
Molecular Objects, Abstract Data Types, and Data Models:
A Framework ’

D.S. Batoty

Department of Computer Sciencee

The University of Tezae at Austin
Austin, Tezas 78712

Alejandro P. Buchmann

IIMAS

National University of Mezico

ABSTRACT

Molecular objects occur frequently in CAD and engineering
applications. At higher levels of abstraction they are
treated as atomic unit,s of data; at lower levels they are
defined in terms of a set of tuples possibly from different
relations. System R’s complex objects are examples of
molecular objects.

In this paper, we present a framework for studying a gen-
eralized concept of molecular objects. We show that
abstract data types unify this framework, which itself
encompasses some recent data modeling contributions by
researchers at IBM San Jose, Berkeley, Boeing, and Florida.
A programming language/data structure paradigm is seen
as a way of developing and testing the power of logical data
models. A primary consequence of this paradigm is that
future DBMSs must handle at least four distinct types of
molecular objects: disjoint/non-disjoint and recursive/non-
recursive. No existing DBMS presently supports all these
types.

1. Introduction

The relationship of abstract data types to databases is
becoming progressively more important. Some time ago,
abstract data types were identified as an important connec-
tion between programming languages and databases
([Sch77], [Web78], [Row79], [Was79]). More recently, they
have been instrumental in supporting CAD, engineering,
and statistical database applications ([Sto83], [Lor83a-b],
(Joh83], [S&3], [Bro83a], [Has82]).

Presently there are two distinct approaches to the

integration of abstract data types to logical data models.
One approach introduces sophisticat,ed data types to aug-
ment the standard data types (e.g., integer, string, real,
et.c.) that underly relations. The works of Stonebraker et

al. and Su et al. are instances of this approach.

Stonebraker et al. ([Sto83]) have advanced the idea
that user-defined types are fundamental to the support of
non-traditional database applications, These types and their
associated operators are called ‘abstract data types’. Exam-

This work was supported by the National Science Foundation
under Grant MCS-8317353.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

ples include linear and multidimensional arrays, polygons,
and complex numbers. ADT-INGRES is an implementation
of this proposal ([Ong84]).

Su et al. ([Su83], [Bro83a]) have proposed that a set of
system-defined types (e.g., set, vector, matrix, time series)
are required for DBMS support of statistical database appli-
cations. In addition, they proposed ways in which these
types could be used to define new data types. A relation,
for example, could be defined as a data type and a column
of a relation could be a system-defined type or a relation.
The resulting data types and their attendant operators are
called ‘complex data types’.

The second distinct approach does not deal with
columns of a relation, but rather treats collections of
heterogeneous tuples as objects. These objects, which we
will call molecular objecta, have the property that they are
given different representations at different levels of abstrac-
tion. At higher levels, a molecular object is represented by
a single tuple. At lower levels, it is represented by a set of
interrelated tuples from different relations. Molecular
objects are instances of object types, which are defined in
terms of more primit,ive types and their interrelationships.
Thus, molecular objects are analogous to abstract data
types. Lorie et al. ([Lor83a-b], [Has82]) and Johnson et al.
([Joh83]) have independently proposed restricted notions of
molecular objects. Lorie’s objects are called ‘complex
objects’; Johnson’s are called ‘structures’.

As an example of molecular objects, consider a catalog
of data structure diagrams. On each page of the catalog is
a data structure diagram of some database that is being

designed. Each diagram is identified by a catalog number
and is explained by a catalog description. The contents of
this catalog are to be stored in a computerized database.
Figure 1 shows a page from this catalog.

CATALOG#: C53 riiu,:N,([,,,,,I

CATALOG-
DESCRIPTION:

Grade Database

CG

Figure 1. An Entry in a Catalog of Data Structure Diagrams

Singapore, August, 1994

112

Suppose the contents of this database are described
using the notation of the ER model ([Che76]). An E-R
diagram of a data structure diagram is shown in Figure 2a.
A data structure diagram is composed of two types of con-
structs: boxes and arrows. Each box and arrow has a name.
An arrow connects one box (the owner record type) to one
or more different boxes (the member record types). l These
connections are represented by the PARENT-OF and
CHILD-OF relationships.

The underlying tables of Figure 2a and the seven
tuples that define the data structure diagram of Figure 1
are shown in Figure 2b. 2 It is this set of seven tuples that
represents the molecular data structure diagram
object/entity ‘C53’. Because the ‘C53’ entity and its rela-
tionship to these seven tuples are not represented, the E-R
diagram of Figure 2 is incomplete

weak
ent

(a)

(b)

Using standard modeling techniques, two possible ways
of completing this diagram are shown in Figure 3. Both
utilize the Smith and Smith notion of aggregation

([Smi77a-b]), h h w ic we will call atomic aggregation. Atomic
aggregation is denoted in ER diagrams by drawing a box
around the relationship to be aggregated. Both PARENT-
OF and CHILD-OF relationships are aggregated in Figures
3a-b.

Figures 3a-b show the addition of data structure
diagram (DSD) entities whose attributes are catalog number
(CAT#) and catalog description (CAT-DES). Figure 3a
relates DSD entities to their underlying BOX, ARROW,
PARENT-OF, and CHILD-OF entities by separate relation-
ships. Note that BOX, ARROW, PARENT-OF, and
CHILD-OF entities are shown as lvcck cnfifies as they are

existent dependent on DSD entities. That is, if a DSD
entity is deleted, so are its dependent entities. Figure 3b

BOX(BNAME) ARROW(s, PARENT-BNAME) CHILD-OF(ANAME. BNAE)

(STUDENT)

[%ir:E 1

(SG, STUDENT)
(CG, COURSE)

(SG, GRADE)
(CG, GRADE)

Figure 2. An E-R Diagram of a Data Structure Diagram and its Underlying Tables

(a)

weak
a entity

(b)

Figure 3. Approximate Models of a Molecular Object

1 The restriction that owner record types cannot also be member and relationship set of an E-R diagram. In Figure 2, the

record types of the same set would be expressed by an integrity PARENT-OF(BNAME, ANAME) table has been merged with the

constraint. ARROW(ANAME) table. This is possible because each arrow

2 Usually there is a distinct table that underlies each entity set
starts at precisely one box, so the entries of the PARENT-OF
table are in 1:l correspondence with entries in the ARROW table.

Proceedings of the Tenth International Singapore, August, 1984

Conference on Very Large Data Bases.
173

uses the Smith and Smith notion of generalization
([Smi77a]) t o e d fi ne an entity set DSD-PART which is the
union of the BOX, ARROW, PARENT-OF, and CHILD-OF
entity sets. DSD-PARTS are related to DSD entities by the
COMP-OF relationship.

Both solutions are unsatisfactory for two reasons.
First, existing modeling techniques and their notations fail
to clearly indicate the molecular nature of DSD entities and
the level of abstraction that separates DSD entities from
their components. Database users are aware of this distinc-
tion, but it is not evident from the data model itself. This
problem is not isolated to just the E-R model. Even models
that are thought of as being semantically rich do not pro-
vide the necessary concepts for modeling molecular objects
satisfactorily ([Cod79], [Shi80], [Che76]). In Section 3, we
will return to this example and show how it can be modeled
correctly.

Second, existing techniques fail to capture the opera-

tional semantics that are normally associated with molecu-
lar objects. The retrieval of a molecular object, for exam-
ple, results in the output of a database of tuples (i.e., multi-
ple relations and their occurrences) that comprise the object
(see (Lor83b]). Ag ain, database users are aware of such
semantics, but there is little or no DML support for such
operations.

The interest in molecular objects stems from their
semantics and utility. There is a growing need to provide
users with data modeling capabilities and run-time support
for describing, manipulating, and retrieving molecular
objects as primitives. It is certainly the case that molecular
objects can be stored in existing DBMSs. However, the
semantics and operations associated with these objects are
completely specified by users and are buried in their appli-
cation programs. We believe that support for molecular
objects should be an integral part of future DBMSs.

As a first step toward this goal, we present in this
paper data modeling techniques for molecular objects. A
type of aggregation, called molecular aggregation, is intro-
duced. Instrumental to the development of our model is
the programming language/data structure paradigm. This
paradigm asserts that data structures (trees, lists, etc.) can
be viewed as molecular objects, and the power of a data
model can be tested in terms of its ability to accurately
represent the relationships among the nodes of a data struc-
ture. The paradigm enables us to identify four distinct

types of molecular objects: disjoint/nondisjoint and
recursive/nonrecursive. No existing DBMS that we are
aware presently supports all of these types.

We believe our work is a prerequisite to the study of

operational semantics and DBMS run-time support for

molecular objects. Although we do not examine run-time
support in this paper, important contributions to this sub-
ject in the context of disjoint molecules have already been
made (]Has82], ILor83bj).

We begin our discussions with an explanation of the
programming language/data structure paradigm and its

relationship to abstract data types and molecular objects.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

2. The Programming Language/Data Structure
Paradigm

Programming languages and databases are coming pro-
gressively closer ([Bro83b]). Many of the data abstraction
capabilities that are present in today’s advanced progam-
ming languages are only now appearing in logical data
models. Although a unification of databases and program-
ming languages is a long way off, clues to a unification can
be found in common examples of abstract data types,
namely data structures. Data structures are main-memory
databases where nodes of a data structure can be viewed as
tuples in one or more (main-memory) relations. Thus, data
structures can be modeled as molecular objects. This con-
nection proves to be quite useful in two ways. One is iden-
tifying different types of molecular objects. Another is test-

ing the power of logical data models. We will briefly con-
sider each in turn.

Molecules are disjoint if the underlying sets of tuples
that define them are disjoint. The molecular objects that
are supported by System R (i.e., complex objects) are dis-
joint molecules. From the programming language/data
structure paradigm, there are implementations of abstract
data types (i.e., molecules) that are not disjoint. Figure 4
shows an example of two nondisjoint molecules. It shows
two lists that have two nodes in common. Each list is a
molecule; each node can be represented as a single tuple in
some relation. Johnson et al. ([Joh83]) present other exam-

ples of non-disjoint molecules. s

List-a Molecule

List-b Molecule
1

Figure 4. Two Non-disjoint Molecules

Molecules are recuraiue if they are composed of other

molecules of the same type. A linked list, for example, can
be defined recursively as a node followed by another (possi-
bly empty) linked list. As another example, a circuit is a
graph which can be defined recursively as interconnections

between more primitive circuits (graphs). Most molecules,
however, are not recursive. The DSD molecule of Figures 2

and 3 is an example.

It is our belief that disjoint/nondisjoint and
recursive/nonrecursive molecules occur naturally and are
quite common. We conjecture that as more CAD, statisti-

cal, and other special-purpose applications are supported by
database systems, restricting the type of molecules that are
supported (as is done in System R) will not be sufficient to
handle the needs of many applications. A general facility

s Our notion of disjointness deals with molecules of a single
type. The atoms of molecules of diflerent types may overlap, thus

giving rise to another notion of disjointness. We examine this
topic in more detail in Section 3.2

Singapore, August, 1984

174

for handling molecular objects is needed. In the following
section, we will discuss at length the modeling of these
different types.

A second benefit of the programming language/data
structure paradigm is a way of testing the power (or
demonstrating the limit,ations) of a data model. This can
be done by modeling fundamental data structures as found
in standard texts ((Knu73], [Aho74], [Hor78]). As we did in
Figure 4, it is easy to devise a data structure with certain
properties that will reveal the limitations of existing data
models or data modeling concepts. The advantage of this
approach is that it provides application independent tests;
one does not have to be intimately familiar with a peculiar
database application in order to comprehend the example.
We will use this t,echnique several times in this paper to
illustrate and develop the modeling concepts that are pro-
posed later.

In the next sertion, we present a general framework
for studying molecular objects, In Section 4 we give addi-
tional examples of molecular objects that are taken from
non-traditional database applications.

3. A Framework for Studying Molecular Aggrega-

tions

Most of the work relating abstract data types and
data models has involved the Relational model. It is well-
known that the Relational model has semantic limitations.
Therefore, attempts have been made to expand it to include
different types of aggregation ([Smi77a-b], [Cod79], [Dat82],
[Has82), [Lor83a-b], [Sto83]).

Afomic aggregafion ((Smi77a-b]) is an abstraction of a
single relationship into a higher level entity. Molecular

aggregation is an ext.ension of this concept; it is an abstrac-
tion of a aef of entit.ies and their relationships into a higher
level entity.

We believe that the concept of molecular aggregation
is independent of the model or notation that is used to
express it. However, for the purposes of exposition, we have
found it convenient to use the diagrammatic notations of
the E-R model ((Che78]). An advantage of using E-R
diagrams is that they can be reduced to tables which, in
turn, can be identified with relations. ’

In the following sections, models of
disjoint/noudisjoint and recursive/non-recursive molecules
are presented. These models are progressively developed
and are illustrated by a set of examples.

3.1 Modeling Non-Recursive, Disjoint Molecular

Objects

Levels of abstraction allow molecular objects to have

different representations. At higher levels, a molecular
object is au atomic entity; at lower levels, the atoms that

’ There is no guarentee that the tables produced will be in a cer-
tain normal form. Techniques of normalization may need to be
applied to reduce these tab& to the desired state (e.g., BCNF).
We are not proposing that the ER model is a substitute for the
relational model; we are simply using its diagrammatic conven-
tions.

Proceedings of the Tenth International

Conference on Very Large Data Bases.
175

compose the molecule are seen. At any particular level,
existing modeling techniques should be adequate to express
the entities and relationships that may exist. It is the map-
ping or correspondence of entities, attributes, and relation-
ships at one level of abstraction to those of another that
needs to be introduced. This gives rise to the modeling con-
struct correspondence. Here is an example.

Recall the data structure diagram catalog. At a higher
level of abstraction, we are dealing with ‘catalog’ entities or
data structure diagram (DSD) entities. DSD entities are
identified by their catalog number (CAT#) and are
explained by their description (CAT-DES). The E-R
diagram which represent,s the database at this level of
abstraction is shown in Figure 5a.

At a lower level, the implementation details of data
structure diagrams are captured by the E-R diagram of Fig-
ure 5b (Figure 2a). The tuples (atoms) that define an
occurrence of this diagram are combined by disjoint molecu-
lar aggregation to form a DSD entity. Disjoint molecular
aggregation is shown by a box drawn around the E-R
diagram which defines the relationships among atoms of the
molecule. 6 The dashed line connecting the DSD entity box
and the molecular box denotes that each molecular entity
corresponds to precisely one DSD entity, and vice versa.

A general scenario for non-recursive, disjoint molecules
is shown in Figure 6a. The tables that underly this
diagram are formed by separately reducing the E-R
diagrams at both levels to tables. This can be done using
standard techniques ([Che76]). At the upper level, there
will be a MOLECULE table with primary key h4’ and
descriptive attributes M, . . . M, . At the lower level, there
are tables T,..s T,. Table T, has primary key K' and
descriptive attributes A,,1 The correspondence between
levels is made by specifying to which molecular entity each

tuple of tables T, * . . T, belongs. This is accomplished by
augmenting the primary key of a molecule to its underlying
tuples. Thus, the primary key of table T, becomes
(M ’ , K ’). All non-recursive, disjoint molecular aggrega-

tions can be reduced to tables in this way (see Fig. 6b). s

In the case of Figures Sa-b, this procedure yields table
DSD(CAT#, CAT-DES) at the upper l”ykA;l

BOX(CAT#, BNAMF), ARROW(CAT#.

PARENT-BNAME), and CHILD-OF(CAT#, ANAME:

BNAME) at th e I ower level. (Primary keys are underlined).
These tables and their tuples are shown in Figure 5c.

Note that there may be several data structure
diagrams that. have a box labeled ‘student’; the names given
to box and arrow ent,ities are distinct within the confines of
a particular data structure diagram, but need not be dis-
tinct throughout the catalog. This is the reason why the
primary key of the upper-level entity is inherited by each

’ Note the notational ditlerence between atomic aggregation and
molecular aggregation. An atomic aggregation is shown as a box
drawn around a single ER relationship. A molecular aggregation
is shown as a box drawn around an E-R diagram.

’ The inheritance of M’ in underlying tables is similar in func-
tion to System R’s COMPONENT-OF attribute of non-root
tuples of complex objects.

Singapore, August, 1984

(a)
upper
level

1:l correspondence between

MOLECULE&, Ml, Mm) I I MOLECULE

T#f*, K1, All, . . . I
T2(M*., A21, . . .)

. . .

T,(M*. K", An1, . . .)

k1les DSD(u, CAT-DES) BDX(CAT#, ENAME)

(C53, Grade Database) (C53, STUDENT)
(C53, GRADE)
(C53, COURSE)

kRROW'(CAT#, ANAME, PARENT-BNAME) CHILD-OF(CAT#, ANAME, BNAME)

(C53, SG, STUDENT) (C53, SG, GRADE)
(C53, CG. CQURSE) (C53, CG, GRADE) (a) (b)

Figure 5. A Non-recursive, Disjoint Entity Figure 0. A Model of Non-recursive, Disjoint Molecules

(a)
upper
level

(b)
lower
level

(cl
tables
I

-weak
entity

SDSD#: Sl

SDSD-NAME:

Student
Subschema

BOX-CT(CAT#, SDSDX, BNAME) ARROW-CT(CAT#, SDSD#, ANAME)

(C53, Sl, STUDENT)
(C53. Sl, GRADE)
(C53, S2, COURSE)
(C53, S2. GRADE)

(C53. Sl, SG)
(C53, 52, CG)

CHILD-OF-CT(CAT#, SDSD#, ANAME, BNAME) SDSD(CAT#, SDSD#, SDSD-NAME)

(C53, Sl, SG, GRADE)
(C53, 52, CG, GRADE)

(C53, Sl, Student Subschema)
(~53, S2, Course Subschema)

SDSD#: S2

SDSD-NAME:

Course
Subschema

plus tables of Figure 5c

Figure 8. A Non-Recursive, Non-Disjoint Entity Figure 7. Subschemas of Figure 1

Singapore, August, 1994 Proceedings of the Tenth International

Conference on Very Large Data Bases.
176

table at the lower level. In contrast, System R generates
surrogatea for ‘entit,ics’ that are unique across the entire
database ([Cod79]). Th is approach avoids the problem of
key inheritance but requires an internal-level solution to the
problem of relating a molecule tuple to its underlying atom
tuples ([Lort)Sb]).

3.2 Modeling Non-Recursive, Non-Disjoint Molecu-
lar Objects

Suppose that data structure diagrams of subschema
for each catalog entry are also to be present in the database
(see Fig. 7). This can be modeled at a higher level of
abstraction by data structure diagram (DSD) entities and
their dependent subschema data structure diagram (sDSD)
entities. The HAS relationship relates both entity sets (see
Fig. 8a). Note that SDSD entities are weak entities because
they are existence dependent on DSD entities.

Because different subschemas may share record and set
types, the sets of tuples that underly two SDSD molecules
need not be disjoint. In Figure 7, the SDSD molecules for
subschemas Sl and S2 will share the tuple that describes

the GRADE record type. We denote non-disjoint molecular
aggregation by circling the ER diagram whose instances
define a molecule. Figure 8a-b shows both disjoint and
nondisjoint aggregations and their correspondences.

A general scenario of non-recursive, non-disjoint
molecules is shown in Figure 9a. The tables that underly
this diagram are formed by separately reducing the E-R
diagrams to tables at both levels. As before, there will be a
MOLECULE table and the underlying tables T1 . . . Tn.
The correspondence betbeen levels is again made by speci-
fying to which molecular entity each tuple of tables
T, . . . T” belongs. This is accomplished by creating for
each table T, a component table or correspondence table
CT, which pairs the primary keys of Component tuples (K’)
with the primary keys of their molecular entities (M’).
(M*, K’) is the primary key of CT, tupks. All non-

recursive, non-disjoint molecular aggregations can be

reduced to tables in this way (see Fig. 9b).

MDLECLlLE(~, MI> . ..v Mm)

SDSD-NAME) at the upper level and BOX(CAT#,
BNAME), ARRO\V(CAT#, ANAME, PARENT-NAME),
CHILD-OF(GAT#. ANAME, BNAME), BOX-CT(CAT#,
SDSD#, BNAME), ARROW-CT(CAT#, SDSD#,
ANAME), and CHILD-OF-CT(CAT#, SDSD#, ANAME,
BNAME) at the lower level. These tables and their tuples
are shown in Figure 8c.

It is worth not,ing that the notion of disjointness on
which our discussions have centered deals with molecules
that are of a single type. Disjointness can also be defined
for molecules of different types. Figure 8 provides an exam-
ple. A DSD molecule can share atoms with an SDSD
molecule. The disjointwss or non-disjointness of molecules
of different types are possibilities that follow naturally from
our model and do not require special attention. We will
give additional examples in Section 4.

3.3 Modeling Recursive, Disjoint Molecular Objects

A binary tree can be defined as being either empty, or
a root node with left and right binary (sub)trees. A recur-
sive disjoint molecular diagram defining binary trees is
shown in Figure 10a. At a higher level there are only tree
entities which have tree number identifiers (T#) and tree
names (TNAME). At t,he lower level, there are node enti-
ties, which have node number identifiers (N#) and contents
(CONTENTS). Th ere are also (sub)tree entities, described
as in the higher level. The left and right subtree relation-
ships are modeled by LEFT and RIGHT.

T& ' AI1. . . .) CT+M*, K1)

T&c, AZ13 . . .) CT&M*, K*) (b) NODE-TREE(Tt or Nt CONTENTS, LEFT-T), RIGHT-Tir, TKAME) --I

. . .
Figure 10. A Model of Binary Trees

Tn(c, Anl, . . .) CT,,(M*, K")

Once again we see that for each molecular entity (a

(a) (0) NODE tuple and its associated left and right subTREE

Figure 9. hlodeling Non-Recursive, Non-Disjoint Molecules tuples) there is a corresponding TREE tuple at the upper
level. The E-R diagram also shows that there is a

correspondence bet neen TREE ident,ifiers and NODE

in thr case of Figures 8a-b, this procedure yields tables identifiers. This has a simple interpretation. The primary

DsD(CAT~, CAT-DES) and SDSD(CAT#. SDSD#, key of a NODE or TREE can be understood as a pointer: a

Proceedings of the Tenth International Singapore, August, 1994

Conference on Very Large Data Bases.
177

pointer is used to identify a single NODE and it is also used
to identify the TREE rooted at that NODE. A distinction
is made according to the level of abstraction at which the
pointer reference is made. As this example shows, when
objects exist at two or more levels of abstraction a shift in
their semantics is possible in going from one level of
abstraction to the next. We will see that such shifts are
common.

A general scenario for recursive, disjoint molecules is
shown in Figure 11 a. The MOLECULE and Ti . . . T,
tables that underly this diagram are formed exactly as if
the molecules were non-recursive with one exception. The
upper-level MOLECULE table is unnecessary since a copy
of it also exists at the lower level. To account for the
correspondence, the primary key of the upper-level molecule
(now denoted M *’) is inherited as an ordinary attribute of
each table at the lower level and is not subsumed as a key
prefix. Thus, table T, has primary key K' and has descrip-
tive attributes M *’ and A,,, * . . . The MOLECULE table
has primary key M’ and has descriptive attributes M **
and M,.* . M,,, (see Fig. 1 lb).

MOLECULE($, Ml, Mm, M**)

m, T&, AlI. M**)

1 w 1 T#, Anl, ..,, M**)

(a) (b)

Figure 11. Modeling Recursive, Disjoint Molecules

Two tables result in applying this procedure to Figure
10a: TREE(T#, TNAME, PARENT-T#) and NODE(NA,
CONTENTSTLEFT-T#, RIGHT-T#, PARENT-T#). ’
Because of the 1:l correspondence between node numbers
with tree numbers, data values that are assigned to the
PARENT-T# and N# attributes of the NODE table are
identical, and hence can be combined into a single attribute.
That is, the PARENT-T# of a NODE is the T# of the
TREE which has that NODE as its root. Moreover, since

’ A table underlies each entity set and relationship set. In Fig-
ure 10a there would be tables for the NODE and TREE entity
sets and tables tor the LEFT and RIGHT relationship sets. Each
entry in the LEFT (and RIGHT) table is in 1:l correspondence
with NODE table entries (because each NODE entry has precisely
one LEFT and one RIGHT aubtree). For this reason, the LEFT,
RIGHT, and NODE tables can be combined - 88 done above - into
a single ‘NODE’ table.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

NODE entities and TREE entities are in I:1 co~espon-
dence, the NODE and TREE tables can be combined into a
single table NODE-TREE(T# or NY, CONTENTS,
LEFT-T#, RIGHT-T#, TNAME, PARENT-T#). The two
names given to the table’s primary key reflect the possible
interpretations of its values.

From our experience it appears that recursive E-R
diagrams commonly have more than a single upper-level

entity - molecular aggregation correspondence. In the
binary tree example, the additional correspondence is that
between node numbers and tree numbers. In every example
that we are aware, additional correspondences introduce
relationships which cause the molecular primary key M *' to
be redundant, and hence optional.

The presence of the PARENT-T# attribute in table
NODE-TREE is redundant. Given any subtree, its parent
tree is associated with one NODETREE tuple. In the
parent tuple, the given subtree is referenced as either the
LEFT-T# or RIGHT-T#. Thus, if PARENT-T# were
stripped from NODE-TREE, its value could be inferred.

It is worth noting that when PARENT-T# is
removed, the table that results (Fig. IOb) is a record layout
that is commonly used in programs to manipulate binary
trees. This is evidence that it is possible to derive the intui-
tive record layouts of data structures (i.e., schemes of inter-
nal databases) using molecular aggregation modeling tech-

niques. We will see another example of this in the next sec-

tion.

3.4 Modeling Recursive, Non-disjoint Molecular
Objects

Earlier we gave the example of two list molecules shar-
ing the same nodes. Figure 12a shows how this can be
modeled. It is based on a recursive definition of a list: a list
is either empty or it is a node followed by another (sub)list.
There can be any number of nodes that immediately
preceed a (sub)list. Once again, NODE entities (and their
primary keys) are in 1:l correspondence with LIST entities
(and their primary keys).

A general scenario for recursive, non-disjoint molecules
is shown in Figure 13. The procedure for reducing such
diagrams to tables is identical to that of reducing non-
recursive, non-disjoint molecules with the exception that the
upper-level MOLECULE table is not represented twice.
The primary key of the upper-level molecule is denoted by
MU’. Note that the MOLECULE-CT table pairs the pri-
mary key M” of a parent molecule with the primary key
M' of each of its submolecules.

Applying this procedure, four tables exist at the lower
level of the list molecule example: LIST&& LNAME),

NODE(x, CONTENTS, FOLLOWING-L#), NODE-
CT(PARENT-L#, N#), and LIST-CT(PARENT-L#, L$).
Because of the 1:l correspondence between node numbers
(and node entities) and list numbers (and list entities), the
NODE and LIST tables can be combined into a single table
NODE-LIST. Also, since the attributes N# and L# always

assume the same data value in each NODE-LIST tuple, i.e.,
a pointer to a NODE is identical to the pointer to the LIST

headed by that NODE, N# and L# can be combined into a

Singapore, August, 1984

178

(a)

b) NODE-LIST(LX or NX, CONTENTS, FOLLOWING-L#, LNAME) LIST-CT(PARENT-LI, LX)

(tl. a. X3. list-a)
(12, b, X4, list-b)

(null, #I)
(null, 12)

(U6, null)

Figure 12. Non-Disjoint Lists

MOLECULE&, MI, Mm) MOLECULE-CT(M**, M*)

Tl(& All. . . .) CTI(M**, KI)

T2(& A21. . . .) CT2(M*, K2)

. . .

T,,&, An19 . . .) CT&M**, K")

(a) (b)

Figure 13. Modeling Recursive, Non-Disjoint Molecules

single attribute. For this same reason, identical data values
are assigned to PARENT-L# and N# attributes for each
entry of a NODE-CT table. That is, NODE-CT tuples are
ordered pairs where both elements of a pair are equal.
Therefore, the NODE-CT table is redundant and can be
eliminated (see Fig. 12b).

The LIST-CT table is redundant and .also could be
eliminated. Entries in it are pairs of (parent-list, sub-list)
identifiers. Just as in the binary tree example, if the LIST-
CT table were eliminated, its contents could be inferred.
That is, given the identifier of the parent-list, there is a
NODE-LIST tuple which corresponds to this list. The
FOLLOWING-L# data value of this tuple is the sub-list
identifier. Note that the result of eliminating these redun-
dancies is NODE-LIST: a record format that is commonly
used in programs to manipulate linked lists. Here again we
see molecular aggregation modeling techniques can be used
to derive record formats of common data structures.

Proceedings of the Tenth Internettonal

Conference on Very Large Data Bases.
179

3.5 Modeling External Features of Molecular
Objecta

The previous sections have described general pro-
cedures for modeling molecular objects. In this section we
will show that the programming language/data structure
paradigm leads us to a better understanding of how molecu-
lar objects are addressed at higher levels of abstraction. In
particular, we examine the idea of molecules having external
features. At the same time, we will also find limitations in
the E-R model.

The approach taken in CLU ([Lis77]), ADA ([Geb83]),
and other programming languages is that instances of
abstract data types are featureless entities. Very often it is
useful to give some of the internal features of an abstract
data type external projections so that they may be refer-
enced easily. Viewing the element [2,3] of matrix M is such
an example. For this reason, projection operators (i.e., [i,j])

Slngapore, August, 1984

a 4-input AND oate

\ \ \ underlyina
circuit

implementation

Figure 14. A Circuit Diagram

(a) subset
correspondence

(cl GATE&, TYPE, PARENT-G#)

(Gl, Z-AND, 64)
(62, 2-AND, 64)
(63, 2-AND, 64)
(64, 4-AND, -)

WIRE&& START-G#, START-P+'. END-G#, END-P#, PARENT-G#)

(W'. 63, P3, 64, PS,

64
64 I
64)
G4)

ii]
G4)

POIIfTS(E', Pt, I/O, PARENT-G+)

(Gl, PI, I, 64
(Gl. P2, I, 64
(Cl, P3, 0, Gd
(62, Pl, I, Gl
(G2, P2, I, r,r
(62, P3, 0, 61
(63, Pl, I, Gf
(63, P2, I, Gl

Figure 15. A M&l of a Circuit Diagram

Procwdings of the Tenth International

Conference on Very Large Dats Bases.

Singapore, August, 1984

180

are defined for that type. A similar situation applies to
molecular entities: molecules have internal features that
need external projections.

Consider the circuit of Figure 14 which defines a 4-
input, AND gate in terms of f-input AND gates, wires, and
terminals. At the higher level there is a GATE entity with
its dependent PIN entities. PIN entities are ezlernal

feoturea of GATES (see Fig. 15a). At the lower level there
are TERMINAL entities (i.e., pins that are not associated

with lower-level gates), GATE entities and their dependent

PIN entity features, and WIRE entities which connect pins
and terminals to other pins and terminals. Note that
upper-level PINS correspond to lower-level TERMINALS:
PINS are weak entities; TEMINALS are strong entities.
Here again is a shift in semantics between levels of abatrac-
tion, a shift that is similar to that of node and tree
identifiers.

The type of correspondence that is shown in Figure
I5a is slightly different than what we have encountered
before. It is called subset correspondence. It means that
every molecular entity is a GATE entity, but not all GATE
entities are molecular entities. In the example, the 4-input
AND gate is certainly a molecular entity, but its a-input
AND gates are primitive and are not defined in terms of
lower level gates.

The underlying tables of Figures ISa-b are given in
Figure 15~. They follow directly from the rules for reducing
recursive, disjoint molecules in the previous section:
GATEIG#, TYPE, PARENT-G#), POINTS(F#, PIN&

I/O, PARENT-G#), and WIRE(W& START-G#,
START-PIN#, END-G#, END-PIN#, PARENT-C#).
The PARENT-G# attribute of all three tables is redundant
and optional for the following reason. It is possible to
determine the underlying tuplea of a GATE molecule simply
by starting at the GATE’s terminals and by following wires.
This is identical to the procedure for determining the nodes
of a list: start at the head of the list and follow pointers.
The inclusion of PARENT-G# in these tables may be
necessary for performance reasons: it is much faster to con-
sult a single attribute to find component gates than by fol-
lowing wires. a

The model of our circuit has some deficiencies. Con-
aider the POINTS table. It is evident that external features
of 2-input AND gates are repeated. That is, each tweinput
AND gate (e.g., Gl - C3) has two input pins (Pl and P2)
and an output pin (P3). Pin names and their I/O functions
are external gate features; data on these features are dupli-
cated in each gate instance. Clearly what is needed is the
notion of ternplating: a template is a definition; instances of
a 1,emplate simply refer t.o this common definition. If the
definition is changed, so are all of its instances. The source
of the problem in our circuit example is not due to molecu-
lar aggregations, but rather with the E-R model itself.

* lt is worth noting that System R handles the problem of
finding underlying tuples of complex objects efficiently through
the use of specisl storage structures. This essentially m&es logical
connections, S.IC~ a.7 PARENT-G#, unnecessary from a prxticd
viewpoint, although from a purely logical modeling viewpoint _
0~ that is impkmentstion independent - it may not be altogether

satisfactory.

Templating appears to be a dificult concept to express in
the E-R model; it requires special notations and rules for
reducing template diagrams to tables. Expressing such
tables in the Relational and network models is trivial. (Sys-
tem R, in fact, supports templating of complex objects).

A much better design would normalize the POINTS
table by replacing it with a POINT-TEMPLATE(TYPE,
I’& I/O) table that lists the external features common to
all GATE instances. The relationship between the POINTS
table and the GATE and POINT-TEMPLATE table is
expressible in relational algebra as a join of GATE aud
POINT-TEMPLATE:

POINTS = n (G#,P#.I/O.PARENT-G#)

GATE [TYPE = TYPE] POINT-TEMPLATE

The contents of the POINT-TEMPLATE in our example
would be:

POINT-TEMPLATE (TYPE, P#c I/O)

(2-AND, Pl, I)
(2-AND, P2, I)
(2-AND, P3, 0)

(IbAND, Pl, I)
(4-AND, P2, I)
(I-AND, P3, I)
(4-AND, P4, I)
(CAND, P5, 0)

It is clear from the above example that the ER model,
like the Relational and other models, has its limitations. In
this and preceeding sections, we have explained and
developed some basic concepts of molecular aggregation;
concepts that can be applied to any model. It is beyond the
scope of this paper to correct problems that are peculiar to
a particular notation, in this case templating and the E-R
model. We will address the templating problem in future
research.

In the following section, examples are presented of
nondisjoint molecular objects that occur in non-traditional
database applications.

4. Examples of Molecular Aggregation Taken From
Non-Traditional Applications

A preliminary data analysis for a fully integrated
chemical process plant resulted in the identification of
approximately 8000 items. The analysis spanned from the
process design, and instrumentation and piping to the com-
plete specification of the plant itself. Because of the nature
of the design process, dilTerent types of data were identified:
namely, approved data for project-wide use, preliminary
data used by designers working on a small subportion of the
project (which is integrated with the project-wide data aft,er
approval), actiKe and passive catalogs, and metadata. The
nature of this data and problems such as versioning, han-
dling of design alternatives, handling long interactive tran-
sactions, and the rontrol of update propagations resulted in

Singapore, August, 1984 Proceedings of the Tenth International

Conference on Very Large Data Bases. 181

a scheme which relied on different databases that interact
([Buc84]). A. project-wide database was defined to contain
approved data, and workspaces were defined for exploring
preliminary solutions and design alternatives. Setting up
workspaces often required massive extraction of data.
Although molecular objects (as defined in Section 3) were
not supported by the CODASYL-based DBMS that was
used to manage these databases, expressing data aggregates
as molecular objects would have considerably simplified the
extraction specification.

Some of the ‘molecular objects’ of this database were
pieces of equipment, isometric views of different pipelines,
and the whole plant modeled at different levels of abstrac-
tion. To illustrate some of the modeling and data manage-
ment problems that were present, Figures 16, 17, and 18 are
documents about a heat-exchanger: they respectively show
a small portion of a process flow sheet (PFS), a piping and
instrumentation diagram (P&ID), and a specification sheet.
Although the specific details of a heat-exchanger are unim-
portant to this paper, what is important is that each docu-
ment can be viewed as a molecular object. Although every
document appears to be self-contained (i.e., molecularly dis-
joint), in fact they are not; the PFS and P&ID molecules
share some of the tuples that make up the specification
sheet molecule. This- is not unlike the schema and
subschema molecules of Figure 8 where molecules af
different types have underlying atoms in common. Clearly,
data management problems arise in such cases: automati-
cally deleting all the tuplea that belong to a particular
molecule can have unforseeable effects in other portions of
the design. Currently available DBMS8 cannot prevent
inconsistencies when deleting non-disjoint molecules.

While the previous example shows non-diajointneaa
among molecules of different types, there are also examples
of non-disjoint molecules that are of the same type. A

pipeline consists of straight runs of pipes and fittings, such
as ‘L’ and ‘T’ fittings, flanges, valves, etc. It is common to
represent the connectivity of a pipeline as a list of these ele-
ments, quite similar to the example of non-disjoint lists in
Figure 4. Each pipeline is a molecular object, and since

pipelines normally merge or branch into other pipelines,
there is a sharing of elements (i.e., atoms). Once again,
data management problems arise: when a branch is elim-
inated from a pipeline its elements are dropped, and a ‘T’
fitting and connecting runs of pipe are replaced by a longer
run of pipe. Because of the sharing, updates may cause
inconsistencies.

Examples of recursive molecules can be found in other
non-traditional applications. Maps in geographic databases
are examples ((Bar82J, (Bar84]). Each level of recursion is
given a different name: blocks (the smallest surveyed region)
are aggregated into counties, counties aggregate to states,

states to countries, and so on. Although the regions
represent disjoint areas, they share common boundaries. If
the boundaries of a region are to be represented non-
redundantly, then region-boundary molecules will need to
be non-disjoint.

The examples presented above are only a small sam-
pling of cases where molecular aggregation (disjoint vs.
non-disjoint, recursive vs. non-recursive) is commonly

Pmmdings Of the Tenth International

Conference on Very Large Data Bases.
182

encountered. They show that a complete framework for
handling molecular aggregates is required if a DBMS is to
respond adequately to the demands of non-conventional
database applications.

5. Conclusions

A general framework for modeling molecular objects
has been proposed. The framework is unified by the con-
cept of abstract data types and was shown to relate recent
contributions on DBMS support for CAD, engineering, and
statistical database applications. Although the framework
was explained in terms of the ER model, the ideas should
be portable to all models.

A unification of the data abstraction mechanisms of
programming languages and data models is inevitable. It is
our conjecture that the programming language/data atruc-
ture paradigm will be an important factor to the
unification, just as it was instrumental to the development
of our model of molecular objects. The paradigm states
that data structures are main-memory databases and logical
data models should be able to describe them. Although
unification is a long way off, we feel the ideas of molecular
aggregation presented in this paper are a step forward to
this goal. We have shown that some fundamental data
structures can be modeled accurately using molecular aggre-
gation and other data modeling constructs.

Four types of molecular objects were identified in our
model/framework: disjoint vs. non-disjoint and recursive vs.
non-recursive. We have shown that all arise in practice yet
no DBMS that we are aware supports all types. Since
research on molecular objects is in its early stages, it is
likely that additional ‘types of molecular objects will be
discovered. Further research should concentrate on run-time
support for molecular objects.

Acknowledgements. We gratefully acknowledgg the help of
Sham Navathe for his constructive suggestions on improv-
ing an earlier version of this paper.

Singapore, August, 1984

E

F
io

ur
e

16
.

--
'

A

P
ro

ce
ss

F

lo
w

S

he
et

fo

r
a

H
ea

t
C

xc
ha

n%
er

-_

_I
.

F
ig

ur
e

17
.

A

P
ip

in
g

an
d

In
st

ru
m

en
ta

tio
n

D
ia

gr
am

fo

r

A
 H

ea
t

E
xc

ha
ng

er

F
ig

ur
e

18
.

A

S
pe

ci
fic

at
io

n
S

he
et

fo

r
a

H
ea

t
E

xc
ha

ng
er

References

[Ah0741 A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The
Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

[Bar821 R. Barrera and A.P. Buchmann, ‘Schema Definition
and Query Language for a Geographical Data-
base System’, CAPAIDM workshop, Hot
Springs, Virginia, Nov. 1982.

[Bar841 R. Barerra, ‘GEOBASE - A Reconfigurable Geo-
graphic Database System’, IIMAS Tech. Rep.,
Feb. 1984.

[Bro83a] V.A. Brown, S.B. Navathe, and S.Y.W. Su, ‘Com-
plex Data Types and Data Manipulation
Language for Scientific and Statistical Data-
bases’, Proc. 1983 International Workshop on
Statistical Database Afanagement, Los Altos,
California, 188-195.

[Bro83b] M.L. Brodie, J. Mylopoulos, and J.W. Schmidt,
eds., On Conceptual Modelling, Springer-
Verlag, 1984.

[Buc79] A.P. Buchmann and A.G. Dale, ‘Evaluation Cri-
teria for Logical Database Design’, CAD 11,
May 1979.

[Buc84] A.P. Buchmann, ‘Current Trends in CAD Data-
bases’, CAD, to appear.

[Che76] P.P.S. Chen, ‘The Entity-Relationship Model -
Toward a Unified View of Data’, ACM Tranr.
Database Syat. 1 #l (March 1976), 9-36.

[Cod791 E.F. Codd, ‘Extending the Database Relational
Model to Capture More Meaning’, ACM
Trans. Database syst. 4 #4 (Dec. 1979); 397-
434.

[Geb83) N. Gehani, ADA: An Advanced Introduction,
Prentice-Hall, Englewood Cliffs, New Jersey,
1983.

IDat82) C.J. Date, An Introduction to Database Systems,
3rd. Ed. Addison-Wesley, 1982.

[Has821 R. II as k in and R. Lorie, ‘On Extending the Func-
tions of a Relational Database System’, ACM
SIGMOD 1982, 207-212.

[Hor78) E. Horowitz and S. Sahni, Fundamentals of Com-
puter Algorithma, Computer Science Press,
Rockville, Maryland, 1978.

[Joh83] H.R. J h o nson, J.E. Schweitzer, and E.R. Warken-
tine, ‘A DBMS Facility for Handling Struc-
tured Engineering Entities’, Proc. 1989 ACM
Engineering Design Applications, 3-12.

[Knu73] D.E. Knuth, The Art 01 Computer Programming,
Vol. 3: Sorting and Searching, Addison-
Wesley, Reading, Mass., 1973. 6 #4 ‘(Dec.
1983), 56-64.

[Lis77] B.H. Liskov, et al., ‘Abstraction Mechanisms in
CLU’, Comm. ACM 20 #8 (Aug. 19?7), 564-
576.

[Lor83a] R. Lorie and W. Plouffe, ‘Complex Objects and
Their Use in Design Transactions’, Proe. 1988
ACM Engineering Design Applicationr, 115-
121.

[Lor83b] R ,. Lorie, et al., ‘User Interface and Access Tech-
niques for Engineering Databases’, to appear
in Query Processing in Database Sydtems, W.
Kim, D.S. Batory, and D. Reiner, ed.,
Springer-Verlag 1983.

[Ong84] J. Ong. D. Fogg, and M. Stonebraker, ‘Implemen-
tatin of Data Abstraction in the Relational
Database System INGRES’, ACM SIGMOD
Record 14 #l (March 84)’ 1-14.

[Row791 L.A. Rowe and K.A. Shoens, ‘Data Abstractions,

Views and Updates in RIGEL’, ACM SIG-
hlOD 1979, 71-81.

[Sc h77] J.W. Schmidt, ‘Some High Level Language Con-
structs for Data of Type Relation’, ACM
Trans. Database Cyst. 2 #3 (Sept. 1977),
247-261.

[Shi81] D. Sh’p I man, ‘The Functional Data Model and the
Data Language DAPLEX’, ACM Trans. Data-
base Syat. 6 #l (March 1981), 140-173.

[Smi77a] J.M. Smith and D.C.P. Smith, ‘Database Abstrac-
tions: Aggregation and Generalization’, ACM
Trans. Database Syst. 2 #2 (June 1977),
105-133.

[Smi77b] J.M. Smith and D.C.P. Smith, ‘Database Abstrac-
tions: Aggregation’ Comm. ACM 20 #S (June
1977), 405-413.

[Sto83] M. Stonebraker, B. Rubenstein, and A. Guttman,

‘Application of Abstract Data Types and
Abstract Indices to CAD Databases’, Proc.
1989 ACM Engineering Design Applications,
107-114.

[Su83] S.Y.W. Su, ‘SAM’: A Semantic Association
Model for Corporate and Scientific-Statistical
Databases’, Inior. Sci. 29 (1983), 151-199.

[was791 A.I. Wasserman, ‘The Data Management Facilities

of PLAIN’, ACM SIGMOD 1979,6@70.
[Web781 H. W b e er, ‘A Software Engineering View of Data

Base Systems’, VLDB 1978, 3651.

Permission to copy without fee all or part of this mate&I is granted
provided that the copies are not made or dlrtributed for direct commcreicrl
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is givm that copying is by pemkion of thr Very Large
Data Base Endowmmt. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Procssdings of ths Tenth Internatlonal

Conferems on Very Large Dats Basm

Singapore, August, 1984

184

