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Abstract

Thyroid cancer is a common endocrine malignancy. There has been exciting progress in
understanding its molecular pathogenesis in recent years, as best exemplified by the elucidation of
the fundamental role of several major signalling pathways and related molecular derangements.
Central to these mechanisms are the genetic and epigenetic alterations in these pathways, such as
mutation, gene copy-number gain and aberrant gene methylation. Many of these molecular
alterations represent novel diagnostic and prognostic molecular markers and therapeutic targets for
thyroid cancer, which provide unprecedented opportunities for further research and clinical
development of novel treatment strategies for this cancer.

Thyroid cancer is a common endocrine malignancy that has rapidly increased in global
incidence in recent decades1,2. In the United States, the average annual increase in thyroid
cancer incidence of 6.6% between 2000 and 2009 is the highest among all cancers2.
Although the death rate of thyroid cancer is relatively low, the rate of disease recurrence or
persistence is high, which is associated with increased incurability and patient morbidity and
mortality3.

There are several histological types and subtypes of thyroid cancer with different cellular
origins, characteristics and prognoses4 (TABLE 1). There are two types of endocrine thyroid
cells — follicular thyroid cells and parafollicular C cells — from which thyroid cancers are
derived. Follicular thyroid cell-derived tumours, including papillary thyroid cancer (PTC),
follicular thyroid cancer (FTC), poorly differentiated thyroid cancer (PDTC) and anaplastic
thyroid cancer (ATC), account for the majority of thyroid malignancies. PTC and FTC are
collectively classified as differentiated thyroid cancer (DTC). Parafollicular C cell-derived
medullary thyroid cancer (MTC) accounts for a small proportion of thyroid malignancies2.
The primary molecular mechanism underlying MTC tumorigenesis is the aberrant activation
of RET signalling (which is caused by RET mutations5), which are not present in follicular
thyroid cell-derived tumours. The molecular pathogenesis of follicular thyroid cell-derived
tumours is the focus of this Review.

Conventional surgical thyroidectomy with adjuvant ablation by radioiodine treatment has
been the mainstay of treatment for follicular thyroid cell-derived cancer, but it is often not
curative. The recent progress in understanding the molecular pathogenesis of thyroid cancer
has shown great promise for the development of more-effective treatment strategies for
thyroid cancer. This has mainly resulted from the identification of molecular alterations,
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including the genetic and epigenetic alterations of signalling pathways — such as the RAS–
RAF–MEK–MAPK–ERK pathway (MAPK pathway) and the PI3K–AKT pathway —
which is reshaping thyroid cancer medicine. This Review discusses the recent remarkable
progress in understanding the molecular pathogenesis and mechanisms of thyroid cancer.

Common genetic alterations in thyroid cancer

Gene mutations

Numerous genetic alterations that have a fundamental role in the tumorigenesis of various
thyroid tumours have been identified (TABLE 2). A prominent example is the T1799A
transverse point mutation of BRAF, which results in the expression of BRAF-V600E mutant
protein and causes constitutive activation of this serine/threonine kinase6–11. BRAFV600E

mutation occurs in approximately 45% of PTCs12. There are also a few rare types of BRAF
mutations identified in PTC, which mostly affect nucleotides around codon 600 and
constitutively activate the BRAF kinase13,14. The requirement for BRAF-V600E to maintain
tumour growth was initially demonstrated in a xenograft tumour model15. A previous
comprehensive multicentre study demonstrated a strong association of BRAFV600E with
poor clinicopathological outcomes of PTC, including aggressive pathological features,
increased recurrence, loss of radioiodine avidity and treatment failures16. This was
subsequently confirmed in numerous other studies, although, perhaps owing to variations in
study design, some studies showed inconsistent results, as summarized and discussed in
large meta-analyses that uniformly support the aggressive role of BRAFV600E mutation in
PTC17,18. BRAFV600E-transgenic mice also developed aggressive PTC19–21. Interestingly,
some human PTC tumours have recently been found to exhibit intra-tumour heterogeneity in
the BRAF genotype — with a minority of cells harbouring BRAFV600E and the majority
harbouring wild-type BRAF22. This raises an interesting ‘chicken and egg’ puzzle of
whether BRAF-V600E initiates PTC tumorigenesis or instead BRAFV600E occurs following
the development of a thyroid tumour23. Although it is possible that BRAFV600E could be a
secondary genetic event in PTC tumorigenesis as previously proposed24, an alternative
possibility is that once PTC is initiated by BRAFV600E, secondary oncogenic alterations
could take over to drive the tumorigenesis of PTC such that BRAF mutation is no longer
selected for23.

Second in prevalence to BRAF mutations in thyroid cancer are RAS mutations. RAS is in its
active state when bound with GTP. The intrinsic GTPase of RAS hydrolyses GTP and
converts RAS into an inactive GDP-bound state, thus terminating RAS signalling. RAS
mutations cause the loss of its GTPase activity, thus locking RAS in a constitutively active
GTP-bound state. There are three isoforms of RAS: HRAS, KRAS and NRAS, and NRAS is
predominantly mutated in thyroid tumours, mostly involving codons 12 and 61. Although
RAS is a classical dual activator of the MAPK and PI3K–AKT pathways, RAS mutations
seem to preferentially activate the PI3K–AKT pathway in thyroid tumorigenesis, as
suggested by the preferential association of RAS mutations with AKT phosphorylation in
thyroid cancers25,26. The common occurrence of RAS mutations in follicular thyroid
adenoma (FTA), a presumed premalignant lesion, suggests that activated RAS may have a
role in early follicular thyroid cell tumorigenesis. However, additional genetic alterations
other than RAS mutation are apparently required to transform FTA into thyroid cancer. This
is consistent with studies in which the expression of mutant HRAS was induced in normal
thyroid cells in vitro, which resulted in only well-demarcated and differentiated colonies
with phenotypes consistent with FTA27 and cell proliferation with normal differentiation28.
More direct evidence has come from transgenic mouse studies in which conditional
physiological expression of a KRAS mutant in the thyroid gland could not transform thyroid
cells, but concurrent KRAS mutant expression and Pten deletion induced a rapid occurrence
of aggressive FTC29.
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Mutations or deletions of the tumour suppressor gene PTEN are the classical genetic
alterations that activate the PI3K–AKT pathway and are the genetic basis for follicular
thyroid cell tumorigenesis in Cowden’s syndrome30. Mutations of PIK3CA, which encodes
the p110α catalytic subunit of PI3K, are also common in thyroid cancer, particularly FTC,
PDTC and ATC25,26,31–35. As in other human cancers36, activating PIK3CA mutations in
thyroid cancer occur in exon 9 and exon 20. AKT1 mutations were found in metastatic
thyroid cancers in one study, and their functional relevance remains to be established35.

Other important genes that are mutated in thyroid tumorigenesis include β-catenin
(CTNNB1)37,38, TP5339,40, isocitrate dehydrogenase 1 (IDH1)41,42, anaplastic lymphoma
kinase (ALK)43 and epidermal growth factor receptor (EGFR)44. The preferential
occurrence of these mutations in PDTC and ATC, which are the most aggressive thyroid
cancers, suggests that they may have a role in the progression and aggressiveness of thyroid
cancer. In Hürthle-cell thyroid carcinoma (HCTC), mutations of NADH dehydrogenase
(ubiquinone) 1α subcomplex 13 (NDUFA13; also known as GRIM19) are fairly common45.
Unlike other types of thyroid cancers, HCTC does not harbour classical genetic alterations,
such as BRAF and RAS mutations or RET–PTC 46,47, but commonly harbours DNA
haploidization in recurrent disease47.

Gene amplifications and copy-number gains

Oncogenic gene amplification or copy-number gain are additional prominent genetic
mechanisms in thyroid tumori-genesis (TABLE 3). This is particularly the case for genes
encoding receptor tyrosine kinases (RTKs)26. Copy-number gains are also common for the
genes encoding PI3K–AKT pathway members, including PIK3CA, PIK3CB, 3-
phosphoinositide-dependent protein kinase 1 (PDPK1; also known as PDK1), AKT1 and
AKT2 (REFS 25,26,32). Overall, genetic copy-number gains of these genes are more
prevalent in ATC than in DTC, suggesting that these genetic alterations are important for the
progression and aggressiveness of thyroid cancer. Copy-number gain of these genes in ATC
could occur either through genetic amplification or chromosomal instability and aneuploidy.
An important and expected consequence of these copy-number gains is the activation of
downstream signalling pathways, as is suggested by the association of copy-number gains of
genes encoding RTKs with increased phosphorylation of AKT and ERK in thyroid cancer26.

Many of the genes with copy-number gains are proto-oncogenes. A mechanism for them to
contribute to thyroid tumorigenesis is through increased protein expression and consequent
aberrant activation of the signalling pathways in which they are involved25,26,33. It is
interesting to note that in DTCs, PIK3CA mutation is mutually exclusive with PIK3CA
copy-number gain31,33, suggesting that either of these genetic alterations is sufficient to
promote thyroid tumorigenesis through the PI3K–AKT pathway. However in aggressive
undifferentiated ATC, PIK3CA mutations and amplifications often occur simultaneously in
the same tumour26,33, which is a mechanism through which mutant PIK3CA can be
amplified to drive the progression and aggressiveness of thyroid cancer.

Gene amplification or copy-number gain of the IQ-motif-containing GTPase-activating
protein 1 (IQGAP1) is another important genetic event that has been recently discovered in
thyroid cancer48. IQGAP1 is a multifunctional scaffold protein that has an important role in
human tumorigenesis49. IQGAP1 amplification was found to increase protein expression
and to be associated with invasiveness of thyroid cancer cells. Interestingly, coexistence of
IQGAP1 copy-number gain and BRAFV600E mutation was particularly associated with a
high incidence of recurrent PTC48.
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Gene translocations

Gene translocation resulting in oncogenic rearrangements in thyroid cancer is best
exemplified by RET–PTC. There are more than 10 types of RET–PTC translocation, as
determined by the types of partner genes, and the most common types are RET–PTC1 and
RET–PTC350–52. RET is a proto-oncogene encoding an RTK. RET–PTC occurs as a
consequence of genetic recombination between the 3′ tyrosine kinase portion of RET and
the 5′ portion of a partner gene, such as the coiled-coil domain-containing gene 6 (CCDC6;
also known as H4) in RET–PTC1 and nuclear receptor co-activator 4 (NCOA4; also known
as ELE1) in RET–PTC3 (REFS 53,54). Spatial contiguity of RET and the partner gene in
the nucleus is a structural basis for the formation of RET–PTC rearrangements55. The
rearrangements result in ligand-independent dimerization and constitutive tyrosine kinase
activity of RET. RET–PTC can occur in benign FTA and follicular variant PTC (FVPTC),
but more commonly in classical PTC56. A recent study found a correlation between the
presence of RET–PTC and a high growth rate of benign thyroid tumours57. However, the
role of RET–PTC in early thyroid tumorigenesis is unclear. RET–PTC is a classical
oncoprotein that activates the MAPK and PI3K–AKT pathways58,59. RET–PTC activates
both pathways by recruiting signalling adaptors to phosphorylated Tyr1062 on the
intracellular domain of the RET fusion protein60. It is thus not surprising that RET–PTC
occurs in FTA and FVPTC; these are follicular thyroid tumours in which the PI3K–AKT
pathway has a primary role in tumorigenesis61.

The paired box 8 (PAX8)–peroxisome proliferator-activated receptor-γ (PPARG) fusion
gene (PAX8–PPARG) is another prominent recombinant oncogene in thyroid cancer,
occurring in up to 60% of FTC and FVPTC62–64. PAX8–PPARG also occurs in FTA64,
although, like RET–PTC, its prevalence is low in benign thyroid tumours and its oncogenic
role is unclear. PAX8–PPARγ exerts a dominant-negative effect on the wild-type tumour
suppressor PPARγ and also transactivates certain PAX8-responsive genes65. Interestingly,
the expression of PPARγ was dramatically reduced in FTC that developed in the TRβPV
mouse model — which expresses a knock-in dominant-negative mutant of human thyroid
hormone receptor-β (TRβ) — resulting in follicular thyroid tumorigenesis66. An AKAP9–
BRAF fusion gene resulting in activation of the BRAF kinase also occurs in ionizing-
radiation-induced PTC67, but not in sporadic PTC68. Unlike RET–PTC, the importance of
AKAP9–BRAF in thyroid tumorigenesis is probably limited owing to its rarity.

Aberrant gene methylation

Aberrant gene methylation is an epigenetic hallmark of human cancer — which is also
common in thyroid cancer69 — that usually silences a gene when occurring in the promoter
regions. BRAFV600E mutation was found to be associated with hypermethylation of several
tumour suppressor genes, including tissue inhibitor of metalloproteinases 3 (TIMP3),
SLC5A8, death-associated protein kinase 1 (DAPK1) and retinoic acid receptor-β
(RARB)70. A recent DNA methylation microarray study revealed broad hypermethylation of
genes throughout the genome driven by BRAF-V600E signalling in PTC cells71.
Interestingly, this study also revealed a large range of genes throughout the genome that,
driven by BRAF-V600E, became hypomethylated and hence overexpressed. These
hypermethylated or hypomethylated genes have important established metabolic and cellular
functions. Thus, alterations in gene methylation coupled to BRAF-V600E and probably to
other oncoproteins represent a prominent epigenetic mechanism in thyroid tumorigenesis.

Promoter methylation of PTEN is also common in FTC and ATC72–74, which is consistent
with the loss of expression of PTEN that is found in a subset of these thyroid cancers73,75,76.
PTEN methylation is associated with genetic alterations of the PI3K–AKT pathway in
thyroid tumours, including mutations of various isoforms of RAS, PIK3CA mutation and
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amplification, and PTEN mutations72. This is consistent with a model in which aberrant
activation of the PI3K–AKT pathway, driven by activating genetic alterations, causes
aberrant methylation and hence silencing of PTEN, which in turn leads to failure to
terminate the PI3K–AKT signalling and creates a self-amplifying loop72.

Despite the identification of these common genetic alterations in thyroid cancers, it is
important to note that approximately 30–35% of DTCs do not harbour known genetic
alterations, and so further investigation is required to identify the underlying genetic
backgrounds.

Altered signalling pathways in thyroid cancer

The MAPK signalling pathway

The MAPK pathway has a fundamental role in the regulation of cell proliferation and
survival and in human tumorigenesis (FIG. 1). The importance of this pathway has been
well established in thyroid tumorigenesis, particularly for PTC77,78. In thyroid cancer, the
MAPK pathway is driven by activating mutations, including BRAF and RAS mutations, by
RET–PTC and, in some cases, by the recently discovered ALK mutations43.

MAPK-mediated thyroid tumorigenesis involves a wide range of secondary molecular
alterations that synergize and amplify the oncogenic activity of this pathway, such as
genome-wide hypermethylation and hypomethylation71. Additionally, upregulation of
various well-established oncogenic proteins can occur. These include chemokines79,80,
vascular endothelial growth factor A (VEGFA)81, MET82,83, nuclear factor-κB (NF-κB)84,
matrix metalloproteinases (MMPs)79,84,85, prohibitin86, vimentin87, hypoxia-inducible
factor 1α (HIF1α)88, prokineticin 1 (PROK1; also known as EG-VEGF)89, urokinase
plasminogen activator (uPA) and its receptor (uPAR)90,91, transforming growth factor-β1
(TGFβ1)92–94 and thrombospondin 1 (TSP1)93. These proteins are all established players in
human tumorigenesis through a variety of mechanisms that drive cancer cell proliferation,
growth, migration and survival, as well as tumour angiogenesis, invasion and metastasis.

Many of these proteins are key constituents of the unique extracellular matrix (ECM)
microenvironments that have been proposed to be important in the pathogenesis of thyroid
cancer driven by oncoproteins such as BRAF-V600E95. It is now clear that the ECM micro-
environment does not only function as a structural support for the cellular elements of
cancer, but it also has a profound impact on the behaviours of cancer cells, including their
viability, proliferation, adhesion and motility. Thyroid cancer cells and stromal cells, such as
fibroblasts and macrophages, produce proteins that form paracrine and autocrine signalling
loops. For example, BRAF-V600E-mediated MAPK pathway activation promotes the
release of TSP1 into the ECM where it interacts with and modulates other proteins. These
include integrins and non-integrin cell-membrane receptors, matrix proteins, cytokines,
VEGFA and MMPs, which in turn activate signalling in thyroid cancer cells and promote
tumour progression and metastasis93,95. Another example is the tumour-promoting cytokine
TGFβ1, which is released into the ECM owing to the activation of the BRAF-V600E–
MAPK pathway92,94. Cytokines can create an inflammatory microenvironment that may
produce reactive oxygen species and oxidative stress, which may in turn stimulate the
MAPK pathway and augment thyroid tumorigenesis96. Thus, secondary molecular
alterations in the tumour ECM microenvironment, triggered by the aberrant signalling of the
MAPK pathway, have an important role in the pathogenesis of thyroid cancer.

In terms of stromal cells in the tumour micro-environment, an important role of tumour-
associated macrophages is that they produce cytokines such as TGFβ1. The role of stromal
fibroblasts in thyroid tumori-genesis seems to be affected by the expression patterns of the
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two fibroblast growth factor receptor 2 (FGFR2) isoforms, FGFR2-IIIb and FGFR2-IIIc, in
cancer cells and fibroblasts: co-implantation of thyroid cancer cells and fibroblasts
expressing the same type of FGFR2 isoform did not affect xenograft tumour progression,
whereas co-implantation of thyroid cancer cells and fibroblasts that respectively expressed
FGFR2-IIIb and FGFR2-IIIc resulted in increased tumour progression97. These results
highlight the importance and complexity of cellular and molecular constituents in
determining the impact of the microenvironment on thyroid cancer cell behaviour.

The PI3K–AKT signalling pathway

The PI3K–AKT pathway also has a fundamental role in thyroid tumori-genesis61,98 (FIG.
2). Early evidence to support the role of this pathway in thyroid tumorigenesis came from
the finding that Cowden’s syndrome (which is caused by germline mutations of PTEN) was
associated with FTA and FTC99. A functional role for the PI3K–AKT pathway in sporadic
thyroid tumorigenesis was initially revealed by the finding of increased expression and
activation of AKT in thyroid cancers, particularly FTC100–102. Among the three AKT
isoforms, AKT1 and AKT2, but not AKT3, were found to be robustly expressed and
activated in thyroid cancer, suggesting a particularly important role for these two isoforms in
thyroid tumorigenesis101.

In the TRβPV transgenic mouse model — in which the PI3K–AKT pathway is activated,
which involves the interaction of TRβPV with the p85α regulatory subunit of PI3K — FTC
spontaneously developed103,104, and the activation and nuclear localization of AKT1 was
observed105. Human tumour studies suggested that the invasiveness and metastasis of FTC
promoted by the PI3K–AKT pathway particularly involved the activation and nuclear
localization of AKT1 (REF. 102). This is consistent with the occurrence of AKT1 mutations
in metastatic thyroid cancers35. Furthermore, Akt1 ablation delayed or prevented tumour
progression, vascular intravasation and distant metastasis of FTC in TRβPV mice106. The
role of AKT2 in thyroid tumorigenesis has also been demonstrated in vivo, as the occurrence
of thyroid tumours was reduced in Pten+/−Akt2−/− mice107. Thus, whereas the MAPK
pathway has a central role primarily in PTC, the PI3K–AKT pathway has such a role
primarily in FTC and its invasion and metastasis. This is consistent with genetic alterations
in the PI3K–AKT pathway occurring most frequently in FTC, whereas those in the MAPK
pathway occur most frequently in PTC17,18,61,78,98. The inhibition of thyroid cancer cell
proliferation by PI3K–AKT pathway inhibitors was dependent on the presence of genetic
alterations in the PI3K–AKT pathway108,109, suggesting that thyroid cancer cells harbouring
such genetic alterations have become dependent on the over-activation of this pathway.

Vascular invasiveness and capsular invasiveness are defining histopathological features of
FTC110. Genetic alterations in the PI3K–AKT pathway are far more common in FTC than in
its precursor, FTA31,33. It is therefore conceivable that overactivated PI3K–AKT signalling
promotes the conversion of FTA to FTC by conferring tumour cell invasiveness. There are
also secondary molecular alterations, albeit limited in number so far, that are robustly
induced by PI3K–AKT signalling and that have an important role in the pathogenesis of
FTC; these include alterations of the WNT–β-catenin111, HIF1α112,113, FOXO3 (REF. 114)
and NF-κB114 pathways.

The NF-κB signalling pathway

The NF-κB pathway has an important role in the regulation of inflammatory responses that
are linked to tumorigenesis115 (FIG. 1). Increased NF-κB activation in thyroid cancer cell
lines and tissues has long been documented116–118. Recent studies demonstrate that the NF-
κB pathway controls proliferative and anti-apoptotic signalling pathways in thyroid cancer
cells119,120. The NF-κB pathway is involved in upregulating the expression of several
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oncogenic proteins that are also upregulated by the MAPK pathway. Furthermore, RET–
PTC, RAS and BRAF-V600E — members of the MAPK pathway — can cause activation of
the NF-κB pathway in thyroid cancers119. Interestingly, NF-κB signalling was upregulated
by expression of BRAF-V600E121,122, but not by expression of a constitutively active
mutant of MEK in NIH3T3 cells123, suggesting a direct coupling of BRAF-V600E to the
NF-κB pathway. Through a mechanism that is not yet specifically defined, BRAF-V600E
was shown to cause IκB degradation (and consequent activation of NF-κB) independently of
MEK–ERK signalling in thyroid cancer cells84. This dual coupling of BRAF-V600E to the
NF-κB pathway and to the MEK–ERK pathway is consistent with the finding that
simultaneously suppressing the two pathways using NF-κB and MEK inhibitors
synergistically inhibited the proliferation of thyroid cancer cells harbouring a BRAF-V600E
mutation124.

The RASSF1–MST1–FOXO3 signalling pathway

RASSF1 is a member of the RAS association domain family, which, in response to
apoptotic signalling, associates with and activates mammalian STE20-like protein kinase 1
(MST1; also known as STK4)125. Activated MST1 phosphorylates Ser207 in the forkhead
domain of the forkhead transcription factor FOXO3. This phosphorylation disrupts the
interaction of FOXO3 with 14-3-3 proteins in the cytoplasm and promotes FOXO3
translocation to the nucleus, where it promotes the transcription of pro-apoptotic genes126

(FIG. 1). Thus, this RASSF1–MST1–FOXO3 pathway has an important tumour-suppressive
role by promoting apoptosis.

Hypermethylation of the promoter of RASSF1A is common and is associated with its
silencing in thyroid cancers127,128. This occurs even in benign FTA, albeit to a lesser extent,
suggesting that impairment of the RASSF1–MST1–FOXO3 pathway is involved in early
thyroid tumorigenesis128.

Activation of the RASSF1–MST1–FOXO3 signalling pathway promoted thyroid cancer cell
apoptosis21. Interestingly, this study demonstrated that BRAF-V600E, but not wild-type
BRAF, directly interacted with the carboxyl terminus of MST1 and inhibited its kinase
activities, resulting in decreased FOXO3 transactivation. This was independent of MEK–
MAPK signalling. This suggests that, in addition to the classical coupling to MEK–MAPK,
negative regulation of RASSF1–MST1–FOXO3 is a mechanism that is involved in BRAF-
V600E-driven thyroid tumorigenesis. This unique mechanistic model explains the finding
that thyroid cancers that developed in BRAFV600EMst1−/− transgenic mice were more
aggressive than those that developed in BRAFV600E mice21. The direct interaction of
BRAF-V600E with MST1 to prevent RASSF1-mediated MST1 activation also provides an
explanation for the mutually exclusive occurrence of BRAFV600E mutation and RASSF1A
hypermethylation in thyroid cancer128, as either event may be sufficient to inactivate
RASSF1–MST1–FOXO3 signalling. Therefore, BRAF-V600E is coupled independently to
three major pathways: MEK–MAPK, RASSF1–MST1–FOXO3 and NF-κB, and thus
represents a unique and powerful oncogenic mechanism in thyroid tumorigenesis (FIG.1).
The activation of the PI3K–AKT pathway, such as that induced by PTEN inactivation, can
also downregulate the activities of the RASSF1–MST1–FOXO3 pathway in FTC114. This
involves AKT-mediated phosphorylation of FOXO family members, which causes their
translocation from the nucleus to the cytoplasm, where they are sequestered by 14-3-3
proteins, thus reducing the transcription of pro-apoptotic genes129 (FIG. 2).

The WNT–β-catenin signalling pathway

The WNT–β-catenin pathway has a well established role in the regulation of cell growth and
proliferation, as well as in stem cell differentiation, and its constitutive activation is
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commonly found in human cancers130. β-catenin, when upregulated by upstream WNT
signalling, is translocated into the nucleus and transcribes various tumour-promoting genes.
In thyroid cancer, activation of WNT–β-catenin signalling is often caused by activating
mutations of CTNNB1 (which encodes β-catenin), particularly in PDTC and ATC37,38.
Furthermore, the expression of β-catenin was higher in ATC than in DTC131. Thus, the
WNT–β-catenin pathway seems to have a particularly important role in thyroid tumour
aggressiveness.

Aberrant activation of WNT–β-catenin signalling often occurs as a consequence of the
activation of the PI3K–AKT pathway in thyroid cancers132,133. This occurs through
glycogen synthase kinase 3β (GSK3β), which is directly phosphorylated — and hence
inactivated — by AKT134. As GSK3β promotes the degradation of β-catenin, its inactivation
results in the upregulation of WNT–β-catenin signalling (FIG. 2). Interestingly, RET–PTC
can activate the WNT–β-catenin pathway by activating the PI3K–AKT pathway and also by
directly phosphorylating β-catenin in thyroid cancer cells58.

The HIF1α pathway

It has long been known that hypoxia is a strong stimulus of cancer metabolism, growth and
progression. HIF1α is a key mediator of the response to hypoxia, in which it binds to HIF1β
(also known as ARNT) to form the HIF1 transcription factor that induces the expression of
various genes associated with cell metabolism and tumour angiogenesis135. Angiogenesis,
which is a key step in the progression of solid tumours, is a common response to
intratumoural hypoxia. This process is promoted by VEGFA, the expression of which is
strongly upregulated by HIF1. HIF1α is not expressed in normal thyroid tissues but is
expressed in thyroid cancers, particularly in aggressive types, such as ATC, and this is
consistent with a role in thyroid cancer progression112,136. The oncogene MET, which is
another target of HIF1, is also abundantly expressed in association with upregulated HIF1α
in thyroid cancer136. Interestingly, HIF1 can be upregulated in thyroid cancer by both the
PI3K–AKT112,113 and the MAPK pathways88, thus contributing to the effects of these two
pathways on thyroid tumour progression.

The thyroid-stimulating hormone receptor signalling pathway

Through activation by thyroid-stimulating hormone (TSH), the TSH receptor (TSHR) has a
fundamental role in the regulation of thyroid cell proliferation, differentiation and function,
as well as in the development of the thyroid gland137. TSHR is a guanine-nucleotide-binding
G-protein-coupled receptor that triggers two intracellular signalling pathways: Gsα-mediated
adenylyl cyclase–cyclic AMP (cAMP) signalling and the Gq- or G11-mediated
phospholipase Cβ–inositol 1,4,5-trisphosphate–intracellular Ca2+ signalling. FTC
spontaneously developed in TRβPV mice, but when these mice were crossed with Tshr−/−

mice, no thyroid cancer developed138. This study thus elegantly demonstrates the
requirement of TSHR signalling in thyroid carcinogenesis in this mouse model. Similar
findings were reported in another mouse model in which thyroid-specific knock-in of
BrafV600E (LSL-BrafV600Ethyroid peroxidase (Tpo)-Cre) caused the development of
aggressive PTC, and crossing these mice with Tshr−/− mice resulted in a failure to develop
thyroid cancer139. In this study, thyroid-specific deletion of Gnas (which encodes Gsα) in
LSL-BrafV600ETpo-Cre mice attenuated thyroid tumour formation. Interestingly, there is a
clinical association of higher serum levels of TSH with a higher risk for malignancy of
thyroid nodules in humans140–142.

However, it is not clear whether TSHR signalling is required directly for the initiation of
thyroid cancer or whether it is simply required, as would be expected physiologically, for
the TSHR-dependent generation of thyroid cells, from which an oncogene-driven thyroid
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cancer would originate. Overactivation of TSHR signalling, such as that achieved through
activating mutations in TSHR or Gsα, is well known to cause benign hyperfunctional
FTA143,144. These tumours are almost never malignant, which suggests that TSHR
signalling may be protective against malignant transformation of thyroid cells. Consistently,
low serum levels of TSH are associated with common genetic variants that predispose to an
increased risk of thyroid cancer145,146. It therefore seems that the TSH–TSHR system has a
dichotomous role in the development of thyroid cancer: it may suppress malignant
transformation of thyroid cells and hence suppress the occurrence of thyroid cancer, but it
may promote the growth and progression of thyroid cancer once it has been initiated by
oncogenic alterations.

Progressive molecular alterations

Progressive accumulation of genetic alterations

The accumulation of genetic alterations during thyroid tumour progression is probably best
exemplified by genetic alterations to members of the PI3K–AKT pathway61. Mutations in
members of this pathway, including those in RAS (particularly NRAS), PIK3CA and PTEN,
as well as PIK3CA amplifications, increasingly occur from FTA to FTC and to
ATC26,31–33,147. Hypermethylation of the PTEN promoter also progressively increases in
frequency from FTA to FTC and to ATC72. The coexistence of these genetic and epigenetic
alterations also increasingly occurs from low-grade to high-grade thyroid tumours31,33.
Genetic or epigenetic defects of PTEN can occur simultaneously with activating mutations
of other genes in the PI3K–AKT pathway; in such cases, the PI3K–AKT pathway can
presumably remain maximally activated26,33,72. Indeed, deletion of Pten accelerated the
progression of FTC in TRβPV mice114.

The coexistence of multiple genetic alterations to members of the MAPK pathway also
occurs, as exemplified by the simultaneous presence of BRAFV600E mutation, RAS
mutations and RET–PTC in aggressive recurrent PTC and ATC26,148,149; these alterations
are otherwise mutually exclusive in well-differentiated thyroid cancers7,9. It is thus
compelling to propose that the process of thyroid cancer progression is one of progressive
accumulation of multiple genetic alterations, which synergistically cooperate to amplify
their oncogenicity.

Cooperation of the MAPK and PI3K–AKT pathways

The MAPK and PI3K–AKT pathways are primarily involved in differentiated PTC and
FTC, respectively, and the simultaneous activation of both pathways becomes more frequent
as the grade of thyroid tumours increases26,31–33,35. One study analysed 24 genetic
alterations in the major genes of the MAPK and PI3K–AKT pathways in 48 ATC samples
and found that the majority (81%) of the samples harboured genetic alterations that could
potentially activate both pathways26. The coexistence of phosphorylated ERK and AKT was
also common in ATC but not in DTC26. Thus, genetic alterations that activate the MAPK
and PI3K–AKT pathways are an important mechanism that drives the progression of thyroid
cancer. In this model, as illustrated in FIG. 3, when a genetic alteration occurs in the MAPK
pathway it drives tumorigenesis of the thyroid cell towards PTC; when a genetic alteration
occurs in the PI3K–AKT pathway it drives tumorigenesis towards FTA and FTC. As genetic
alterations accumulate and both pathways become activated, the tumour progresses into
PDTC and ATC, which is a process that may be further accelerated by additional or
secondary genetic alterations, including mutations in TP53, CTNNB1 and ALK.

This model is supported by studies of transgenic mice in which the deletion of Pten and
knock-in of KrasG12D (to activate both MAPK and PI3K–AKT pathways), but not either
genetic manipulation alone, caused the development of aggressive thyroid cancer29.
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Similarly, this phenomenon is observed in melanoma. Transgenic mice with induced
expression of BRAFV600E in melanocytes to activate the MAPK pathway alone developed
only melanocytic hyperplasias, but the expression of BRAFV600E with Pten deletion (to also
activate the PI3K–AKT pathway) caused melanoma with a rapid onset of metastasis150.
Thus, dual activation of the MAPK and PI3K–AKT pathways may be a common mechanism
for promoting tumour progression.

Impairment of the iodide-handling machinery

The main and unique function of follicular thyroid cells is to use iodide to synthesize thyroid
hormone151,152 (FIG. 4). In this process, iodide is transported into the cell through the
sodium–iodide symporter (NIS) that is located in the basal membrane. At the apical
membrane, pendrin transports iodide out of the cell into the lumen of the thyroid follicle. In
the lumen of the thyroid follicle, iodide undergoes oxidation by TPO and is incorporated
into tyrosine residues of thyroglobulin (TG), which is later cleaved through proteolysis to
produce thyroid hormones. This process is upregulated by TSH-mediated activation of
TSHR. This is the biological basis for the conventional radioiodine treatment of thyroid
cancer, but the iodide-handling machinery is often impaired, particularly in advanced
thyroid cancers, thus making radioiodine treatment ineffective.

Aberrant activation of the MAPK pathway has a crucial role in the impairment of the iodide-
handling machinery17. BRAFV600E mutation is associated with the loss of radioiodine
avidity and with radioiodine treatment failure in PTC16,35,153–155. Consistently, BRAFV600E

mutation is highly prevalent (78–95% of cases) in recurrent radioiodine-refractory
PTC16,35,149,155, in contrast with the lower prevalence of BRAFV600E mutation (45% of
cases) in primary PTC12. Numerous studies have reported an association of BRAFV600E

mutation with decreased or absent expression of thyroid iodide-handling genes: NIS, TSHR,
TPO, TG and SLC26A4 (which encodes pendrin) in thyroid cancer82,153,154,156–160. A
direct role of BRAFV600E in the downregulation of thyroid hormone synthesis pathway
genes was demonstrated by showing that induced expression of BRAF-V600E in thyroid
cells impaired the expression of almost all of these genes, which was restored by ceasing the
expression of BRAF-V600E or by suppressing the MAPK pathway with a MEK
inhibitor161. Similarly, in thyroid cells expressing RET–PTC1, NIS expression was
increased following treatment with a MEK inhibitor162. Suppression of BRAF-V600E in
mouse models of thyroid cancer also restored the expression of thyroid iodide-handling
genes and radioiodine uptake163. This aberrant gene silencing by BRAF-V600E may involve
alterations to histone acetylation at gene promoters164,165. An autocrine loop involving
TGFβ is another mechanism92: BRAF-V600E promotes the secretion of TGFβ, which,
through the activation of SMADs and consequent impairment of the thyroid-gene
transcription factor PAX8, is a potent repressor of NIS in thyroid cells166.

Activation of the PI3K–AKT pathway was also shown to downregulate the iodide-handling
machinery in thyroid cells both in vitro and in vivo167,168. Inhibition of the PI3K–AKT
pathway induced NIS expression and iodide uptake in human thyroid cancer cells164,169. In
addition to NIS, suppression of the PI3K–AKT pathway also induced the expression of
TSHR, TPO and TG in human thyroid cancer cells, which was enhanced by treatment with
histone deacetylase inhibitors, and radioiodine uptake was correspondingly robustly
induced164. This could be augmented by co-treatment with TSH164. The involvement of
both MAPK and PI3K–AKT pathways in the silencing of thyroid iodide-handling genes is
consistent with the accumulation of genetic alterations in both pathways as thyroid tumours
progress, during which there is an increasing loss of radioiodine avidity.
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Translational promises in thyroid cancer

Remarkable advances in the translation of molecular findings in thyroid cancer to the clinic
have occurred recently170. For example, because of its cancer specificity, the detection of
BRAFV600E mutation in fine-needle aspiration biopsy (FNAB) samples was initially tested
for the evaluation of thyroid nodules171,172, which has now found increasing clinical
use170,173. The diagnostic utility of detecting RET–PTC using FNAB has also been
intensively investigated170. The combinatorial use of genetic markers identified in FNAB
samples, including BRAF mutation, RAS mutations, RET–PTC and PAX8–PPARG, has
been shown to improve the diagnostic accuracy for thyroid nodules that are otherwise
diagnostically indeterminate by conventional cytology assessment, although this diagnostic
approach may need further improvement174,175. Applying genomic information to address
clinical issues of thyroid neoplasia has also shown promise. For example, a gene-expression
classifier (with high sensitivity and negative predictive power) is being used in the clinic to
assist the diagnostic evaluation of indeterminate thyroid nodules176.

The prognostic application of BRAFV600E mutation has also become part of the clinical
management of PTC170,173. A large, multicentre study demonstrated a strong association of
BRAFV600E mutation with patient mortality from PTC177. Large studies have demonstrated
that BRAFV600E is strongly associated with poor clinico-pathological outcomes even in
conventionally low-risk patients16,178–181. BRAFV600E detected in FNAB samples
preoperatively predicted poor clinicopathological outcomes of PTC180,182,183 and even
predicted lymph node metastasis (as determined by prophylactic central neck dissection in
patients without preoperative evidence of lymph node metastasis)183. It is thus
recommended that preoperative testing of BRAFV600E in FNAB samples be used for
assisting risk stratification and defining surgical and medical treatments for patients with
PTC170. Owing to their association with a worse prognosis of PDTC, RAS mutations are
also promising prognostic markers for this type of thyroid cancer184–186. It has been recently
shown that RAS mutations are also associated with poor clinicopathological outcomes of
FTC187 but this needs to be evaluated further.

Many components of the MAPK and PI3K–AKT pathways, from RTKs in the cell
membrane to the various downstream signalling relay molecules, such as BRAF, MEK,
AKT and mTOR, are therapeutic targets that are being actively tested for the treatment of
thyroid cancer170. Novel small-molecule protein-kinase inhibitors have shown promise in
clinical trials on thyroid cancer, including axitinib188, sorafenib189–191, motesanib192 and
pazopanib193. A promising therapeutic strategy is genetic-based targeting of thyroid
cancer194, as supported by many preclinical studies demonstrating the selective inhibition of
BRAFV600E-mutant thyroid cancer cells by various MEK inhibitors124,195–199 and BRAF-
V600E-specific inhibitors200,201. The latter include PLX4032 (also known as vemurafenib),
which has been recently approved by the US Food and Drug Administration (FDA) for the
treatment of BRAFV600E-positive melanoma202. Some of these MEK and BRAF-V600E
inhibitors are currently being clinically tested for thyroid cancer. Therapeutic targeting of
the PI3K–AKT pathway may also be genetically guided, as genetic alterations that activate
this pathway confer thyroid cancer cells with remarkably increased sensitivities to AKT and
mTOR inhibitors108,109. This therapeutic strategy for thyroid cancer may prove to be useful
and should be tested clinically, as encouraged by a recent clinical trial showing that
mutations in the PI3K–AKT pathway significantly increased the response rate of breast and
gynaecological cancers to inhibitors of the PI3K–AKT pathway203.

The involvement of multiple signalling pathways in aggressive thyroid cancer suggests that
it may be necessary to target them simultaneously for effective treatment. Indeed, single
agent clinical trials of various kinase inhibitors in thyroid cancer have generally shown only
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partial responses. Several recent preclinical studies testing the combination of MEK or
BRAF-V600E inhibitors with PI3K, AKT or mTOR inhibitors showed synergistic effects in
inhibiting the proliferation and promoting apoptosis of thyroid cancer cells124,199,204,205.
Synergistic effects of simultaneously targeting the MAPK and PI3K–AKT pathways were
even more pronounced in cells that harboured genetic alterations in both pathways199. It has
been recently demonstrated that simultaneously inhibiting the MAPK, PI3K–AKT and
histone deacetylase pathways could more robustly induce the expression of thyroid iodide-
handling genes (and thus increase radioiodine uptake) in thyroid cancer cells compared with
inhibiting each pathway alone, and this could be enhanced by co-treatment with TSH164.
Therefore, to restore radioiodine avidity by simultaneously targeting multiple signalling
pathways is another promising area of translational research on thyroid cancer.

Concluding remarks

Remarkable progress in understanding the molecular pathogenesis of thyroid cancer has
been made in recent years, as exemplified by the elucidation of the fundamental role of
signalling pathways, such as the MAPK and PI3K–AKT pathways. Activation of these
pathways, often in close connection and cooperation, constitute the primary oncogenic
mechanism that promotes the development and progression of thyroid cancer. Central to this
mechanism are the many powerful oncogenic alterations that drive these pathways.
Important secondary molecular derangements driven by the overactivation of these
pathways have also been increasingly uncovered, which synergize and amplify oncogenic
signalling in thyroid tumorigenesis. This understanding of the molecular pathogenesis of
thyroid cancer has now opened unprecedented opportunities for the development of novel
clinical strategies for the management of thyroid cancer.
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Glossary

Differentiated
thyroid cancer

(DTC). Collectively includes both papillary thyroid cancer (PTC) and
follicular thyroid cancer (FTC), which are histologically
differentiated, by comparison with poorly differentiated thyroid
cancer (PDTC) and undifferentiated anaplastic thyroid cancer (ATC)

Radioiodine
treatment

A classical treatment for patients with thyroid cancer. It is used after
total thyroidectomy and consists of treating patients with the
radioiodine isotope 131I, which emits high-energy β-particles and
takes advantage of the unique function of thyroid follicular cells to
accumulate iodide as a substrate for the synthesis of thyroid hormone

MAPK pathway This pathway has a fundamental role in the regulation of cell growth,
proliferation, apoptosis and metabolic activities, through regulating
the expression of various genes

PI3K–AKT
pathway

This pathway also has a fundamental role in the regulation of cell
growth, proliferation, apoptosis and metabolic activities, through
regulating the expression of various genes
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Pten A tumour suppressor gene, the protein product of which converts
phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to
phosphatidylinositol (4,5)-trisphosphate (PIP2), counteracting the
conversion of PIP2 to PIP3 by PI3K and thus terminating PI3K–AKT
signalling

Cowden’s
syndrome

Also known as Cowden’s disease or multiple hamartoma syndrome. A
rare, autosomally inherited disorder that is caused by mutations or
defects in the tumour suppressor gene PTEN and is characterized by
multiple tumour-like growths called hamartomas and an increased risk
of certain cancers, such as breast cancer and follicular thyroid cancer

Copy-number
gain

A genetic abnormality in which the copy number of a chromosomal
region or gene is more than the normal two copies (one paternal allele
and one maternal allele), which occurs through the amplification of a
local region of DNA within a chromosome, or through aneuploidy, in
which multiple copies or fragments of identical chromosomes are
present

Receptor
tyrosine kinases

(RTKs). These are typically growth-promoting transmembrane
receptors that transduce extracellular signalling into intracellular
signalling through the activation of their cytoplasmic kinase domain
in response to extracellular signals such as ligand-binding

Gene
translocation

A genetic rearrangement in which a chromosomal fragment is
translocated to another chromosome where it is not normally located,
which may create a recombinant gene product with new function or
uncontrolled function (compared with the original gene product)

Follicular
thyroid tumours

Collectively includes follicular thyroid adenoma (FTA), follicular
thyroid cancer (FTC) and follicular variant papillary thyroid cancer
(FVPTC); they share common dense follicular cell architectures

Gene
methylation

An epigenetic covalent addition of a methyl group to the fifth carbon
of the cytosine residue in a CpG dinucleotide, typically in CpG
islands (that is, CpG-rich regions) in the 5′-flanking promoter regions
of genes. Such methylation is usually closely associated with
chromatin remodelling and silencing of the corresponding genes.
Capsular invasiveness, A phenomenon in which thyroid cancer
invades the connective tissue capsule that surrounds the tumour,
which is a defining feature of progression to malignancy from a
benign thyroid tumour
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At a glance

• Thyroid cancer is a common endocrine malignancy, and exciting progress has
occurred in recent years in understanding its molecular pathogenesis.

• Genetic and epigenetic alterations are the driving forces of thyroid cancer.
Examples of these alterations include mutations in BRAF (BRAFV600E), RAS,
PIK3CA, PTEN, TP53, β-catenin (CTNNB1), anaplastic lymphoma kinase
(ALK) and isocitrate dehydrogenase 1 (IDH1), translocations (RET–PTC and
paired box 8 (PAX8)–peroxisome proliferator-activated receptor-γ (PPARG))
and aberrant gene methylation.

• At the core of the molecular pathogenesis of thyroid cancer is the uncontrolled
activity of various signalling pathways, including the MAPK, PI3K–AKT,
nuclear factor-κB (NF-κB), RASSF1–mammalian STE20-like protein kinase 1
(MST1)–forkhead box O3 (FOXO3), WNT–β-catenin, hypoxia-inducible factor
1α (HIF1α) and thyroid-stimulating hormone (TSH)–TSH receptor (TSHR)
pathways.

• The progression of thyroid cancer is a process of accumulation of genetic and
epigenetic alterations with corresponding progressive derangements of
signalling pathways. These are accompanied by numerous secondary molecular
alterations, both in the cell and in the tumour microenvironment, which, acting
in cooperation, amplify and synergize their impacts on thyroid tumorigenesis.

• Aberrant silencing of thyroid iodide-handling genes and consequent loss of
radioiodine avidity of thyroid cancer promoted by BRAF-V600E is a unique
molecular pathological process in thyroid cancer, which causes the failure of
radioiodine treatment.

• The recent molecular findings provide unprecedented opportunities for further
research and clinical development of novel molecular-based treatment strategies
for thyroid cancer.
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Figure 1. The MAPK and related pathways in thyroid cancer
Shown in the middle of the figure is the classical MAPK pathway leading from an
extracellular mitogenic stimulus that activates a receptor tyrosine kinase (RTK) in the cell
membrane, to RAS, RAF (shown as BRAF-V600E), MEK and ERK. ERK is activated by
phosphorylation (P) and enters the nucleus where it upregulates tumour-promoting genes
and downregulates tumour suppressor genes and thyroid iodide-handling genes. On the left
side of the figure is the nuclear factor-κB (NF-κB) pathway, in which extracellular stimuli
activate the pathway by acting on receptors in the cell membrane, leading to activation of
the inhibitor of κB (IκB) kinase (IKK), resulting in the phosphorylation of IκB.
Phosphorylated IκB becomes dissociated from NF-κB, which is normally bound with IκB in
a complex and sequestered in the cytoplasm. Phosphorylated IκB undergoes ubiquitylation
and proteasomal degradation. Free NF-κB then enters the nucleus to promote the expression
of tumour-promoting genes. Through an undefined mechanism that is independent of MEK
signalling, BRAF-V600E promotes the phosphorylation of IκB and the release of NF-κB,
thus activating the NF-κB pathway. Shown on the right side of the figure is the RASSF1–
mammalian STE20-like protein kinase 1 (MST1)–forkhead box O3 (FOXO3) pathway.
Activated by extracellular pro-apoptotic stimuli through membrane receptors, RASSF1A
activates MST1. Activated MST1 then phosphorylates FOXO3 on Ser207. The resulting
phosphorylated FOXO3 becomes dissociated from 14-3-3 proteins in the cytoplasm. 14-3-3
proteins undergo proteasomal degradation, and phosphorylated FOXO3 enters the nucleus to
promote the expression of pro-apoptotic genes in the FOXO pathway. BRAF-V600E
directly interacts with and inhibits MST1 and prevents its activation by RASSF1A, thereby
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suppressing the pro-apoptotic signalling of the FOXO3 pathway. The downward arrow for
the FOXO activities shown in the nucleus indicates this negative effect of BRAF-V600E on
pro-apoptotic genes, which are normally upregulated by the RASSF1A–MST1–FOXO3
pathway. The triple independent coupling of BRAF-V600E to the pathways shown here
represents a unique and powerful mechanism of thyroid tumorigenesis driven by BRAF-
V600E. DAPK1, death-associated protein kinase 1; HIF1A, hypoxia-inducible factor 1α;
MMP, matrix metalloproteinase; NIS, sodium–iodide symporter; TGFB1, transforming
growth factor β1; TIMP3, tissue inhibitor of metalloproteinases 3; TPO, thyroid peroxidase;
TSHR, thyroid-stimulating hormone receptor; TSP1, thrombospondin 1; UPA, urokinase
plasminogen activator; UPAR, urokinase plasminogen activator receptor; VEGFA, vascular
endothelial growth factor A.
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Figure 2. The PI3K–AKT and related pathways in thyroid cancer
Extracellular signals activate receptor tyrosine kinases (RTKs) in the cell membrane, leading
to the activation of RAS and subsequent activation of PI3K. Activated PI3K catalyses the
conversion of phosphatidylinositol (4,5)-bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-
trisphosphate (PIP3). PIP3 activates 3-phosphoinositide-dependent protein kinase 1 (PDK1;
also known as PDPK1), which consequently associates with AKT and leads to
phosphorylation (P) and activation of AKT by PDK1. Phosphorylated AKT, which is an
activated form of AKT, enters the nucleus where it induces tumour-promoting genes. In the
cytoplasm, phospho-AKT also activates other signalling molecules or pathways, a
prominent one being the mTOR pathway, which has an important role in tumorigenesis by
promoting translation. Phospho-AKT can also directly phosphorylate glycogen synthase
kinase 3β (GSK3β) and consequently inactivates it. GSK3β normally inhibits β-catenin, thus
the effect of phospho-AKT is to relieve GSK3β-mediated suppression of β-catenin.
Consequently, β-catenin can enter the nucleus where it promotes the expression of tumour-
promoting genes. In the nucleus, phospho-AKT can phosphorylate forkhead box O3
(FOXO3) on its AKT-specific motif. Such phosphorylated FOXO3 is translocated out of the
nucleus to the cytoplasm where it binds 14-3-3 proteins to be sequestered in the cytoplasm,
thus terminating the pro-apoptotic activities of the FOXO3 pathway. The downward arrow
for the FOXO activities in the nucleus in the figure indicates this negative effect of AKT on
pro-apoptotic genes in the FOXO pathway, which would otherwise be upregulated by the
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FOXO3 pathway. This unique coupling of phospho-AKT to the three pathways provides a
powerful driving force for thyroid tumorigenesis. The major negative regulatory mechanism
of the PI3K–AKT pathway is PTEN, which is a phosphatase that converts PIP3 to PIP2, thus
terminating the activation of the pathway. The inset shows the self enhancement mechanism
of PI3K–AKT signalling in which genetic-alteration-driven activation of the pathway causes
PTEN methylation and silencing with consequent loss of termination of the signalling, thus
maintaining the pathway in full and constitutive activation.
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Figure 3. Model of the progression of thyroid tumorigenesis driven by the MAPK and PI3K–
AKT pathways
Activation of the MAPK pathway by genetic alterations, such as the BRAFV600E mutation,
primarily drives the development of papillary thyroid cancer (PTC) from follicular thyroid
cells. By contrast, activation of the PI3K–AKT pathway by genetic alterations, such as
mutations in RAS, PTEN and PIK3CA, primarily drives the development of follicular
thyroid adenoma (FTA) and follicular thyroid cancer (FTC) from follicular thyroid cells.
Conversion from FTA to FTC is largely due to increasing activation of the PI3K–AKT
pathway. As genetic alterations accumulate and intensify the signalling of each of the two
pathways, PTC and FTC can progress to poorly differentiated thyroid cancer (PDTC). When
both pathways are fully activated through accumulated genetic alterations, conversion from
PDTC to anaplastic thyroid cancer (ATC) is strongly facilitated. It is also possible that
PDTC and ATC can both develop de novo directly from follicular thyroid cells, and that
ATC can develop from PTC or FTC if appropriate genetic alterations occur. Many
secondary molecular alterations also progressively accumulate and synergize with the two
pathways in driving the progression of thyroid tumorigenesis, as discussed in the text (not
shown in the figure). The increasing number of vertical arrows and colour intensity of the
ovals symbolize the increasing genetic alterations and signalling of the two pathways as
thyroid tumorigenesis progresses. The figure is modified from REF.33 © (2007) American
Association for Cancer Research.
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Figure 4. Iodide-handling machinery in the thyroid cell and its silencing by BRAF-V600E
a | A follicular thyroid cell is shown, which abundantly expresses the molecules involved in
the uptake and metabolism of iodide (I−), including the sodium–iodide symporter (NIS) in
the basal membrane, which transports I− coupled with Na+ into the cell from the
extracellular compartment. I− is then transported into the follicular lumen via pendrin in the
apical membrane where it is oxidized by thyroid peroxidase (TPO) and incorporated into
tyrosine amino-acid residues in thyroglobulin (TG) to form iodinated TG (TG-I) for the
synthesis of thyroid hormone. The whole process is upregulated by cyclic AMP (cAMP)
signalling that is triggered by the binding of thyroid-stimulating hormone (TSH) to its
receptor (TSHR) in the membrane. With normal expression and function of this system, I− is
abundantly taken up and accumulated in the follicular thyroid cell and in the follicular
lumen. b | BRAF-V600E, through activating the MAPK pathway in thyroid cancer, causes
the silencing of thyroid-specific genes and shuts off the iodide-handling machinery.
Consequently, I− uptake is reduced in the thyroid cell and is sparsely accumulated in the
follicular lumen. For simplicity, much molecular detail is omitted.
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Table 1

Thyroid tumours and their characteristics

Tumour type Cell of origin Prevalence
(% of
thyroid
cancers)

Standard care and
prognosis

Characteristics

FTA Follicular thyroid cells
(which produce thyroid
hormone and
thyroglobulin)

This is a
benign lesion

Conservative
monitoring;
thyroidectomy if
symptomatic

Common benign thyroid tumour;
similar architecture to FTC, but
typically encapsulated; lacking capsular
or vascular invasion; lacking metastasis;
lacking nuclear features of PTC

PTC* Follicular thyroid cells 80–85 Thyroidectomy and, in
selected cases,
radioiodine ablation
(novel drugs for
resistant disease); good
overall prognosis

Well differentiated, with papillary
architecture and characteristic nuclear
features that include enlargement, oval
shape, elongation, overlapping and
clearing, inclusions and grooves;
propensity for lymphatic metastasis;
PTC subtypes include conventional
PTC (CPTC), follicular-variant PTC
(FVPTC), tall-cell PTC (TCPTC) and a
few rare variants

FTC* Follicular thyroid cells 10–15 Thyroidectomy and
radioiodine ablation
(novel drugs for
resistant cases); good
overall prognosis

Well differentiated, hypercellular,
microfollicular patterns, lacking nuclear
features of PTC; vascular or capsular
invasion; propensity for metastasis via
the blood stream; Hürthle cell thyroid
cancer is a unique subtype of FTC that
accounts for 2–3% of thyroid cancers
and is characterized by large,
mitochondria-rich oncocytic cells and
dense nuclei and nucleoli, as well as a
high propensity for metastasis and a
poor prognosis

PDTC Follicular thyroid cells 5–10 Surgery, radioiodine
(in selected cases),
chemotherapy,
radiotherapy, novel
drugs; poor prognosis

Poorly differentiated, often overlapping
with PTC and FTC; intermediate
aggressiveness between differentiated
and undifferentiated thyroid cancers

ATC Follicular thyroid cells 2–3 Surgery,
chemotherapy,
radiotherapy, novel
drugs, palliative care;
highly and rapidly
lethal

Undifferentiated; admixture of spindle,
pleomorphic giant and epithelioid cells;
extremely invasive and metastatic;
highly lethal; may occur de novo or
derive from PTC, FTC or PDTC

Medullary thyroid cancer Parafollicular C cells
(which produce
calcitonin)

2–3 Surgery,
chemotherapy,
radiotherapy, novel
drugs (for example,
vandetanib)

Moderate aggressiveness, high
propensity for lymphatic metastasis;
RET mutation; occurring in familial,
MEN2 or sporadic forms

Primary lymphoma of the
thyroid gland

Lymphocytes <1 Chemotherapy Unusual and uncommon type of
lymphoma

Metastatic cancer from
other organs

Non-thyroid origin <1 Thyroidectomy in
selected cases;
treatment of original
cancer

Most commonly metastasized from
renal and breast cancers; characteristics
of original cancer

ATC, anaplastic thyroid cancer; FTA, follicular thyroid adenoma; FTC, follicular thyroid cancer; MEN2, multiple endocrine neoplasia type 2;

PDTC, poorly differentiated thyroid cancer; PTC, papillary thyroid cancer.

*
PTC and FTC are collectively classified as differentiated thyroid cancer (DTC).
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Table 3

Copy-number gains in thyroid cancer*

Gene Prevalence in ATC cases (%) Prevalence in FTC cases (%)

EGFR 19/41 (46.3) 19/59 (32.2)

PDGFRA 11/46 (23.9) 4/52 (7.7)

PDGFRB 14/37 (37.8) 8/59 (13.6)

VEGFR1 20/44 (45.5) 26/59 (44.1)

VEGFR2 8/46 (17.4) 2/52 (3.8)

KIT 10/46 (21.7) 6/61 (9.8)

MET 5/42 (11.9) 5/58 (8.6)

PIK3CA 18/47 (38.3) 15/63 (23.8)

PIK3CB 16/42 (38.1) 25/55 (45.5)

PDPK1 (also known as PDK1) 8/40 (20) 14/58 (24.1)

AKT1 9/48 (18.8) 5/61 (8.2)

AKT2 0/44 (0) 13/58 (22.4)

ATC, anaplastic thyroid cancer; EGFR, epidermal growth factor receptor; FTC, follicular thyroid cancer; PDGFR, platelet-derived growth factor

receptor; PDPK1, 3-phosphoinositide dependent protein kinase 1; VEGFR, vascular endothelial growth factor receptor.

*
From REF. 26. Copy-number gains of some of these genes in thyroid cancers were also investigated in the studies reported in REFS 25,31–33,

which showed comparable prevalences.
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