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CHAPTER I 

INTRODUCTION 

Chemists have for a long time been interested to know what determines the 
stability of the chemical compounds. The last few years, however, this question 

has not only been a matter of curiosity, but an answer to the question bas become 
a necessity because in several branches of chemistry problems have arisen that are 
closely connè&ed with the stability of compounds, As an instance, we may refer 

to the theory of catalysis. 
Until a few years ago, research on catalysis had been almost entirely empirie al. 

Only in a few cases had it been possible to explain the working of a catalyst. lt 
was then tried to change the empirica! character of catalysis research, some of the 
methods being attempts to relate this research to the theories of the solid state, of 

the surfaces of the solid state, of the structure of the solid state, etc. 
It turned out that in order to understand the fundamental problems of.catalysis, 
knowledge of the theories on chemica! bonding was indispensable. 

To explain the working of a catalyst in a certain reaction, it is often necessary 
to assume the existence of an "intermediate complex". A good example of this is 

given by the catalysis reaction known as the "Wacker reaction" ( 1, 2): 

C2H4 + t 0 2 PdCI 1 ' 
2

-so ution 

0 

CH c-' 
3 ' H 

A transition complex in this reaction is the palladium complex formed from 

PdC1
2
(H

2 
0)

2 
and c

2
H 

4 

c1, "oH2 
Pd (1, 3) 

C H / "-c1 
2 4 

This complex decomposes immediately with water into 

,p 
CH C ~ + Pd + H

2
0 + 2HC1 

3 'H 

The palladium metal, which is precipitated by the decomposition, produces, to
gether with oxygen and HCl, the complex PdC1

2
(H

2
0) and so the cycle isclosed. 

The formation of the intermediate complex 
2 
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can proceed along two paths 
(a) 

(b) 

(A) 

Cl'- OH 
Pd/ 2 

'c1 
(A) 

Cl'- ,"...OH 
Pd 

2 

C H / 'c1 
2 4 

+H 0 
2 

In both cases there exists an unstable complex (A) that fulfils the following con
ditions: 
(a) it must be formed rapidly from the reactants; 
( b) it must be unstable, i. e. , it must decompose rapidly into the reaction pro

ducts. 

From these considerations we see that catalysis provides two problems to the 
theoretica! chemists -
(a) Given a catalysis reaction, what types of intermediate complexes may be 

formed? 
(b) What is the stability of the complexes under (a)? 

Considering the current theories on inorganic complexes, namely the crystal 
field theory .and the molecular orbital theory (See Chapter II), we notice that the 
crystal field theory, even in its most perfect form, gives us little information 
about the stability of the complexes. For, as has been shown by Van Eck (4) and 
worked out by Schuit (5) in several papers, the crystal field theory gives us only 
some information about the destabilisation of complexes in which the central ion 
contains d-electrons, but the theory does not teil us anything about the stabilisa
tion necessary for these complexes. 
On the contrary, the molecular orbital theory accounts for both the stabilisation 
(bonding) and the destabilisation (anti-bonding) effects in complexes. 
Therefore it is obviously necessary to use a molecular orbital description when 
dealing with the stability of complexes. 

A further study of the literature shows us that the molecular orbital theory bas 
mostly been applied qualitatively; only in a few cases have quantitative results 

10 



been obtained. It will be shown in the following Chapter that this fact must be 
ascribed to the vast amount of computational work that an exact molecularorbital 
calculation requires. 
Therefore quantitative molecular orbital calculations have only been performed 

on small molecules such as H2, CO, etc. But since quantitativ.e molecular orbital 
calculations of more complicated systems are becoming important nowadays, ever 

more attempts are being made to perform such calculations. Sometimes this is 
done by using empirica! parameters ( 6), in other cases the calculation is only 
carried out on a limited part of the total problem (7). 

In the investigation described here, it is attempted to perform a molecular 

orbital calculation from first principles. lt is tried to carry out the calculation in 

as simple a manner as possible so that the calculation may be executed on a fair
ly small computer. However, this causes that the calculation cannot be performed 

exactly; on several points approximations have to be introduced. Our calculation 
possesses the same character as the calculations of Gray (6), but differs in that less 
use is made of empirica! parameters. 

The subject of this calculation is the tetrachlorocuprate(II) ion. This complex 

was chosen for the following reasons: 
(a) The Cu2+ ion possesses nine 3d-electrons, so there is only one hole in the 3d 

shell. Tuis fact simplifies a number of calculations and allows of some approx
imations. 

(b) The structure of the CuCl~- ion has been investigated thoroughly by X-ray 

analyses, 
(c) The CuCI~- ion presents a large amount of experimental information, for in

stance, position and intensity of the optica! transitions, magnetic susceptibility 

and E.P.R. data. 
These properties of the CuCI!- ion have caused several investigations and cal

culations. The following survey summarises a number of these investigations. 
(a) Ballhausen (8) was one of the first to pay attention to the CuCl~- ion. He used 

a purely qualitative crystal field description. 
(b) Felsenfeld (9) successfully accounted for the distortions in the CuCI~- ion by 

using an ionic model in which the energy of the system is represented by a 
compromise between the crystal field stabilisation energy of the cupric ion and 

the mutual Coulombic repulsion of the four chloride ligands. 
( c) The complete qualitative theory of energy levels of Cu2+ (including spin orbit 

coupling effects) has been given by Liehr (10) for various crystal symmetries. 
(d) Ina paper on the absorption spectra of Cu2+ in oxide systems, Pappalardo (11) 

gave an explanation of the spectrum of Cu2+. Using parameters obtained from 
the spectra of octahedrally coordinated Cu 2+, he obtained satisfactory values of 
the transition energies in tetrahedrally coordinated Cu 2+. 

9 
(e) Furlani (12) calculated the term systems of the configuration (3d) according 

to the point charge model for an increasingly flattened tetrahedral structure and 
could then explain the near-infrared spectrum of CuCl~-. However, he did not 
publish many details about his calculation. 

11 



(f) Lohr and Lipscomb (13) made an empirica! molecular orbital calculation on 
Cuci!- by using Slater wave functions and Coulomb integrals that were esti

mated from ionisation potentials. They varied the bond angles in the complex 

and found a minimum of the total orbital energy for a distorted tetrahedral 
structure. 

(g) Morosin and Lawson (14), to account for the configurations and spectra of 

CuCl~- and CuBr:-, used a ;modification of the ionic mode~ employed by 

Felsenfeld. 
Most of these calculations are based on the crystal field theory and agree rea -

sonably well with the experiments. This is supposed to be caused by the fact that 
Cuc1!- may be described satisfactorily by an ionic model and that covalency 

effects are not important. For complexes that have a more covalent character it is 
expected that the crystal field approximation Will give less good results. On the 

other hand, there are data that cannot be explained by the crystal field theory at 
all (charge transfer spectra, for instance). 

The following molecular orbi tal calculation is not meant to improve the crystal 
field calculations; on the contrary, at best we can hope that our results will be of 

the same quality. lt would not be the first time for a refinement of a model to 

cause a worsening of the results of a calculation. However, this may not be a 
reason to reject the refined model, because in principle it may offer us more pos
sibilities and improve our knowledge of the chemica! bond. 

The purpose of the following work is to go a step further in the direction of a 
complete molecular orbital calculation from first principles, and at the same time 
to construct a method that can be carried out comparatively easily. 

The following calculation is applied not only to Cu2+ in a tetrahedral CC en
vironment (Chapter III), but also to Cu2+ in a square planar CC en~ironment 
(Chapter IV) and to Cu2+ in an octahedral er environment (Chapter V). This is 
done because it allows of 

(a) the studying of the splitting of the d-orbitals in different environments, 
(b) the comparison of the stability of the different environments. 
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CHAPTER II 

MOLECULAR ORBITAL THEORY 

II-1 GENERAL INTRODUCTION 

The problems encountered in the preceding pages can be sum"Tiarised as follows: 

How to find the description of an inorganic complex that offers a satisfactory ex

planation of the stability, the optica! spectra and the magnetic properties of this 

complex. Several theories have been proposed in the course of time, the most im

portant being 

(a) valence bond theory; 

(b) crystal field theory; 

( c) molecular orbital theory. 

(a) Valence Bond Theory 
This theory is the oldest of the three and was given by L. Pauling ( 1 ). He pro

poses for octahedral complexes MX6 a d2sp3 hybridisation for the orbitals of the 

centra! ion. Two d-orbitals, one s-orbital and three p-orbitals are mixed to a 

lineair combination that points to the corners of an octahedron. Two cases may be 

distinguished: 

( 1) Inner hybridisation: 3d24s4p3 

This type of hybridisation occurs for ligands that form strong covalent honds, 

such as for instance CN-. 
4-Exam ple: Fe(CN)
6 

3d 

1L1l -11 l]l Jk 
î '-

d-electrons 
of Fe2+ 

4s 4p 

-~JÇ--_~---~- -~ j 
î 

3d24s4p3 hybrid with 
12 electrons of 6 CN-

The total spinmoment is zero, the compound is diamagnetic. 

4d 

(2) External hybridisation: 4s4p34d2 

14 

This type is demonstrated by ligands that form principally ionic compounds 
(e.g. F-). 

Example: FeF:-



3d 

1k11i _1 

d-electrons 
of Fe2+ 

4s 4p 4d 
-----------------r 

1k 1111 n. 1k .1.ki_ 
-----------------------~ 

4s4p 3 4d2 hybrid with 

12 electrons of 6 F 

According to this theory FeF:- possesses four unpaired electrons in good agree

ment with susceptibility measurements. 

The magnetic behaviour of complexes is thus satisfactorily explained by the 

theory. However, the optica! spectra and the stability remain largelyunexplained, 

In this respect the theory is unsatisfactory. 

(b) Crystal Field Theory 

Between 1950 and 1960 the crystal field theory was resuscitated by Hartmann 
(2), Orgel (3), Grilfith (4) and others and was then applied to the particular case 

of transition metal ions (for a full treatment see ReL( 4)). 

The theory starts from the model of a compound MX6 in which the ligands X 

cause an electrostatic field on the site of the centra! ion, In this electrostatic field 

the degeneracy of the d-orbitals of the centra! ion is partly removed. 

Comparing 

with 

T-
6. 

Jl .t,],_ 1l 
large 6. small IJ. 

we see that the crystal field theory gives an equally good explanation of the mag

netic behaviour of inorganic complexes hut is also capable of giving qualitative 
information on the optical spectra of the complex es of transition metal ions; these 

spectra are chiefly caused by the electron transfer of t
2 

- e . 
Quantitatively the theory is less satisfactory. Attemits tog calculate IJ. from 

first principles have dismally failed. The essential cause of this failure lay in the 

approximation of considering the ligands as point charges or point dipoles, tlms 

ignoring covalent interactions between centra! ion and ligands. Neither is the 
crystal field theory capable of predicting the positions of the charge transfer bands 

which are observed in the optical spectra. In actual practice the theory is still 

often used in a parametric form, 
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( c) Molecular Orbital Theory 

The molecular orbital approximation dates from the early thirties and was in

troduced at that time by Van Vleck (5), Mulliken and others, especially for di

atomic molecules. 

The important assumption in this theory is that the orbital of a single electron 

is not localised on one of the atoms hut is spread over the whole molecule or com -

plex. This assumption is sustained by experimental data. For instance, the hyper

fine structure in the E.P.R.spectrum of lrCl~- can only be explained by the sup

position that the electron of which information is obtained in the spectrum of the 

Ir-ion, occurs for a considerable time in the neighbourhood of the Cl-nuclei (6). 
We shall discuss the molecular orbi tal theory more in detail. 

II-2 FREE ATOMS 

The theory of free atoms and ions has been dealt with in great detail by Con

don and Shortley (7), Racah (8), and a fairly complete description has been given 

by Griffith in his book: "The Theory of Transition Metal lons" (4), to which we 

will refer later. 

From the theory it is concluded that the electrons are distributed over certain 

orbitals, characterised by the quantum numbers n, 1, ml' s and ms, in "ket 

notation": 
1n,1, ml' s, ms) 
l 2, 1, O, t, t) is an orbital with n = 2, 1 = 1, m 1 = O, s = t and For instance, 

ms = t. 
As a first approximation the orbitals of the separate electrons are assumed to be 

given by 
~= R Y T 

nl lm sm 
1 s 

(2. 1) 

Rnl is the radial part of the wave function ~ , Y lm being the angle-dependent 

part. T is a spinfunction. 1 
sm 

For the quantum numbers the following holds: 

1 ~ n-1 with n and 

1 = o, 1, 2, 3, ... 

integers 

s-, p-, d-, f-, ..• functions 

-1 ~ m
1 
~ 1 

s = t for a single electron 

-s ~ ms ~ s 

The functions Y1 can be written as: 
m1 

Y1 = 01 (0) ~ml (lf) 
ml ml 

The 01 are associated Legendre polynominals in cos 0 and 
m1 

16 
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The functions Ylm are therefore complex. It is more convenient to use realfunc

tions that are defided as fellows ( j Im1) = Y lm
1
): 

1 = 1 { 
1 

f2(111) +11-1)) - sine cos" 

r,c111) -11-1)) - sin0 sin lf 

110) - cose 

ff <121) -12-~) ) - sin0 cose cos tp 

A-c 121) + 12-1) > - sin e cos e sin "' 

1 = 2 
1 rrz ( 122) -12-2) ) - sin

2e sin 2 I(' 

1 
- sin 

2 
e cos 2 lf 12< 122) + 12-2) ) 

j20) -(3 cos2e -1) 

The one-electron wave functions can now be written as: 

1 .! 
ns = (-)2 R 

41f ns 

3 1 
np = (

4
")2 R sin0 cos 'f 

x " np 

3 1 
np = (-

4 
)2 R sin0 sin cp 

y 1f np 

3 .!. 
np = (-

4 
)2 R cos0 

z 1f np 

15 .!. 
nd xz = (4tr)

2 
Rnd sin 0 cos 0 cos <(I 

15 .!. 
nd = (--;) 2 R sin 0 cos 8 sin lf 

yz 4" nd 

15 .!. 2 
nd = (-

16 
)2 R d sin 8 sin 2 lf 

xy 1f n 

nd 2 2 
x -y 

15 .!. 2 
(ló1f)

2 
Rnd sin 8 cos 2<f' 

(2.3) 

(2. 4) 

In the following we shall, where necessary, indicate which functions are going to 

be used. 
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II-3 MOLECULES 

This treatment of molecules starts from the assumption that the atoms in a 
molecule are located in a fixed position and do not vibrate. For an electron 1 in 

an orbital tl' i in this molecule we then obtain: 

(2.S) 

in which 

Equation (2.6) is written in atomie units. 
The summation tl is over all nuclei in the molecule, the summation j over all 

occupied orbitals in the molecule. Za is the electrical charge of nucleus tl. P 
12 

is a permutation that changes the electrons 1 and 2. 
The wave equation (2.6) cannot be solved exactly, so we have to find an 

approximate solution for tl' .. 
1 

We suppose therefore that the electron 1 is not localised on a certain atom hut has 
been spread over the whole molecule. Let us assume that the wave functions 
4> 1, •••••• , f n have been found for the free atoms of the molecule. Some of these 

ct> 1, """ ", 4>n belong toa certain nucleus, for inst~nce, cl>p." ", 4>j belong 
to nucleusa., others to another nucleus, etc. 
We now approximate tl'. with a linear combination of atomie orbitals (LCA0-

1 
approximation}, i.e.: 

n 

1"1 = E eik 4>k 
k = 1 

(2. 7} 

The coefficients eik are chosen in such a way that the energy E
1

of1'f
1 

is minimal; 
hence: 

dE - = 0 (2.8) 
oCik 

Starting from n independent atomic'()rbitals we thus find n equations with n vari

ables. Defining 

Hkl = (•k 1 Hl •i> 
5k1 <•ki •1> 

the equations may be written as: 

18 

(Hll - EiS11) Cl+ (H12 - EiS12) C2 + ''"' + (Hln - Ei51n) C n = O 

(H 1 - E.S 1> cl + (H 2 - E,S 2> c2 + ••••• + (H - Eis ) c = 0 n in n in nn nn n 

(2. 9) 

(2.10) 



They can only have a non-trivia! solution if the determinant of the coefficients 
(the secular determinant) is zero, hence: 

Hll - E.S11··········· Hl - E.51 , 1 n p n . . . . =0 (2.11) 
H .:. E. S 

1
• • • • • • • • • • • H - E

1
S 

n1 1 n nn nn 

This gives rise to an n th -degree equation with n solutions for E
1 

: El' 

With the help of this Ei we fi.nd from (2.10) the coefficients eik' 
This is the most elementary form of the molecular orbital theory. 

. . . . . , E . 
n 

Different variations have been proposed and if used later on they will be discussed 
then. 

Since the number of atomie orbitals can, under certain circumstances, be 
quite considerable, the actual computation of the determinant may be difficult. 
One of the most powerful tools of the molecular orbital method is then given by 
the group theory. It shows the way to the construction of the correct linear combi
nations of the atomie orbitals which leads to a drastic reduction in the number of 

integrals Ht<l and Skl that have to be computed, This of course facilitates the so
lution cons1derably. 

II-4 GROUP THEORY 

Inorganic complexes posses a number of symmetry elements. The complex 
NiF:- for instance, remains invariant under rotations over an angle of 90, 180 and 
270 degrees around the z-axis, also under rotations over 120 and 240 degrees 
around the (1, 1, 1)-axis etc. All symmetry operations that leave the overall aspect 
of the complex unchanged forma group known as the symmetry group. Every 
complex is thus characterised by its own symmetry group. 
The most important to us are: 

octahedral complexes with the octahedral group 0 ; 

tetrahedral complexes with the tetrahedral group fd; 
square planar complexes with the square planar group D 

4
h. 

A complete discussion of the group theory can be found in the References ( 4), 

(9), (10) and (27). 
The essentials of the group theory that are important to us will now be summa

rised. 
A group G is considered to be a collection: of elements th!!!= have the following 

properties: 
{a) The product of two elements of the group is again an element of the group. 
(b) The multiplication is associative: 

( g*h )*k = g* { ~k ) • 
(c) There is a unit element E such that ~g = ~E = g for all gin G. 
(d) Every element g of G has an inverse g-1 that·also belongs to G, such that 

~g-1 = g-l*g = E. 
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The groups G and H are said to be isomorphic if there exists a 1: 1 correspond

ence between their elements: g ~ h, 

Each element g of G corresponds with only one element h of H such that if 

gi*gj = ~ then also hi*hj = hk. 
The groups G and H are said to be homomorphic if one element gi of G corre

sponds with m elements hi1, • • • • • . , him of H such that, if gi*gj gk• then also 

also (one of the hnh(one of the h.il> = (one of the hk1>· 
A matrix representation of a group G is a group of matrices that is homomor

phic with the group G. The matrix representation is irreducible if it cannot be sub
divided into matrix representations of a lower dimension (with smaller matrices). 
The character of a matrix representation is the trace of the matrices of that re
presentation. If the number of elements of a group is finite (finite group) there is 

only a limited number of irreducible representations. The characters of these re

presentations are "orthogonal", that is: 

* I X1 (g) xj (g) = h '\ 
g 

(2.12) 

where X. and X. are the characters of two representations of a group, 
l J 

h is the number of elements of that group, 

óij = 0 if xi and xj belong to different irreducible representations, 
6 .. = 1 ü x. and xj belong to identical irreducible representations, hence if 

lJ l x1 Cg> = xJ (g). 

Since a finite group has only a limited number of independent characters, these 
can be collected conveniently in a character table. The character of any reducible 

representation can always be written as the sum of a number of characters from the 
character table. Let X (g) be the character of a reducible representation, then the 

number of times that a character X i (g) from the character tahle occurs in X (g) is 
given by 

(2.13} 

For the relevant groups Oh' T d and D 4h the characters are given (Ref. (4)). Table 

11-1 gives the characters of the group T d' 

Table II-1 Character Table for Td 

Td E 8C
3 

3C
2 

60' 6S
4 d 

Al 1 1 1 1 1 

A2 1 1 1 -1 -1 

E 2 -1 2 0 0 

Tl 3 0 -1 -1 1 

T2 3 0 -1 1 -1 
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We shall also make use of the direct product of representations. 
and f. are representations of G and 

J 
r. (g) x r. (g) = rk (g) 

then l J 

Suppose f. 
l 

also holds. 
(2.14) 

So the character of the direct product is the product of the chara.cters of the repre

sentations r i and r r 
The character Xk can now be reduced to a sum of characters from the character 
table. All the representations of a group can thus be multiplied and the results are 
gathered in a multiplication table. Multiplication tables for Dii.• T d and D 4h are 
given in Ref. (4). Table 11-2 is a multipl,cation table for Td. 

Table II-2 Multiplication Ta1>le for the representations of Td 

Td Al A2 E Tl T2 

Al Al A2 E Tl T2 

A2 A Al E T2 Tl 2 
E E E A

1 
+A

2
+E T +T 

1 2 
T +T 

1 2 

Tl T1 T2 Tl +T2 A
1 

+ E + T
1 

+ T
2 

A
2 

+ E + T
1 

+ T
2 

T2 T2 Tl Tl+T2 A
2 

+ E + T
1 

+ T
2 

A
1 

+ E + T
1 

+ T
2 

The different irreducible representations of a group describe in point of fact a 
certain symmetry pattern. To find out the symmetry of a certain function we shall 
have to investig.ate in which irreducible representation this function fits. Some
times we need a combination of functions to give a type of symmetry fitting in the 
irreducible representation. To find this combination we apply projectionoperators. 

The projection operator E (f) belonging to an irreducible representation f ofG 
is defined by: nr T' -1 

E (f) = h g Xr(g ) g (2.15) 

where n r is the dim.ension of the representation r . 
Operation with t (f) on a function f (x, y, z) produces a function of similarsymme
try behaviour as the representation r . In this manner we can classify the functions 
according to the düferent irreducible representations of G and this possibility of 
classifiq1.tion is of major imp~ance. 

Consider, for instance, the integral 

1 = (f(x, y, z) 1 g(x, y, z>} 

where f(x,y,z) belongs to r. and g(x,y,z) belongs to r .. 
1 J 
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Now if f i :f fj the integral 1 vanishes. Hence if functions belong to differentirre
ducible representations it is possible to predict on symmetry arguments that the 
integral is zero. We can go even further. An n-dimensional representation f pos

sesses n basis components Y 1, •.•••.• , Y n. 
The integral I is also zero ifthe two functions f(x,y,z) and g(x,y,z) belong to the 
Same representation f but differ in that they belong to different basis components 

of r. 
The integral 

I = (f(x,y,z) 1~1 g(x,y,z)) 

can only be different from zero if the product r i x rop x rj contains the totally 

symmetrical representation• 
Frequent use will be made of these fundamental principles. It has been shown 

above that the molecular orbital theory gives rise to integrals of the type 

It now becomes possible to classify the 4>•s according to the irreducible represen

tations of the symmetry group of the molecule. If 4>i and 4>j nowbelongtodifferent 
irreduci ble representations or to the same representation but to different basis com -

ponents of this representation, then H .. and S .. are identically equal to zero (H is 
lJ IJ 

a totally symmetrical operator and belongs to A1 ). 
In the secular determinant large parts simply vanish and the determinant acquires 
the blockform: 

f 1 

f2 Y1 

f2 Y2 
= 0 (2.16) 

f 3 
1 

Each block in this determinant belongs to only one basis component of an irredu
cible representation of the group. 

There are other applications of the group theory, for instance in the determi
nation of selection rules for spectra! transitions and in the treatment of the spin

orbit coupling. Some of these will be dealt with later. 

11-S TETRAHEDRAL COMPLEXES 

In tetrahedral complexes the centra! ion is surrounded by four ligands that 

occupy positions on the vertices of a tetrahedron. The centra! ion is supposed to 
be in the origin of the coordinate system; the ligands are then found at equal dis
tances in the following directions: 
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L 1 + (1, 1, 1) L2 + (1, -1, -1) L3 + (-1, 1, -1) L4 ..,.. (-1,-1,1) 

The axes of the centra! ion and of the ligands in relation to the main coordinate 

system are chosen as illustrated in Fig. 2.1. They have the following directions: 

XM (1, o, 0) 

YM = (O, 1, 0) 

ZM = (O, o, 1) 

x1 = (1, -1, 0) 

Yl = (1, 1, -2) 
Z1 = (-1, -1, -1) 

x2 =(1,1,0) 

y 2 (1,-1,2) 

z 2 = (-1, 1, 1) 

x3 =(1,1,0) 

y
3 

= (1, -1, -2) 

Z3::: (1 1 -1,1~ 

Fig. 2.1 Coordlnate systems Wl<ld fora tetrahedral complex 

X4 = (1, -1, 0) 
y4 =(1,1,2) 

Z4=(1 1 11 -1) 

The centra} ion is supposed to be a transition metal ion from the third row of 

the periodical system, hence only 3d, 4s, and 4p-orbitals are of importance in 

determining the chemica! bonds. The ligands are supposed to have s and p-orbitals 

available for bonding. 

These orbitals now have to be classified according to the irreducible represen

tations of the tetrahedral group. The operations of Td are: 
( a) unit operation E, 

(b) 8 rotations through 120°, i.e • .:!:. 120° around ( 1, 1, 1 ), ( 1, -1, -1 ), ( -1, 1, -1), 

and (-1, -1, 1), 

(c) 3 rotations through 180°, i.e. around (1, 0, 0), (0, 1, 0) and (0, O, 1), 

(d) 6 reflections Od, i.e. in a plane through (O,O, 1) and (1, 1,0); (O,O, 1) and 
(1,-1,0); (1,0,0) and(0,1,1);(1,0,0) and(0,-1,1); (0,1,0) and(l,0,1); 

(O, 1,0) and (1,0, -1), 
(e) 6 improper rotations s

4
, i.e • .:!:. 90° around (1, O, 0), (0, 1, 0) and (0, O.. 1). 
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To apply the projection operators of T d to the orbitals of the· central ion we 
must first determine how the elements of T d operate on these orbitals. 
We can then apply the proj ection operators ( 2. 15) to the orbitals of the central ion 
and then find, for instance: 

t(A1) Px = 0 
E(A1) Py = 0 
t(A1) Pz = 0 

E(A1) d = 0 
for all d-orbitals 

and similar expressions for the other representations. 
Hence: 

s belongs to A
1 

and, analogously: 

d 2 2 and d 2 belong 
x -y z 

to E 

Px' p andp } 
d d Yand d z belong 
yz' xz xy 

We can improve on this classification by distinguishing according tothediffer
ent basis components of the representations. This is facilitated by the application 
of some tables given by Griffith (Ref,(4), Table A16). 
Consider, for instance, the E representation. The basis components are E0 and 
EE and from the table we see: 

C~ E0 = E0 

Cz EE = -EE 
4 

We must now construct linear combinations of d 2 2 and d 2: · 
x -y z 

in such a way that 

"11 al dx2-y2 + bl dz2 

"12 = a2 dx2-y2 + b2 dz2 

c~ 'lf 1 = "11 

c~ '1'2 = -lf12 (2.17) 

Now 'lf 1 belongs to the E0-component and \112 to the Et-component of the repre
sentation E. 
From equation (2.17) follows 

z 
c4 (ald 2 2 + bld 2) "::: -ald 2 2 + bld 2 =: ald 2 2 + bld 2 x -y z x -y z x -y z 

hence 
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and 
z 

C ( a d 2 2 + b d 2) = -a d 2 2 + b d 2 = -a d 2 2-b d 2 
4 2 x -y 2 z . 2 x -y 2 z 2 x -y 2 z 

hence 

According to this 

d 2 belongs to E 0 
z 

d 2 2 belongs to EE 
x -y 

Acting in a similar manner for all metal orbitals we obtain the results given in the 
second column of Table II-3. 

Table II-3 Classification of the atomie orbitals of tetrahedral complexes according 

to the irreducible representations of T d 

Representation Metal 
Ligand orbitals 

Type of 

of Td orbitals bonding 

Al al s s +s +s +s O-bonding 
1 2 3 4 

z +z +z +z 0-bonding 
1 2 3 4 

A2a2 - -

EE dx2-y2 (xl +x2-x3-x 4) lf -bonding 

E0 d2 - (yl+y2-y3-y 4) lf-bonding 
z 

Tlx - xl+x2+x3+x4-/3{yl+y2+y3+y4) no-bonding 

Tl - x -x -x +x +/3(y -y -y +y ) no-bonding 
Ty 1234 1234 

no-bonding - -2(x -x +x -x ) 
1z 1 2 3 4 

T px } s+s-s-s 0-bonding 
2~ 1 2 3 4 

d zl+z2-z3-z4 0-bonding 
yz 

-/3(xl +x2 +x3 +x 4)-(y 1+y2 +y 3 +y 4) lf-bonding 

T py } s -s +s - s O-bonding 
2n 1 2 3 4 

d z -z +z -z o-bonding 
xz 13 1 2 3 4 (x -x -x +x )-(y -y -y +y ) lf-bonding 

1 2 3 4 1 2 3 4 
T pz } 

s-s-s+s o-bonding 
2~ 1 2 3 4 

d z -z -z +z o-bonding 
xy 1 2 3 4 

lf-bonding 2(Y 1-y2 +y 3-y 4) 

The metal orbitals have now been classified according to the irreducible repre

sentations of the tetrahedral group. The manner in which this has been done is, in

deed, not the quickest hut it can be applied generally. The ligand orbitals, for in-
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stance, can be classified in the same way. Application of the projection operators 

of T d followed by classification according to the different basis components of the 

irreducible representations gives the results presented in the third column of Table 

II-3. The fourth column of Table 11-3 indicates in addition the type of bonding, 

viz. 
a - bonding (no nodal planes), 

1T - bonding (one nodal plane), or 

no - bonding. 

Fig. 2. 2 illustrates some combinations of ligand orbitals. 
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Without this classification according to the irreducible representations of T d we 
have to deal with a 25 x 25 determinant. This determinant is now seen to decom

pose into the following blocks: 

one 
two 

3 x 3 determinant for A 

identical 2 x 2 determinants for if 
three identical 1 x 1 determinants for T 

1 
three identical 5 x 5 determinants for T 

2
• 

By solving these determinants we find a number of one-electron energies, i.e.: 

three for the A1, two for the E, one for the T 1 and five for the T 2 -symmetry. 
For the A1 -symmetry we expect for instance: 

E 

4s ---~: 
"" ... " 

' ' ' 

' ' 
·. 

. 
p 

s 

metal orbitals complex ligand orbitals 

A similar energy level scheme can also be made up for all symmetry-types and 
the complete system of energy levels for the electrons in the complex can then be 

assembled. A qualitative scheme for tetrahedral complexes is to be found in Fig. 

2.3. 
Substituting the energies found in the equations (2.10) we can find the correct 

one-electron orbitals of the complex as linear combinations of metal and ligand 

orbitals. These orbitals are now to be filled up with the relevant electrons of the 

metal ion and the ligands. 
In the complex CuCl:- there are 41 "valence electrons", viz. 

10 d-electrons of Cu 
1 s -electron of Cu 
8 s -electrons of 4 Cl 

20 p-electrons of 4 Cl 
2 extra electrons. 

Assume the complex to be perfectly tetrahedral. 
This gives us for CuCl!- the configuration 

6 2 6 2 4 6 6 4 5 
Inner Core (1t

2
) (1a1) (2t

2
) (2a

1
) (1e) (3t

2
) (t

1
) (2e) (4t

2
) (2.17a) 

The only partly occupied shell is 4t
2 

with one electron missing. The CuCl:- thus 
has a 2T 

2
-ground state (Ref.(4), page 226). For the first excited state of CuCl~-

we expect IC (1t2)6 (1a1)2 (2t2)6 (2a1)2 (1e)4 (3t2)6 (t1)6 (2e)3 (4t2)6 (2.17b) 
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The electron hole is present here in the 2e-orbital, hence this excited state is a 
2E-term. The symmetry of other excited states can be determined in a similar 
manner, for instance, 

6 2 6 2 4 6 5 4 6 
IC (lt

2
) (1a

1
) (2t

2
) (2a

1
) (le) (3t

2
) (t

1
) (2e) (4t

2
) 

is a 2T 1-term. 

11-6 OCTAHEDRAL COMPLEXES 

After the discussion of the tetrahedral complexes, the octahedral complexes 
can be dealt with summarily. The systems of axes for the central ion and for the 
ligands of an octahedral complex are chosen according to Fig. 2.4. 
The orbitals of the centra! ion and ligands are now classified according to the 
irreducible representations of the group Oh giving the results of Table II-4. 
Solution of the remaining secular determinant then produces a number of eigen
values for the one-electron energies. 



Table II-4 Classification of the atomie orbitals of octahedral --··"~··-·---~ ac<~cmctintr 

to 

Representation Metal 
Ligand orbitals 

Type of 

of Oh orbitals bonding 

A a s s + s + s + s + s
5 

+ s
6 

0-bonding 
lg lg 1 2 3 4 

z + z + z + z + zs + z 0-bonding 
1 2 3 4 6 

Alualu - -

A a - -
2g 2g 

A a - -
2u 2u 

E E d f3 (sl - s + s - s ) o-bonding 
g x2-y2 

{3 (zl -
2 4 5 

z2 + z4 - zs) CJ-bonding 

E 0 d2 2s + 2s - s - s - s - s o-bonding 
g z 3 6 1 2 4 5 

o-bonding 2z +2z -z -z -z -z 
3 6 1 2 4 5 

E E - -
u 

E 0 - -
u 

T x - x3 - y 1 - x4 + y 6 no-bonding 
Tlgy - x -y -x +y no-bonding 
T 1gz 2 3 6 5 - x -y -x +y no-bonding 

lg 1 2 5 4 

Tlux px sl - s4 0-bonding 

zl - z4 (] -bonding 

x3+y2-x5-y6 'Tl'-bonding 

Tluy py s - s o-bonding 
2 5 

o-bonding z - z 
2 5 

x1+y3-x6-y4 n-bonding 
T z pz s3 - s6 O-bonding 

lu 
z - z O-bonding 
3 6 

x +y -x -y lf-bonding 
2 1 4 5 

T2g f; d x3 + y 1 + x 4 + Y 6 lf-bonding 
T dxz 

x2 + y 3 + x 6 + y 5 lf-bonding 
T2gn dyz x +y +x +y

4 
11'-bonding 

2g t xy 1 2 5 

T2 f; - xl - y 3 + x6 - y 4 no-bonding 
Tu - x3 - y 2 + xS - y 6 no-bonding 
T2un - x -y +x -y no-bonding 

2ul; 2 1 4 5 
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Fig. 2.4 Coordlnate •Y81em8 WJed for an octahedral complex 

4-For the complex CuC16 the ground state would be 
4 2 6 4 2 6 6 6 6 6 

IC (leg) (1a1g) (tt1u) (2eg). (2a1g) (2t1) (lt2g) (3t1) (t2u) (\g) 

6 3 
(2t ) (3e ) 

2g g 
The ground state is now 2E and it can easily be seen that the first excited state is 
2T g 

2g· 

11-7 SQUARE PLANAR COMPLEXES 

The choice of axes for these complexes is shown in Fig. 2.5. Table 11-:5 pre
sents the classification of the one-electron functions according to the irreducible 
representations of D • 
The ground state of'!!1uc14

2- in a square planar surrounding is 2B2g• Some excited 
2 2 2 states are A

1 
, B

1 
, E etc. 

g g g 

II-8 LOWER SYMMETRIES 

The cases discussed so far concern a perfect tetrahedral, octahedral or square 
planar structure. In actual practice it often occurs that these tetrahedral, octa
hedral or square planar structures are more or less distorted. 
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Fig. 2. 5 Coordlllate syatems wied for a square planar complex 

Here we shall only be concerned with a single type "of distortion of the tetrahedron, 
viz. that in which the ligands are displaced parallel to the z-axis in the direction 
of the xy-plane (See Fig. 2. 6) • 

. In the extreme case this distortion leads to a square planar structure.o In intermedi
ate situations the complex possesses the D 

2
d-symmetry. The coordinate systems 

are chosen analogously to those in the tetrahedral complex, i.e. 

XM = (1,0,0) 
yM = (0, 1,0) 
ZM = (0,0, 1) 

(a = z/z ). 
0 

x
1 

= (1,-1,0) x
2 

= (1,1,0) x
3 

= (1,1 1 0) 
y

1 
=(a,a,-2) y

2
=(a,-a,2) y

3
=(a,-a,-2) 

z 
1 

= (-1, -1, -a) z
2 

= (-1, 1, a) z
3 

= (1, -1, a) 

x
4 

=(1,-1,0) 
y 

4 
= (a, a, 2) 

z
4 

= (1, 1, -a) 

The characters of D
2
d are given in Table II-6. 

Table II-7 shows the classification of the one-electron wave functions according 
to the irreducible representations of D2d. 
Fig. 2. 7 shows how the transfer from tetrahedral symmetry to square planar sym
metry via the D

2
d-symmetry affects the energy levels in the complex, 

II-9 QUANTITATIVE ASPECTS 

In Section II-3 we saw that the application of the molecular orbital theory to 

a complex leads to a secular determinant. This determinant can be split up into a 
blockform with the help of the group theory. In order to solve these blocks we 
must calculate the remaining integrals H .. and S ..• 

lJ lJ 
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Table Il-5 Classification of the atomie orbitals of a square planar complex 

according to the irreducible representations of D 
4

h 

Representation Metal 
Ligand orbitals 

of D4h orbitals 

A a s } sl + s2 + s3 + s 4 lg 1g 
d2 z

1 
+ z + z + z 

z 2 3 4 

A a - -lu lu 
A a - xl -x +x -x 

2g 2g 2 3 4 
A 

2ua2u pz - (y - y + y - y ) 
1 2 3 4 

Blgblg d x2-y2 
x +x -x -x 

1 2 3 4 
B b - y +y -y -y 

lu lu 1 2 3 4 
B b d s -s -s +s 

2g 2g xy 1 2 3 4 
z -z -z +z 
1 2 3 4 

B b 
2u 2u - -

Ex d - (y 1 + y 2 + y 3 + y 4) g yz 

Ey d - (y - y - y + y ) 
g xz 1 2 3 4 

Ex px sl + s2 - s3 - s4 u 
z + z - z - z 
1 2 3 4 

xl + x2 + x3 + x 4 

Ey py s - s + s - s 
u 1 2 3 4 

zl - z2 + z3 - z4 
- (x - x - x + x ) 

1 2 3 4 

(a) Overlap integrals Sij_ 

The overlap integrals S" are of the form 
lJ 

(4>MI ~ ca 4>a> =~ < 4>Ml4>a) Ca 

Type of 
bonding 

O,;.bonding 

a-bonding 

no-bonding 

'JJ-bonding 

ir-bonding 

no-bonding 

CJ-bonding 

0-bonding 

1J..,bonding 

1'-bonding 

0-bonding 
a-bonding 
7T-bonding 

(1-lbonding 

0-bonding 
1'-bonding 

(2.18) 

These integrals, known as "group over lap integrals", must first be expressed in the 

more simple overlap integrals S \ S < I ) 11 I 
etc. < M a)> pOM P 0 a •(P M P11a»···· 
This can be done in a manner somewhat analogous to that ~proposed by Ballhausen 

{11). We apply a coordinate transformation subsequent to which the metal orbitals 
are described with the help of a right-handed coordinate system with the z-axis 

directed to ligand a. 
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Fig. 2.6 Deformation of a tetrahedral complex 

Table 11-6 Character Table for D
2
d 

D2d E cz 
2 

2C
2 

2S
4 2ad 

Al 1 1 1 1 1 

A 1 1 -1 1 -1 
B2 1 1 1 -1 -1 
B1 1 1 -1 -1 1 
E2 2 -2 0 0 0 

Denoting the original system of axes by x, y, zand the new system by x', y', z', 
the position of x', y', z1 with regard to x, y, z can, for example, be given by 

(2.19) 

The transformation of the axes is now given by 

(2.20) 
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Table 11-7 Classification of the atomie orbitals in the D
2
d-symmetry 

Representation Metal 
Ligand orbitals 

Type of 

of D2d orbitals bonding 

Al al s } sl + s2 + s3 + s4 0-bonding 

d2 z
1 

+ z + z + z 0-bonding 
z 2 3 4 

yl+y2-y3-y4 

A2a2 - x -x +x -x no-bonding 
1 2 3 4 

Blb1 dx2-y2 x +x -x -x 
1 2 3 4 

11-bonding 

B2b2 pz sl - s2 - s3 + s4 o-bonding 
d zl - z2 - z3 + z4 0-bonding 

xy 
yl -y2+y3-Y4 11-bonding 

E p s + s - s - s 0-bonding 
x dx 1 2 3 4 

a-bonding z + z - z - z 
yz 1 2 3 4 

11"-bonding x1 + x2 + x3 + x 4 
y1 +y2 +y3 +y4 U-bonding 

E p s - s + s - s O-bonding 
y dy 1 2 3 4 

z - z + z - z 0-bonding 
XZ 1 2 3 4 

xl -x2 -x3+x4 11'-bonding 

y1-y2-y3+y4 lf-bonding 

We can also express x, y, zin x', y', z', i.e. 

(2.21) 

The wave functions can be written as 

lt' = f(r) H(x, y, z) (2.22) 

Substituting the expressions (2.21) for x, y, z we obtain the wave functions in the 
new coordinate system x 1, y', z' . 
Example: 
In a tetrabedral complex the overlap integral for the symmetry EE is given by 
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NE is a normalisation constant for the ligand function. 

(1) (dx2-y2 I x1) : a= L 
1 

.!. 1 
x' 12 - 12 0 x 

= 
y' = ..L J.. i 

./6 /6 - /6 y 

1 1 1 
z 1 

13 /3 13 
z 

hence 
... L 1 1 

x 
l'i 16 /3 x' 

..L ..!. 1 
y' y = 

12 /6 13 
2 1 

z' z 0 - /6 /3 
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x' 

z 

/ 
I 

I 

/ 

I 

-- - - -- -,AE,-------------... y 

Fig:. :.!. ~ Tr:uadorination of -.•ooixtinatl~s ntx~cssary t'or tht.' cak•idatic.•n of ~roup
O\"t"rhtp intt,:::tnls 

As a consequence 

x 

Now 

and 
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/3 2 2 = f(r)I" 2(x -y ) = 
13 1 1 1 2 -1 1 1 2 

= f(r) 2 <12x'+ ;rl'+ 13z') -<;2x'+ /el'\r/> 
13 2 2 

f(r) -x• (- y' +- z') 
• 2 /6 /3 

1 /2 = -d +-d /3 x'y' /3 x'z' 

= 



Analogously 

12 
(2) (dx2-y2 1 x2) = /3 < d111 p1f) 

- {d 2 2 I x3) 
12 

(3) = /3 (d11jp11) x -y 

(4) - <dx2-y2 I x4) = ~ <d1fl p'lf> 

which leads to 

{dx2-i l XE) 
'2 1 4NE /3 ( d1f P1f) 

In this way all group overlap integrals are expressed in terms of normaloverlap 

integrals. The Tables II-8, II-9 and II-10 give the results for tetrahedral, octa
hedral and square planar complexes respectively. 

The problem yet to be solved is the calculation of the simple overlap integrals 

(nlmln'l'm 1 ) 

These are integrals in six variables: rA, r8 , 0A' 0B, 'fA and lf B which are,however, 
not independent. The most convenient way of dealing with them is to change them 
into other variables and choose elliptical coordinates, thus producing three inde
pendent variables 

Table Il-8 Group overlap integrals in tetrahedral complexes 

GT (d, <7) 
2 

GT (p,O') 
2 

GT (d, Plf) 
2 

1. 

= -4 (~
2 

NT (lT) \PlTI PlT) 
2 
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Table II-9 Group overlap integrals in octahedral complexes 

GA (s,o) = 6NA (sla) 
lg 1g 

GE (d,O) = 2/3NE (dalo> 
g g 

GT (p,a) 2 NT (0) (polo> 
lu lu 

GT (p;n) = 4 NT (lT) (PnJ pn) 
lu 1u 

GT (d, 1T) = 4NT (dnl pn) 
2g 2g 

Table II-10 9roup overlap integrals in square planar complexes 

GA (s, 0) = 4NA ( slo) 
lg lg 

GA (d,O) = -2 N (dolo> 
lg Alg 

GA 
2u 

(p, l1) = 4NA 
2u 

(Pnl P1T) 

GB (d, n) 
lg 

= 4 NB 
lg 

(dnl pn) 

GB (d,a) = 2fiN
8 (dojo) 

2g 2g 

GE ( d, 11) = 212 NE (d11I pn) 
g g 

GE (p,O) = 2h.NE (a)(palo> 
u u 

GE (p, n) = 2/2 NE (n) (Pnj P11 > 
u u 

38 



t= rA +rB 
R 

"= rA - rB 

R 

(See fig. 2. 9) 

--------. 
1 
\ tpB 

-------R Ya 

Fig. 2.9 Coordinate system used in the calculation of overlap integrals 

The following now holds 
R 

rA=2<t+n) 

rB = ~ (E;, -n) 

1 +tn cos e = _ __..;;.._ 
A E;+n 

1 - E;.n 
cos e8 = t -n 

dT 

. 2 e 
sm A = 

t2+n2_f;20 2_1 

<t+n)2 

sin2 e 
B 

= E;,2 +n2 - t2n2 -1 

< t -n >2 

(2.23) 
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with 

t from 1 + 00 

n from -1 + 1 

lf from 0 + 21' 

With the help of the equations (2.23) we now express the wave functions (2.4) in 
terms off., n and lf· If it is assumed that Rnl has the form rn-le -ar (Slater func
tions) and if we use the expressions 

the overlap integrals are written as a linear combination of the integrals 
OD 

Ak (p) = 1 J f. ke -PE; df. 

f 
1 k -ptn 

Bk(PT) = _1 n e dn 

See Ref. (12) 

(2.24) 

(2.25) 

These integrals can be calculated in a relatively simple manner and have more
over been tabulated before (13, 14, 15). 
The calculation of the overlap integrals will now present no serious difficulties. 

(b) The integrals H .. 
l) 

The integrals H .. have the form 
lJ 

or 

or 

(tMIHlcji'M) 

(cjlM 1 Hl~ fa) 

(~fa 1H1 ~, t a ,) 

(2. 26) 

The second and the third type of integrals have to be expressed again in integrals 

of the type (nAlAmA 1H1 n'Bl'Bm'B)and (nAlArnA 1H1 n'Al'Am'A) 

by a coordinate transformation as discussed in part ( a) of this section. Because H is 
invariant under these transformations, the expressions for the H .. integrals are 
identical to those encountered with the group overlap integrals:1For instance, in a 
tetraliedral complex for the symmetry EE: 

(dx2-y2IH1 xE> = 4 Nc ~ <(dw IH 1 p1T) 
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The Tables II-8, II-9 and II-10 then give the necessary relations. 

We shall first limit the discussion to the integrals H .. 
11 

4>. being a one-electron function either of the metal ion or of a ligand. 
TÎie operator H is defined according to (2. 6) and so the integral can be split up as 

follows: 2 

(<l>i 1H1 <!>) = <4>p>I-~ 1 •P» (l) 

- L (4>.(1) 1 Za 1 <j> .(l>) 
a l ra 1 l 

(2) 

+ j; i <<l>p>] <!>.(2) <l>.(2)1 4> .Cl>) 

(2. 27) 

(3) 
l 

r12 

- j; ió(si,sj) \<i>P>/ <!>j(
2
)4>p> p12l +p)) 
r12 

(4) 

(1) This term is equal to the kinetic energy of an electron in orbital 4>. and is a 
l 

one-electron integral. 

If 4>. bas the form 
l 

n+l [ ] _.l n-1 -ar 
<l>i = j n,l,m) = (2a) 

2 (2n)~ 2 
r e \m (0,l{'} (2. 28) 

the integral (1) can be solved in an analytica! form. 

(2) This term gives the potential energy of an electron in orbital <lt. in the electro-
1 

statie field of the nuclei. The summation over a furnishes two types of 

integrals: 
(a} Orbîtal <!>. belongs to nucleus a. With <!>.as of (2.28) the solution of the 

1 l 
integral can be effected in an analytica! form. This integral is usually 
combined with integral (1); if so, one finds 

< 1 
1 

V2 
_ Za 1 l ) _ [ l 2 n(n-1)-l(l+l)J ~ Zaa n, , m - n, , m - - -

r n(2n-1} 2 n 
(2.29) 

and the integral can be calculated straight away. 
(b) The orbital <j>. does not belong to the nucleus a: 

1 

<•t(l}I ~ 1•tc1» 
By applying the expressions (2.23) and (2.<:4) this integral can bereducedto 

a combination of Ak and Bk -integrals (2. 25). 
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(3) This term contains what are known as the Coulomb integrals that represent the 
Coulomb repulsion between the charge clouds of the electrons in orbitals4> i and 
4>.. There are again two types of integrals: 
(J) 4>. and 4>. belong to the same nucleus. In this case the Coulomb integrals 

c~n be Jpressed in the Condon-Shortley ~-integrals as given, for instance, 
by Criffith (Ref.(4), chapter 4). The Fk-integrals have the form 

(Rn
1
•11(1) RnJ.1.(2)1 ~{+1 1 Rn.l.(1) Rn.1.(2)) (2.30) 

J l l J J 

Substitution of Slater functions for Rnl leads to an analytical soluble form. 
(b) 41

1 
and 4>. belong to different nuclei. Substitution of (2. 23) and (2. 24) re

duces thJ Coulomb integrals toa combination of~ and Bk -integrals (See 
Roothaan, Ref. ( 16)). 

( 4) The last term contains what are known as the Exchange integrals. Again we 

distinguish two cases: 

(a)4>. and 4>
1 

belong to the same nucleus. The exchange integrals can now be 
e~pressed in the Condon-Shortley Gk-integrals 

{Rni1p> Rnjl/2) 1 r:k~1 I Rnjl/1) F\1?» (2.31) 

(b) 4>. and 41. belong to different nuclei. The integrals now become much more 
c~mpliclted. An approximated method of solving these integrals is given 
by Ruedenberg (17). 

Further information for the computation of the various integrals may be found 
in ( 18, 19, 20, 21 ). 

At least in principle it is naw possible to calculate the matrix elements Hii 
explicitely starting from the one-electron wave functions. In practice, however, 

the computation entails a huge amount of effort. 
Even more difficult is the computation of the integrals 8ïj with i -;:. j. These 

matrix elements contain integrals with functions that belong to three ·different 

nuclei, for instance, A B 

1 

1 

1 

C B 

<•1(1)4ij (2) iï2 4>k(1) .j (2)) 

It is practically impossible to find an analytica! solution here. One must apply a 
numerical approximation and this is always very time-consuming. 

Naw there exist several approximate methods that are based on the use of em

pirical parameters to avoid the computational work. One of the best known is the 
one proposed by Wolfsberg and Helmholz (22), which uses the H.. as parameters. 

11 
These H .. integrals are chosen equal to the Valence State Ionisation Energies (23, 

11 
24) of the relevant ion and subsequently are corrected by trial and error in such a 
way that the energies of the first and second excitation acquire the correct values. 
The H .. -integrals are then approximated by empirica} averaging over Hii and H..: 

y " 
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H.. = FG;. (H .. + H..) ; 2 lJ lJ 11 JJ 
(2.32) 

Here Gij is a group overlap integral and F a constant chosen so that reasonably 
correct values of H .. are obtained for simple molecules. One assumes 

lj 

F = 1. 67 for a -bonding 

F = 2.00 for 1f -bonding 
(2.33) 

The data necessary for the solution of the secular determinant are now known and 
the energies can be calculated. 

The results of the Wolfsberg-Helmholz method are reasonably satisfactory, but 
the approximation suffers from the fact that it is predominantly empirica!, 

A slightly different method is proposed by Ballhausen et al.(25) for the vana
dy l ion. They assume 

H = -2 G \/H""H 
ij ij v·~i ')j (2.34) 

which is certainly a somewhat more acceptable assumption because the integral 
H.. tends to decrease rapidly if the difference between H.. and H.. increases (See 
~ ll " Cliapter III). 

Far less empirica! is the method published by Sugano and Shullman (26). With 
this method the efforts made in obtaining numerical solutions are much greater. 
They finally calculate 6. = E(2t

21 
) - E(3e ) for NiF:- from first principles with 

the satisfactory result that the th~oreticarvalue is found to agree with the expe
rimental one. 
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CHAPTER 111 

MOLECULAR ORBITAL CALCULATION ON THE GROUND 
STATE OF THE TETRAHEDRAL 
TETRACHLOROCUPRATE (Il)ION 

III-1 INTRODUCTION AND LITERATURE DATA 

The following molecular orbital calculation assumes the complex CuCl!- to 

possess a tetrahedral structure. The wave functions of the atoms in the complex 

are then classified according to the irreducible representations of the group T d as 

has been explained in Chapter II. Subsequently the matrix elements of the secular 

determinant can be calculated, and by evaluating the secular determinant a num

ber of eigenvalues of the energies is obtained. 

There is, however, a complicating factor here. The wave functions of the 

electrons are dependent on the charge distribution in the complex, for instance, 

the wave function of a 3d-electron turns out to be different in the d9 and a10 
-

configuration of Cu, etc. Consequently also the Hij and Sij-integrals become de
pendent on the charge distribution. In the calculation given in the following, the 

Hij and Sij-integrals are computed as functions of this charge distribution. To de

termine the correct eigenvalues an iteration process is then applied, viz. 

( 1) An estimate is made of the initial charge distribution, p. 

(2) The H.j and S .. -integrals pertaining to this charge distribution p are calculated 

and substituted
1
in the secular determinant. 

( 3) Evaluation of the secular determinant then produces the energy-eigenvalues 

and the relevant eigenfunctions. 

(4) From the eigenfunctions a new charge distribution, p ', is calculated. 

If p and p' differ too much the cycle is repeated with p' as initia! charge distri

bution. 

Little can be said at present about the tendency towards convergence of this 

iteration process and about the tolerance of p • It is supposed that when the initial 

p and the final p 1 are within certain limits found to be equal, p represents the 

correct charge distribution and the eigenvalues of the determinant belonging to 

this charge distribution are considered to be the correct one-electron energies in 

our approximation. 

The wave functions applied in the calculation are summarised in the Tables 

III-1 and III-2. The functions of chlorine were obtained from a paper by Watson 

and Freeman (1). They are Self Consistent Field (SCF)-functions approximated by 

linear combinations of Slater functions. 
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Table 111-1 One-electron Wave Functions of Chlorine * 

The radial part of the one-electron wave functions of chlorine will be givenbythe 

following sum 
R = t- ~-1 -a.r 

nl " ei Ni r e l 

3s-functions 

Cl ei-

i c. n. a. c. 1 n. a 
l l l l l i 

1 0.03227 1 18.9832 0.04601 1 18.9832 
2 0.05472 1 14.7941 0.03205 1 14.7941 
3 0.04605 2 14. 7181 0.06034 2 14.7181 
4 -0.05545 2 9.6220 -0.07895 2 9.6220 
s -0.21002 2 6.7665 -0.18010 2 6.7665 
6 -0.20191 3 6.3407 -0.21416 3 6.2190 
7 0.29052 3 3.3742 0.40045 3 3.2450 
8 o. 71292 3 2.2999 0.59959 3 2.1679 
9 0.14068 3 1.4375 0,16295 3 1.3550 

3p-functions 

1 
cc 

! 
Cl 

i c n. a. c. n. ai i l l l l 

1 -0.01295 2 13.7900 -0.01158 2 13.7900 
2 -0.03982 2 8.8355 -0.03902 2 8.8355 
3 -0.26254 2 5.3987 -0.23912 2 5.3987 
4 0.12225 3 4.0186 0.10277 3 4.0186 
5 0.35932 3 2.4367 0.38612 3 2.4367 
6 0.56879 3 1. 7380 0.49189 3 1.6382 
7 0.09941 3 0,8720 0.20319 3 0.8219 

* These functions are from a paper by R.E. Watson and A.J. Freeman. 
For the other functions and for further data see this paper (Ref.(1)). 

Table III-2 One-electron Wave Functions of Copper * 

The radial part of the one-electron wave functions is given by 
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3d-functions 

io l 
i 

c. n a. c. n. a. 
1 l 1 l l 1 

1 0.5933 5.95 0.6062 3 5.95 

2 0.5744 ) 2.30 0.5371 3 2.50 

4s-functions 

d10s2 i 0
s 

i 
c. n. a. c n a 

1 1 1 i i i 

1 -0.00569 1 28.365 -0.01111 1 28.365 

2 0.01899 2 11.025 0.03716 2 11.025 
3 -0.04475 3 5.11 -0.08862 3 5.11 
4 1.00084 4 1.00 1.00330 4 1.25 

ls2 ls 
1 -0.01992 1 28.365 -0.02693 1 28.365 
2 0.06677 2 11.025 0.09042 2 11.025 
3 -0.1620 3 5.11 -0.2223 3 5.11 
4 1.0107 4 1.55 1.0201 4 1.75 

4p-functions 

d10p2 10 
d p 

i 
c. n. a ei n. a 

l 1 i 1 i 
1 0.00150 2 11. 95 0.01040 2 11. 95 
2 -0.00486 3 4.815 -0.03428 3 4.815 
3 1.00001 4 0.51 1.00053 4 0.89 

d9p2 9 
dp 

1 0.02714 2 11.95 0.03813 2.. 11.95 
2 -0.09050 3 4.815 -0.12818 3 4.815 
3 1.00368 4 1.22 1.00736 4 1.38 

* Some of these functions are from Ref.(2). For other copper-functions 
and for further data see Ref.(2). 
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The ls, 2s, 3s, 3d and 49 functions of copper are from Richardson et ar. (2), 
as is the 4s function of the d s2 -configuration of Cu. The other 4s functions were 
selected in such a way that the trend of the coefficients a (of rn-l e-ar) runs par

allel to that of the coefficients of the 4p functions. The 4s functions have been 
normalised, and orthogonalised with respect to the ls, 2s and 3s functions of Cu. 
The Cu-functions are also approximations of SCF -functions but are less accurate 
than Watson's functions. However, they are more easily applicable and their / 
accuracy is good enough for our purpose. The overlap between a Cu-function of 
Richardson and an appropriate Cu-function of Watson is only slightly different 
from 1. A discussion of the accuracy of the functions can be found in the papers 
cited. Fig. 3. 1 shows the radial part of some of them. 

t 
Cu-nucleus 

Fig. 3. 1 Radial part of some atomie wave funellons. 

-r(a.11.) 

From X-ray measurements by Helmholz and Kruh (3) the distance between Cu 
and Cl in Cs2CuCI

4 
is found to be 2. 22 ~. or in atomie units: 4.194 a.u. For 

tetrahedral Cucii- the Cl-Cl distance is then 6.849 a.u. These distances Cu-Cl 
and Cl-Cl are kept constant throughout the following computations. 

III-2 OVERLAP INTEGRALS 

To calculate the overlap integrals between functions belonging to a certain 
irreducible representation of T d (Table 11-3), we must first compute a number of 
simple diatomic overlap integrals. The integrais that have to be calculated are 

(written as ( 4>cu l 4>ci) ): 
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(4s 1 3s) 

<4pO 1 3s) 
(3d01 3s) 

<4s 1 3po) 
\4pol 3pO) 
(3d01 3p 0) 

The functions ~ are taken according to (2.4) with 

and 

Now 

. in which 

R 
nl Nnl r 

n-1 

n+-1 
N = (2a} 2

1 
nl ( (2n) ~ )2 

m = 0 for o-overlap 
m = 1 for 11-overlap. 

-ar 
e 

(4pn! 3pn) 
( 3d n l 3pn) 

(3.1) 

(3.2) 

We now change to elliptical coordinates E; and n using the formulas (2. 23) and 
(2. 24). We shall not try to give a genera! formula for the overlap integrals but in
stead distinguish three separate cases. 
( a) 1

1 
and 1

2 
both are 0 or 1 {s or p-functions). 

Formula (3. 3) then gives: 

- 1 . J 1 c t+n)nl -
1
1 ct-nt2 -

1
2 (1 + E; ")1

1-m (l-~n) 1 2 -m c1-t
2

>m c1-11
2

)m 
1 -1 

Expressing the latter integral in the A and B -integrals of (2. 25), we find: 
n n 

1. 

(n l m 1 n 1 m) = (R)nl+n2+1 {(211+1)(2~+1)} 2 N N • 
1 1 2 2 2 

2
m+ 1 2 

n -1 n -1 1 -m 
1 1 2 2 1 

· z: I l: 
k

1
=0 k

2
=0 k

3
=0 

1 -m 
2 

l 
k =O 

4 

(3.4) 

(3.5) 
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in which 

m' = 

q = n
1 

+ n
2 

- 1
1 

- 1
2 

- k
1 

- k
2 

+ k
3 

+ k
4 

+ 2k
5 

r = k
1 

+ k
2 

+ k
3 

+ k 
4 

+ 2k
6 

(
v) v! 
w = w ! (v-w) ! 

(b) 1
1 

= 0 or 1, 1
2 

2, m = 0. 

Formula (3.3) now gives: 

1 
rs-R n +4 .! 

(n
1
1
1
a 3d0) = 4 c2) 1 (21

1
+1)2 N

1 
N

3
d. 

with 

q = n
1 

+ 1 - 1
1 

- k
1 

+ k
2 

- k
3 

r=k +k +k 
1 2 3 

s=n +3-1 -k +k -k 
1 1 1 2 3 

( c) 1
1 

= 0 or 1, 1
2 

2, m = 1. 

This integral (n
1
1
1

11 j 3d1f) equals integral (3,5) multiplied by a factor /3: 

The integrals Aq (P) and Br (PT) are easily calculated with the help of some 
recursion formulas. The following relations hold: 

A (p) = 
0 

A (p) 
q 

Somewhat more complicated are the B (PT) integrals. It can be shown that . 
r 

Suppose 
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ePT _ e -PT 
B (PT) =----

o PT 

PT -PT 
C (PT) = 

-e - e 

PT 

(3. 7) 

(3.8) 

(3. 9) 



then we find 
r 

B (PT) = B (PT) + B 
1
(PT) 

r o PT r-
for reven· 

r 
B (PT) = C (PT) + - B 

1
(pT) 

r PT r-
for r odd (3.10) 

With the help of the equations (3.5) to (3.10) it is now relatively easy to set 

up a computer programme for the simple diatomic overlap integrals. This program 
was written .in FORTRAN, the calculations were performed with an IBM 1620 Data 
Processing System. 

The functions of Cu and Cl to be used are linear combinations of a number of 
functions (n, 1, m) (See Table III-1 and III-2). To find, for instance, the overlap 
integral between a Cu(3dO) function and a Cl(3pO) function we have to combine a 

number of simple overlap integrals. This part of the calculation may be included 
in the computer programme. The total programme (M.O. BEREKENING 270E 

OVERLAP-INT) then produces directly the numerical value of the overlap between 
a function of Cu and of Cl, or between two functions of different Cl atoms. Table 
III-3 gives the values of the overlap integrals for those orbitals that are relevant in 
our special problem. 

Once in the possession of these overlap in~egrals we can now calculate the nor
malisation constants !or the ligand functions. Using Table III-4 we obtain the nor

malisation constants of Table III-5. 
The integrals that appear in the secular determinant (2.11) are the group over

lap integrals; it has been shown in Chapter II how these integrals can be expressed 
in simple diatomic overlap integrals. Table Il-8 shows for Cu-functions and com

binations of ligand functions the relations between the group overlap integrals and 

the simple diatomic overlap integrals. 
Sim il ar relations pertaining to different combinations of ligand functions belonging 

to the same representation of T d are given in Table III-6. 
Finally, all the group overlap integrals for the secular determinant can be comput
ed, the results being grouped in Table III-7. With Table III-7 we now have at our 

disposal the group overlap integrals for a limited number of charge distributions. 

In the following iteration process it will, however, be necessary to know the over
lap integrals for all charge distributions intermediate between those given above. 
We can calculate these integrals from the values given in Table III-7 by interpola

tion. Take as an example the group overlap integral between the 3dO-function 
of Cu and the 3s-combination of the ligands. For a charge distribut1on Cu(d9 )-Cl 

this integral is equal to O. 05216, for a charge distribution Cu(d10)-Cl it is 

o. 07070. 
Interpolation gives the formula to find the value of the integral for the charge 
distribution Cu(dlO-A)-Cl as 

O. 07070 - 0. 01854A 
In a similar way the effect of a charge variation on Cl can also be approximated 
and we find finally that the integral for the charge distribution Cu(dlO-A)-CCD 

equals 
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Table 111-3 Simple Diatomic Overlap lntegrals 

Cu-orbital Cl-orbital Overlap Overlap 
(Cl) (Ci-} 

dlO 3d0 3s 0.05685 0.05719 
3d0 3po 0.08186 0.07620 

l 3d0 3s 0.04199 0.04237 
3d0 3po 0.06493 0.06063 

10 2 
d s 4s 3s 0.31205 0.32995 

4s 3po 0.15525 0.20322 
10 

d s 4s 3s 0.30547 0.32222 
4s 3pa 0.24456 0.30100 

92 
d s 4s 3s 0.26212 0.27704 

4s 3po 0.29554 0.35303 
9 

d s 4s 3s 0.22757 0.24149 
4s 3pa 0.30132 o. 35706 

10 2 
d p 4p0' 3s 0.22075 0.23449 

4po 3pO -0.09108 -0.12512 
10 

d p 4po 3s 0.44237 0.45966 
4pO 3po 0.05081 0.03258 

lp2 4po 3s 0.45045 0.46429 
4pO 3po 0.21700 0.20581 

9 
d p 4po 3s 0.41857 0,43082 

4p0 3po 0.26409 0.25240 

io 3d1T 3p'lr 0.04359 0.04684 

l 3d1J 3p 1J 0.03216 0.03472 
10 2 

d p 4p1J 3p 1J 0.13473 0.19003 
10 

0.30552 d p 4p1f 3p 1J 0.24082 

d9p2 4p1T 3p 1J 0.23544 0.28733 
9 

d p 4p11 3p1f 0.21626 0.26160 

Cl -orbital / Clb -orbital Overlap Ove!:_lap 
a (Cl} (Cl ) 

3s 1 3s 0.00776 0.01205 
3s 3p O' 0.03062 0.05882 
3pa 3p a 0.05550 0.09834 
3p.,, 3p" 0.01408 0.03417 
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Table Ill-4 Normalisation Constants for the Ligand 
Orbitals in a Tetrahedral Complex 

1 

NA (s) = 0.5 { 1 + 3 ( sl 1 s2)} -2 

1 

1 

NA (z) 
1 

:::: 0.5 c 1 + 2 < pa11 P0
2

) + ( plfil p1f2)} -2 

o.5 { 1 + i (po
1
1 

1 

NE = po2) -i(P111I pn2)} -2 

{ 1 - i(P01I P02) -~(P'IT11 P112)} 

1 

NT = o.s -2 

1 

1 

NT (s) = 0.5 { 1 - ( sl 1 s2 ) } -z 
2 

NT (z) = 0.5 2 1 1 1 -i { 1 - 3 ( p 01 PO 2 ) - 3 ( P'IT 1 Plf 2)} 
2 

Table III-5 Normalisation Constants for the Ligand 

Orbitals in Tetrahedral CuCl!-

Normalisation Constant Cl cc 

NA (s) 0.49428 0.49120 
1 

NA (z) 0.47139 0.45068 

1 

NE 0.49662 0.49629 

NT 0,51269 0.52717 

1 

NT (s) 0.50195 0.50304 

2 

NT (z) 0.51076 0.52043 

2 

NT (x,y) 0.49146 0.48134 

2 

1 

i 
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Table lll-6 Group Overlap Integrals between different 

Combinations of Ligand Functions 

A1 (X(s),X(z)) = 

T
2 

(X(s),X(z)) = 

(X(s) 1 X (x,y>) 

( X(z) 1 X (x, y)) 

0.07070 - 0.01854A + 0.005220 + 0.00110AD 

Evidently this makes possible the calculation of all group overlap integrals for a 
genera! charge distribution Cu(d10-AsBpC)-(Cl-D)

4
• We thus find the relations of 

Table III-8, With these formulas the overlap integrals for any of the intermediate 

charge distributions in CuCl~- (refered to above) can be computed reasonably 
accurately ( 3 to 4 significant figures). 

III-3 H .. INTEGRALS 
11 

In the H.. integral 
11 

H is the Hamilton operator (2. 6) and "1 i is either a wave îunction of the centra! 
ion or a linear combination of wave functions of the ligands (Table II-3). 

Let us first discuss the integral 

(3. 11) 

in which 4>. is simply a wave function of one of the atoms in the molecule. The 
1 

integral (3.11) can be split up as follows: 

<•i IHI fi) = \.Pp> 1 ho(t)lf p>) + j)i (fi (l) 1+p>4>j(2 )1 4>p>) 
12 

- J. ~ .ó(s.,s.) (IP.(1) 1 •j<2
> +p> I • .(2>) - ts ( •. {1)' zs, •. (1>) 

r l 1 J l r 12 1 1 rBl 1 

+ I. (4'.(l)l_!J.«2)4>k(2)1 +.<1>)- r ó(s.,s >(4>.(l)1 •kc2>+k(l)14'.c2>) 
k;: l l r 12 l k ;: i i k 1 r 12 1 

(3.12) 



Table III-7 Group Overlap Integrals in Tetrahedral Cuci;-

Cu-orbital Cl-orbital C(Cl) C(Cl-) 

Al 
d10 2 4s 3s -comb. o. 61696 0.64829 lQS 

d9 s 4s 3s -comb. 0.60395 0,63310 
d 2 4s 3s -comb, o.51824 0.54433 9 s 
d s 4s 3s -comb. 0.44993 0.47448 

10 2 
3po-comb. 0.29273 d

10
s 4s 0.36437 

d9 s2 4s 3po-comb. 0.46113 0.53968 

d9 s 4s 3po-comb. 0.55726 0.63297 
d s 4s 3po-comb. 0.56816 0.64020 

10 
E d9 3d 3pir-comb. 0.07070 0.07600 

d 3d 3pTT-comb. 0.05216 0.05628 
10 

T2_ d9 3d 3s -comb. 0.06590 0.06644 

d 3d 3s -comb. 0.04867 0.04922 

10 2 
dlOp 4p 3s -comb. 0.25590 0.27241 

d9 p2 4p 3s -comb. 0.51280 0.53399 

d9 p 4p 3s -comb, 0.52217 0.53938 

d p 4p 3s -comb. 0.48521 0.50049 

io 3d 3pa-comb. 0.09655 0.09158 

l 3d 3p0-comb. 0.07659 0.07287 

d10 2 4p 3pO-comb. -0.10743 -0.15038 
1oP 

d9 p2 4p 3po-comb. 0.05993 0.03916 

d9 p 4p 3p0-comb. 0.25596 0.24735 

d p 4p 3po-comb. 0. 31151 0.30335 

io 3d 3p1T-comb. 0.04039 o.04251 

l 3d 3p1T-comb. 0.02980 0.03151 

10 2 
3p'IJ-comb. -0.21626 d1oP 4p -0.29874 

d9 p2 4p 3p'JJ-comb. -0. 38654 -0.48030 

d9 p 4p 3p'IJ-comb. -0.37791 -0.45170 

d p 4p 3p'IJ-comb. -0.34712 -0.41125 

Cl-orbital Cl-orbi tal 

Al 3s -comb. 3po-comb. 0.06990 0.12689 

T2 3s -comb, 3po-comb. -0.02564 -0.05029 

3s -comb. 3p'IT-comb. -0.03489 -0.06578 

3po-comb. 3p1T-comb. 

• 

-0.03921 -0.06062 
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Table III-8 Group Overlap lntegrals in tetrahedral CuCl~- as a function 
10-A B C -D 

of the charge distribution (Cu(d s p )-(Cl >
4
L 

G( 4s-3s comb.) = 0.59094 - 0.20932A + 0.01301B + 0.026970 
+ 0.05530AB - O.OOS24AD + 0.00218BD 

G(4s-3p0 comb.) = 0.62953 - 0.05048A - 0.16840B + 0.072880 
+ 0.15750AB - 0.00451AD + 0.00367BO 

G(3s comb. -3pa comb.) = 0.06990 + O. 056990 

E G(3d-3pl7 comb.) = 0.07070 - 0.01854A + 0.005220 - 0.00110AO 

T 
2 

G( 3d-3s comb.) = O. 06590 - 0. 01723A + O. 000540 + O. 00001AO 

G(3d-3pO comb.) = 0.09655 - 0.01996A - 0,004970 + 0.0012SAO 

G( 3d-3p 11 comb.) = O. 04039 - O. 01039A + O. 002120 - O. 00041AO 

G( 4p-3s comb.) = O. 76970 - O. 32145A - O. 25690C + O. 025880 
+ O. 29386AC + O. 00069AO - 0.00468CO 

G(4p-3pO comb.) = O. 22729 + 0.13976A - 0.16736C - O. 020330 
+ 0. 11182AC + O. 01262AD - 0. 00045CO 

G( 4p-3p 1T comb.) = - O. 55683 + O. 24049A + O. 17028C - O. 084090 
- 0.20107AC + 0.02962AD - 0.00966CO 

G(3s comb. -3po comb.) = - 0.02564 - 0.024660 

G( 3s comb. -3p 11 comb.) = - O. 03489 - O. 030890 

G(3p0 comb. -3ptr comb.) = 0.03921 - 0.021410 

Here 
h = _ v2 

_ za (3. 13) 
0 2 ral 

a is the atom to which the function <P. belongs; the summa
tion j extends over all occupied orbitafs of atom a; 
the summation S extends over all other atoms in the molecule; 
the summation k extends over all occupied orbitals of these 
atoms S. 

,2 1 • 2 
The h and _J_ integrals will be calculated exactly; for the - and the _k_ 

0 r12 rsi rl2 
integrals we shall have to find the best approximation attainable within the limits 
of our aim. Because the H operator is written in atomie units - as are the wave 
functions - the and Hij integrals wil! also be expressèd in these units. 
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(a) h0 integrals 

If the function 4>. is a function from Table III-1 or III-2, the integral that has 
l 

to be solved is of the type 

n.-1 -a·r y ' 1 n·-1 -a·r lij= <Ni r I e 1 lm (0,q>) h0 Nj r J e J Ylm (0,<p>) 

After substitution of (3.13) this integral can be written in an analytica! form (4) 

J" = -N N 
1 1 

[ 

(n.+n.) ! 

IJ i j )n.+n.+l 
_l_l_J __ + l l l J • 
2n.(n.+n.-1)! (n.(n.-1)-1(1+1)) (n.+n.-2)! } 

( )
n.+n. 2 n +n -1 

(a.+a. l J 
l J 

2 
a. 

l 

2 

+ z 

a. a.+a. 1 J a. (a.+a.) i j 
l l J l l j 

(n.+n.-1)! ] 
l J 

n.+n 
(a.+a.) l j 

l J 

(3.14) 

To carry out the calculation a computer programme was written (M.O. BEREKE
NING 270E HO-INT). For wave functions as given in the Tables III-1 and III-2 
this computer programme gives the h

0 
integrals direct. Table III-9 contains the 

h integrals for the Cu-functions. 
0 

Table III-9 h integrals for the Copper Functions 
0 . 

1 
cp i 1 v2 ze j ((f'. - -~ qi.> 

1 r 2 

3d cl> - 32.19117 

3d ci0
> - 30. 98197 

10 2 
7.16691 4s (d s ) -

10 
8.90836 4s (d s ) -

9 2 
4s (d s ) - 10. 93153 

9 
4s (d s ) - 12. 23333 

10 2 
3.66019 4p (d p ) -

10 
6.33308 4p (d p ) -

9 2 
8.59362 4p (d p ) -

9 
9.65974 4p (d p ) -
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•. 2 
(b) _:_]__ integrals 

r12 

As has been discussed in Chapter Il, this part of the energies is given by two 

types of integrals: 

Coulomb integrals : J ( 'i' 41 j) 

'.( 1) •. (2)4'.( 1)~.(2) 
"""" --(·1 JrJ 1) Exchange integrals: K ( '!' " .., .) 

l J 12 

(3.15) 

(3.16) 

Condon and Shortley applied a method to calculate these integrals by expanding 
1 in a series (Ref. (5)) 

r12 

1 
= r 

1 
r1~1 I P (cos W) 

0 r> k 
(3.17) 

k 

Here r< is the smaller of r
1 

and r
2

, r> is the larger of them. Pk(cosw) is a 
Legendre polynom inal that can be expressed in terms of the functions Y lm ( See 

Chapter II) k 

Pk(cosw) = 2!+l l Y1m(1) y1m(2) (3.18) 
m=-k 

See Ref.(6). 

lf<j>i = Rn.l_{r)Y
1
.m. (0,<p)T 

5 
theformulas(3.1S)and(3.16) 

l l l l 

become respectively 

k 

l (Rn.l. (1) Rn.1_{2) 1 r~+l 1 Rn.1_{2) Rn.1_(1)) • 
k=O 11 JJ r> JJ 11 

. (Y
1 

(1)Y
1 

(2)1 Pk(cosw)I y.. (2)y
1 

(l))(T (1) T (2),T (2)T (1>) 
.m. .m. l.m. .m. s. s. s. s. 
11 JJ JJ 11 1 J ] l 

or 
( 3. 19) 

and 
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or -
l 

k=O 

k k 
G b Ö(s.,s.) 

l J 

In these formulas a k and b k are the integrals over 9 and Cf, for instance 

Defining 
k 

c (l.m.l.m.) 
l l J J 

ît can be shown (see Ref.(6)) that 

k k k 
a = c (l.m.l.m.). c (l.m,l.m.) 

1111 JJJJ 

and 
k k 2 

b = { c (l.m.l.m.)} 
1 1 J J 

(3.20) 

k 
The coefficients c are only dependent on li, m" 1., m. and k and have been 
tabulated fors, p, d, and f-electrons. See Ref.CS) ~p. hs, 179 and Ref.(6) p. 

77. k k 
The integrals F and G are the radius-dependent parts of the integrals andhaveto 
be calculated for each atom, Of the ak and bk coefficients only a very limited 
number differs from zero, hence, the Fk and Gk integrals have only to be calcu

lated for those cases. 
The Coulomb and Exchange integrals necessary for our problem can be express

ed in ~ and ck integrals using the Tables of the Ref. (5) and (6). The resulting 
expressions are tabulated in Table IIl-10. 

To compute the Fk and Gk integrals occurring in this Table for the functions 

given in Table III-2, we have to solve integrals of the form 

(3. 21) 

with 
m.-1 -a{1 

R (1) N 
l 

= rl e 
m. mi 1 

n.-1 -b r 

R (2) N 
l i 2 

= r e 
n. n. 2 

l l 
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Table III-10 ~C'._<'.o~ul~o~m~b~an~d~~~~_!;ln~t~er~a~c:!ti~· o~ns~ 

between electrons of the same atom 

4> i cl>j J<•i·· j) - K(cj>i,lj) j) 

2 0 1 2. 
3d ms 2F (3d,ms) -

5 
G (3d, ms) 

3d 
6 0 6 1 9 3 

mp 6F (3d,mp) -
15 

G (3d,mp)-
35

G (3d,mp) 

3d 3l 9F
0

(3d, 3d) - ~ F
2 

(3d, 3d) - ~ F
4 

(3d, 3d) 

4s 
2 0 0 

ms 2F (4s, ms) - G (4s, ms) 

6 0 1 
4s mp 6F (4s, mp) - G (4s,mp) 

4s 3d
10 

10F
0

(4s, 3d) - G
2 

(4s, 3d) 

2 0 1 1 
4p ms 2F (4p, ms) - G (4p,ms) 

6 
4p mp 

0 
6F (4p,mp) -

0 2 2 
G (4p,mp) - S G (4p,mp) 

4p 3i
0 

10F
0

(4p, 3d) 
2 1 3 3 - 3 G (4p,3d) - 7 G (4p,3d) 

- - - - -- -- -----------

3d 4s 
0 

F (3d,4s) 
1 2 

-W G (3d,4s) * 
3d 4p 

0 
F (3d,4p) 

1 1 3 3 
- lS G (3d, 4p) -

70 
G (3d, 4p) * 

4s 4s 
0 

F (4s,4s) * 
4s 4p 

0 
F (4s1 4p) 

1 1 
-

3 
G (4s,4p) * 

4p 4p 
0 

F (4p, 4p) 
4 2 

-
75 

F (4p,4p) * 

* These interactions are averaged over the different functions l 1m1) 
that are possible for a certain value of 1. 



Hence 

or 

J-J- m +m -2 n +n -2 -( a +a )r -(b +b )r 
r
1 

1 2 r 1 2 e 1 2 1 e 1 2 2 
. 2 

0 0 

( 3. 22) 

M=m +m 
1 2 

N =n +n 
1 2 

A = a + a 

B 
1 2 

b + b 
1 2 

The integral ( 3. 22) can be expressed in an analytica! form 

N N N N PM 
ml m2 nl n2 

1 =------
M N+1 

A B (l+P)M-k 

• (N+k)!(M-k-1)! - r {i(N+k)!-(N-k-1)!} n (I-21) (~+I-k-p! (3. 23) 
[ 

N+k-1 2k J 
I=O l=O l.(l+P) 

in which 
P A/B 

2k 
J1 (1-1) = I(l-1) (I-2) •.••••• (I-2k) 

l = 0 

With the help of this formula FORTRAN programmes were written for the F 
k 

and Gk integrals (M.O. BEREKENING 270E FK-INT and M.O. BEREKENING 270E 
GK-INT respectively) giving the pk and ck integrals for the functions of Table 
III-2. Table 111-11 contains a number of these integrals necessary in the calcula

tion. 
By using the appropriate part of formula (3, 12), the energy Ei of an electron 

in the orbital 4>. of the free ion can be calculated. In fact, for the free ions we 
l 

have 

E. 
l 

(3.25) 
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TABLE 111 - 11 Fk and Gk integrale for Cu 

qii fj ,o GO Gl G2 

4s(d10s2) ls 0.25056 0.00011 
2s 0.25023 0.00015 
3s 0.24974 0.00046 
4s 0.20077 -
2p 0.25028 0.00018 
3p 0.24969 0.00063 

4p(d10p2) 0.12385 0.04057 

4p(d10p) 0.18850 0.13395 
Jd(d10) 0.24916 0.00920 0.00657 

----- ----- ---------- ------ -----
4s(d10s) 1s 0.311i58 0.00042 

2s 0.31338 0.00058 
3s 0.31148 0.00163 
lts 0.25048 -
2p 0.31352 0.00068 
3p o. 31134 0.00222 

4p(d10p2) 0.12601 0.02244 

4p(d10p) 0.20326 0.12096 
3d(d10) 0.30969 0.02141 0.01633 

------ ------ ------ ------ ------ -----
4s(d9s2 ) ls 0.39391 o. 00135 

2s 0.39008 0.00184 
3s 0.38402 0.00479 
4s 0.30862 -
2p 0.39048 0.00217 
3p 0.38364 0.00649 

4p(d9p2) 0.26925 0.17783 

4p(d9p} 0.29023 0.20672 

3d(d9) 0.38091 0.02698 0.02500 

------ ----- ----- ----- ----- -----
4s(d9s) ls o.'14913 0.00247 

2s 0.44216 0.00332 
3s 0.43120 0.00823 
h 0.34622 -
2p 0.44289 0.00394 
3p 0.43054 0.01112 

4p(d9p2) 0.27863 0.16268 . 

4p(d9p) 0.30310 0.20065 

3d(d9 ) o.42607 0.03689 0.0361±3 
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TAllLll III 11 (CONTINUED) 

.i .j 
FO r Fit GO G1 G2 o3 

4p(d10p2) la 0.12751 0.00000 

2a 0.12750 0.,00000 

Ja 0.12750 0.00001 

2p 0.12750 0.00000 0.00000 

;p 0.12749 0.00001 0.00001 

ltp 0.102%6 0.057%1 - -
3d(u16) 0.127%8 0.00405 0.00021 o.oooa 

~---- ---- ---- ----- -- - ----- ----- ----- ----
4p(d10p) la 0.22279 0.00008 

2a 0.22265 o.oooos 

Ja 0.22237 o.oooJS 

2p 0.22268 0.00008 0.00009 

3p o.222y, 0.00030 0.00038 

ltp 0.17872 0.10027 -
3d(d10) 0.22204 0.01970 o.001t56 O.OOJ1Z. 

...,. _____ ----- --- ------ ----- ----- ----- ----- -----
4p(d9p2) 1s 0.30701 0.00052 

2s 0,}0610 0.00052 

:;a o.}Olt18 0.002}0 

2p o.:;o6n 0.00054 0.00060 

Jp o. JOJ9" 0.00164 0.00235 

ltp o,n1t31 o.1;766 - -
Jd(d9 ) 0.30299 0.0}925 0.0116" 0.00875 

~----- ----- ------ ------ ------------------- ----- -----
J,p(d9p) 1o O.JU70 0.00102 

2• o.Y,692 0.00102 

3• o.:;1tJ16 0.00430 

2p 0.34719 0.00105 0.00118 

Jp 0.34291 o.ooy,:; O.OOltU 

%p 0.27552 0.15564 - -
Jd(d9) o.y,121 0.05,;5 0,01853 0.01423 

i.-------1------ --------------------- ----- - ---- -----
Jd(dlO) 1o 1.38825 0.00129 

2a 1.36730 0.00164 

;s 1.08299 Q,00%63 

2p 1.J7U5 0.161189 (),09584 

3p 1.06560 o.621a6 0.37870 

3d 0.96}06 o.i.;615 o.26968 
.._ _____ 

:----- ----- ---------- ----- ----------i-----
Jd(d9 ) la 1.45357 0.001;8 

2a 1.%3113 0.00177 ,. 1.12434 0.00495 

2p 1.4381'7 0.17725 0.1030; 

Jp 1.10558 0.66241 0.\0500 

3d 1.10314 o.%8059 0.29975 
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The one-electron energies, calculated according to formula (3. 25) for the differ
ent configurations of Cu, are tabulated in Table 111-12. This Table has been de
rived from the Tables III-9, 10 and 11. 

Analogously to the procedure applied in the calculation of the overlap integrals, 
the one-electron energies for any configuration of the free ion can be approximated 
as functions of A, B, C and D (from Cu(dlO-AsBpC)(Cl-D)

4
) by interpolation. 

These functions for Cu are mentioned in Table III-13, It was not required to 

compute the one-electron energies of Cl since these have been published by Wat
son (1). Their values also appear in the Tables III-12 and III-13. 

Table III-12 ~O~n~e:_::-~e~le~c~tr~o~n~~~!!_O~f~th~e~F~re~e~Io~ns~ 

Copper 
Configuration ~. E 

l i 

9 
3d -1.31515 d10 

d9 3d -0.64741 

d9s2 4s -0.57508 

d1fl 4s -0.56174 

d s 4s -0.20536 
d1052 4s -0.18262 
d9 4p -0.39609 

9p2 

!18 
4p -0.38672 

10p2 
4p -0.11313 

d p 4p -0.09064 

Chlorine * -- ---,__ - ----
Cl 3s -1.0717 -Cl 3s -0.7356 

Cl 3p -0.5051 

Cl - 3p -0.1518 

*The one-electron energies of chlorine are from Ref.(1). 

(c) Interaction of the Electrons of a Certain Atom with the Other Atoms in the 
Molecule 

The interaction of an electron in an orbital f. of a certain atom with all other 
l 

atoms in a molecule is given by 
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(3.26) 

as can be seen by comparison with (3. 12). 

8 represents a summation over all other nuclei in the molecule, 

k represents a summation over all occupied orbitals belonging to 

these nuclei. 

Copper 

Chlorine 

Table III-13 One-electron r.n•~r111es of the Free Ions as 

distribution 

- o. 64741 + o. 37021B + o. 31660C - o. 060538
2 

- 0.08912C2 -A (0.66774 - 0.096238 - 0.06283C 
- 0.0165282 - o.oso90C2} 

&
45 

= - 0. 22810 + 0.02274B - 0.02868BC + O. 27261C 
- O. 07258C2 + O. 01175BC2 - A { 0. 36030 + O. 009438 

- 0.01282BC - 0.03104C - 0.05246C2 + 0.00977BC2 } 

& = - 0.13562 + O. 02249C + O. 27261B - 0. 072588C 
4

P - 0,02868B2 + 0.0117SB2C - A { 0.26982 + 0.01313C 

- 0,031048 - 0.05246BC - 0.0128282 + 0.00977B2C} 

e:
35 

= - 1. 0717 + O. 3361D 

e:
3

p = - 0.5051+0.3533D 

As has been discussed previously (Chapter II, Section 9) the c.Q.Jnputation of the 

Coulomb and the Exchange integrals in (3.26) is extremely difficult, 
The interaction of an electron of a certain atom with the other atoms in the mole

cule will therefore in the following be approximated by 

Z' 
E ( + .(1) 1 _! 1 +.c1>) (3. 27) 
B i rai i 
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In other words, we assume that an electron of a certain atom "sees" the other 

·atoms as point charges. This is the basic approximation in our calculation of the 

Hii integrals and, at first sight, it seems a rather drastic approidmation. Of course, 

the electron sees the nuclei of other atoms as point charges. lf we have to do with 

electrons of other atoms with small n and 1 (1s, 2s, 2p, etc.), the situation will 

be similar because the orbitals of these electrons will be close to the nucleus of 

the atom to which they belong. 
The approximation can be expected to become less accurate for orbitalswithhigh

er n and l. The orbitals of these electrons are more extended in space, Consequent

ly, the Coulomb integrals deviate from the point charge model, and, moreover, 

the Exchange integrals become significant since the function 4>i(l) $k(2) is not 

necessarily small. 

However, an inspection of Table lll-15 (and also of Table lll-11) reveals that the 

deviation from the point charge model is surprisingly small and therefore one may 

hope - and we believe with some justification - that our approximation is a use

ful one. 
The calculation of the integrals (3. 27) can now be split into two operations 

because z·a is not a function of the coordinates 
( 1) Calculation of the integrals 

( 4>.Cl) 1-1 1 4>.Cl)) 
1 rai 1 

1 
(- integral) ra 

(1) 

(2) Calculation of the effective charges ZS 
1 

Calculation of the - integrals re 
These integrals are of the type 

1 1 
( 4>cul -r l 4>cu>' ( 4>c1 j -r l 4>c1> 

Cl Cu 

1 
or <4>c1l-r J 4>c1> 

Cl' 

They can be expressed in elementary integrals of the type 

(3.28) 

analogously to the reduction of group overlap integrals to simple diatomic overlap 

integrals. The transformations to be applied are the same in the two cases and we 
thus find expressions for the/- integrals; they are given in Table III-14. 

s ' 
Using the same notation as for the overlap integrals and alSo applying the 

functions of the Tables III-1 and III-2 we find 

J 
n +n '-2 -(a +a ') r 

1 1 1 1 1 1 
( n lm 1-1 n 1 lm ) = N N 1 r e 1 r

2 
1 1 1 1 

(3. 29) 

66 



1 
Table III-14 Expressions for the -integrals ra 

(1) Interaction of eu-electrons with unit p0înt charges on the 4 el-ligands 

~i r 11 1 s < 4>. - 4>.) 
1 r

6 
1 

4s 4 (4sl-1 l 4s) 
rel 

4p } (4pol r~l l 4po) + ! (4pir 1 r~lj 4p1f) 

3d 21 3d 2 2 z x -y 
8 1 4 11 1 3(3dtr1-1 3d1J) +3(3dÖ -

rel rCl 
3dÖ) 

4 1 8 1 1 1 3d1J) + 3d '3d 3d -(3d01-1 3dO) +-(3d1T -xy xz; yz 3 rel 9 rel 

~
6 

(3dÖI r:J 3dÖ) 

(2) Interaction of el-electrons with unit point charges on the Cu-nucleus and 
on the other eI-ligands 

4> i ä < '· IM4>-> 1 ra 1 

3s (3s 1-1 
13s) + 3 (3s j-1 

1 3s) 
reu rel 

3p 
z <3pol r:J 3po) + 2 < 3po 1-1-1 

rel 
3po}+ 

( 
3

P1TI r~I 1 
3pn) 

3p ,3p 
x y 

1 . 1 1 1 1 
(3pnl rcul 3p11' )+2{3po rel 3po) + 

~{3pir j..l..-1 3pn) 
2 rel 

1 
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Changing to elliptical coordinates t, n, and <f1, we now define 

n +n' • 
R 1 1 21+1 

I (n1,n1',l,m,p) = NlNt' ~) 2m+1 • 

- 1 n +n 1-21-l+p J f (t+n) 1 1 (1-E;2)m (n2 -l)m (1+(n)2(1-m)-p e -p( e -pn d(dn 

1 -1 

(3.30) 
In terms of this integral ( 3. 30) we get the following expressions for the relevant 
1 

- integrals 
ra 

( n
1
s l_!_I n

1
1s) = I(n

1
,n

1
•,0,0,0) 

rf 
( n1pol-;-I n1

1po)= l(n
1
,n

1
1,1,0,0) 

2 

( n pll'l 11 n 'P1f')= I(n
1
,n ',1,1,0) 

1 r2 1 1 

1

1 1 9 3 ( n
1
d O';; n

1
1d0')= 4I(n

1
,n

1
1,2,0,0)-

2
I(n

1
,n

1
1 ,2,0,2) (3.31) 

If 

(nld ll'lr~ 

{ n1d ö\~ 1 

1 
+41(n

1
,n

1
1,2,0,4) 

n
1

1d11') = 3 I (n
1

, n
1
',2, 1,0) 

3 
n

1
1dó) =2I(n

1
,n

1
1,2,2,0) 

u n +n'-21-l+p 
1 1 

v = 2(1-m) - p 

then (3, 30) can be expressed in A and B integrals according to 

with 
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m 

I 
k =O 

3 

r=u-k +2k +k 
1 2 4 

s = k + 2(m - k ) + k 
1 3 4 

A(p) B(p) 
r s 

(3.32) 

i 
I! 

! 
i 
F 
i 
i: 



A method for the computation of the Ar and B
3 

integrals has been given in Section 

2 of this Chapter. 

On the basis of formula (3. 32) a FORTRAN computer programme was written 

(M.O. BEREKENING 270E 1/RB-INT). This programme, in connection with the 
relations ( 3. 31 ), gives the numerical values of the--.!... integrals as shown in Table 
III-15. r13 

The interaction of an electron of a certain atom in the molecule with unit 

point charges on the other atoms of the molecule is now known. Evidently these 
interactions dependson the charge distribution in the complex (since the size of the 

orbitals depend on the charje distribution) and therefore are again functions of A, 
B, C, and D(from Cu(dlO- s8pC) (CC

0
)
4

). These functions are given in Table 

III-16. 

(2) Calculation of effective charges Z's 

The only thing left to be done is the calculation of the effective charges ZS. 
Consider two electrons, No. 1 in orbital ,

1 
on atom A and No. 2 in orbital , 2 on 

atom B. , 1 and , 2 are taken spherically symmetrical, which is correct for s

orbitals and for completely filled p and d-shells, hut is only an approximation for 
partly filled p and d-shells. However, since the relevant p and d-shells are as 

good as filled (d10 for Cu and p6 for Cl) the approximation is justified. 

We now have to calculate how electron 2 screens electron 1 from nucleus B. Take 

a volume element d T. "The part of electron 1" contained by d T equals 

'12 dt 

We now suppose that this part of electron 1 is screened from nucleus B by the part 
of electron 2 that is in a sphere round B with radius r : s 

ra 
y(2) = J R

2 

2 
r
2 

dr (41
2 

is spherically symmetrical) 
0 

So the total screening of electron 1 from nucleus B by electron 2 is given by 

(3.33) 

Since it is difficult to compute the integral (3. 33) we shall try to find an 

approximation. Consider the function R
2
r2 (Fig. 3.2). We see that both for low 

and high values of r this function is practically zero. So we may suppose that 

electron 2 is in a "spherical shell" between concentric spheres with radii r . 
min. 

and r (These radii can be determined by drawing two intersecting straight 
max. 

lines (see Fig. 3. 2) thus forming a trianaje with the r-axis in such a way that the 
triangle covers the surface under the R 2r function as well as possible. Actual 

manipulation shows that this is easy to do). 
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1 1 Table III-15 Values of the -integrals 

- _ra·········---- ! 
' 

(4>A 1 r~ 1 <PA) 
' !PA a 

4s (d1082) Cl o. 21005 

4s (d10s ) Cl 0.22758 

4s (d9 s2) Cl o. 23548 

4s (d
9 

s ) Cl 0.23741 

4pa(d10p2) Cl 0.14463 
4 O(dlO ) Cl 0.24704 p 9 p 
4pO'(d p2) Cl 0.28081 

9 Cl 0.28316 4pO(d p ) 

4p1J(d10p2) Cl o. 11668 
4p1f(d10p ) Cl 0.17240 
4p1J(d9 p2) Cl 0.19872 

4p1f(d9 p ) Cl 0.20662 

3dO(dlO) Cl 0.24356 

3dO(d9 ) Cl 0.24185 

3d1f(d
10

) Cl 0.24065 

3d (d
9 

) Cl 0.24084 

3dc5(d10) Cl 0.23308 

3dÓ(d
9 

) Cl 0.23387 

3s (Cl Cu 0.23832 

3s (Ci-} Cu 0.23508 

3po(Cl ) Cu 0.25910 

3pO(Ci-) Cu ~ 
0.26500 

3pn(Cl ) Cu 0,22741 

3p11(Ci-) Cu 0.22960 

- Point char~ on Cu 

Cl 0.23843 - -
3s (Cl ) Cl' o. 14611 
3s (Cl-) Cl' 0.14414 

3po(Cl ) Cl' 0.15067 
3po(Cl-) Cl' 0.15418 

3p1f(Cl ) Cl' 0.14344 
3pn(Ci-) CP 0.14552 
Pointcharg-;; on Cl 

and Cl' 0.14599 
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Table III-16 Interaction of an electron in an orbital of a certain 
atom with the other atoms of the 

(1) Cu-electrons 

4s 

(2) Cl-electrons 

3s 

3po 

3p'IT 

(0. 98046 - O. 02308A - O. 07012B + O. 06241AB) Z' Cl 

(1.07430 - 0.12155A - 0.28516C + 0.26096AC) Z'cl 

(0.95304 - 0.00070A) Z'ci 

(0. 95253 + 0.00156A) Z'cl 

(0.23832 - o.003230) Z'cu + (0.43834 - o.005910) Z'ci 

(0.25910 + 0.005900) Z'cu + (O. 44479 + o.009100) Z'ci 

(0.22742 + o.002180) Z'cu + (0.43395 + 0.006950) Z'ci 

l!'(r)r , 21 

rmin Tmax ____..r 

Fig. ;l.2 Determlnalion or rmm and l"m••. 
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For the system of two orbitals we now get Fig. 3. 3 and with the help of it, we can 

distinguish three cases -

1 

1 

1 
-t1•""1-1-l""•1-rs, min 

1 
I• l r 

Fig. 3. 3 Determlnation of z.u. 

1 

1 

Î 
1 

1 

1 
1 

1 
1 

•I 

(a) y(2) = 0 in a region within a sphere with radius rmin. of electron 2, de
noted in the diagram by P (shaded vertically); 

(b) y(2) = l in a region outsiJe a sphere with radius rmax. of electron 2, de
noted by Q 

1 
(shaded horizontally); 

(c) y(2) has a value betwêen 0 and 1 within the shell between the spheres with 

radii rmi·n and r (region R). • max. 

Since 

we now find 

0 + I •/ dT + J •1
2 

y(2) dT 

Q1 R 

72 



which may be approximated by 

2 Q1 
4>

1 
.vol Q

1 

2 R 
.P

1 
y(2) • vol R 

v 
1 

(3.34) 

where --
2 

Q
1 

4> 
1 

is the mean value of the function 4>
1 
2 

in the region Q
1

, etc. 

V 
1 

is the volume of thè sphericai shell of electron 1. 

Analogously we find for the screening of electron 2 from nucleus A by electron 1 

----R 

4>
2 

y(l) • vol R 

(3.35) 

Table III-17 gives the values of r . and r used in the calculation, Table 
min. max. 

III-18 shows the screening constants calculated by this method, We may expect 

that these factors satisfactorily reproduce the screening effects of the electrons (*) 

Table III-17 r . and r of Cu- and Cl-functions 
.min max 

Atom 4> r 
min rmax 

Cu 4s 1.5 6.4 

Cu 4p 2.0 7.5 

Cu 3d o.o 2.0 

Cl 3s 0.5 3.5 

Cl 3p 0.5 4.3 

(*) Note 
Using the same principles we can calculate the mutual screening of two orbitals 

belonging to the same nucleus. Assume, for instance, ~l = 3s(Cl) and , 2 = 
3p(Cl), then we find with the method described above 

S
2

(1) = 0.39 and S1(2) = 0.60 

Hence a 3p electron of Cl is screened more by a 3s electron than reversely, and 
this is what is expected. The method of Slater (7) yields 0. 35 for the twoscreening 

constants. 
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Table III-18 Shielding Constants in Cuci2-
·-·-·-- 4 

• ( 1) 4> (2) S
2
( 1) S

1
(2) 

··-

4s(Cu) 3s (Cl) 0.93 0.57 

4s(Cu) 3p(Cl) 0.90 0.62 

4p(Cu) 3s(Cl) 0.96 0.49 

4p(Cu) 3p(Cl) o. 91 0.51 

3d(Cu) 3s(Cl) 0.98 0.98 

3d(Cu) 3p(Cl) 0.95 0.97 

3s(Cl) 3s(Cl) 1.00 1.00 

3s (Cl) 3p(Cl) 0,99 1.00 

3p(Cl) 3p(Cl) 0.98 0.98 

With the screening constants thus obtained, it is easy to calculate the effective 

charges Z'S of an atom for an electron of another atom. These Z'S are given in 

Table III-19 as functions of A, B, C, and D. The interaction between an electron 

of a certain atom and the other atoms in a molecule is then completely deter

mined from data given in the Tables III-16 and III-19. 
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Table III-19 Effective C:hargesin CuCl:-

( 1) For Cu -electrons 

4s · ZCl = O. 92D - 0,55 

4p ze,
1 

= o. 91D - o.ss 

3d(t2) ZCI = o. 96D - o. 22 

3d(e) Z(:
1 

= 0.960 -0.22 

(2) For Cl-electrons 

3s 

3po 

3plf 

Z' = 1.15 - O. 99A + 0.438 + 0.51C 
Cu 

ZCI = 0.990 - 0.05 

z;.. = -1.25 -0.98A+0.38B+0.49C 
- rU 

ZCI = 0.980 - 0.10 

Z' = - 1.25 - 0.98A + 0.388 + 0.49C 

z~; = o. 980 - o. 10 



( d) .!:.!ii integrals 

We now have to calculate the Hii integrals from the integrals computedsofar. 

This presents no difficulties in the case of the orbitals of the centra! ion. Assume 

4>i to be an orbital of the centra! ion, then in our approximation 
z 

E.+ ar <4>. j ~1 4>·> (3.36) 
i 1 rel i 

i3 
1 

Both E. (Table III-12) and the r-integrals (Tabl~s III-16 and III-19)arecomplete-

ly kno~n and the H .. integral c~t be written down straight away. 
11 

The situation is somewhat complicated for the ligand orbitals. These orbitals 

have been constructed as linear combinations of the atomie orbitals (Table II-3) 
and this fact has to be allowed for when calculating the energies of the orbitals. 

Take, for instance, .a ligand orbital of Table 11-3 

X :::: N (C "' + C ..t. + C "' + C ..t. ) 
i i 1"'1 2"'2 3"'3 4'!'4 

in which 4>k is an atomie orbital belonging to the ligand k. Now 
4 4 

H .. 
11 <xil Hl xi) = Ni

2 
l l ckc1<4\ IHI 4>1> (3.37) 

k=l 1=1 

In this formula 4>k and 4>
1 

can be two atomie orbitals belonging to different Cl 
nuclei and therefore we have to define the orientation of the orbitals in relation to 

the position of the two nuclei. That is why we have to apply a transformation of 
the type as already discussed in the case of the group overlap integrals. Since H is 

invariant under all operations of T d the results of these transformations must be 
analogous to those found for the group overlap integrals. We can therefore use 
Table III-4 and find for example for the A

1 
representation 

(s-comb.1 Hl s-comb.) ={NA (s)}
2 

{4(s
1 

jH\ s
1

) + 12\s 1H1 s)} 
1 1 2 

(pz-comb.1 Hl pz-comb.) = {NA
1
(z)}

2
{4(p1 jHj p 1)+8{po1 j Hl pa

2
) 

+ 4 ( P'Yrl 1 H 1 P'Yr2)} 

In this way we find two types of integral 

(1) integrals < $k 1 Hl 4>k) • These are of the type ( s
1 

1H1 s
1
), ( po1 \ Hl po

1
), 

etc. , and can be calculated immediately from 

75 



(2) integrals ( 4>k 1 Hl 4>
1
) , with k ji:l, for instance, ( s

1 
1 Hl s

2
), 

< po1 1H1 po
2

) , and so on. 4>k and 4>
1 

now belong to different Cl nuclei. 
This type of integral presents another complication. We shall not attempt an 
exact computation of these integrals because the three and four centre integrals 
that arise in this computation are too laborious to carry out. Therefore we shall 
apply an approximating method as used by Wolfsberg, Helmholz (8) and Gray, 

Ballhausen (9) 

with F = 1. 67 for O -bonding 
F = 2. 00 for 1T -bonding. 

( 3. 38) 

For a discussion of this approximation see the following Section. Because cj>k 
and 4>

1 
are completely identical, except for the fact that they belong to differ

ent nuclei (e.g. po
1 

and po
2

), 

( 4>k 1 H j 4> k ) 

and therefore 

( 4>k 1 H 1 4> l ) = (3. 39) 

Since the integrals ( 4>k j H 1 4>k) are independent of k we find, for instance, for 
'.he A 

1 
representation 

( s-comb.1 

(p -comb., 
z 

s-comb.) 

p -comb.) 
z 

Table III-20 gives the final H .. integrals as functions of the charge distribution. 
11 

Ill-4 CALCULATION OF H .. INTEGRALS 
IJ 

In Chapter II we already saw that an accurate calculation of H.. integrals 
entails a large amount of difficulties. The three and four centre inte~als in the 
H .. integrals often have to be approximated numerically and this process consumes 

IJ 
a great deal of time. 

Wolfsberg and Helmholz (8) already noticed that for homonuclear diatomic 
molecules of the first and second row of elements in the peri1;>dical table, the H .. 

lJ 
integrals may be appro.ximated fairly accurately by the formula 
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We define: 

Table III-20 H .. integrals of tetrahedral CuC1
4
2-

11 

= E + (0. 23832 + 0. 003230) (- 1.15 - O. 99A + O. 43B + 0.51C) 
3
s + (0.43834 - 0.005910) (0.990 - 0.05) 

E = e:
3 

+ (0. 25910 + O. 005900) (- 1. 25 - 0. 98A + 0, 38B + O. 49C) 
3
PO p + (0, 44479 + O. 009100) (0. 980 - 0.10) 

E = t
3 

+ (0. 22742 + 0. 002180)(- 1. 25 - O. 98A + 0. 38B + O. 49C) 
3
P1f p + (0. 43395 + o. 006950) (0. 980 - 0.10) 

We now have the following expressions for the Hii integrals 

~l representation: 

Cu-4s: E + (0. 98046 - 0. 02308A - 0. 07012B + O. 06241AB). 
~ . 

• (0.920 -0.55) 
pa-comb. of ligands: ( 1. 07830 + O. 055990) E

3 
s-comb. of ligands: (1.01500 + 0,000800) E

3
;

0 

E representation 

Cu-3d: · E 
3
d + (0. 95304 - 0. 00070A) (0. 960 - 0. 22) 

pn-comb. of ligands: ( 1. 01826 + 0. 014030) E 
3pn 

!i representation 

pn-comb. of ligands: (0. 96836 - O. 051760) E
3 Plf 

T representation 
-2--=----

Cu-4p: E + (1.07430 - 0.12155A - 0.28516C + 0.26096AC), 
4p 

.(0. 91D - 0.55) 
Cu-3d: E + (0. 95253 + 0. 00156A) (0. 960 - O. 22) 
pn-comb. of ligands: c(;b3090 + 0.037280) E

3 
pO-comb, of ligands: (0; 96937 - O. 029030) E/11' 
s-comb. of ligands: (0. 99484 - O. 002890) E

3
;

0 
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H .. +H" 
H FG 

11 JJ (3. 40) = 
ij ij 2 

with 
F 1.67 for O -bonding 

F 2.00 for 1T -bonding 

In fact this approximation runs parallel to an approximation of the charge dis

tribution given by Mulliken ( 10) 

(3.41) 

This approximation of the charge distribution can be used reasonably well for in

tegrals ( + i 1 Op 1 +.) in which the operator is of such a form that ~ integral 
can also be written 1(0p 1 +

1
tp.), for instance, if the operator is r~ 2 or; 

(potential energy, Coulomb anà exchange integrals). The approximation is less 
applicable to integrals in which it is not allowed to commute the operator with a 

function, for instance, if the operator is v2 (kinetic energy integral). 
Hence, the H .. integrals remain a point of discussion, but since the approx

imation formula ~ives fairly good results for simple molecules, one might expect 
that the use of the same formula in our problem will not introduce large errors. 

Ballhausen and Gray (9) prefer the geometrie mean /H .. H" instead of 
11 JJ -! (Hii + Hjj) because, as it turns out for simple molecules, the mtegral Hi' de-

creases rapidly when the difference in energy of the orbitals increases. indeed, 

this fact is rendered better by 

H = -F G /H H 
ij ij il jj 

(3.42) 

III-5 EVALUATION OF THE SECULAR DETERMINANT 

As has been shown in Chapter II, we have to solve the following secular de
terminants for a tetrahedral complex: 

~l symmetry : A 3 x 3 determinant, The eigenvalues of this determinant will be 
indicated by EA(l), EA(2) and EA(3) with EA(l) { EA(2) ( EA(3). The eigenvectors 
of the determinant are 

V
1 

CA(1, 1), CA(2, 1), CA(3, 1) 
V CA(l,2), CA(2,2), CA(3,2) 

V~ CA(l,3), CA(2,3), CA(3,3) 

giving the eigenfunctions 
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tflA (l) = 
tff A (2) = 
"1A (3) = 

CA(1,1) +4s +CA(2,1)X +CA(3,1)X
3 

CA( 1, 2) "'4 + CA(2, 2) x po+ CA( 3, 2) x 3s 
.,. s PO s 

CA(l, 3) .4s + CA(2, 3) Xpo + CA(3, 3) x 3s 



E symmetry : two identical 2 x 2 secular determinants, giving the eigenvalues 

and eigenfunctions 

EF.(1) 

EF.(2) 

T 
1 

symmetry : three identical 1x1 determinants giving 

EU and tl' = X 
Tl P11 

!_
2 

symmetry : three identical 5 x 5 determinants with the eigenvalues and eigen

functions as follows 

ET(l) 

ET(2) 

ET(3) 

ET(4) 

ET(S) 

= CT(1, 1) <1> 
4

P + CT(2, 1) 41
3

d + CT(3, 1) XP1J 

+ CT(4, 1) X + CT(S, 1) X 
PO s 

etc. 

The computer programme, with the help of which the eigenvalues and the eigen
vectors of the secular determinant will be determined, can be split up into three 
parts: 

(1) Fora given charge distribution {A, B, C, and D), all H .. and S .. integrals are 
IJ IJ 

calculated. 
(2) The secular determinants are solved by using the H .. and S .. integrals calcu-

lJ lJ 
lated in part ( 1 ). 

(3) With the eigenfunctions found in part (2) a new charge distribution is calcu
lated (new A, B, C, and D). 

(1) 

(2) 

As stated before, we shall characterise a charge distribution by A, B, C, and D 

from Cu(dlO-AsBpC)-(cC0 )4 • In the Tables III-8 and III-20, we find how the 

Sij and Hii integrals depend on these A, B, C, and D. Using these Tables the 

Sij and the Hii integrals are calculated for initial A, B, C, and D in this part 
of the computer programme. Subsequently the corresponding H .. integrals are 

. ~ 
computed in the manner that has been discussed in Section 4 of this Chapter. 

(This first part of the programme was written in FORTRAN.) 

The basic programme for the evaluation of the secular determinant in our 
calculation is an S. P. S, (Symbolic Programming System) computer pro

gramme made by Veltkamp and Clement (12). This programme is practical

ly analogous to the ALGOL procedure published by Wilkinson ( 11). A de
scription of this programme and of the subroutines used in it are to be found in 

Refs.(11) and (12). 
The basic computer programme cited here, computes the eigenvalues À and 

the eigenvectors _sof the equation 
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( é1f - ). I) E. == 0 (3.43) 

in which ~ is a symmetrical matrix and 1 is the unit matrix, 
However in our particular problem we have to compute the eigenvalues and 
eigenvectors of 

( H - À S) !:,. == 0 (3.44) 

in which Hand S are both symmetrical matrices. Equation (3.44) must first 
be reduc~Ï to an equation of the type (3.43). Multiplication of (3.41) by the 
matrix S 2 gives 1 1 

(S-2 H - ÀS2) .E. 0 

or _! _1. ! ! 
(S 2 H S 2 S2 

- À S2
) .E. = 0 

or 1 1 l 
(S-2 H S-2 - ÀI) S2 c = 0 

or (3.45) 

(af- À I) ~ 0 
with 1 1 

dl= s-2 H s-2 

and 1 

d = s2 c 

As H is a symmetrical matrix, ;;Jf. is also a symmetrical matrix. Now equation 
(3.45) can be solved by the basic eigenvalue computer programme; the eigen
values found then are also the eigenvalues of (3.44). The eigenvectors of 
(3.44) caq be determined by multiplying the eigenvectors of (3,45) by the 
matrix s-2• 

We can now act iq the following way: 
(a) The matrix S-2 is determined as follows: 

Compute the eigenvalues of S with the help of the basic eigenvalue com

puter programme: JJ 1, ••••••• , µ n' 
From these eigenvalues we can construct the matrix 

M 

Compute, by means of the same programme, the eigenvectors of S : 
y 

1
, •••••••• , :! n . From these vectors we construct the matrix 

( 

v11········vn1J 
v == : 

v;n' · · • •• · • vnn. 



Because 

it may be seen that 

or 

SV = VM 

s -1 = VM V 

also holds, 

=: VMVT 

T 
V is the transpose of the matrix V. 

From this can be concluded 

1 

The matrix M-2 is easily computed 

_.t 
So S 

2 is also easily found. 
_.t 

(b) With the help of S 
2 we calculate 

(c) Using the basic eigenvalue computer programme we compute the eigen

values and eigenvectors of 

(()e.-ÀI) .Q. 0 

The eigenvalues Àl, •••••••• , À n are also the eigenvalues of our initia! 
secular determinant. 

(d) The eigenvectors of the initial secular determinant can now be calculated 

by applying the transformation 

i =: 1, ••.•. , n 

The result is an orthoncrmal set of eigenvectors. 

From the complete procedure (a) to (d) an S.P. S. computer programme 
was written. The matrices H and S used in this programme are to be taken 

from the results of part ( 1). 
In this way the secular determinants appertaining to the symmetries A

1
, E, 

and T 
2 

are solved successively. The corresponding eigenvalues and eigen

vectors are stored in places of the computer memory that have beforehand 
been fixed by the FORTRAN programme (part ( 1)) and can be used in part (3) 

of the programme. 



(3) From the eigenfunctions found in part (2) of the programme we must now 

compute a new charge distribution. 
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Suppose we have a molecular orbital 

X= c + + c + A A B B 
( X is normalised) 

in which 4> A and 4>
8 

are atomie orbitals of the nuclei A and B resp. If the 

molecular orbital X contains electrons, we may distribute the charge of these 
electrons over the two nuclei A and B. The charge distribution of an electron 

in X is given by 1 X l 2, so we suppose the charge p A' belonging to nucleus A, 
to be proportional to C A 2 and in the same way p 8, belonging to nucleus B, to 

be proportional to c
8 

2• If there are nX electrons in orbital X then 

PA+PB = nX 

so c 2 
A 

p = nx A C 2 +C 2 
A B (3.46) 

c 2 
B 

PB = nx c 2 + c 2 
A B 

The distribution of the charge over A and B, as carried out here, remains 
somewhat arbitrary because it is nèver possible to determine unequivocally 
which part of the charge belongs to nucleus A and which to B. 

Mulliken ( 13) gives another suggestion for the distribution of the charge. Since 

Mulliken supposes 

2 
PA= nX(CA +CACBS(•A•ta)) 

• 
2 

PB = nX(CB +CACBS(.A,fB)) 

As X is normalised, PA+ p
8 

= nX also holds in this case. Now PA and p
8 

contain two terms: 
2 

( 1) a term proportional to C A : the nett charge ( according to Mulliken); 

(2) an overlap contribution to the charge which is proportional to C A c
8

• 

il 
: ~ 



The overlap contribution may also be negative1 viz. if C A and c
8 

have differ-

ent signs. 
In some cases, the overlap contribution is larger than the nett charge; so in 

such circumstances p may also become negative. Physically this isinconceiv

able. Mulliken supposes that negative p's will only appear exceptionally. Un

fortunatelyhowever inthe calculationconcerningthe ground state of CuCl!
using Mulliken's method we found some negative p's (see following section). 
Therefore, from now on formula (3.46) is used to determine the A, B, C, and 

D from the molecular orbitals. 
We take the configuration (2.17a) as the ground state of Cuci;- • 

Determination of A (from 3dl0-A of Cu) 

The 3d orbitals of Cu appear in the molecular orbitals with E ànd T symmetry. 
As the orbitals with E symmetry are completely filled, they contribute four d

electrons. The levels with T 2 symmetry are only partly filled 
6 6 6 5 0 

(lt
2

) (2t
2

) (3t
2

) (4t
2

) (St
2

) 

These orbitals contribute to the d-electrons 

Hence 

5 

SD= 6 {CT(2,1)}
2 t[.r {CT(i,1)}

2
] + 

i=l 

5 

6 { CT(2, 2)} 
2 

/ [. L ( CT(i, 2)} 
2
] + 

i=l 

s 
6 { CT(2, 3)} 

2 
/ L:1 { CT(i, 3>} 

2
] + 

5 
.s {CT(2,4)}

2 
I [ I: {CT(i,4)}

2
] 

i=l 

10 - A 4 + SD 

(3.48) 

or (3.49) 

A = 6 - SD 

B 
Determination of B (from 4s of Cu) 

The 4s orbitals of Cu only appear in the molecular orbitals with A
1 

symmetry. 

These orbitals are not completely filled: 

2 2 0 
(1a

1
) (2a

1
) (3a

1
) 
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Therefore we obtain 

B 
3 2] 

2 {CA(l,1)}
2 

/ [.r {CA(i,1)} + 
i=l 

3 

2 {CA(l,2)}
2 

/ [.r {CA(i,2)}
2

] 
i=l 

c 
Determination of C (from 4p of Cu) 

( 3. 50) 

The 4p orbitals of Cu have T 
2 

symmetry, so we find analogously to the results 
for 3d electrons 

5 

C = 6{CT(l,1)}
2 

/ [ E {CT(i,1)}
2

] + 
i=l 

5 

6 {CT(l,2)}
2 

/ [ E {CT(i,2)}
2 J + 

i=l 

6{CT(1,3)}
2 

/ 

5 

5 (CT(l,4)}
2 

/ [ E {CT(i,4)J
2

] 
i= 1 

-D 
Determination of D (from Cl ) 

(3.51) 

After the determination of A, B, and C the determination of D is quite easy 

because we known the total charge in the complex CuCI~- • It is easily seen that 
1 

D =4(3+A -B-C) (3.52) 

We now have new values for A, B, C, and D. In general these new A, B, C, 

and D will differ from the initia! A, B, C, and D. We can now use the calculated 
A, B, C, and D for a new calculation cycle etc., hoping that after some iterations 

we will get a better approximation to the correct A, B, C, and D. It then turns out 

that the process often oscillates around the correct values of A, B, C, and D. How

ever we can help the process to converge. 

Suppose we take A , B , C as initial values of A, B, and C (D is always fully 
0 0 0 

determined by ( 3. 52)) and, after a first calculation, obtain A 1, B1, and C 1 as new 

values of A, B, and C. A second calculation (with A1, B1, and c 1 as initia! values 

for A, B, and C) gives US A2, B2' and c2. 
We can now find a better approximation of the correct values of A, B, and C with 

the 62-process of Aitken (14). 
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Suppose 

l::r.A 
0 

and /::,. A - l::r.A 
1 0 

then a better approximation of A is 

A 

A -A 
2 1 

Analogously we can find better approximations of B and C. 

The A, B, and C found in this way are taken as new A , B , and C etc. 
0 0 0 

( 3. 53) 

It turns out that, if the first A
0

, B
0

, and C 
0 

are not excessively far from the correct 

A, B, and C, the convergence of the process is good and we can obtain values for 

A, B; and C that are constant up to six figures. 

(This part (3) of the computer programme.has also been written in FORTRAN.) 

III-6 RESUL TS 

w . 1 2-hen we carry out the ca culation for the ground state of tetrahedral CuCl 
4 

as described in the preceding Sections, we obtain the following values for A, B, 
C, and D 

A 0.5408 
B = 0.1160 
c = 0,5063 
D = 0.7296 

This combination of A, B, C, and D is found to be the only one that remains con

stant throughout the calculation. 
The values of A, B, C, and D given here deviate somewhat from the values of 

A, B, C, and D in a fully ionic bonding (A = 1, B = C = O, D = 1 ), This means 
that covalency effects are really of importance in the bonding of CuCl~-. Instead 
of one Cu +2 and four Cl - ions we now have one Cu +o. 92 and four c1-0. 73. 

The high value of C is also remarkable and reveals the important role of the 4p 

orbitals. 
The eigenvalues and eigenfunctions belonging to the computed charge distri

bution are reported in Table III-21 (for the notation see Section IIl-5). 

In this Table the Hii integrals also appear. 
The results prompt us to making the following remarks: 

(a) The relative positions of the one-electron energies belonging to the computed 
charge distribution are quite different from these belonging to the ionic model. 
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Table III-21 Eigenvalues and Eigenfunctions belonging to 

the ground state of tetrahedral CuCl~~ 

~l ~mmetry 

." 4s X (z) X (s) 

~ -0.16996 -0.40468 -0.87306 

" 3a
1 

0.23604 1.5590 -0.9496 -0.5014 
2a

1 
-0.39578 0.0378 0.9833 -0.1468 

ta1 -0.90749 -0.2733 0.1852 1.1000 

EA(1) CA(1, i) CA(2, i) CA(3, i) 

E symmetry 

$+ 
--- --------~ ~--~ 

3d X(x,y) • 

~ -0.34082 -0.35662 

• 
2e -0. 32351 0.8361 -0.6046 
le -0. 37105 0.5521 0.7990 

EE{i) CF.(1, i) CF.(2,i) 
-

!_ 1 symmetry 

F.(T 
1

) = -0. 32267 

.:!' 2 _sy_m_m_etry_ 

t-+ 4p 3d X (x,y) X (z) 

.~ 
-0.13640 -0.34048 -0.36688 -0.34286 + 

+ 
5t2 0.14177 1.4480 0.0860 0.5550 -0.3770 

4t2 -0.30961 -0.0573 0.7069 -0.3953 -0.6897 

3t2 -0. 35835 -0.0044 0.7101 0.2265 0.6134 

2t2 -0. 37125 0.0165 0.0644 0.9105 -0.3810 

lt2 -0. 91174 -0.3510 -0.0020 -0.1558 0.0772 
----~---

ET(i) CT(l,i) CT(2, i) CT( 3, i) CT(4, i) 
- --
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X(s) 

-0.85342 

-0.5718 
-0.0872 
0.0014 
0.0349 
1.1640 

CT(5, i) 



With A = 1, B = C == 0 and D = 1, we find for the Hii integrals 

HA(3, 3)= -0. 23417 
HA(2, 2)= -0. 38943 
HA(l,1)= -0.84536 

Tl : E -0. 29222 

HE(2, 2)= -0. 61042 HT(5, S)= -0. 06245 
HE(l, 1)= -0.32910 HT(4,4)= -0.60912 

HT(3 1 3)= -0. 34055 
HT(2, 2):::: -0. 32284 
HT(l, 1)= -0. 82551 

From these values we see that the energies of the ligand 3p electrons are higher 

than the energies of the 3d electrons of the centra! ion. So if we bringtogether 
one Cu2+ ion and four CC ions, some charge of the filled ligand orbitals with 

high energy will flow to the partly filled d-orbitals with low energy. At the 

same time, the energy of the ligand orbitals decreases and the energy of the 
central ion orbitals rises. At the computed charge distribution the energy of 

the ligand orbitals is below that of the centra! ion orbitals (*) 

(*) 
2-

If this were not the case, the complex CuCI
4 

might not be stable. In the 

(hypothetical) complex Cul!- for instance, one may expect tbat the ligand 

energies remain above the energies of the centra! ion orbitals and this may be 
the reason why Cu(II) is reduced to Cu(I). 

(b) For the splitting of the "d-orbitals" we find the following 

(a.u~ 1 -0.30 

-0.32 

-0.34 

I 

I 

,--
/ 

I Il 

I I 
1 I 

--2e 

Fig. 3.4 Spllttlng of the d-orbitals In tetrahedral Cuc1!-
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Before the formation of the molecular orbitals, the splitting of the d-orbitals is 
very small: 

-1 
0.00034 a.u. ::: 74 cm 

After the formation the splitting is much larger: 
0. 01390 a. u. ::: 3050 cm -i 

The splitting has the right sign ( 4t2 above 2e) and also a very reasonable value. 
From optical speçtra and from crystal field calculations a value of 3500 to 

4000 cm -l for 6 is expected (15). 

In the pure crystal field picture ( A = 1, B = C = 0, D 1) we find 

-1 = 285 cm 
1 

6 = H .. (3d ) -H .. (3d) = 0.00130 a.u. 
11t2 ne 

Clear!y there is no stabilisation of d-electrons; on the contrary, the d-electrons 

are destabilised by a large amount. The stabilisation of the complex must be 

found in the bonding orbitals. 
(c) From the eigenfunctions we can see that a large amount of mixing occurs not 

only in the 4t2 orbitals but also in the 2e orbitals. Probably the mixing given 
by the molecular orbital theory is too large, as is not exceptiortal with this 

theory. We shall discuss the effect later on. The large mixing causes the anti
bonding orbitals to be situated relatively high. An example is afforded by the 

t 1 orbitals. The energy of these ligand orbitals is as high as that of the 2e 
orbitals. However, the t 1 orbitals are strongly anti-bonding ligand orbitals as 

can be seen from Table III-4. 
(d) From Table IIl-21 we see that there are two molecular orbitals with positive 

energies: 3a1 and 5t2• This is conceivable since the energy of all otherorbitals 

is èalculated by placing the electton in the field of (n-1) other electrons, while 
in the case of 3a and 5t2 the energy is calculated by placing a (fictitious) 

1 . 
electton in the field of n other electrons. Therefore the energies of these 

orbitals are higher than those of the others ( 16). 
(e) Chemists often work with the concepts of bonding and anti-bonding molecular 

orbitals. In this connection they introduce a quantity known as the "overlap 
population" (13). Suppose we have a molecular orbital composed of central 
ion and ligand functions. 
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We then define: 

O.P. = 2 I: ccS 
i j ij 

where the summation i extends over the central-ion functions and the summa

tion j over the ligand functions occurring in the molecular orbi tal. 
Mulliken shows that in most cases a positive overlap population corresponds to 
a bonding effect of the molecular orhital and a negative overlap population to 
an anti-bonding effect. This view if founded on the fact that with a positive 
overlap population, charge is concentrated between the nuclei, thus giving a 
bonding effect. 

However, in our calculation we must use these considerations with some re
serve. The 4p function of copper has its highest density not between the Cu 

1: 
1: 

t 

li 
~ 

J 



and Cl nuclei but on 'the other side of the Cl nucleus (see Fig. 3.1), and the 

same holds to a certain extent for the 4s function, 
Normally, most overlap is found between the two nuclei hut with the 4s and 4p 

functions this is not the case. So with these functions a positive overlap popu

lation need not ~orrespond with a concentration of charge between the Cu and 
Cl nuclei but, on the contrary, a concentration of charge may be caused by a 
negative overlap population. Hence, although we find a negative overlap 

population in the 1a
1 

(-0. 36) and the tt2 (-0. 70), these orbitals may be 

bonding orbitals. 
(f) The evaluation of the secular determinant and the determination of A, B, C, 

and D is carried out very accurately by the computer. The errors introduced 
by the approximations of the preceding Sections are much larger than the 

computational errors. 

A further discussion of the results will be given later on, when the results of the 

calculations on other systems are available. 
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CHAPTER IV 

MOLECULAR ORBITAL CALCULATION ON THE GROUND 
STATE OF THE SQUARE PLANAR 
TETRACHLOROCUPRATE (II) ION 

IV-1 INTRODUCTION 

The calculation on the ground state of the square planar configuration of 

Cuci;- is completely analogous to the calculation on tetrahedral CuCl!- as dis

cussed in the preceding Chapter. An attempt will be made to use the results of the 

preceding calculation as much as possible. This causes the calculation on square 

planar CuCI!- to be less accurate on some points, but this additional inaccuracy 

will not prevent us from comparing the calculation on the tetrahedral complex 

with that on the square planar one. 

As a first approximation we assume the distance Cu-Cl in the square planar 

CuCl~- to be equal to that in the tetrahedral complex, viz. 4.194 a.u. The dis

tance Cl-Clthenbecomes 5,931 a.u. for neighbouring ligands and 8.388 a.u. for 

opposite ligands. We expect that in actual reality the distances are somewhat lar

ger than given here because in a square planar complex the ligands repel each 

other more strongly than in tetrahedral complexes. 

The one-electron atomie wave functions in the calculation are taken as in the 

preceding problem. We must now classify these one-electron wave functions 

according to the irreducible representations of the group D4h. In Chapter II we al

ready discussed this problem, Table II-5 giving the result of this classification. 

The following calculation is performed for the configuration 

IC(la
1 

)
2

(1b
2 

)
2

(le )
4

(2a
1 

)
2

(2b )
2

(2e )
4
(1e )

4
(1b )

2
(1a

2 
)
2

(3e )
4 

g g u g 2g u g lg u u 

2 2 2 4 2 1 
(tb

1 
) (a ) (3a

1 
) (2e ) (2b

1 
) (3b

2
g) (4.1) 

u 2g g g g 

At the end of the calculation it will be seen that this configuration turns out to be 

the ground state of the square planar CuCI!- • 

IV -2 OVERLAP INTEGRALS 

To evaluate the group overlap integrals S." we need simple diatomic overlap 
IJ 

integrals of the type ( s 1 s) , <po 1 p (]), etc. We take the simple diatomic 
overlap integrals equal to those found in the calculation on tetrahedral CuCl~

(Table III-3). This is correct for the overlap integrals of Cu functions and Cl 
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functions since the distance Cu-Cl has been kept constant. For the simple diatom

ic overlap integrals of two wave functions of neighbouring Cl ligands we likewise 

take the numerical values of the preceding calculation. 

This is not correct here since the Cl-Cl distance has changed, hut we expect that 

the error will not be large. The overlap integrals for functions of opposite Cl li

gands will be neglected. The error introduced here often counteracts the previous 

one, and since the numerical values of the ligand-ligand overlap integrals are 

small, the total error will not be large. 

The relations between the group overlap integrals in square planar complexes 

and the simple diatomic overlap integrals are given in Table II-10 for overlap in

tegrals of copper functions and combinations of ligand functions. The relations for 

overlap integrals of different combinations of ligand functions are shown in Table 

IV-1. 

Table IV-1 Group Overlap Integrals between different Combinations 

of Ligand Functions in a Square Planar Complex 

A <x<s>I x<z>) = 4/2N (s) N (z) ( sl 1 P02) lg A A 
lg lg 

B (X(s) 1 X(z)) -4/2 NB (s) N (z) ( s 1 pa ) 2g 
2g B2g 1 2 

E ( X(s) 1 X(z)) = 0 
u 

(X(s) 1 X(x,y>) = /2 (s1 1 po
2

) 

(X(z)I X(x,y)) = (pol 1 Pa2 ) - ( p111 I p112) 

The normalisation constants of the combinations of ligand orbitals may also be 

expressed in simple diatomic overlap integrals; Table IV-2 gives these expressions 

together with the numerical values of the normalisation constants used in the 

following calculation. 

The group overlap integrals can now be computed for different charge distribu

tions and analogously to the previous calculation we can, by interpolation, con
struct formulas that·represent the group overlap integrals as functions of the charge 

distribution. 
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Norm. 
Constant 

NA (s) 
lg 

NA (z) 
lg 

NA (x) 
2g 

NA (y) 
2u 

NB (x) 
lg 

NB (y) 
lu 

NB (s) 
2g 

NB (z) 
2g 

NE (y) 

.g 

NE (s) 

u 

NE (z) 
u 

NE (x) 

u 
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Table IV-2 Normalisation Constants for the Ligand Orbitals 

in Square Planar CuCl~-

Expression Cl 

1 

0. 5 { i + 2 ( s
1 

1 s
2
)} --z 0,49616 

o.5 {1+(po
1
! po

2
) +(pn

1
1 Pn

2
)} 0,48346 

1 

0.5 { 1 - (po
1 

I po
2

) - (Pn
1

1 pn
2

)} -2 0.51838 

0.5 {1 + 2 ( pn
1 

1 pn
2
)} 0.49310 

1 

o.5 { 1 + (po
1 
i po

2
) + (p11

1 
I p11

2
) }-2 0.48346 

1 

0.5 {1 - 2(pn
1

1 pn
2
)(2 0.50719 

0.5{1-2(s
1

1 s
2
)} 0,50393 

1 

o.5{1-(po
1
! po

2
)-{Pn1 1 pn

2
)}-

2 0,51838 

0.5 0.50000 

o.s 0,50000 

o.s 0.50000 

0.5 0.50000 

-Cl 

0.49008 

0.46982 

0.53685 

0.48374 

0.46982 

0.51801 

0.50613 

0.53685 

0.50000 

0,50000 

0.50000 i 
0.50000 

j 



IV -3 H .. AND H INTEGRALS 
11 ij 

To compute the H .. integrals we again divide these integrals into two .parts 
Il 

( a) the one-electron energies of the free ion, 

(b) the interaction of an electron of a certain atom with all other atoms in the 

molecule. 

In this calculation part ( a) is of course the same as in the calculation on• tetra

hedral CuCl~- • Part (b), however, differs. In Chapter III the înteraction of an 

electron of a certain atom with all other atoms in the molecule was approximated 

by z• 
r < 4>.<1> l···J~-1 4> .c1J > 
B i rS 1 i 

For interactions between copper and chlorine we will take the integrals 

<4>.(1) 1-1-1 q,.(1)) (_!_-integrals) equal to those found in Chapter III, since the 
1 ra1 l ra . 

distance Cu-Cl is kept constant in our calculations. The Z'S also remain thesame 

in our calculation, so that in the square planar complex the interaction between 

an electron of Cu and the ligands or between an electron of the ligands and Cu is 

exactly equal to that in the tetrahedral complex. 
This is not the case with interactions of an electron of a ligand with the other 

ligands because the Cl -Cl distance changes. From Table IIl-15 we can see that 

the J.-integrals deviate only little from the point charge model, i.e. 
a 

1 1 1 < 4>. I- 4>·> ~ -1 rCl 1 r Cl-Cl 
(4.2) 

1 
This formula will now be used to approximate the ra -integrals for the square 

planar case. We then obtain for neighbouring ligands ' 

1 
< q,. 1-1 4>·) 

1 . rel l 5.9312 
= 0.16860 (4. 3) 

and for opposite ligands 

0. 11922 (4.4) 

Furthermore, the Z'S for neighbouring ligands will be taken equal to the effective 
charges for Cl-Cl used in the previous calculation. As regards opposite ligands we 

suppose that the electrons of a ligand screen their nucleus completely from an 

opposite ligand (Table III-18 indicates that this is a good approximation), so in 

this case ZS = -D (4.5) 
-D 

where D has the same meaning as in the preceding Chapter (Cl ). It is now 

possible to calculate the Hii integrals as functions of the charge distribution in the 

manner described in Section III-4. The H .. integrals are in this calculation eval-
lJ 

uated with the help of formula (3.42). 
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IV-4 EVALUATION OF THE SECULAR DETERMINANT 

In Chapter II we already discussed what types of determinants have to be solv

ed for square planar complexes. The eigenvalues and eigenfunctions belonging to 

these determinants will be defined as follows: 

A symmetry 
-1g • 

EA(i) lJI A(i)=CA(l, i)~ 
45 

+cA(2, i).p
3

d +CA(3, i) x
0 

+cA(4, i) X 
5 

A sym:netry 
-2g 

lJl(A )=X 11 2g 

A symmetry -2u ___.. __ _..._ 

EC(i) 

B symmetry 
-lg - -

~lu symmetry 

B symmetry 
-2g-"'"----

Ijl (i)=CC( 1, i) ~ 4 +cC(2, i) X 11 
c p 

ED(i) lJf
0

(i)=CD(1,i) .p
3
d+cD(2, i) x

0 
+cD(3, i} X

5 

E symmetry 
-g 

!u symmetry 

EF(i) IV (i)=CF(l,i) <!> +cF(2,i)X ... +CF(3,i)X ... +CF(4,i)X 
F ~ H v s 

The determinants are evaluated with a computer programme that is completely 

analogous to the programme used for tetrahedral complexes. Only where necessary 

has the programme been adjusted to the special problem. Part (3) of the computer 

programme (the determination of the new A, B, and C from the computed eigen

functions) has to be altered considerably. To determine the new A, B, and C, we 

start from the configuration ( 4. 1 ). 
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10-A 
Determination of A (3d of Cu) 

The d-electrons of Cu play a role in the molecular orbitals with A1 , B1 , 

B2g and E symmetry. The crbitals with B1g and Eg symmetry are coJplete~y 
filled, wh~ch gives us six.d-electrons. The orbitals with Alg and B2g symmetry 

are only partly filled: 

and 

respectively, 

If we suppose 

and 

then 

or 

4 

SA
1 

= 2 {CA(2,1)}
2 

{ L {CA(i,1)}
2

] + 
i=l 

4 

2 { CA(2, 2)}
2 

{ . L ( CA(i, 2)}
2 J + 

i=l 

4 

2 {CA(2,3)}
2 

{ L {CA(i,3)}
2

] 

i=l 
3 

SA
2 

= { CD(l, 3)} 
2 

/ [ L { CD(i, 3)} 
2J 

i=l 

10 - A = 6 + SA + 2 - SA 
1 2 

A = 2 - SA +SA 
1 2 

B 
Determination of B (4s of Cu) 

(4. 6) 

The 4s electrons of Cu only occur in the molecular orbitals with A
1 

symmetry. 
We thus find g 

B = 2 {CA(l,1)}
2 

/ [ i!l {CA(i,1)}
2

] + 

2 {CA(l,2)}
2 

/ [ i~l {CA(i,2)}
2
] + 

4 
2{CA(1,3)}

2
/[ I: {CA(i,3>}

2
] 

i=1 
(4.7) 
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c 
Determination of C (4p of Cu) 

The 4p electrons of Cu occur in the molecular orbitals with A and E symmetry. 
2u u 

These molecular orbitals are only partly filled: 

and 

It is easy to see that 

c 

2 0 
(la ) (2a ) 

2u 2u 

4 4 4 0 
( le ) ( 2e ) ( 3e ) ( 4e ) 

u u u u 

2 {CC(l,1)}
2 

/ c~l {CC(i,1)}
2

] + 

4 {CF(l,1)}
2 

/ [.~ {CF(i,1)}
2J + 

i=l 

4 

4 {CF(l,3)}
2 

/ [.r {CF(i,3)}
2

] 
1=1 

In this calculation D is also computed with the help of formula.(3.52). 

IV-5 RESULTS 

(4. 8) 

The calculation concerning the ground state of square planar CuCl!- gives us 
the following values of A, B, C, and D 

A = 0.4999 

B = 0.1333 

c :::: 0.6707 

D = 0,6990 

So in this case we find on copper a charge of i-0. 80 and on each of the chlorine 

ligands -0. 70. 
The eigenfunctions and eigenvalues belonging to this charge distribution can be 
found in Table IV-3. 

Some of the remarks made on the results of the calculation on tetrahedral 

complexes also hold in this case. Of course, the splitting of the d-orbitals is. total

ly different here. 



Table IV-3 Eigenvalues and Eigenfunctions belonging to 

the ground ~tate "of square planar CuCl~-

A symmetry 
-lg 

r + " 
r~ 
' " i Emot 

4a 
lg 

0.40209 

3a1g -0. 31533 

2a1g -0.37801 

la 
lg 

-0. 88871 

EA(i) 

A symmetry 
-2g 

f,(A ) 
2g 

A symmetry 
-2u 

4>" 
H.. 

11 

1 Emo + " 
2a 

2u 
o. 01050 

la 
2u 

-0. 35931 

EC(i) 

B symmetry 
-lg 

+ + 

~ + 
l 

2b1g -0.29969 

lblg -0.36309 
i 

EB(i) 

4s 3d 2 
z Xa Xs 

-0.16820 -0.32312 -0.37521 -0.85492 

1. 7280 0.0486 -1. 1620 -0.6440 

-0.0448 0.9696 -0.2930 0.0859 

0.0720 o. 2568 0.9040 -0.0780 

-0.2~~0055 0.1835 1.1190 

c~~~~(2,i) CA(3, i) CA(4, i) 

-0. 29552 

4p 
z 

-0.15691 -0.34476 

1.1410 -0.7836 

o. 2310 0.8616 

CC( 1, i) CC(2, i) 

3d 2 2 Xn 
x -y 

-0.31418 -0.35242 

0.9145 -0.4794 

0.4114 0.8808 

CB(l, i) CB(2, i) 
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B symmetry 
-1 u --'-------'-

B symmetry 
-2g 

! • + 

~ ... 
3b -0.27296 

2g 
2b -0.33928 

2g 

1b2g -0.83060 

ED(i) 

E symmetry 
-g 

~ ... 
~ + 

2e -0.30438 
g 

le -0. 34169 
g 

EE(i) 

E symmetry 
-u 

4i + 

~ + 

4e 0.26940 
u 

3e -0.31795 
u 

2e -0.35362 
u 

i 
ie -0,92617 

u 

EF(i) 

98 

3d Xo Xs 
xy 

-0.31479 -0.31463 -0.83059 

0.7707 -0. 7594 -0.1325 
1 

0.6588 0.6702 -0.0073 

0.0043 -0.0038 0.9993 

CD(l,i) CD(2, i) CD(3, i) 

3d Xv i 

xz, yz 
-0.32072 -0.32743 

0.7872 -0.6626 

0.6192 o. 7510 

CE(1, i) CE(2, i) 

4p 
x,y 

Xv Xo Xs 

-0.14238 -0.32743 -0.34860 -0.84303 

1.6240 -0.5461 -0.4045 -0.8014 

-0.0113 0.9348 -0.4251 -0. 0671 

0.0042 0,3747 0.9045 -0.0299 

-0.4440 0.1573 0.1072 1.2550 

CF(l,i) CF(2, i) CF(3, i) CF(4, i) 



We now obtain the following picture 

, .. ~ 1 
-0.28 

-0.30 

-0.32 

I 

I 
/ 

I 

I 

I 

I 

/,--dxy 

I 

/ ,,,.---.. d 2 2 
I ..,,.. ,,,, x -y 

Il ,,,, ,,,,,,.. ,...-. -- dxz ,dyz 
I ,,,.,,,,,,. / 

--- !,,,/ // ___ ::::f / 

-- _.. 
/ 

/ 

___ d
1

2 

Fig. 4. 1 Splltting of the d-orbitals in square planar Cu Cl!-

The relative splitting of the d-orbitals is correct. See, for example, Ref.(1), page 

24 (we use a different coordinate system from the one in Ref.(1), so d 2 2 and 
d have to be interchanged to make possible a satisfactory compariso~).-y 

TWe maximum splitting (F.(~) - F.(d 2)) is equal to 
. z -1 
0.0424 a.u. == 9300 cm 

This value is a very reasonable one.for square planar complexes (2). 

IV-6 COMPARISON OF THE CALCULATIONS ON TETRAHEDRAL AND 
SQUARE PLANAR CuCl~-

Comparing the results of the calculations on tetrahedral and square planar 
CuC12- we observe the following points: 
(a) .Jte charge distribution in the tetrahedral complex differs somewhat from that 

in the square planar complex. On the central ion we find in the two cases a 
charge of -l-0. 92 and -l-0. 80 respectively. So in the square planar complex there 
is more negative charge on th.e centra! ion, 

This is understandable since in the square planar complex the distance between 
the ligands is smaller and therefore the electrons of the ligands will repel each 
other more strongly. Consequently some negative charge will be projected to 
the central.ion. 
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(b) The splitting of the d-orbitals can be compared as follows 

(a.u~ î 
-0.28 

-0.30 

-0.32 

/ 

/ 

/ 

/ 

/ 

/ -
/ --dÎ ___ _.,,?_ l 

/ 

/ 

/ 

I 

/ 

Ftg. 4. 2 Tetrahedral and Square Planar Cu c1!-

From this figure we see that the splitting of the d-orbitals is different for the 
two types of surrounding. X-ray analysis shows the actual structure of CuCl:

to be a distorted tetrahedron (intermediate between the tetrahedral and the 
square planar structure) and we now see that a small amount of distortionofthe 
tetrahedron may already cause a considerable change in the positions of the 

energy levels. 
(c) Adding the energies of all occupied molecular orbitals, we obtain 

2-
for tetrahedral CuC1

4 
-18. 717 a.u. 

100 

2-
for square plan ar CuCI 

4 
-18. 003 a. u. 

This does not mean, however, that the tetrahedral structure is more stable 
than the squar( planar structure because the total energy of a complex is not 
equal to the sum of the orbital energies. In the sum of the orbital energies 
the energy of repulsion between the electrons has been counted twice, so to 
obtain the correct total energy we have to subtract this repulsion term. 

We shall discuss this in a following chapter. 
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CHAPTER V 

MOLECULAR ORBITAL CALCULATION ON THE GROUND 
STATE OF THE OCTAHEDRAL 
HEXACHLOROCUPRA TE (Il)ION 

V-1 CALCULATIÖN OF S AND H INTEGRALS 
ij ij 

4-
The calculation concerning the ground state of octahedral CuCl6 resembles 

very much the calculation on the square planar complex as discussed in Chapter 

IV. For the two calculations we have used the same approximations. So the Cu-Cl 
distance in CuCl:- is supposed to be 4. 194 a. u.; consequently the Cl-Cl distance 
is 5. 931 a. u. for neighbouring ligands and 8. 388 a. u. for opposite ligands. 

In the present calculation we have to classify the one-electron wave functions 

of the centra! ion and of the ligands according to the irreducibl.e representations of 

the octahedral group ~. 
Table II-6 gives the results of this classification. In Chapter II we expected the 
configuration 

4-
to be the ground state of CuCI

6 
• 

The overlap integrals in the octahedral complex are calculated under similar 
2-

restrictions as the over lap integrals in square planar CuCl 
4 

• Table V -1 gives the 
formulas of the normalisation constants of the ligand functions, Table V-2 gives 
the relations between the group overlap integrals and the simple diatomic overlap 
integrals for combinations of ligand functions. 

The evaluation of the Hii integrals is performed with the same approximations 
as used in the calculation of the H .. integrals in square planar CuC1

4
2- • The cal-

11 

culation of the Hij integrals is carried out with the help of formula (3.42). How-
ever, since some of the H .. integrals are positive in CuCl:- (for instance, for 

4p(Cu)) the expression~. may become imaginary, in which case /H" H" is 
1 JJ 11 JJ 

replaced by ~H .. + H..). 
11 JJ 
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Table V-1 Orbitals 

in Octahedral 

1 

NA (s) = { 6 + 24 ( s 1 1 s 2 )} -
2 

lg 1 

N (z) { 6 + 12 ( po
1 

1 po
2 

) + 12 ( P n1 1 Plfz)} -2 
A 

lg 1 

NE (s) = { 4 - 8 ( s1 j s2 ) } -2 
g 

( 4 - 4 (po
1 

j po
2

) - 4(pn
1

1 pn
2

)} -! NE (z) = 
g 

{ 4 - 4 < P01 I P02) - 4<P1f11 Pn2 >} NT (x, y) 

lg 1 

NT (s) = { 2}-2 

lu 1 

NT (z) = { 2}-2 

lu 1 

NT (x, y) = ( 4 + 8 (pn 
1 

1 Plr 
2

)} -i 

lu 
N (x, y) = ( 4 + 4 (P01 I P02> - 4(Pl111 Plr2)} T 

2g 1 

N (x, y) = ( 4 - 8 ( pn 
1 

1 P1f 
2 

) } -
2 

T 
2u 

Table V-2 Group Overlap Integrals between different Combinations 
of Ligand Functions in an Octahedral Complex 

A 
lg 

E 
g 

12 /iNA {s)NA (z) (s1 1 po2 ) 
lg lg 

' ( x (s) 1 x<z)) = -4 /2 NE (s) NE (z) ( s1 1 P02 ) 

(X(s) 1 X(z)) 

( X(s) j X (x, y) ) 

(X(z) Jx<x,y)) 

0 

g g 

4 NT (x, y) ( s1 1 po
2

) 

2/iJ~ (x,yJ{(po1 j po2) 
lu 
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V-2 EVALUATION OF THE SECULAR DETERMINANT 

For octahedral complexes we have to solve the following secular determinants: 

symmetry Alg 

symmetry E 
g 

symmetry T lg 

symmetry T 
1 
u 

symmetry T 
2g 

symmetry T 
2u 

3 x 3 determinant 

3 x 3 determinant 

1 x 1 determinant 

4 x 4 determinant 

2 x 2 determinant 

1 x 1 determinant 

The computer programme used for the evaluation of these secular determinants is 

completely analogous to the programme that has been discussed in the previous 
Chapters. Oaly where necessary is the programme modified to make it suitable for 
the present calculation on Cuc1i-. The determination of A, B, and C is carried 

out correspondingly to the configuration ( 5. 1) with the procedure described in the 
preceding calculations. In this calculation 

1 
D = 6(5 + A - B - C) (S. 2) 

V-3 RESULTS 

For the ground state of the octahedral CuCl:- we find the following charge 

distribution 

A = 0.926 
B = 0.515 
c = 0.466 
D = 0.824 

With these values we get a charge of +o.94 on copper, and of -0.82 on eachofthe 

ligands. Although in CuCl:- there are two extra CC ligands with respect to CuCI:-, 
the negative charge on the central ion is lower. Possibly this points to the fact that 
covalency effects are less important in octahedral complexes than in tetrahedral or 

square planar complexes. The one-electron energies and the molecular orbitals of 
CuCl:- are shown in Table V-3. The results lead us to the following remarks: 

( a) The one-electron energies of CuCl:- are surprisingly high with respect to the 
one-electron energies of CuCl~-. This is caused by the presence of two extra 
Hgands, which has an unfavourable effect on the one-electron energies. We 
regard these high energies as an indication of the instability of the CuCl~
complex. 
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(b) From the molecular orbitals of Table V-3 we see that the mixing in the orbit- · 
als with a predominantly 3d character (3eg and 2t2g) is very small withrespect 
to the comparable mixing in the tetrahedral complex. The splitting of these 
orbitals is as follows 

E 

1 
(a.u.) 

-0,054 
d·.2-y2 dz2 
~ 

/ 

-0,056 / 

/ 
/ 

/ 
/ 

/ 
---/ dxy d., -0,058 

,,-
/ 

/ 

" 
-0,060 

Fig. 5. l Spllttlng op the d-orbitals In Cu ei:-

Table V-3 Eigenvalues and Eigenfu.nctions belonging to the 
state of octahedral Cuci:-

A
1 

5ymmetry 
-g 

4> ..... 

~ + 
3a1g 0.50901 

2a1g -0.12662 

1a1g 
1 

-0.59072 

1 

EA(i) 

4s X (z) X (s) 

-0,01254 -0.10988 -0.57491 

2.122 -1.682 -0.837 

0.383 0.719 -0.214 

-0. 258 0.109 1.117 

CA(l, i) CA(2, i) CA( 3, i) 

dy, 
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!;;g symmetry 

~" 

~ 0 ... 

3e -0.05477 
g 

2e -0.08548 
g 

le -0.55152 
g 

EE(i) 

T
1 

symmetry 
- g 

3d 

-0.05771 

0.997 

0.154 

-0.043 

CF.(1, i) 

= -0.06187 

T symmetry 
-lu · 

~~ 

~ ... 
4tlu 0.39282 

3\u -0.06989 

2\u -0.10390 

ltlu -0.57306 

EU(i) 

T symmetry 
-2g 

2t 
2g 

-0.05822 

lt 
2g 

-0. 07561 

ET(i) 

T
2 

symmetry 
- u 

4p 

0.04464 

1.619 

-0.137 

-0.188 

-0.194 

CU(l, i) 

3d 

-0.05974 

0,975 

0.232 

CT(l,i) 

F.(T
2
u) ::: -0.06456 

106 

X (z) X(s) 

-0.08589 -0.55010 

. .. 

-0.274 -0.051 

0.972 0.425 

0.038 1.004 

CF.(2, i) CF.( 3, i) 

X(x, y) X(z) X(s) 

-0.07306 -0.09591 -0.55875 

-0.477 -0.453 -0.799 

0.984 -0.516 0.004 

0.464 0.905 0.056 

0.037 0.076 1, 104 

CU(2, i) CU(3, i) CU(4, i) 

-0. 

-0.296 

0.957 

CT(2, i) 



The relevant positions of the orbitals are correct. We find 850 cm -l as the 
numerical value of the splitting. However, we .expect for octahedral complex
es a larger splitting: 8, 000-10, 000 cm -l ( 1 ). There is no possebility of exper

imental verifîcation of this value, since no CuCl:- complex is known. There 
is, however, a situation in which Cu is surrounded by six Cl-ligands, namely 
in a CuCl

2 
crystal. In this crystal Cu is found in a distorted octahedron of Cl, 

with 4 Cl ligands at a distance of 2. 3 ~ and 2 Cl ligands at 3. 0 9i. (2). We 
may wonder why the copper ion is stable in this environment. To get an im
pression of the stability of Cu in this type of surrounding we have made a very 
approximate calculation on Cu in a CuC12 crystal. 

V-4 CALCULATIONON Cu INA CuCI2 CRYSTAL 

In the following calculation we use an idealised cubic structure of CuCI
2 

in
stead of the actual structure (Fig. 5. 2). We derive the structure from the NaCI 

• = Cu 

Ü =Cl 

Fig. 5. 2 CuCI
2 

crystal 

structure by replacing half of the Na-atoms by Cu leaving the remaining sites 
vacant (This idealised structure resembles the actual structure of CuC1

2 
apart from 

the distortion). As a second approximation we suppose the shortest Cu-Cl distance 
2-to be 4.194 a. u. (as in the CuCl
4 

complex), From the CuC1
2 

crystal we take a 
CuCI

6 
unit and to this unit we apply a molecular orbital calculation. In our 

approximation, the classification of the one-electron wave functions is, of course, 
identical with that i~_cuc1:-. Also, the overlap integrals in the CuCI

6 
unit are 
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the same as in CuC16 • However, the Hii integrals attain a dif{erent value, for we 
suppose that the electrons of the CuC1

6 
unit are not only affected by atoms of this 

unit but also by atoms situated outside the CuC16 unit. This is not surprising. For 

instance, a Cl atom wil! not only be affected by the Cu atom of the CuCI6 unitto 
which it belongs, but also by other Cu atoms that are to be found at the same dis

tance. Of course, the same holds for Cu atoms. The situation is simplified by the 

fact that the influences of different atoms situated at greater distances cancel. For 
at larger distances, the shielding constants of all electrons may be taken equal to 

1.00, and then we get an effective charge of-Don Cl and of +2D on Cu. On an 

average there are at a certain distance two Cl atoms to each Cu atom. Takingthe 
1Îf integrals for atoms at a distance r equal tof (which is a satisfaçtory approxima

t1on for large r) we see that the contribution of the atoms at the distance r to the 

Hii integrals is approximately equal to 

+2D -D 
N (-+2-) = 0 

r r r 

(with Nr being the number of Cu atoms at the distance r). 
For this reason the influence (on the H .. integrals) of all atoms at twice 4.194 a. u. 

11 
or more. from the CuC16 unit is ignored. The Cu atom in the particular CuCI6 
unit is now affected by the following atoms: 

Atom 
Distance 

r
0 

:::: 4.194 a. u. 
Effective Charge 

6 Cl r See Table III-16 
0 

6Cu r /2 -1-A+o.SB+o. 7C (*) 
0 

8 Cl r
0 

/3 D 

and each of the Cl atoms by 

Atom Dist-- - Effective Charge 

3 Cu r See Table III-16 
0 

12 Cl r/2 See Table 111-16· 

4Cu r /3 -l~A+o.95B+o.9C(*) 
0 

1 Cl 2r D (**) 
0 

(*) These effective charges are estimated with the help of the effective charges 
of Table lll-16. 

(**) This extra Cl is added to obtain charge neutrality. 
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1 
The 1B integrals that are not calculated in the preceding Chapters, are approx-
imated by..!... Now the H.. integrals can be calculated as functions of the charge 

r n 
distribution. The Hii integrals are then obtained by formula (3,42). The deterini-
nation of A, B, and C is carried out for the configuration ( 5. 1), just as in the case 

of CuCl:-. Now D is obtained from 

D = ! (1 + A - B - C) 

We now obtain the following charge distribution 

A 0.768 

B = 0.445 
c =.1.242 
D=0.041 

(S. 3) 

This results in a charge of +o,08 on Cu and a charge of -0.04 on Cl. The mo
lecular orbital energies and the molecular orbital wave functions belonging to this 
charge distribution are given in Table V-4. From these results we see the follow
ing: 

Table V-4 Eigenvalues and Eigenfunctions belonging to the 
ground state of a CuC16 unit in a CuC12 crystal 

A
1 

symmetry 
-g 

et> .... 

~ o+ 
3a 

lg 
4,603 

2a1g -1. 817 

la1g -2.261 

EA(i) 

E symmetry 
-g 
1 

et> + 

~ 
3e -1.260 

g 
2e -1. 626 

g 
le -1. 963 

g 

EE(i) 

4s X (z) X(s) 

-1.424 -1.842 -2.014 

1.911 -1.404 -1.056 

0.106 o. 727 -0.725 

0.348 0,346 0.564 
·-· 

CA(l, i) CA(2, i) CA(3, i) 

3d X (z) X (s) 

-1. 360 
1 

-1.589 -1.953 

0.940 -0.471 -0. 211 
1 

0.363 0.886 0.072 

0.087 -0. 107 0.980 

CF.(1, i) Cf.(2, i) CF.(3, i) 
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T
1 

symmetry 
- g 

' + 

~ + 
+ 

4t1u 1,468 

3\u -1.548 

2\u -1. 795 

1\u -2.176 

EU(i) 

T
2 

symmetry 
- g 

' + 

~ + 
2t2g -1. 324 

lt 
2g 

-1. 742 

ET(i) 

I 
2
u symmetry 

110 

-1.546 

4p X(x,y) X (z) X(s) 

-1. 389 -1.687 -1,686 -1. 974 

1.477 -0.672 -0.434 -1.019 

0.008 0.758 -0. 720 -0.181 

0.081 0.522 0.653 -0.487 

0.352 0.208 0.104 0.664 

CU(l, i) CU(2, i) CU(3, i) CU(4, i) 

3d X (x, y) 

-1. 359 -1.721 

0.977 -0.288 

0.223 0.960 

CT(l,i) CT(2, i) 



( a) The charge differences in the CuC12 crystal are very small. This is mainly 

caused by the considerable occupation of the 4p orbitals of copper which is a 

result of the large mixing of the 4p orbitals in the ltlu molecular orbital. 

Perhaps this must be ascribed to the fact that the energies of the 4p orbitals 

and of the ligand orbitals are of the same order of magnitude (-1. 4 and -1. 7 

respectively), which was not the case in the previous calculations (See also 

Chapter VIII). 

(b) 

(c) 

(d) 

In the CuC12 crystal, all one-electron energies are very low with respect to 

the corresponding energies in CuCl:-. This is understandable since the effect 

of the six Cl ligands on the energies of the Cu electrons is counteracted in the 

CuC12 crystal by other Cu atoms. Moreover, the negative charge of the Cl 

ligands in the CuC12 crystal is smaller than in the CuCl:- complex. The 

values of the one-electron energies in the CuC1
2 

crystal are even lower than 

the energies in CuCl~- (which may be an explanation of the stability of the 

octahedral crystalline structure of CuC12). 

From the molecular orbitals of Table V-4 we see that the mixing in the 3e 

and the 2t2 orbitals (with a predominantly 3d character) is larger than in g 
4- g 2-

CuC16 , hut smaller than in CuC14 • On the other hand the role of the 4s and 

4p orbitals is very important in the CuC12 crystal. 
For the splitting of the 3d orbitals we now find: 

E 
(a.u.) 

1-·~ 
-l.28 

-l.30 

-l.32 

-l.34 
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Fig. 5. 3 Splitting of the d-orbitals in a CuCl2 crystal 
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The relative positions of the orbitals are again correct but the numerical value 

of the splitting has become much higher than in Cuc1:-, viz. 14, 300 cm -l 

On the one hand this is caused by the fact that the absolute values of all ener

gies are larger; another and more important cause is the larger mixing in the 
relevant orbitals in the case of CuC12• However, the splitting found here is al
most certainly too high; we expect a value Óf 8,000-10,000 cm-1 (1). The 

high value of the splitting in our calculation may be the result of the approx -
imations we have made. So we took, for instance, the Cu-Cl distance too 

short. 
As a result of this very rough calculation we may state that, although the 

CuCl:- ion seems unstable, copper in an octahedral environment of Cl may be 

considerably more stable in a CuC12 crystal. 
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C HAPTE R VI 

EXCITED STATES AND TOTAL ENERGIES 

VI-1 MOLECULAR ORBITAL CALCULATION ON THE F..XCITED STATE 2E 

OF TETRAHEDRAL Cuci:-

If an electron in a molecule passes from one molecular orbital to another, the 

charge distribution in the molecule may change and, consequently, so may the 

molecular orbitals. To get an impression about the magnitude of these effects1 let 

us try to perform a molecular orbital calculation on an excited state of the tetra

hedral Cuci;- complex. For this purpose we choose the first excited state of the 

complex, the 2E state. 

As a first approximation we assume the distances between the nuclei in the 

excited complex to be the same as those in the ground state of Cuci:-. For the 
first excited state this assumption may be said to be reasonable, 

The distribution of the electrons among the molecular orbitals in the 2E state is 

given by formula (2. 17b), 
For the calculation on the 2E state we now use the results of our calculation on the 

ground state of tetrahedral CuCl~- as far as possible. The two calculations are 

completely identical except for the determination of A, B, C, and D from the 
molecular orbitals. In the case of the 2E state we determine A, B, C, and D on the 

basis of formula (2.17b). 
We now find the following charge distribution in the 

A = 0.5629 

B = 0.1120 
c = 0.5012 

D = O. 7372 

state: 

This charge distribution results in a charge of +o. 95 on Cu and of -0. 74 on each 
of the ligands. The one-electron energies and molecular orbitals belonging to this 

charge distribution are to be found in Table Vl-1. 
Comparing the results of the calculation on the ground state with those of the 

calculation on the first excited state, we notice the following points: 

( a) The charge distribution in the complex changes somewhat by the transition of 

an electron from 2e -+ 4t2 and this is not surprising since the 2e molecular 

orbi tal consists for about 65% of metal orbitals and the 4t
2 

for about 50%. 

If the molecular orbitals before and after the transition were identical, the 

change in the charge distribution would have been much larger. With the 

molecular orbitals from Table III-21 we would have found 
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Table VI-1 Eigenvalues and Eigenfunctions belonging to the 
excited state 2E of tetrahedral CuCl~-

~" 4s X(O) X (s) 

~ -0.1717 -0.4055 -0.8733 
' 

3a
1 

0.2320 1.552 -0.949 -0.494 
2a1 -0.3966 0.042 0.981 -0.148 ' 
1a

1 
-0.9061 -0.266 0.181 1.097 

EA(i) CA(l, i) CA(2, i) CA(3,i) 

E symmetry 

:r_
1 

symmetry 

E(T 1) = -0.3228 

T symmetrr 
-2 

..... 4p 3d x (11') X (O) X (s) 

~ 
1 

-0. 3500 -0.3672 -0.3433 -0.1367 -0. 8536 

5t2 0.1388 1.444 0.086 0.549 -0.384 -0.567 

4t2 -0.3134 -0.057 0.641 -0.420 -0.738 -0.088 

3t2 -0.3643 -0.009 0.764 0.136 0.572 -0.010 

2t2 -0. 3717 0.015 0.116 0.917 -0.352 0.034 

lt2 -0.9108 -0.347 o.ooo -0.153 0.078 1.161 

ET(i) CT(1, i) CT(2, i) CT(3, i) CT(4, i) CT(S, i) 
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2T 
2 

2E 

A 0.5408 0.6566 

B 0.1160 0.1160 

c 0,5063 0.5092 

D 0.7296 o. 7578 

We see, however, that in actual practice the charge distribution changes only 
little since the coefficients in the molecular orbitals also change slightly. 

(b) The change in the coefficients in the molecular orbitals is small, namely at 

most ten per cent. This is the reason why in the calculation to be carried out 

in the following Chapter, w~ shall use the same coefficients in the molecular 
orbitals before and after the transition. 

( c) All one-electron energies of the 2E state differ a little from the energies of 
the ground state. The relative positions of the energies remain the same in 

both cases. 

VI-2 TOTAL ENERGIES 

As we have stated before, it is not correct to consider the sum of the one
electron energies to be the total energy of the system. This is also clear if we 

compare the sum of the one-electron energies of the 2E state with that of the 

ground state. We thus find: 

2
E -18.791 a.u. 

2
T 2 -18.717a.u, 

So the sum of the one-electron energies is lower in the 
2
E state than in the ground 

state but from optical spectra and from E.P. R. spectra we know fairly certainly 

that the total energy of the 2E state is higher than that of the ground state. 
The total energy of a molecule is given by ( 1 ): 

E == l: E - I: I .. + I: las 
tot mo i>j lJ <l>S 

(6.1) 

where 

1.. is interaction between the electrons i and j; 
lJ 

108 is interaction between the nuclei Q and S. 

We now assume the following: 

(a) In the sum of the one-electron energies we only insert the filled molecular 
orbitals occurring in our calculation. 
Hence, we suppose the energies of the lower-lying orbitals to provide a con

stant contribution to the total energy of the system since in our calculations 
for 2T 2 and 2E we keep the distances between the atoms constant. The remain-

ing sum is denoted by 1: ' E • 
mo 
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(b) 

(c) 

On account of the restriction made under (a) the summation . I:. I . has only to 
be carried out for electrons occurring in the relevant orbitals~>J I: iJ, I ... 

i>j lJ 
Since the distances between the atoms in the molecule are kept constant, the 
term I: IQa produces a constant contribution to the total energy. 

a>a µ 

We now obtain: 

' E Constant + ~ 1 e: - L 1.. 
tot L. mo i>j IJ 

(6. 2) 

Applying the same approximations as used in the calculation of the H .. integrals, 
11 

we can compute the interactions between the electrons, thus obtaining the follow-
ing values 

Relevant electrons 

of 

central ion 
centra! ion 

ligand a 
ligand a 

Relevant electrons 

of 

central ion 
ligands 

ligand Cl 

other ligands 

Interaction ( a. u. ) 
2T 2E 

2 

40.752 
72.450 

47.206 
51.103 

1 
Itot 211. 511 

40.588 
72.326 

47.278 
51.201 

I: e: mo -18. 717 
211. 393 
-18.791 

E - Constant -230. 228 
tot 

-230.184 

We now find indeed that the total energy of 
2

T 
2 

is lower than that of 
2

E. The 
energy difference is found to be 

O. 044 a. u. = 9600 cm 
-1 

The expected value is 4000 cm -l (see Chapter III). 

However, from the discussion given above it is easily seen that the interactions 
between the electrons fonn the main contribution in determining the total energy. 
To compute these interactions we had to make some drastic approximations (see 
Chapter 111) and therefore we may not expect the numerical values of the inter-
. actions to be accurate. Since in calculating the energy difference two of these 
large interactions are subtracted, it is, indeed, surprising that the difference found 
is so close to the expected value. However1 it is clearly sensele~ to compute 
energy differences in this way since, for instance, a change of 1% in A or D may 
cause a change of 0.01 a.u. (25%) in the energy difference, 
If we want to discuss the energy differences of the ground state and the excited 
states, we can consider the one-electron energies of the ground state and allow 
only qualitatively for the interactions between the electrons. 

2 2 
So we expect the E state to be a lower lying state than T 1 since in the latter 
state the electron hole is on the ligands, and therefore the electron interactions 
will be larger in the 2T 

1 
state than in the 2E state. 
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CHAPTER VII 

SPECTRA OF THE TETRACHLOROCUPRA TE (II) ION 

Vll-1 LITERA TURE DATA 

The optica! absorption spectrum of the CuCl~- ion has been investigated by 

various authors. In some cases the spectrum was measured of a solution of the 

complex in acetonitrîl or nitromethane (1, 2, 3); other workers measured the spec

trumofmicrocrystals of Cs
2
CuC1

4 
(4) or used the KBr disc technique to obtain the 

spectrum of CuCl~- (5). Unfortunately, the spectra measured by various authors 

do not always yield identical positions and intensities of the optica! absorption 

bands. Since both the positions and the intensities can supply important information 

of the complex, we have repeated the measurement of the optica! spectrum. 

Data concerning the electron paramagnetic resonance spectrum of the CuCl~
ion were not found in the literature. 

VII-2 PREPARATION OF THE COMPLEXES 

The preparation of the complexes of CuCI~"' has been described in detail in 

the literature. For our investigation we prepared two types of complexes: 

(a) [ (C 2H5)
4 

NJ 2 CuC14 by mixing equivalent amountsof CuC1
2 

and 2(C2H5 )4 NCl 
in alcoholic solution. Addition of ether to this solution causes the precipitation 

of the desired complex (1, 6). Analysis of the complex yields 

Cu found 13.5 % 

Cl found 30. 3 % 

calculated 13. 64 % 

calculated 30. 44 % 

(b) Cs
2
CuC1

4 
by solving CuC1

2 
with an excess of CsCl in water and evaporating 

the water until crystallisation of yellow Cs
2
CuC1

4 
needles starts (5). The result 

was: 
Cu found 13.4 % 

Cl found 30. 2 % 

calculated 13 .48 % 

calculated 30.10 % 

VII-3 THE MEASUREMENT OF THE OPTICAL SPECTRUM 

When measuring the spectrum of CuCl~- in solution we must take into account 

two effects -

(a) Interaction of the solvent with the complex leading to the formation of species 
- 2-as CuC1

3
S (exchange of a chloride ion by a solvent molecule S) or Cuc14s

2 
(formation of a complex with a higher coordination number); 
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(b) Absorption of light by the solvent. Most solvents (as acetonitril, nitromethane, 

etc.) have absorption bands in the near infrared. This may cause difficulties if 

CuCl~- has an absorption band in the same region. 

To avoid these effects we at first tried to obtain a spectrum of CuCl~- with the 

disc technique (7). However, this method fàiled when we used KBr as disc-mate

rial since there was some exchange of CC of CuCl!- with Br - ions (8). Unfortu

nately, itproved very difficult to make a disc wîth KCl. The discs were always 

somewhat opaque. Only the positions of the near infrared band of CuCl~- couldbe 

determined with some accuracy in spectra obtained by this method. Intensity 

measurements could not be performed. 

A reasonably good spectrum was obtained from [<C2H5 )4NJ 2cucl4 dissolved . 
in acetonitl'il. The solution was saturated with (C2H5 )4NC1 to give an excess of 

CC ions so that effect (a) could not disturb the measurement. Nor did (b) serious

ly affect the determination of the spectrum. We made use of a Zeiss spectropho

tometerPMIVQII. Fig. 7.1 gives the spectrum we found, Table VII-1 gives 

'"'"' 1 

Fig. 7, l Optie al Abe:orption Spectrum of the Cuet!~ ion 

numerical values of the positions and the intensities of the absorption bands. The 

intensities are expressed in the oscillator strength f, a quantity that can be calcu

lated from the spectrum by the formula: 

in which 

See Ref. (9, 10). 

f 4.3210-
9 Jt:.Ydy (7.1) 

Y :::: wave number 

Ey:::: mol ar extenction of the complex at the 

wave number Y. 
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VIl-4 POSITIONS OF THE ABSORPTION BANDS 

When electromagnetic radiation is absorbed by a molecule, the molecule 
changes from a state with total energy E

0 
to a state with total energy E1 and the 

following relation holds: 

where 
h Yt = E - E 1 0 

h Planck's constant 

y t = frequency of the radiation. 

Since we measure the frequency of our radiation in energy ~nits (cm -l), 

write 

where 
Y = E - E 

1 0 

Y = wave number of the radiation 

E
0 

and E
1 

are expressed in cm 
-1 

(7.2) 

we may 

(7. 3) 

Thus to obtain the positions of an absorption hand, we have to subtract two total 
energies. In the preceding chapter, we saw, however, that it is too difficult a 
proposition to compute the total energy of the system from the one-electron molec
ul~r orbital energies. Therefore the best we can do is to estimate the positions of 

the absorption bands from the one-electron energies of the ground state. 
In the theory of the absorption spectra of transition metal ions two types of 

transitions are distinguished, viz. crystal field transitiohs and charge transfer 

transitions. 
( a) Crystal field transitions 
In our molecular orbital picture, these are transitions between molecular orbitals 
that have predominantly a 3d character. For perfecdy tetrahedral Cuc1:-, we only 
expect one crystal field transition: 2T 

2
-+ 2E. However, X-ray analysis shows 

CuCl~- to be a distorted tetrahedron. In reality, CuCl~- possesses a D2d symmetry 
with a structure between the tetrahedral and the square planar structure, and as we 
can see from Fig. 4. 2 we may expect three crystal field transitions. Using group 
theory we can prove that one of these transitions is forbidden. We can classify the 
3d orbitals of the central ion according to the irreducible representations of D2d: 

d2 z 
d 2 2 - B1 x -y 

d 
xy 

d ,d 
xz yz 

The ground state of CuCl:- is 2B
2 

since dx is the orbital with the highestenergy. 
As the dipole moment operator e! transforJs according to E + B2 in the D

2
d sym

metry and as B2 (E + B2) = E + A1 
we expect that only transitions to 2E and 2A

1 
are allowed. 
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Therefore the transition 2s2 ._.. 2s1 is symmetry forbidden. 

Indeed, we find only two crystal field transitions in the absorption spectrum of 
CuCI!-. Yet there is a difficulty. Since we know the deviation of CuCI!- from the 

tetrahedral structure to be small, we expect the transition 2B
2 

+ 2E to occur at a 
low wave number (1, 000 or 2, 000 cm -l or so). This is not the case, but from our 

calculationswe cannot understand the reason of this discrepancy. We limited our

selves to calculations on the T d and o2d symmetry and found the results corre
spondingwith the D

2
d symmetry by interpolation. A calculation as made by Furlani 

(3) shows, however, that linear interpolation is not always correct. 

(b) Charge transfer transitions 

A charge transfer transition is caused by the electron transfer from a molecular 
orbital with ligand character to a molecular orbital with centra! ion character. If 
a tetrahedral complex is distorted to the D2d symmetry, its energy levels split up 

as follows: 

E + A
1 

+ B
1 

T
1 

+ E + A
2 

T +E +B 
2 2 

From group theoretica! arguments, we can see that the following transitions are 
allowed: 

Transition in complex 

with T d symmetry 

Corresponding transition in complex 

with D2d symmetry 

(The prefixes a and bare added to distinguish states with the same symmetry). 

We cannot predict the positions of the charge transfer transitions quantitatively, we 
can only estimate these positions and with the help of Table IIl-21 say something 
about the sequence in which they appear. So we expect the first charge transfer 

band to be caused by the transfer of an electron from the .no-bonding t
1 

to the 4t2 
molecular orbital; in the D2d symmetry this is the transition 

2B ._.. 2E 
2 a 

In the following
2
transition an electron w.ill go from 3t

2 
to 4t

2
, or in the D2d sym

metry: 2B
2 

+ b E 
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For the third charge transfer band there are three possibilities: 

2t2 -+ 4t2 

le -+ 4t
2 

and somewhat less likely 

2a
1 

-+ 4t
2 

. 2 2 
correspondmg to B2 -+ c E 

corresponding to 2B
2 

-+ a2A.l 

corresponding to 2B
2 

-+ b2A
1

. 

VII-5 INTENSITIES OF THE OPTICAL ABSORPTION BANDS IN CuCl~-

We shall give here only the main lines for the calculation of the intensities of 

the optica! absorption bands. All details can be found in Ref. '(11). 

It is possible to compute the absolute intensities of the absorption bands with the 

help of the wave functions obtained from the molecular orbital calculation of 
2-CuC14 and so we can check these wave functions. 

In the previous Section we saw that the intensities can be expressed in the osèil

lator strength f, which can be calculated from the observed spectrum. On the other 

hand, f can be connected with the transition probability of the system from one 

certain energy level to another. The relation is given by (10, 12, 13): 

with 

f = 1. 085 10
11 y p (7.4) 

p (7.5) 

Y wave number of the absorption band or the mean wave 
-1 number of a broad band (in cm ) 

'VI = total wave function of the ground state 

1f II = total wave function of the excited state 

.r. = position vector, we take for this. a vector that points 
from the origin of the main coordinate system (centra! 

ion) to the integration point. 

If the ground state is n-fold degenerate and the excited state is m-fold degenerate, 

we have to calculate n x m integrals 

To evaluate P, all these integrals are squared, added, and the sum is divided by 

n ( So we have summed over the excited states and averaged over the ground 

states). The wave functions 'VI and 'Vn are wave functions of the whole system 
and they may be written as determinantal wave functions that are composed of the 

one-electron wave functions of the filled molecular orbitals. To calculate the 

transition probabilities for CuCl ~-, we shall use the following approximations 
(a) We assume the complex CuCl!- to be perfectly tetrahedral and ignore the 

distortions of this structure; 

(b) we suppose that the one-electron molecular orbitals are the same before and 

after the transition (see Chapter VI). 
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Then in the ground state 'Pi of CuCl~- we have a hole in, say, the molecular or

bital \1'
1
, and in the excited state lfn we have a hole in lif ir We can now prove 

by simple algebra and by using the orthonormality relations of the molecular or
bitals that 

(7.6) 

So to calculate the f-values we can make use of the one-electron molecularorbit

als. The integrals ( lJf II 1 .!. j \jf 1) have only to be calculated for the transitions 
that are allowed (see preceding Section). 
Since a molecular orbital 11' is of the form 

we obtain three types of integrals 

< 4>M l .!. l4PM) 
(4l>Ml.!.IX1) 

{X1IL!Xi) 

( a) -( 4>M 1 !. I 4> M) is an integral of functions th~t be long to only one. nucleus. For 
these integrals an analytica! form is easily derived and a computer programme 

written. 
(b) \ cp M 1.r I X 1} is an integral of functions that belong to two different nuclei. 

We can write 

in which the summation a extends over all ligands. The integral now becomes 

& ca <4>M , . .!.l 4>a> 
This integral is completely analogous to the overlap integrals and may be 

evaluated in the same manner (with A and B integrals, etc. ). 
n n 

(c) < X1 1..r.I Xi.) may qe written as 

I! r ca1 c~2 < 4>a1 l .!. l 4>~2) 
01 a2 

The integral will be calculated using a coordinate system as given in Fig. 7.2. 

The vector .!. may be replaced by 

.!. = 1o + L' 

this giving 
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The first term of (7. 7) can be written down immediately, since the overlap 

integrals have already been calculated. The second term of (7. 7) contains in

tegrals of the same type as dealt with under (b). 

All elementary integrals have been computed for different charge distributions, 

and by means of interpolation formulas have been obtained giving the integrals as 
functions of the charge distribution (A, B, C, and D). Substitution of the numerical 

values of A, B, C, and D and of the coefficients of the molecular orbitals as found 

for the ground state of tetrahedral CuCI:-, then produces the integrals 

( lfl 
1 

1 .!. I ip II) . With these integrals the quantity P can now be calculated accord
ing to formula (7.5). 

T aking the absorption bands in the sequence proposed in the preceding Section, we 

obtain the f-values as reported in Table VII-1. From these results we may con

clude the following. 
( 1) F or all transitions the calculated f-values are a factor 2 too high with respect 

to the experimental f-values. The cause of this is not evident but may no 

doubt partly be ascribed to the fact that formula (7. 4) is valid for gases, where

as our absorption spectra have been measured in solution. 

( 2) The intensity of the crystal field transition is at least a factor 10 lower as 

compared with the charge transfer transitions. 
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Table VIl-1 Optica! Absorption Spectrum of CuCI~:._ 

Transition 
Energy 

e:max Experimental f Theoretica! f 
(cm-1) 

2e + 4t2} 
6000 shoulder } 0.0037 0.0075 
8500 122 

tl + 4t2 24500 2400 0.040 o.oso 

3t2 -+ 4t2 34000 5700 0.120 0.184 

te ..... 4t2 41000 shoulder 0.032 0.052 

2t2 + 4t2 0.234 

2a
1 + 4t2 0.316 

( 3) The sequence of the absorption bands as estimated from the one-electron 
molecular orbital energies, seems to be correct, hence 

first the crystal field transition 2e -+ 4t2 
followed by three charge transfer transitions 

(1) tl -+ 4t2 

(2) 3t2 -+ 4t2 

(3) le + 4t
2 

The third charge transfer transition can now be identified with le + 4t
2 

since 

the other two possibilities require a much higher f-value. 

(4) The largest contribution to the intensity of the charge transfer bands is not 
given by a typical charge transfer (electron transfer from ligands to centra! 
ion) but by the transfer from one ligand function to another. The following 
Table shows this clearly. 

Transition 

2e -+ 4t
2 

· 

\ + 4t2 

3t2 + 4t2 

le -+ 4t 
2 

2t2 + 4t2 

2a
1 

+ 4t
2 

Most important of the terms determining 

the intensity (m.o. coefficients included) 

( X (x, y) 1.!. IX (x, y>) 

( X(x,y) l.!.1 X(x,y>) 

\ X (z) l 1. I X (z)) 

\X(x,y) l.!.IX(x,y>) 

(XCz) l.!.IX<z>) and(X(x,y)l.!.IXCx,y>) 

\X(z) l.!.IX<z>) 
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If the integrals ( x
1 

l .!.I Xi) had been ignored f-values, twenty times too 
low would have been found. 

(5) The intensity of the crystal field transition is preponderantly determinedbythe 
amount of mixing of the 3d orbitals with the ligand functions. 
Although the 4p orbitals have the same symmetry as three 3d orbitals, they 
hardly affect the intensity of the crystal field band. 

(b) A better agreement of the experimental with the theoretica] values may be 
obtained if we assume that the mixing found in our molecular orbital calcula
tion is somewhat too high. 

VII-6 ELECTRON PARAMAGNETIC RESONANCE IN cuci!- COMPLEXES 

A Experimental 

The principles of electron paramagnetic resonance (E.P.R.) have been de
scribed extensively in the literatµre ( 14, 15). If a complex of a transition metalion 
is placed in a magnetic field, it can absorb electromagnetic radiation of micro
wave frequencies, This absorption only occurs if' the complex possesses one or 
more unpaired electrons. These unpaired electrons then change from one spin state 
to another. Since CuCl:- possesses one unpaired.electron we may expect that the 
complex shows paramagnetic resonance. 

The E.P .R. measurements have been carried out with a Varian V4502 EPR 
spectrometer. 

We first tried to measure the E.P.R. spectrum of solid [ (C2H5 )4 NJ 
2 

CuC14• 
At room temperature we did not observe a resonance spectrum for this complex 
but when we lowered the temperature to that of liquid nitrogen, we found a 
spectrum as given in Fig. 7. 3. ·At the temperature of liquid hydrogen, the peaks 
of the spectrum became even.sharper. The effect points to the appearance of spin 
lattice relaxation (16). This relaxation also explains the absence of a resonance 
spectrum at room temperature, the effect is, however, out of the scope of this 
thesis. 

The condition for paraniagnetic resonance is given by 

(7.8) 
where 

h = Planck's constant 

v = frequency of electromagnetic radiation 

g = gyromagnetic ratio 

B = Bohr magneton 
H = magnetic field strength 
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3,500 

-Il (gauss) 

Fig. 7.3 E.P.R. Spectrum of the cuc1!· 'ton 

As all quantities except g can be obtained from the E.P.R. spectrum, we can now 

calculate the numericalvalue of g. The form of the spectrum of Cuci:- indicat
es that we are dealing with an anisotropic g-factor (16) and so we obtain from the 

E.P. R. spectrum 

g" = 2.45 
gJ. = 2.10 

The E.P.R. spectrum of [cc2H5 )4 NJ 2 CuCI
4 

(or of Cs
2

CuCI
4

) does not show a 
hyperfine structure, but this may be ascribed to the fact that we carried out our 
measurements on a solid. 
A double integration of the spectrum of Fig. 7. 3 gives us the area of the absorption 
peak. From this area we can estimate the number of unpaired spins in the solid. 
We found this to be about one unpaired spin per CuCl!- complex. 

B Calculation of the g~values 

For the energy level scheme of 
distorted CuCl~- as given fo 
Fig. 7. 4, 'the g-values can be 

calculated with formulas 
given by Gray, Ballhausen ( 17) 
and by Van Reyen (Ref.(16), p.48): Fig. 7.4 
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4À 
(7. 9) g Il = 2 c1 --as> 

lis 

g .1 = 2 (1 - À a2) (7.10) 
liE 

where 
À = spin orbit coupling constant of a 3d electron 

l:is = E.(2B ) - E.(2B ) 
l:iE = E(2d - E(2B2) 

2 
An assumption made here is that the molecular orbitals of the distorted complex 

do not deviate much from the molecular orbitals in perfectly tetrahedral CuCl:

and that in this latter case 

= a . 3d + ligand functions 

B , 3d + ligand functions 

From the Tables III-21 and IV-5 we see that the coefficients a and 6 indeed do 

not change much: 

a 
8 

Td 

0.707 
0.836 

D4h 

O. 771 and O. 787 
0. 914 for b 

1 
symmetry 

(the a1 symmetry is not important for the g-values). À 
In the derivation of the formulas (7. 9) and (7.10), terms in (

6
)2, etc. are ignor

ed. Moreover, it is assumed that contributions of the spin orbit interaction arising 

from motions of the electrons in the ligands can be ignored" 
We now take the following numerical values 

and then obtain: 

À = -800 cm 

liE = 6000 cm 

l:iB = 7000 cm 

O.= 0.71 

B= 0.84 

g" = 2.54 

g J. = 2.13 

-1 
(from Ref. (9)) 

-1 
(from the optica! spectrum) 

-1 
(estimated from f.E' Fig. 4. 2 and Ref. 
(3)) 

The calculate<i g-values are somewhat too high but they do not deviate muchfrom 

the experimental values. So we get the impression that our coefficients a and B 
are fairly satisfactory. To give a better agreement of the theoretica! with the ex-
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perimental g-values, we would have to lower the values of a. and 8 a little hut 

this seems unrealistic since we expect (as has been stated in Chapter III and as can 

also be seen from the intensity calculations for the optica! spectrum) that the 

values of a. and B are already low. The discrepancy between the theoretica! and 
the experimental values must now be presumed to be affected by the inaccuracy 

of !::. E and !::. B and by the neglect of spin orbit interaction when the unpaired 
electron moves on the ligands. 
It is however, obvious that a fairly large mixing must be present in the 

molecular orbitals, for if there were no mixing then we would find the 

relevant 

following 
values: 

2.91 

g.L 2.26 

and these would be far too high. 
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c HA p TER vm 

CONCLUSIONS 

In the Introduction (Chapter I) we made it our object to perform a molecular or

bital calculationon CuCI~-and to use empirica} parameters as sparingly aspossible. 

Already then we expected that such a calculation must necessarily contain certain 

approximations. At the end of our investigation we can now survey on what points 

we had to introduce these approximations. The most important o.f them will be 

summarised here. 

(a) The first approximation we made was the choice of the molecular orbitals as 

linear combinations of atomie orbitals; we only selected a limited number of 

atomie orbitals to describe the orbitals of the electrons in the molecule. On 

account of this restriction our molecular orbitals may deviate somewhat from 

the actual ones (Ref. (1), p. 97). Another inaccuracy inherent in the simple 

LCAO method is the under-estimation of the repulsion of the electrons (Ref. 

(2)). In each molecular orbital found in our calculation we had to place two 

electrons with opposite spins. Assume we have a molecular orbital 

tl'= 4> +4> 
A B 

and that it is occupied by two electrons. The chance that the two electrons are 

present on the same nucleus is then as large as the chance that they are on 

different nuclei. In reality, the repulsion of the electrorls causes a preference 

for the latter case. 
(b) A second approximation consisted in the choice of the radial parts of the wave 

functions of the atomie orbitals. These radial parts were written as linear 
combinations of Slater functions, thus approximating Hartree Fock functions. 

Although these approximations are not always very accurate, this will not 

affect our calculation unduly since, in principle, any function may be used to 

describe the molecular orbitals. 

(c) The H .. and S .. integrals were calculated as functions of the charge distribution 

by int~~polati~~ between a number of computed values. For integrals that are 

strongly dependent on the charge distribution, this interpolation may introduce 

inaccuracies. 

(d) In the calculation of the Hii integrals of a certain atom we approximated the 

other atoms in the molecule by point charges and had to calculate a Zeff' Of 
course, this is a rigorous approximation, hut crude as it may be, it remains 

faithful to a model discussion and avoids the smuggling in of experimental 

data. 
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(e) In the calculation of the H" integrals we used an empirical formula which has 

proved to be satisfactory fo~ small molecules. There exists no a priori knowl

edge whether the agreement will be as satisfactory for the systems considered 

here. 
(f) To obtain the charge distribution in the molecule from the calculated molec

ular orbitals we had to use a rather arbitrary approximation (Cliapter III, 

Section 4). 

(g) In the molecular orbital calculations on square planar and octahedral copper 

complexes we introduced a number of additional approximations concerning 

the distances of the atoms in the molecule, the r~ integrals, etc. 
In view of the number of approximations we may not expect our calculations to be 

accurate. However, we are in a~ position to check our results with data that have 

been obtained in a different way, and find satisfactory agreement. 

Let us consider the following poihts. 

( a) The splitting of the d-orbitals of the central ion always turns out to have the 

correct sign, and also quantitatively we find reasonable values (exceptperhaps 

in the CuCl:- case). On this point our results are more satisfactory than those 

of the crystal field calculations. 

(b) The mixing of the d-orbitals of the centra! ion with ligand orbitals seems to be 
correct. In other investigations large mixing is found in tetrahedral halide 

complexes (Ref.(3), p. 172) but in octahedral halide complexes the mixing 

seems to be smaller (3, 4). This is also clearly shown by our calculations 

(compare the Tables III-21, IV-3, V-2 and V-3). 

(c) We cannot compute the positions of the absorption bands of the optica! 

spectrum from the results of our calculations. We can, however, predict the 

sequence in which the transitions occur. 

(d) The intensities of the optical absorption bands, calculated with the help of the 
functions :found in the molecular orbi tal calculation, àlthough somewhat too 

high, agree rather well with the experimental intensities. 

( e) With the help of our molecular orbi tal functions we can obtain E.P. R. g-values 

that approximate the experimental g-values very closely. 

(f) Th,e method applied does not allow of a satisfactory calculation concerningthe 

total energies and the stabilities of the complexes. We can, however, find a 
number of qualitative indications. It appears, for instance, that a CuCl~
complex is very unstable, whereas Cu in an octahedral surrounding in a CuC12 
crystal is stable. Some indications may be derived from our results to the 

effect that tetrahedral CuCl!- will be more stable than square planar CuCl~
but that anyhow the difference seems small. 

(g) With the molecular orbitals found in our calculation ît is possible to compute 

a charge distribution. We already s.aw that this charge distribution can devîate 

greatly from the charge distribution that may be obtained from the ionic 
model: Cu2+ and Cl-. In the calculation of the charge distributi~n from the 

molecular orbitals we considered the electrons in the 4s and 4p orbitals of 

copper to belbng to the charge on copper, and as far as we are concerned with 

131 



the computation of integrals this seems correct. However, with this charge 
distribution we do not get a good insight into the amount of charge that we can 
find on different sites in the complex. From Fig. 3.1 we caµ..see that the 4s 
and 4p orbitals of copper have their largest density in the neighbourhood of the 
Cl nucleus, and if we wish to calculate the amount of charge on a certain site 
in the molecule, the proper way seems to reckon the 4s and' 4p electrons 
among the charge on Cl. We then get quite another impression of the charge 
distribution. The following Table shows the new results. 

Charge on 
Cu site Cl site 

2-
1.54 - 0.89 Tetrahedral CuC14 + 

Square planar Cuc1!- + 1.50 - 0.88 

Cuc1:- + 1.93 - 0.99 

CuC12 crystal + 1.77 - 0.88 

The new charge distribution resembles much more the charge distribution of 
the ionic model, Nevertheless, the Table clearly shows that covalency effects 
are important, especially in tetrahedral and square planar Cuci!-· 

Taking into account the approximations we made, we may consider the results to 
be surprisingly satisfactory. The calculations that we performed fulfil the purpose 
set out in Chapter 1 completely. Moreover hardly any empirica! quantities were 

used, the only exception being the calculation of the Hij integrals from the Hu 
and Sij integrals which was based on an empirica! formula. Evidently several im
provements may be introduced. For instance, the calculation of the H .. and H .. 
integrals can be performed with greater precision if a larger and faste~

1 

comput~r is 
available. Other approximations that are perhaps of equal importance, such as 
used, for instance, in the calculation of the charge distribution from the molecular 
orbitals, cannot be improved by the use of a larger computer, but they require a 
more penetrating theoretica! study. However, with this investigation we have 
shown that a rather useful molecular orbital calculation can be performedwith rel
atively simple means and that the results of this calculation may clarify our in
sight in a number of problems that are connected with the bonding and the physical 
properties of inorganic complexes. 
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SUMMARY 

The last few years first principle calculations on molecules have been used 
niore and more to provide insight into various physical properties of the molecule. 

Attempts have been made to obtain in. this way information on the situation of the 
energy levels of the molecule, on the optica} absorption spectrum, on the magnet

ic properties, on the stability, etc. Complexes of transition metal ions, i.e. ions 
with a partly filled d-shell, are in this connection of special interest. 
Since S.C.F. calculations become very complicated in the case of systemswith a 
partly filled shell, only molecular orbital calculations have been performed on 

these complexes. However, molecular orbital calculations on inorganic complex
es are not simple either, the greatest difficulties arising in calculating the inte

grals ( lfl i 1 H 1 4> i ) and ( $ i 1 H 1 4> j) • Usually therefore these integrals are de
termined empirically from ionisation energies. 

This thesis describes a method to carry out a molecular orbital calculation on 
inorganic complexes that restricts the use of empirica! quantities as much as 

possible. In the investigation the integrals· ( 4>. 1 H 1 4>.) are computed from the 
1 1 

wave functions (given in the literature) by: 

(a) computing the one-electron energies of the free atoms or ions. This computa
tion can be carried out exactly since the wave functions are given; 

(b) approximating the interaction of an electron of a certain atom in the molecule 
with the other atoms of the molecule by ~ point-charge model. The integrals 
and the effective charges then arising may be computed from the wave 
functions. 

In this way the integrals ( 4>. 1 H 1 4>. ) are computed as functions of the charge 

distribution in the molecule~ The infegrals < 4> i 1H1 $. ) are then calculated 
from the integrals ( 4>. j H 1 4> . ) with the help of an efupirical formula. 

l l 
Applying an iteration process it is then possible to find a consistent charge distri-
bution of the complex. 

The calculation described here is performed on some copper complexes be
cause the fact that Cu2+ possesses nine 3d-electrons (and therefore has only one 
hole in the 3d-shell) simplifies the calculation considerably, while on the other 

hand the optical and magnetic spectra provide ample information on the complex

es. To investigate the influence of the environment of the central ion on the 
properties of the complex, the calculation is carried out on the following species: 

2-
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tetrahedral CuCl 
4 

square planar CuCl~-

4-
octahedral CuC1

6 

an octahedral CuCI
6 

unit from a cubic CuC12 crystal. 

! 

1 
l 



In all these cases the molecular orbital calculation yields qualitatively the correct 
splitting of the d-orbitals of copper; quantitatively satisfactory results are also 

-1 2- -1 found, viz. 3, 050 cm for tetrahedral CuCl 
4 

; 9, 300 cm fot square planar 
CuCl ~-; 850 cm -l for CuCl:- and 14, 300 cm -l for the CuC1

2 
crystal. 

Moreover the calculations show that in some cases the charge distribution in the 
complex deviates considerably from the charge distribution according to the ionic 
model. This points to the fact that covalency effects are important in such com -
plexes, 
The calculation on Cuc1:- indicates this complex to be unstable, whereas Cu in 

, an octahedron of Cl may be quite stable in a CuC12 crystal. 
The intensities of the optica! absorption bands are calculated with the help of 

the one-electron molecular orbitals found for tetrahedral CuCI~-. The agreement 
of the calculated and the experimental values is quite good. So we find, for in
stance, the calculated ratio between the intensities of the crystal field and the 
charge transfer transitions to be equal to the experimental one. 

The g-values of electron spin resonance. are also calculated with the help of 
the wave functions of tetrahedral CuCl~-. The calculated g-values (g

11 
= 2.54 

and gJ. = 2.13) approximate the experimental g-values (g
11 

= 2.45 and 

g J. = 2. 10) closely. 
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SAMENVATTING 

Gedurende de laatste jaren blijkt steeds meer dat het belangrijk is om te pro

beren inzicht te verkrijgen in verschillende fysische eigenschappen van een mole

cule met behulp van een apriori berekening aan dat molecule. Men probeert op 

deze wijze gegevens te verkrijgen over b.v. de ligging van de energieniveaus van 

het molecule, over het optische absorptiespectrum, over de magnetische eigen

schappen, over de stabiliteit, enz. De belangstelling gaat hierbij vooral uit naar 

complexen van overgangsmetaalionen, dus van ionen die een niet geheel gevulde 

d-schil hebben. Daar voor systemen met niet geheel gevulde schillen S. C. F. be

rekeningen zeer gecompliceerd worden, heeft men voor deze complexen tot nu toe 

alleen "molecular orbital" berekeningen uitgevoerd. Maar ook deze berekeningen 

zijn niet eenvoudig; de grote moeilijkheid waarop men stuit is de berekening van 

de integralen ( 4> i 1 Hl 4> J en ( 4> i 1 Hl 4> . ) • Deze integralen worden dan 
meestal (empirisch) bepaald uit de ionisatie~energiel!n. 

In dit proefschrift wordt een methode beschreven waarmen men een "molec

ular orbital" berekening voor anorganische complexen kan uitvoeren die het ge

bruik van empirische gegevens zoveel mogelijk beperkt. 

De integralen ( 4> i IHI 4> i) worden in dit werk uit de gegeven golffuncties bere
kend door: 

(a) de één-elektron energiel!n voor de vrije atomen of ionen te berekenen, hetgeen 

omdat de golffuncties bekend zijn, exact kan gebeuren; 

(b) de interactie van een elektron van een bepaald atoom in het molecule met de 

andere atomen van het molecule te benaderen met een. puntladingsmodel. De 

daarbij voorkomende integralen en effectieve ladingen kunnen weer uit de 

golffuncties berekend worden. 

Op deze manier worden de integralen ( 4> i IHI 41 i) als functies van de ladings

verdeling in het molecule berekend. De integralen ( 4> i 1 Hl <f> . ) worden met 

behulp van een empirische formule bepaald uit de nu bekende J ( cl> . 1H1 cl> . ) . 
1 1 

Door het toepassen van een iteratie-procedure kan nu een consistente ladingsver-

deling voor het complex gevonden worden. 

De hierboven omschreven berekening is uitgevoerd voor enkele koper-com

plexen omdat het feit dat Cu 2+ een d9 -systeem is (en dus slechts één gat in de 

d-schil heeft) de berekening aanzienlijk vereenvoudigt, terwijl er anderzijds yol

doende informatie over deze complexen te verkrijgen is uit optische en magnetische 

spectra. 
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Om de invloed van de omringing van Cu2+ na te gaan, is de berekening voor de 

volgende gevallen uitgevoerd: 

tetraedrisch 

vlak vierkant 

octaedrisch 

Cuc1:-

2-CuC1
4 

Cuci:-

een octaedrische CuC16 eenheid uit een kubisch CuC12 kristal. 

In al deze gevallen geeft de "molecular orbital" berekening kwalitatief de juiste 

opsplitsing van de d-banen van koper en ook kwantitatief worden zeer aanneme
lijke resultaten gevonden: 3050 cm -l voor tetraedrisch CuCl~-; 9300 cm -1 voor 

vlak vierkant CuCl~-; 850 cm -l voor Cucii- en 14300 cm -1 voor het CuC1
2

-

kristaL 
De berekeningen tonen verder aan dat de ladingsverdeling in sommige gevallen 

(b.v. CuCl!-) aanzienlijk afwijkt van de ladingsverdeling die men volgens het 

ion-model verwacht. Dit wijst erop dat covalentie-effecten in deze complexen 

belangrijk zijn. 
De berekening aan CuCl:- doet verwachten dat dit complex instabiel zal zijn, 

terwijl daarentegen Cu met een zesomringing van Cl in een CuC1
2

-kristal zeer 
stabiel schijnt te zijn. 

Met de één-elektron golffuncties die voor tetraedrisch CuCl!- gevonden zijn, 

worden de intensiteiten voor de optische absorptie-overgangen van het tetra

edrische complex berekend, De overeenkomst van de berekende en de experimen
tele waarden blijkt goed te zijn. Zo wordt b.v. voor de verhouding van de intensi

teiten van de kristalveld-overgang en de charge transfer overgangen de uit het 

experiment gevonden waarde berekend. 
· Eveneens worden met de golffuncties voor tetraedrisch CuCl!- de g-waarden 

voor elektronenspinresonantie bepaald. De berekende g-waarden ( g 
11 

:::: 2. 54 en 

g
1 

= 2, 13) benaderen de experimentele waarden (g 11 2. 45 eng 
1 

= 2.10) zeer 

goed. 
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LEVENSBERICHT 

De schrijver van dit proefschrift werd op 24 juli 1939 te Raamsdonksveer ge
boren. Zijn middelbare opleiding ontving hij aan het Willem van Oranje College 
te Waalwijk. In 1957 behaalde hij daar het H.B. S. -B diploma. 

Van 1957 tot 1962 studeerde hij in de afdeling der Scheikundige TechnolOgie 
aan de Technische Hogeschool te Eindhoven. In juni 1962 legde hij met goed 
gevolg het ingenieursexamen af. Hij studeerde af bij prof. dr. G.C.A. Schuit 
op het onderwerp: "Kinetiek en mechanisme van de Wacker-reactie". 
Na zijn afstuderen trad hij bij de groep Anorganische Chemie van de T.H. E. in 
dienst als wetenschappelijk assistent. Sinds 1 mei 1964 is hij verbonden aan het 
Koninklijke/Shell Laboratorium te Amsterdam. 

Het volgen van twee cursussen van prof. C.A. Coulson in Oxford heeft hem 
een waardevolle bijdrage geleverd tot zijn studie in de theoretische chemie. 
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STELLINGEN 

1. Schmidt veronderstelt dat voor de ontleding van het geactiveerde complex in 

de oxydatie van ethyleen tot aceetaldehyde een OH-ion nodig is. Deze hypo

these is niet houdbaar. 

J. Schmidt: Chem. and Ind. (1962), 54. 
J. Schmidt: Angew. Chem. 74, (1962), 93. 

2. Stouthamer neemt aan dat tijdens de hydrogenering van vetzuren tot vetalco

holen onder invloed van Cu-houdende katalysatoren CuH aanwezig is. Deze 

veronderstelling zou beter gefundeerd zijn als hij overeenkomst had gevonden 

tussen de optische absorptiespectra van het reactiemengsel en van b.v. CuH 

opgelost in pyridine. 

B. Stouthamer: Proefschrift Delft (1964). 

H. W. van der Linden, B. Stouthamer, J.C. Vlugter: Chem. Weekblad 

60, ( 1964), 254. 

3. De wijze waarop Cossee de katalytische activiteit van chloriden van ver

schillende overgangsmetalen vergelijkt, is aan bedenkingen onderhevig. 

P. Cossee: J. Catalysis 3, (1964), 80. 

4. De kinetische benadering van de vethydrolyse zoals die door Sturzenegger en 
Sturm is uitgevoerd mag alleen worden toegepast bij homogene reacties. 

A. Sturzenegger, H. Sturm: In?. Eng. Chem. 43, (1951), 510. 

5. Bates houdt bij de bespreking van de spectra van overgangsmetaalionen in 
glazen niet voldoende rekening met selectieregels. 

T. Bates: Modern Aspects of the Vitreous State _g_, (1962), 195. 

6. De formule die Jlllrgensen voor de oscillatorsterkte van een optische dipool
overgang geeft, is onjuist. 

C. K. Jlllrgensen: Absorption Spectra and Chemica! Bonding in Complexes, 
Oxford ( 1962). 

7. De veronderstelling van Blasse dat Ö 
0 

!:! '1T mag alleen met grote voorzich
tigheid toegepast worden. 

G. Blasse: Proefschrift Leiden ( 1964). 

8. Het is mogelijk dat susceptibiliteit en demagnetisatie invloed uitoefenen op 
resonantieproeven zoals die door Poulis e.a. uitgevoerd zijn. Dit blijkt echter 
nergens in de door Poulis gegeven resonantiediagrammen. 

N.]. Poulis e.a.: Physica § (1957), 907. 
N.], Poulis, W. van der Lugt: Physica 25, (1959), 1313. 
N.J. Poulis, W. van der Lugt: Physica 27, (1961), 733. 



9. Het is te betwijfelen of door het meten van elektronenspinresonantie bij hoge 
temperaturen voldoende informatie verkregen kan worden over de omringing 

van overgangsmetaalionen. 

10. Bij het doceren .van de groepentheorie worden twee verschillende m~thoden 
gevolgd: 
(a) de groepentheorie wordt zuiver wiskundig behandeld en eerst later worden 

fysische toepassingen besproken; 
(b) men begint met het bespreken van fysische toepassingen en behandelt aan 

de hand daarvan alleen die stukken van de groepentheorie die nodig zijn. 

De eerste methode verdient de voorkeur. 
(a) F.A. Cotton: Chemical Applications of Group Theory, New York, 

(1962). 
(b) S.L. Altmann in D.R. Bates: Quantum Theory, vol. II, New York, 

(1962). 

11. Voor studenten die fundamenteel chemisch of fundamenteel technologisch 
willen afstuderen is niet alleen de toepassing van de wiskunde, maar vooral 
ook de wiskundige wijze van denken van belang, 

13 oktober 1964 ,P. ROS 


