 
a particular notation, in this case templating and the E-R 
model. We will address the templating problem in future 
research. 

In the following section, examples are presented of 
nondisjoint molecular objects that occur in non-traditional 
database applications. 

4. Examples of Molecular Aggregation Taken From 
Non-Traditional Applications 

A preliminary data analysis for a fully integrated 
chemical process plant resulted in the identification of 
approximately 8000 items. The analysis spanned from the 
process design, and instrumentation and piping to the com- 
plete specification of the plant itself. Because of the nature 
of the design process, dilTerent types of data were identified: 
namely, approved data for project-wide use, preliminary 
data used by designers working on a small subportion of the 
project (which is integrated with the project-wide data aft,er 
approval), actiKe and passive catalogs, and metadata. The 
nature of this data and problems such as versioning, han- 
dling of design alternatives, handling long interactive tran- 
sactions, and the rontrol of update propagations resulted in 
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a scheme which relied on different databases that interact 
([Buc84]). A. project-wide database was defined to contain 
approved data, and workspaces were defined for exploring 
preliminary solutions and design alternatives. Setting up 
workspaces often required massive extraction of data. 
Although molecular objects (as defined in Section 3) were 
not supported by the CODASYL-based DBMS that was 
used to manage these databases, expressing data aggregates 
as molecular objects would have considerably simplified the 
extraction specification. 

Some of the ‘molecular objects’ of this database were 
pieces of equipment, isometric views of different pipelines, 
and the whole plant modeled at different levels of abstrac- 
tion. To illustrate some of the modeling and data manage- 
ment problems that were present, Figures 16, 17, and 18 are 
documents about a heat-exchanger: they respectively show 
a small portion of a process flow sheet (PFS), a piping and 
instrumentation diagram (P&ID), and a specification sheet. 
Although the specific details of a heat-exchanger are unim- 
portant to this paper, what is important is that each docu- 
ment can be viewed as a molecular object. Although every 
document appears to be self-contained (i.e., molecularly dis- 
joint), in fact they are not; the PFS and P&ID molecules 
share some of the tuples that make up the specification 
sheet molecule. This- is not unlike the schema and 
subschema molecules of Figure 8 where molecules af 
different types have underlying atoms in common. Clearly, 
data management problems arise in such cases: automati- 
cally deleting all the tuplea that belong to a particular 
molecule can have unforseeable effects in other portions of 
the design. Currently available DBMS8 cannot prevent 
inconsistencies when deleting non-disjoint molecules. 

While the previous example shows non-diajointneaa 
among molecules of different types, there are also examples 
of non-disjoint molecules that are of the same type. A 

pipeline consists of straight runs of pipes and fittings, such 
as ‘L’ and ‘T’ fittings, flanges, valves, etc. It is common to 
represent the connectivity of a pipeline as a list of these ele- 
ments, quite similar to the example of non-disjoint lists in 
Figure 4. Each pipeline is a molecular object, and since 

pipelines normally merge or branch into other pipelines, 
there is a sharing of elements (i.e., atoms). Once again, 
data management problems arise: when a branch is elim- 
inated from a pipeline its elements are dropped, and a ‘T’ 
fitting and connecting runs of pipe are replaced by a longer 
run of pipe. Because of the sharing, updates may cause 
inconsistencies. 

Examples of recursive molecules can be found in other 
non-traditional applications. Maps in geographic databases 
are examples ((Bar82J, (Bar84]). Each level of recursion is 
given a different name: blocks (the smallest surveyed region) 
are aggregated into counties, counties aggregate to states, 

states to countries, and so on. Although the regions 
represent disjoint areas, they share common boundaries. If 
the boundaries of a region are to be represented non- 
redundantly, then region-boundary molecules will need to 
be non-disjoint. 

The examples presented above are only a small sam- 
pling of cases where molecular aggregation (disjoint vs. 
non-disjoint, recursive vs. non-recursive) is commonly 
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encountered. They show that a complete framework for 
handling molecular aggregates is required if a DBMS is to 
respond adequately to the demands of non-conventional 
database applications. 

5. Conclusions 

A general framework for modeling molecular objects 
has been proposed. The framework is unified by the con- 
cept of abstract data types and was shown to relate recent 
contributions on DBMS support for CAD, engineering, and 
statistical database applications. Although the framework 
was explained in terms of the ER model, the ideas should 
be portable to all models. 

A unification of the data abstraction mechanisms of 
programming languages and data models is inevitable. It is 
our conjecture that the programming language/data atruc- 
ture paradigm will be an important factor to the 
unification, just as it was instrumental to the development 
of our model of molecular objects. The paradigm states 
that data structures are main-memory databases and logical 
data models should be able to describe them. Although 
unification is a long way off, we feel the ideas of molecular 
aggregation presented in this paper are a step forward to 
this goal. We have shown that some fundamental data 
structures can be modeled accurately using molecular aggre- 
gation and other data modeling constructs. 

Four types of molecular objects were identified in our 
model/framework: disjoint vs. non-disjoint and recursive vs. 
non-recursive. We have shown that all arise in practice yet 
no DBMS that we are aware supports all types. Since 
research on molecular objects is in its early stages, it is 
likely that additional ‘types of molecular objects will be 
discovered. Further research should concentrate on run-time 
support for molecular objects. 
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