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Lack of understanding of the molecular mechanisms

and pathogenesis of impaired healing in chronic ul-

cers is a serious health issue that contributes to ex-

cessive limb amputations and mortality. Here we

show that �-catenin and its downstream targets in

keratinocytes, c-myc , and keratins K6 and K16, play

important roles in the development of chronic

wounds. In contrast to normal epidermis, we ob-

served a significant nuclear presence of �-catenin and

elevated c-myc expression at the nonhealing wound

edge of chronic ulcers from 10 patients. In vitro stud-

ies indicated that stabilization of nuclear �-catenin

inhibited wound healing and keratinocyte migration

by blocking epidermal growth factor response, induc-

ing c-myc and repressing the K6/K16 keratins (cy-

toskeletal components important for migration). The

molecular mechanism of K6/K16 repression involved

�-catenin and arginine methyltransferase (CARM-1)

acting as co-repressors of glucocorticoid receptor

monomers. We conclude that activation of the �-cate-

nin/c-myc pathway(s) contributes to impaired heal-

ing by inhibiting keratinocyte migration and altering

their differentiation. The presence of activated �-cate-

nin and c-myc in the epidermis of chronic wounds

may serve as a molecular marker of impaired healing

and may provide future targets for therapeutic inter-

vention. (Am J Pathol 2005, 167:59–69)

The integrity of the skin depends on the specific attach-

ments of its keratinocytes to the extracellular matrix and

to each other. Keratinocytes are programmed to maintain

this integrity and are the first cells to respond to injury.

Wounding promotes activation of keratinocytes that trig-

ger keratinocyte migration and proliferation, which is par-

alleled by changes in keratinocyte adhesion and the

cytoskeletal content.1,2 However, sometimes this reliable

program fails, resulting in a chronic wound (ulcers).3,4

Consequential to the extended life span of the modern

human population and increased prevalence of diabetes,

we are faced with epidemic proportions of chronic ul-

cers.5,6 The total prevalence of diabetes in the United

States is estimated as high as 18.2 million or 6.3% of

the population in the year 2002 (National Diabetes

Fact Sheet: General Information and National Estimates

on Diabetes in the United States found online at: http://

www.cdc.gov/diabetes/pubs/estimates.htm). Diabetic foot

ulcers are estimated to occur in 15% of all patients with

diabetes, and precede 84% of all lower-leg amputations,

which are at epidemic proportions in the elderly, as well

as in the diabetic populations.7–9 The current lack of

understanding of pathogenesis of impaired healing in

chronic ulcers contributes to excessive amputations and

is an extremely serious health issue. Nonetheless, there

are only three FDA-approved thera-peutic modalities for

such ulcers.6,10–13 The efforts to develop new therapies

are hampered by the lack of knowledge of the mecha-
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nisms responsible for the pathologies, and the corre-

sponding molecular targets for intervention.

Differentiating keratinocytes are characterized by two

major types of cell adhesions: desmosomes and adher-

ens junctions. Desmosomes are multimolecular com-

plexes containing, as major components, two glycopro-

teins, desmocollin and desmoglein, two armadillo

proteins, plakoglobin and plakophilin, and the plakin fam-

ily protein desmoplakin.14–16 Adherens junctions are

characterized by the presence of E-cadherin, �- and

�-catenins, and �-catenin (plakoglobin) at the mem-

brane.17,18 �-Catenin is a multifunctional protein that

plays an important role during embryonic development

and neoplasia as a mediator of the Wnt signaling path-

way.19,20 When the Wnt pathway is quiescent, �-catenin

participates in adherens junctions.17 When �-catenin be-

comes cytoplasmic it gets phosphorylated and targeted

for ubiquitination and degradation. Activation of the Wnt

pathway inhibits this phosphorylation, leading to cytoso-

lic stabilization of �-catenin, which consequently translo-

cates to the nucleus where it binds Tcf-Lef transcription

factors and regulates transcription.21,22 Among down-

stream targets of �-catenin transcriptional pathway is the

oncogene c-myc.23 Activation of c-myc affects epidermal

biology directly relevant to wound healing. Although c-

myc is required for transition from the G1 to the S phase

of the cell cycle and it promotes proliferation of transit-

amplifying cells, deregulation of c-myc depletes epider-

mal stem cells, causing the inability of the tissue to react

to injury.24–27 Furthermore, targeted overexpression of

c-myc in basal keratinocytes leads to impairment of ker-

atinocyte migration and consequently inhibition of wound

healing in a transgenic mouse model.24

Experimental results of the roles of �-catenin and c-

myc mostly originate from various mouse models

whereas, to the best of our knowledge, the roles of

�-catenin and c-myc in impairment of wound healing in

human skin have never been investigated in pa-

tients.24–29 Interestingly, we found that c-myc has a par-

ticular transcriptional pattern during normal wound heal-

ing in human skin and that inhibitors of wound healing,

glucocorticoids (GC), induce c-myc expression. In addi-

tion, we found that stabilization of �-catenin inhibits ker-

atinocyte migration and wound healing of human skin in

organ culture and that �-catenin participates in GC sig-

naling and repression of the keratin genes that partici-

pate in cytoskeletal network and keratinocyte migration.

Lastly, we found activation of both �-catenin and c-myc in

the nonhealing edge of patients with chronic wounds.

Therefore, we propose that nuclearization of �-catenin

and induction of c-myc participate in inhibition of wound

healing and contribute to impairment of healing in chronic

wounds.

Materials and Methods

Plasmids

Plasmids pK14CAT, pK6CAT, pK16CAT, �-catenin, and

CARM-1 have been described previously.30,31 The plas-

mid containing GRE-CAT was a gift from Dr. P. Chambon

(France). All plasmids were grown using Promega kit

(Promega, Madison, WI) and commercial protocols.32

Northern Blot

RNA isolation and purification was performed using Tria-

zol (Invitrogen, Carlsbad, CA) extraction and subse-

quently Qiagen RNeasy kit column purification (Qiagen,

Valencia, CA) followed by Northern blot as described.31

c-myc and GAPDH probes were generated as de-

scribed.33 Densitometry tracing of the films was per-

formed using GS-800 calibrating densitometer (Bio-Rad,

Hercules, CA) and the image was quantified using Quan-

tity One 4.1.1 program (Bio-Rad). The values were nor-

malized to the loading control (GAPDH) for each

condition.

Cell Growth and Transient Transfections

Normal human epidermal keratinocytes were grown as

described.31,34 Cells were transfected at 80% confluency

using polybrene with the dimethyl sulfoxide shock

method as previously described.35 Cells were washed

and incubated in the basal medium without epidermal

growth factor (EGF) and bovine pituitary extract the day

before transfection until the time of harvesting. Each

transfection contained 5 �g/dish of keratin-CAT con-

struct. The cells were then incubated with or without 0.1

�mol/L glucocorticoid dexamethasone (Sigma Chemical

Co., St. Louis, MO) dissolved in ethanol and harvested 48

hours later. CAT assays were performed using FastCat

(Molecular Probes, Eugene, OR) following a commercial

protocol. Cell extracts used for CAT assay were normal-

ized by total protein determined by protein assay (Bio-

Rad). Thirty �g of protein were used for each reaction.

CAT assay values were quantified by Fluor Imager 575

(Molecular Dynamics, Piscataway, NJ). All experiments

were performed in duplicates, at least three times.

Keratinocyte Migration Assay

Primary human keratinocytes were grown to 80% conflu-

ency. Twenty-four hours before the experiment cells were

transferred to basal KBM medium (Life Technologies,

Inc., Grand Island, NY). Before the scratch, cells were

treated with 8 �g/ml mitomycin C (ICN, Irvine, CA) for 1

hour and washed with basal media. Scratches were per-

formed as previously described.36 Cells were incubated

with 20 �mol/L LiCl or 25 ng/ml of EGF for 24 and 48

hours, rephotographed, and cell migration was quantified

as previously described.36,37 Thirty measurements were

taken for each experimental condition and distance cov-

erage by cells moving into the scratch wound area was

quantified. Three images were analyzed per condition,

per time point, and averages and standard deviations

were calculated.
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Skin Specimens

Specimens of normal human skin were obtained as dis-

carded tissue after reduction mammoplasty (approved

protocol H #9796-03) and maintained as described.36

Topical GC treatment was performed by daily applica-

tion of Cormax (Clobetasol Propionate Cream 0.05%;

Oclassen Pharmaceuticals, Inc.) using a sterile Q-tip

applicator.

Wounding Experiments

Wounds were created using 4-mm punch biopsies

through the reticular dermis and a rim of cells partici-

pating in wound healing was collected by repunching

around the initial wounded area. Each time point was

collected in parallel with an unwounded skin specimen

of the same donor. All specimens were collected and

either stored in RNAlater (Ambion, Austin, TX) or frozen

in OCT compound (Tissue Tek, Reading, CA) for im-

munocytochemistry. To activate �-catenin wounded

skin was maintained on the air-liquid interface in the

presence or absence of 20 mmol/L LiCl.38 Wounds

were quantified by planimetry as described

previously.36

Histology and Immunocytochemistry

Chronic ulcer skin specimens were obtained as dis-

carded tissue after debridement procedures on con-

sented patients (approved protocol 01-0960(001)03sux).

Samples were fixed in formalin and routinely processed

for paraffin embedding. Samples from 10 different pa-

tients were analyzed independently. Paraffin-embedded

tissue was sectioned and 5-�m-thick sections were

stained with hematoxylin and eosin. The sections were

analyzed using a Nikon microscope and digital images

were obtained using a Spot RTcolor camera.

For staining human tissues and cultured cells a c-myc

antibody (Santa Cruz Biotechnology, Santa Cruz, CA)

was used at 1:100 dilution at 4°C using the Vectastain

ABC kit (Vector Laboratories, Burlingame, CA) as previ-

ously published.39 Keratinocytes were grown on cham-

ber slides to 70% confluency (Lab-Tek, Naperville, IL)

and treated with 0.1 �mol/L dexamethasone (Sigma) or

20 mmol/L LiCl. Cells were fixed in 70% methanol for 10

minutes and permeabilized with 0.1% Triton X-100 for 10

minutes.

Human tissues were stained with �-catenin antibody

(BD Transduction Laboratories, Lexington, KY) as previ-

ously described40 or E-cadherin antibody (Santa Cruz

Biotechnology) using 1:200 or K6 antibody (a gift from Dr.

Pierre Coulombe, Johns Hopkins, Baltimore, MD41) at

1:1500 dilution in 5% bovine serum albumin and visual-

ized using a secondary fluorescein isothiocyanate anti-

mouse IgG antibody 1:150 (Sigma). All sections were

mounted with mounting media containing propidium io-

dide or 4,6-diamidino-2-phenylindole (Vector Laborato-

ries, Burlingame, CA) to help visualization of the nuclear

staining whereby the nuclear presence of �-catenin was

visualized by the change of red color to orange or yellow.

All negative controls were prepared by substitution of the

primary antibody with an irrelevant antibody. The sec-

tions were analyzed using a Carl Zeiss microscope (Carl

Zeiss, Thornwood, NY) and digital images were collected

using Adobe TWAIN�32 program.

Quantification of the nuclei positive for either c-myc or

�-catenin was performed by three blinded lab members

and medians and SD were calculated. All experiments

were performed in triplicates, in which three to five im-

ages per condition, per each time point were indepen-

dently quantified.

Figure 1. Histology of chronic wounds is consistent with activation of c-myc. A to C: Histology of chronic ulcers. A: Higher magnification shows mitotically
active cells found in suprabasal layers (arrows) indicating aberrant proliferation. B: Low magnification shows thickened, hyperproliferative, hyper- and
parakeratotic epidermis. C: High magnification shows parakeratosis (nuclei present in cornified layer) indicating inappropriate differentiation. D to F:
Histology of normal skin. D: Mitosis only in basal layer of epidermis; E: low magnification; F: cornified layer, high magnification. BM, basal membrane;
CL, cornified layer.
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Results

Histopathology of Chronic Ulcers Reveals

Impaired Keratinocyte Activation and

Differentiation

To characterize the epidermis at the nonhealing edge of

chronic ulcers we analyzed the histopathology of chronic

wounds from the actual patients (Figure 1; A to C) and

compared it with the epidermis of normal skin (Figure 1;

D to F). We found epidermis from chronic ulcers to be

very thick, hyperproliferative, containing mitotically active

cells in suprabasal layers (Figure 1, compare A with D).

Lastly, no epithelial migration was detected (absence of

the epithelial tongue), suggesting incomplete keratino-

cyte activation. We also found epidermis to be hyper- and

parakeratotic (presence of nuclei in cornified layer), sug-

gesting incomplete keratinocyte differentiation (Figure 1,

compare B with E). Interestingly, the abnormalities found

are consistent with previous findings of c-myc overex-

pression in transgenic mouse models24,25,42,43 as well

as suppression of cytoskeletal components K6 and

K16.44,45 Therefore, we hypothesized that induction of

c-myc and suppression of K6/K16 may lead to inhibition

of keratinocyte migration in human skin, perhaps contrib-

uting to the development of chronic wounds.

c-myc Is Repressed during the Wound-Healing

Process and Induced by a Wound-Healing

Inhibitor

To test the role of c-myc in wound healing we used a

human skin organ culture wound model. Normal skin was

wounded by 4-mm punch biopsy and maintained at air-

liquid interface. Cells participating in the wound-healing

response were harvested at 4 hours (immediate-early

response) and 96 hours (intermediate response—expo-

nential phase in which keratinocytes are actively prolifer-

ating and migrating) after wounding. c-myc expression

was measured by Northern blots. Interestingly, we ob-

served a particular expression pattern of c-myc during

wound healing: its mRNA was repressed at 4 hours but

derepressed by 96 hours after wounding (Figure 2A).

Conversely, when we used inhibitors of wound healing,

topical GC,46 we found significant induction of c-myc

mRNA (Figure 2B). Thus, we identified a differential ex-

pression pattern of c-myc: suppressed in early wound

healing and induced by a wound-healing inhibitor.

To determine whether GC indeed activate c-myc ex-

pression, we incubated primary human keratinocytes

with either GC or lithium chloride (LiCl). LiCl is known to,

by stabilizing nuclear localization of �-catenin, activate

c-myc.47 To determine the nuclear presence of c-myc,

cells were stained with c-myc-specific antibody and

quantified. As predicted, we found that both GC and LiCl

induce expression and nuclear localization of c-myc (Fig-

ure 2, C and D). c-myc was found to be nuclear in more

than 70% of cells treated with GC and in 65% of LiCl-

treated cells (positive control), whereas it was nuclear in

only 1% of the untreated cells (negative control). Taken

together, our findings that c-myc is repressed in human

epidermis during early wound healing and induced

by GC, coupled with the results from mouse mod-

els,24,25,42,43 suggest that overexpression of c-myc in the

early stage of wound healing might inhibit keratinocyte

migration, causing impairment in healing.

c-myc Is Induced in the Nonhealing Epidermal

Edge of Chronic Ulcers

To test if the c-myc overexpression participates in chronic

wounds we measured its activation in nonhealing wound

biopsies from patients with chronic ulcers using a c-myc-

specific antibody. We used normal human skin (negative

control), skin treated with topical GC (positive control),

and an acute wound edge (additional control). As ex-

pected, we found that epidermis of normal skin does not

Figure 2. c-myc is differentially regulated by wound healing and its inhibitor,
GC. Northern blots with mRNA isolated from acute wounds 4 and 96 hours
after wounding (A) and topical GC treatment of human skin (B). c-myc was
repressed in early wound healing, while induced by GC. Bar graphs show
quantification of the Northern blots by densitometry. C: Immunofluorescence
of primary human keratinocytes incubated with GC and LiCl stained with
c-myc-specific antibody. To better visualize its nuclear presence we coun-
terstained the nuclei. c-myc is visualized by green fluorescein isothiocyanate
and its nuclear presence changes their color from red (see control) to
orange/yellow (see treated cells). Both GC (middle) and LiCl, ie, stabilized
�-catenin (right) induce c-myc as evident by positive nuclear staining. D:
Graph represents average � SD of percent of nuclei positive for c-myc for
several independent experiments.
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contain c-myc (Figure 3A) (in agreement with previous

findings24). Topical GC treatment induced c-myc in hu-

man epidermis (Figure 3B), which was expected based

on our results presented in Figure 2. Furthermore, wound-

ing of normal skin did not induce c-myc in the epidermis

of the acute wound edge (Figure 3C). Importantly, we

found strong activation of c-myc in the epidermis at the

nonhealing edge of chronic ulcers (Figure 3, D and E).

c-myc was strongly expressed throughout the epidermis

but was more prominent in layers closer to the basal

membrane (Figure 3D). Furthermore, we found activation

of c-myc at the nonhealing epithelial edge of chronic

ulcers, irrespective of the type of the ulcer, ie, diabetic

foot or pressure ulcers. This suggests that activation of

c-myc may contribute to the overall epidermal pathology

of chronic wounds.

�-Catenin, the Activator of c-myc, Participates

in the Inhibition of Wound Healing

The activation of c-myc in chronic wounds raises the

question of the role of its activator, �-catenin, in inhibition

of wound healing. To test if wound-healing inhibitor, GC,

activates the �-catenin pathway, we treated human skin

with topical GC and determined �-catenin localization

using a �-catenin-specific antibody. We found that GC

causes nuclear accumulation of �-catenin in human epi-

dermis. A robust nuclear localization of �-catenin in epi-

dermis treated with topical GC was found, whereas in

untreated skin, �-catenin was found on the membrane

and not in the nuclei (Figure 4A). Furthermore, we found

prominent cytoplasmic localization of E-cadherin in epi-

dermis treated with GC (Figure 4B). We conclude that

wound-healing inhibitors, GC, activate the �-catenin

pathway, suggesting that �-catenin may play a role in the

inhibition of wound healing.

To test this we measured the healing rates of wounded

skin in the presence or absence of LiCl, a �-catenin

activator. Wound healing was measured 4 days after

wounding when healing is in its exponential phase and

keratinocyte migration is progressing. The healing rate

was measured by planimetry and evaluated by histology

(Figure 5; A to C). Interestingly, stabilization of nuclear

�-catenin completely inhibited wound healing, thus con-

verting an acute wound into a chronic wound phenotype

(Figure 5; A to C).

�-Catenin Inhibits Keratinocyte Migration

If stabilization of �-catenin leads to inhibition of healing

and activation of its downstream target, c-myc, inhibits

keratinocyte migration, one may expect that stabiliza-

Figure 3. c-myc as a marker of inhibition of wound healing in chronic ulcers in vivo. Immunohistochemistry of skin samples stained with c-myc-specific antibody.
A: Normal human skin shows absence of c-myc. B: Skin treated with topical GC shows induction of c-myc. C: Epidermis at the edge of an acute wound shows
absence of c-myc, thus confirming that c-myc is not activated in acute wound healing. D and E: c-myc is induced in chronic ulcers in vivo. D: Most prominent
induction of c-myc in the basal layer of epidermis; E: c-myc is activated throughout the epidermis at the nonhealing edge of a chronic ulcers. Insets show enlarged
images of nuclear staining.
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tion of �-catenin should inhibit keratinocyte migration.

To test if stabilized, nuclear �-catenin affects keratin-

ocyte migration during wound healing we used an in

vitro wound scratch assay. We incubated keratinocytes

in the presence and absence of LiCl and/or with EGF

(positive control), and observed and quantified kera-

tinocyte migration during 48 hours. We found that LiCl,

by stabilizing �-catenin, inhibited keratinocyte migra-

tion by 70%, whereas EGF promoted it by 50% (Figure

5, D and E). Interestingly, when introduced simulta-

neously, LiCl efficiently blocked the EGF-stimulated

migration. Therefore, �-catenin contributes to the de-

velopment of a chronic wound by inhibiting keratino-

cyte migration not only directly by activating c-myc, but

also indirectly by blocking the effects of other growth

factors and cytokines.

To examine further the molecular mechanism

through which �-catenin participates in the inhibition of

keratinocyte migration, we focused on the cytoskeletal

components that participate in migration, keratins K6/

K16. To test if �-catenin participates in K6/K16 sup-

pression by GC we used co-transfection experiments

with primary human keratinocytes. By itself, �-catenin

did not affect K6/K16 expression. Surprisingly how-

ever, in the presence of GC, �-catenin acted as a

co-repressor of the glucocorticoid receptor (GR) fur-

ther suppressing K6 expression (Figure 6A). To test if

endogenously activated �-catenin acts as a co-repres-

sor of GR, we incubated keratinocytes with LiCl that

stabilizes �-catenin instead of transfecting the expres-

sion plasmid. We found that endogenously activated

�-catenin also acts as a co-repressor of GR (Figure

6B). Moreover, the protein arginine methyltransferase

CARM-1 enhances this co-repression. The level of sup-

pression of K6 by GC is significantly stronger in the

presence of co-transfected CARM-1 and �-catenin

(Figure 6C), suggesting that the complex that sup-

presses K6 promoter contains GR, �-catenin, and

CARM-1. We found that K16, the partner of K6, was

regulated in a similar manner (data not shown). We

have shown that by participating in the GC-mediated

repression of K6/K16 transcription as a co-repressor

with CARM1, �-catenin contributes to the inhibition of

keratinocyte migration through altering the cytoskeletal

network.

To further test the significance of K6 suppression in

development of a chronic wound keratinocyte pheno-

type, we used K6-specific antibody to test for its pres-

ence in the nonhealing epidermal edge of chronic

wounds and compared it to the edge of an acute

wound. As expected, we found strong activation of K6

at the edge of the acute wound (Figure 6D, top). The

levels of K6 were severely reduced in the epidermis of

the nonhealing edge of a chronic wound (Figure 6D,

bottom). Taken together, we conclude that suppres-

sion of K6 also contributes to the chronic wound kera-

tinocyte phenotype, consistent with our histopathology

findings that indicate incomplete keratinocyte activa-

tion (Figure 1).

Figure 4. Topical GC activates �-catenin pathway in the epidermis of human skin. A: Immunofluorescence of normal human skin treated either with topical GC
or LiCl (positive control) reveals nuclear �-catenin (visualized by orange/yellow nuclei) in treated skin whereas it is on the membrane in untreated skin (red nuclei
indicate absence of signal). B: Immunofluorescence shows that E-cadherin remains membrane-associated in untreated skin whereas it becomes internalized
(cytoplasmic) in GC-treated skin. Insets show enlarged images.
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�-Catenin Is Induced in the Nonhealing

Epidermal Edge of Chronic Ulcers

To test if �-catenin is indeed activated in chronic wounds

we used biopsies of nonhealing edge from patients with

chronic ulcers and stained sections with �-catenin-specific

antibody (Figure 7). We used acute wound edge as well as

normal (unwounded) skin as controls (Figure 7). We found

robust nuclear localization of �-catenin in keratinocyte nu-

clei throughout epidermis of chronic ulcers, but neither in

the epidermis of normal skin nor acute wound (Figure 7,

compare A to D with E to H). �-Catenin was found in a

majority (87%) of total nuclei in the epidermis of chronic

wounds (Figure 7I). In contrast, less than 3% of the cells of

the acute wounds and 1% of the cells of normal skin were

found with nuclear �-catenin, suggesting that activation of

�-catenin transcriptional pathway is specific for the chronic

wounds. Interestingly, the nuclear localization of �-catenin

persisted even in nuclei present in the corneal layer (Figure

7C), suggesting that �-catenin has a sustained transcrip-

tional activity in epidermis of chronic ulcers. Lastly, we

found much stronger nuclear signals in the layers closer to

the basal and in keratinocytes surrounding granulation tis-

sue islands present throughout epidermis, indicating pos-

sible signaling cross talk between the granulation tissue to

the keratinocytes (Figure 7D). Therefore, nonhealing epider-

mal edge of a chronic wound contains cells with activated

c-myc and �-catenin pathways, which contribute to its non-

healing phenotype along with K6/K16 repression.

Discussion

Our findings shed new light on the molecular mecha-

nisms underlying the development of chronic wounds.

Sustained activation of �-catenin and c-myc throughout

the epidermis of the actual chronic ulcers, combined with

�-catenin-mediated inhibition of keratinocyte migration,

delayed wound healing and inhibition of EGF response,

identifies �-catenin and c-myc as molecular inhibitors of

wound healing (Figure 8).

Possible Mechanisms of the Inhibition of Wound

Healing by �-Catenin/c-myc

There are several possible mechanisms through which

activation of �-catenin and c-myc may inhibit wound heal-

Figure 5. Activation of �-catenin inhibits wound healing and keratinocyte migration. LiCl (ie, nuclear �-catenin) causes delayed wound healing in human
skin organ culture wounds. Both gross pictures of untreated (A) and LiCl-treated wounds (B) as well as their histology are shown. Arrow points at epithelial
tongue indicating active healing in untreated wounds whereas it is absent in the LiCl-treated wounds. Filled circles indicate the wound surfaces. C:
Quantification of the wound size by planimetry shows 70% healing rate of untreated wounds and only 12% healing rate for LiCl-treated wounds. D: LiCl
inhibits migration of primary human keratinocytes in wound scratch assay when compared with untreated cells. Inhibition is prominent even in first 24
hours and was further sustained through 48 hours. EGF (positive control) stimulated migration and wound was completely closed after 48 hours.
Importantly, this activation of endogenous �-catenin completely blocked EGF-stimulated migration. Full lines indicate initial wound area; dotted lines
demarcate migrating front of cells. E: Histograms indicate the average coverage of scratch wounds widths in percent relative to baseline wound width at
the day 0 and 24 and 48 hours after LiCl, EGF, and LiCl/EGF treatments.
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ing. For example, overexpression of c-myc was de-

scribed to lead epidermal stem cells into frequent

cycling.24,25,43 Therefore, inappropriate activation of

�-catenin/c-myc pathway at the initiation of wound heal-

ing may cause the activation of the cell cycle of the

epidermal stem cells, thus leading to their depletion at

the wound site. As a consequence, keratinocytes appear

to be trapped between the differentiation and activation

pathways. They are hyperproliferative, which is consis-

tent with activation, but they cannot migrate, thus their

activation pathway is incomplete. This is also consistent

with the findings of marked K6 repression in chronic

wounds. Furthermore, a thick cornified layer is consistent

with differentiation, but it is nucleated suggesting incom-

plete differentiation. Indeed, hyperproliferative epidermis

with parakeratotic cornified layers was found at the non-

healing edge of a chronic ulcer, which is also consistent

with findings in transgenic mouse models.24,25,42,43

The next logical question would be if �-catenin acti-

vates c-myc in the chronic wound, what activates �-cate-

nin in that environment? It is very tempting to implicate

the canonical Wnt pathway, as an activator of �-catenin.

The complexity of the wound-healing process requires

simultaneous input of signals from multiple cell types at

the site of a wound, changing the differentiation into a

wound-healing pathway. Wnt signals are potent regula-

tors of development and maintenance of skin and its

appendages48 and conceivably, their inappropriate acti-

vation may trigger the development of a chronic wound

keratinocyte phenotype. Alternatively, an inhibitor of Wnt

pathway, such as Dkk, may be suppressed, thus allowing

activation of Wnt/�-catenin pathway. We are currently

investigating these possibilities.

Chronic Wound Environment and

�-Catenin/c-myc Activation

Several hallmarks of the chronic wound environment

such as persistent inflammation, diminished activity of

growth factors, and decreased angiogenesis may be

affected by �-catenin/c-myc. For example, both c-myc

and �-catenin pathways were found induced in the

chronic inflammatory environment, such as rheumatoid

arthritis.49–51 c-myc was found to inhibit the expression of

PDGF-BB and its receptor,52 whereas basic fibroblast

growth factor and EGF were shown to induce c-myc

expression.53–55 This means that in addition to the

wound-healing stimulatory effects these growth factors

may also stimulate the negative feed back loop in a

chronic wound environment by sustaining c-myc expres-

sion. Lastly, activation of Wnt/�-catenin pathway inhibits

proliferation of human endothelial cells and increases

their adhesion in vitro, suggesting inhibition of angiogen-

esis, one of the key elements in development of chronic

wounds.56 In contrast, activation of Wnt/�-catenin path-

way is important contributor of angiogenic response dur-

ing tumor development and progression.57,58 This would

further suggest a particular tissue context and cell specificity

of angiogenic response to Wnt/�-catenin stimulation.

The Role of GC in �-Catenin/c-myc Pathways

In addition to activating c-myc, our results showed that

�-catenin acts as a co-repressor of GR contributing to

K6/K16 repression, thus altering the cytoskeleton neces-

sary for keratinocyte migration. �-Catenin has been found

to participate in active transcriptional repression and to

interact with many transcription factors and their co-fac-

tors1,59 including the members of the hormone receptor

family, such as retinoic acid receptors and androgen

receptor.30,60,61 It has been shown that �-catenin and

CARM-1 bind each other in a co-activator complex with

AR, but it was not known if this complex has a co-repress-

ing capacity.30 We have shown previously that GC sup-

press K6/K16 expression through a unique molecular

mechanism that involves four monomers of GR.31,36 Here

we define a novel role of �-catenin in this mechanism.

Although GC are well known inhibitors of wound healing

our data indicate their possible role in chronic wound

environment.

Figure 6. Molecular mechanism of inhibition of keratinocyte migration by
�-catenin involves GR and CARM-1 and cytoskeletal component K6 keratin.
A: Graph represents quantitative CAT assay after co-transfection of human
keratinocytes with K6-CAT promoter showing that �-catenin enhances re-
pression of K6 by the GC, dexamethasone (DEX), thus acting as a co-
repressor of GR. B: Similarly, LiCl treatment (ie, endogenously activated
�-catenin) also enhances repression of K6 by DEX. C: The �-catenin-medi-
ated co-repression is further enhanced by arginine methyltransferase CARM-1
(arrow), indicating that GR, �-catenin, and CARM-1 act as a repressor
complex that suppresses K6. D: Sections of chronic wounds stained with
K6-specific antibody (bottom) revealed marked repression of K6 levels
when compared with acute wound (top).
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Conclusion

Overall, our findings suggest a model of chronic wound

phenotype initiation in which keratinocytes at the wound

edge become targeted by canonical Wnt pathway(s), thus

activating �-catenin. Activation of �-catenin inhibits keratin-

ocyte migration through different mechanisms: by causing

activation of c-myc, by blocking the EGF effects, and by

synergizing with GC to suppress K6/K16 thus causing cy-

toskeletal changes. All these effects lead to inhibition of

keratinocyte migration, and deregulation of their growth and

differentiation (Figure 8). Although �-catenin signaling has

been implicated in epithelial development and oncogenesis

its role in wound healing has never been postulated. This

further illustrates the importance of tissue context specific-

ity, because �-catenin in the context of malignant tissue

promotes invasion whereas in the context of a wound envi-

ronment does the opposite.
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