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use of both non-steroidal anti-inflammatory drugs including 

cyclooxygenase-2 inhibitors is associated with a decreased 

incidence of adenoma and reduced mortality rate of CRC. 

This review gives a brief yet updated overview of the current 

understanding of CRC as a genetic and molecular disease 

with potential for clinical pathways of prevention, improved 

prediction and better prognosis in the future. 
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 Introduction 

 Colorectal cancer (CRC) is one of the most frequently 
occurring forms of solid cancers worldwide, both in terms 
of absolute number of new cases per year, but also in ef-
fect on disease-adjusted life years and overall disease bur-
den to society  [1, 2] . While progress has been made in 
surgical and oncological management  [3, 4] , CRCs still 
cause about 600,000 deaths annually – representing over 
half of all gastrointestinal cancer deaths  [5, 6] . Further, 
CRC has an estimated lifetime risk of about 5–6% in the 
general Western population  [7, 8] . Risk increases sub-
stantially (15–30%) if a first-degree relative has a history 
of CRC presenting at young age, and to very high degree 
(>80%) in some of the well-described inheritable cancer 
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 Abstract 

 Colorectal cancer (CRC) is, for sporadic forms, most strongly 

related to lifestyle factors. The epidemic of obesity and phys-

ical inactivity has great impact on disease patterns. Likewise, 

an altered metabolism has consequences at the cellular and 

molecular level with implications for cancer initiation and 

growth. Understanding the genetic hallmarks of cancers has 

improved over the years and now also includes cancer met-

abolic reprogramming. The initiation of cancer through ge-

netic instability, including chromosomal instability, micro-

satellite instability and epigenetic silencing through the CpG 

island methylator phenotype follows pathways with distinct 

clinical, pathological, and genetic characteristics. These can 

potentially be used for molecular classification and compre-

hensive tumor profiling for improved diagnostics, prognosis 

and treatment in CRC. For one, epidermal growth factor re-

ceptor-directed treatment now considerably prolongs sur-

vival in metastatic disease, but defining the true responders 

from non-responders has emerged as complex. Further, the 
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syndromes  [9] . For sporadic cancers, risk is most strong-
ly related to lifestyle factors of which physical inactivity is 
one of the best investigated  [10] , with a potential for re-
ducing risk by 25% by increasing activity  [11] . However, 
the preventive effect and relation to subsite location in 
colon is still controversial  [12] . While it is clear that a dis-
turbed metabolism at a population level (epidemic of 
obesity, physical inactivity, etc.) has a great impact on dis-
ease patterns, it is likewise increasingly understood that 
altered metabolism has similar consequences at the cel-
lular and molecular level  [13] . Cellular metabolism is one 
of several cancer hallmarks that are altered during carci-
nogenesis. Despite improvements in surgical manage-
ment of cancer, CRC remains a genetic disease, and prog-
ress in prevention, prediction and prognosis is likely to be 
developed from increased understanding of the underly-
ing molecular mechanisms. Understanding the typical 
genetic hallmarks of cancer ( table 1 ) has improved over 
the years and now also includes the next generation hall-
marks of cancer metabolic reprogramming  [14] . How-
ever, the complex picture of each and every hallmark has 
yet to be completely understood  [15]  together with the 
‘genomics and proteomics’ entailed for each cancer type 
 [16–19] .

  The aim of this review is to give an updated overview 
of the current understanding of CRC as a genetic and mo-
lecular disease, and how this knowledge can potentially 
be turned into clinical pathways of prevention, improved 
prediction and better prognosis.

  Adenoma-Carcinoma Sequence and Understanding 

Carcinogenesis 

 CRC has long been understood to develop from nor-
mal colonic mucosa that undergoes transitions at the ge-
netic level, causing intraepithelial neoplasia and growth 
of adenomatous lesions ( fig. 1 ) that may or may not pro-
gress to invasive cancer  [20–23] . A model has been pro-
posed, the so-called adenoma-carcinoma sequence, that 
links genetic alterations and their order of introduction, 
to different stages in tumor development  [24] . In contrast 
to the early, linear models of CRC  [20, 22] , the carcino-
genesis is now recognized to be subject to heterogeneity 
attained through at least three distinct pathways: a ‘tradi-
tional’ (adenoma-carcinoma sequence), an ‘alternative’, 
and more recently the so-called ‘serrated’ pathway  [25, 
26] . The ‘traditional’ pathway is thought to involve ade-
nomatous polyposis coli  (APC)  mutations, loss of hetero-
zygosity and be part of the chromosomal instability (CIN) 

route to cancer. The ‘alternative’ pathway may involve 
both  KRAS  but also  APC  mutations. While the alternative 
pathway may more heterogeneous and less characterized, 
the traditional and serrated pathways appear to be more 
homogeneous and distinct. The ‘serrated’ pathway evolves 
from CpG methylation changes and typically includes 
 BRAF  mutations and late development of MSI  [27] . How-
ever, and as explained in further detail below, these path-
ways are evolving in conceptualization  [25, 26] , do not 
occur strictly in isolation and are to some degree overlap-
ping, which may to some degree explain the problem of 
using them as valid and robust clinical markers.

  Adenomas still represents the target lesion for preven-
tion and intervention, yet the picture has grown more 
complex over the years with increased understanding of 
types of adenomas, the underlying pathways and differ-
entiated molecular alterations involved  [28–32] .

  Colorectal adenomas are interesting from (at least) 
two standpoints: First, they are the precursor lesion for 
CRC development and as such a bridge between the nor-
mal mucosa and the cancerous tissue. They represent a 
part of the carcinogenic spectrum in the colon and can 
serve as risk factors for cancer as well as a search ground 
for biomarkers and molecular pathways involved. The 
problem is that a mere 5% of adenomas progresses to in-
vasive cancers, so identifying the true risk adenomas is a 
continuing and yet unresolved task. Second, as a precur-
sor lesion, the adenoma is interesting from the point of 
prevention of cancer in that it can be endoscopically re-
moved. Again, as adenomas are fairly common and in-
creasingly so with increasing age, the problem is to target 

Table 1.  Cancer hallmarks in relation to colorectal cancer

Cancer hallmarks Examples of involving 
factors in CRC

Growth signal autonomy EGFR, KRAS, BRAF

Insensitivity to antiproliferative signals P53, PTEN, APC

Unlimited replicative potential TERT

Angiogenesis VEGF

Escaping apoptosis P53, MLH1

Invasion and metastasis Cdc-42, RhoA GTPase

Reprogramming of cell metabolism PI3K, AKT, c-MYC

Evading immune destruction IL-8

 PTEN = Phosphatase and tensin homolog; TERT = telomerase 
reverse transcriptase; VEGF = vascular endothelial growth factor; 
IL-8 = interleukin-8.
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the correct population for screening and prevention giv-
en that the removal of adenomas really should help in 
decreasing incidence and mortality from CRC.

  The evaluation of short- and long-term risk for devel-
oping cancer in patients with colorectal adenomas is con-
troversial. Good, reliable predictors of cancer risk in any 
adenoma are currently lacking and are limited to adeno-
ma size, number and histologic type. In fact, the evalua-
tion of any adenoma or precancerous lesion (e.g. hyper-
plastic polyps, serrated adenoma or aberrant crypt foci) 
within the colorectum may be assessed by a number of 
techniques ranging from direct visualization through the 
endoscope, to microscopic assessment, and to evaluation 
at the molecular level  [33] . Emerging knowledge of path-
way-specific markers through the outlining of a molecu-

lar classification will likely be the basis for improved de-
tection and diagnosis. The emerging genomic and pro-
teomic technologies allowing for non-invasive tests to 
detect (asymptomatic) cancer and neoplasia have been 
suggested and tested already for a decade. Early detection 
by an accurate, non-invasive, cost-effective, simple-to-
use screening technique is central in decreasing the inci-
dence and mortality of this disease. Recent advances in 
the development of molecular markers in fecal specimens 
are encouraging for its use as a screening tool. Genetic 
mutations and epigenetic alterations that result from the 
carcinogenetic process can be detected by cells exfoliated 
from the lesion into the fecal matter. These markers have 
shown promising sensitivity and specificity in the detec-
tion of both malignant and premalignant lesions and are 
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  Fig. 1.  Schematic depiction of the adenoma-carcinoma-metastasis process. The origin and development of cancer 
cells from stem cells and ‘mucosa at risk’ to metastases involves a number of complex mechanisms and is gener-
ated through several hallmarks of cancer. 
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gaining popularity as a non-invasive technique represen-
tative of the entire colon  [34] . The importance of recog-
nizing bias and pitfalls, and the adherence to guidelines 
for biomarker research need to be addressed to enhance 
discovery-based research in this area  [35, 36] .

  Colorectal Cancer and Genetic Instability 

 Chromosomal Instability 
 Most malignant diseases have some form of genomic 

instabilities  [37] . In sporadic CRCs, genetic changes that 
include insertions, inversions, deletions and rearrange-
ments at the chromosomal level, referred to as CINs, are 
frequent  [20] . CIN is a phenomenon where the chromo-
somal composition of cells during clonal expansion, 
changes at a rate higher than normal  [38] . As opposed to 
microsatellite instability (MSI), criteria for CIN are not 
clearly defined. However, CIN results in an altered gene 
expression pattern, either due to insertions or deletions 
changing gene dosage, or through structural alterations 
like rearrangements that potentially could result in a gene 
being controlled by another promoter.

  Measuring  changes  in chromosomal composition 
from one cell generation to the next is somewhat difficult, 
as specialized technology measuring cell-to-cell variabil-
ity and increased rate of instability is needed. Methods 
frequently used for detection of the copy number status 
for a tumor are fluorescent in situ hybridization, flow cy-
tometry, and comparative genome hybridization. Detec-
tion of gross chromosomal changes is often denoted as 
CIN. Aneuploidy or a complex karyotype does not equal 
CIN, even though CIN often results in aneuploidy. Tra-
ditionally, tumors with MSI have been regarded as dip-
loid, and tumors not displaying MSI were thus denoted 
as CIN  [20] . However, this coarse classification is begin-
ning to dissolve, as tumors displaying both or neither of 
the phenotypes have been identified  [39] .

  The exact mechanism causing CIN is not yet revealed. 
The many genes suggested to cause CIN have roughly 
been functionally categorized as cell cycle checkpoint 
genes, mitotic spindle checkpoint genes, genes involved 
in chromosome segregation and condensation, and sister 
chromatid cohesion  [40] . Analyses have indicated that 
mutations in  APC,   KRAS ,  SMAD4  and  TP53  to be statis-
tically significantly more often represented in chromo-
somal instable tumors  [38] . Carcinomas of the colon 
show complex karyotypes, and cytogenetic studies have 
shown gains and losses of chromosome material to be 
 restricted to specific chromosomes  [24, 41] . Neither of 

these aberrations have been elucidated as a cause or a con-
sequence of CIN, though cancer-related genes are located 
in several of these regions. Few of the chromosomal 
changes revealed have clinical implications for CRC pa-
tients as of yet, except for rearrangements of chromo-
somes 8 and 16, which have been reported to correlate to 
clinical outcome  [42] .

  Microsatellite Instability 
 MSI is the molecular fingerprint of a deficient mis-

match repair (MMR) system, and characterizes approxi-
mately 15–20% of all sporadic CRCs  [43, 44] . When de-
veloped on an inherited background (<5% of all CRCs) 
MSI is a result of germline mutations in MMR genes  [45] , 
called hereditary non-polyposis colorectal cancer (also 
known as Lynch syndrome). In sporadic cases, MSI most 
commonly results from epigenetic silencing of MLH1 in 
sporadic tumors occurring in a background of methyla-
tion of CpG islands. Aberrant methylation of CpG islands 
is often found in tumors having mutations in the  BRAF  
oncogene, and several hundred genes are differentially 
expressed in these tumors  [46] . MSI tumors have distinct 
phenotypic features including a right-sided predilection 
in the colon, often have large tumors with a low differen-
tiation or mucinous cell type, show higher numbers of 
harvested lymph nodes after surgery, yet have fever met-
astatic lymph nodes as well as less often distant metastasis 
 [44, 47, 48] . MSI have been consistently associated with a 
better stage-adjusted prognosis compared to microsatel-
lite-stable tumors  [43, 49] . The explanation of this is still 
somewhat uncertain, but an interplay with tumor-host 
defense and the immune system is likely, as it has been 
established that tumor-infiltrating lymphocytes are asso-
ciated with improved survival  [50, 51] . Such tumor-infil-
trating cells are also found in association with the MSI 
genotype  [52] .

  Although results are still somewhat conflicting con-
cerning the predictive value, data indicates that MSI nega-
tively predicts response to 5-fluorouracil, and might also 
determine responsiveness to other drugs used for treat-
ment of CRCs  [49, 53–55] . Recent data have expanded the 
molecular heterogeneity of MSI tumors, and may contrib-
ute to our understanding of differential chemosensitivity. 

  Epigenetics and the CpG Island Methylator Phenotype 
(CIMP) 
 The CIMP is the third genomic instability phenotypes 

determined for CRC, and described as altered promoter 
methylation of a large number of genes. A clear definition 
of this instability is not agreed upon to date.
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  Epigenetics denotes chemical modifications of the nu-
cleic acids and chromatin components, other than muta-
tions, with potential to alter gene expression. One of the 
most studied forms of epigenetics within cancer is meth-
ylation of so-called CpG islands. Regions that are rich in 
CpGs are referred to as CpG islands, and such CpG is-
lands are located in the promoter area of approximately 
50% of human genes. Normal cells require stable switch-
es, and methylation of promoter CpG islands is an impor-
tant mechanism regulating gene expression. Alterations 
in DNA methylation are highly associated with carcino-
genesis, and leads to inappropriate silencing or expres-
sion of genes involved in cellular events such as tumor 
suppression, cell cycle control, DNA repair or invasion 
 [56] . 

 Although the findings are not yet conclusive, it seems 
to point in the direction where CIMP+ tumors confer a 
worse prognosis than MSI tumors. It is possible that mu-
tations in  KRAS  or  BRAF  are the actual reason for a poor-
er outcome  [57] .

  Molecular Classification 

 As depicted above, three main mechanisms occur in 
genetic instability in CRC, including CIN, MSI and epi-
genetic silencing through the CIMP. These pathways 
have distinct clinical, pathological, and genetic character-
istics, which can potentially be used for molecular clas-
sification and comprehensive tumor profiling for im-
proved diagnostics, prognosis and treatment in CRC 
 [35] . Still, such classification has not yet been implement-
ed in the clinical diagnosis and staging of CRC. However, 
a brief summary of the suggested framework for this de-
serves mentioning. A molecular classification of CRC 
based predominantly on five features has been proposed 
 [58] : (1) CIMP; (2) MSI; (3)  KRAS mutation status ; (4) 
 BRAF mutation status , and (5) methylation status of O 6 -
methylguanine DNA methyltransferase  (MGMT) .

  The Jass classification was composed of five molecular 
subtypes, with the largest group including mostly CIMP-
negative, chromosomally instable (CIN), microsatellite-
stable (MSS) CRCs (57% of cases). In addition, CIMP-low 
(CIMP-L),  KRAS  mutated,  MGMT  methylated, MSS/
MSI-low (MSI-L) cancers were predicted in 20% of cases, 
while CIMP-H,  BRAF  mutated, MSI-H tumors in 12%, 
CIMP-H,  BRAF  mutated, chromosomally stable, MSS/
MSI-L in 8%, and finally, the hereditary Lynch syndrome 
CIMP-negative,  BRAF  mutation-negative, chromosom-
ally stable, and MSI-H cancers found in 3% of all cases. 

However, one study  [59] , testing the applicability of this, 
found that a large number (>1/3) could not be correctly 
classified using the ‘Jass’ criteria, but they found prognos-
tic relevant information from CIMP status and  BRAF  
mutations  [59] . Indeed,  BRAF  mutations have been dem-
onstrated to have prognostic information  [60] . Others 
have suggested similar types of classification, but based 
on four categories  [61] . Yet others have suggested a ‘sys-
tem’ based on three main pathways, namely a ‘chromo-
somal instability pathway’, a ‘mismatch repair defect 
pathway’ and a ‘serrated pathway’  [6] , including a mix of 
sporadic and hereditary forms. It remains to be demon-
strated which is the correct classification system and the 
way forward in creating appropriate prognostic sub-
groups within CRC. However, it appears sound to include 
at least MSI, CIMP as well as KRAS and BRAF status in 
delineation of CRC genotypes that behave clinically dif-
ferent  [25] , and this should be further explored within the 
field of molecular-pathological-epidemiology investiga-
tions, as described in detail elsewhere  [19, 62, 63] .

  Molecular Pathways to Play 

 Medical science today is based on the notion that iden-
tification of similarities among patients’ disease will pre-
dict the disease evolution and subsequently treatment 
outcome. Therefore, generalizing one patient’s tumor 
into a certain set of mutated pathways, based on the bio-
markers available, is the common practice in cancer treat-
ment. However, in particular for cancer, this classifica-
tion has proven difficult to extrapolate to the clinical 
management of the patient. Consequently, therapy using 
epidermal growth factor receptor (EGFR)-targeted drugs 
for patients showing wild-type  KRAS  has only been effec-
tive for  ∼ 30% of these patients  [64] . The ‘unique tumor 
principle’ which connects the pathological molecular 
changes in tumors with its contextual environment in 
each and every patient will hopefully give us more insight 
as to how to combat this complex disease  [63] .

  EGFR-KRAS-BRAF Pathway 
 Targeted therapy in cancer is becoming a powerful 

strategy to treat selected patients based on their molecular 
profile. For CRC this particularly holds true for metastat-
ic disease. Anti-EGFR-targeted therapy has markedly im-
proved disease control and survival ( fig. 2 ). However, only 
a subgroup of patients with metastatic CRC respond to 
anti-EGFR treatment, and selecting the patients with a 
positive effect from treatment is important [reviewed in 
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more detail in  65 ]. In brief, patients with mutations in the 
 KRAS  gene are known as non-responders to anti-EGFR 
treatment ( fig.  3 ) and, consequently,  KRAS  testing has 
been employed in routine clinical practice for patient se-
lection. However, a large number of the  KRAS  wild-type 
patients do not respond to this treatment. The molecular 
mechanism underlying response is not fully understood, 
and other members of the KRAS-BRAF pathway and 
PI3K-AKT pathway ( fig. 2 a) are investigated as predictive 
biomarkers. The low treatment efficiency may reflect the 
additional mutations in downstream pathways of  KRAS , 
such as  BRAF   [66, 67] , or other major pathways such as 

PI3K  [68] .  PI3KCA  mutations are associated with a hyper-
phosphorylation of the downstream signaling hub of  AKT  
 [69] . The PI3K-AKT pathway is one of the most common-
ly altered pathways (due to gain of function) in trans-
formed cancer cells  [70] . A constitutively active PI3K-
AKT pathway renders cells dependent on glucose for their 
survival and is associated with increased glycolysis and 
proliferation  [71] . Furthermore, concordance of mutation 
status of primary tumors and their corresponding hepatic 
or pulmonary metastases, as well as treatment-induced 
mutations, possess another challenge for properly tailor-
ing the appropriate therapy to this patient group  [65] .

a b

inhibitors

  Fig. 2.  GFR signaling pathway.  a  Binding of ligands, typically 
growth factors, causes dimerization of the EGF receptors, which 
activates the pathway by autophosphorylation of the intracellular 
receptor tyrosine residues (part of the cytosolic domain of the re-
ceptor). The phosphorylated receptors lead to further activation of 
two major signaling cascades; the KRAS-BRAF-MEK-MAPK and 
the PI3K-AKT. Both play an important role in gene regulation, 
leading to cellular responses involving apoptosis, cell survival and 
proliferation – among many others. The KRAS is a GTPase and is 
involved in early initialization of several other signaling cascades. 
Here it is shown as an activator of the proto-oncogene BRAF, in-
volving a kinase cascade where eventually RAF kinase phosphory-

lates and activates MEK. MEK also phosphorylates and activates 
MAPK (mitogen-activated protein kinase), which again acts direct-
ly on other proteins involved in gene regulation. AKT is also a pro-
to-oncogene, and the AKT cascade is also activated by the intracel-
lular phosphorylation of the receptor tyrosine residues via phos-
phoinositide 3-kinase (PI3K). PTEN (phosphatase and tension 
homolog) is a tumor suppressor protein which can inhibit the AKT 
cascade.  b  EGF receptors are frequently expressed in epithelial tu-
mors, and the use of EGFR inhibitors, such as cetuximab, effective-
ly blocks the signaling cascade and have turned out to be an impor-
tant addition in modern cancer treatment. 
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  Cyclooxygenase-2 Inhibitors – From Adenoma 
Prevention to Adjuvant Therapy? 
 Prostaglandins are locally produced hormones with a 

diversity in structure and function ( fig. 4 ), which exerts 
their effects locally in an autocrine and paracrine manner 
 [72] . Arachidonic acid is the precursor, and cyclooxygen-
ase (COX)/PGH synthase is the rate-limiting step in the 
synthesis  [73] . The two isoforms of this enzyme, denoted 
COX-1 and COX-2, share functions where COX-1 is the 
housekeeping cytoprotective enzyme while COX-2 is in-
ducible to inflammation and neoplasia  [74, 75] . The in-
termediate product PGH 2  is rapidly converted by specific 
enzymes to prostaglandins and thromboxanes ( fig. 4 ).

  In the colonic epithelium, PGE 2  is the main product of 
COX-2 upregulation  [76, 77] . PGE 2  produced in the epi-
thelial cell is transported through special prostaglandin 
transporters  [78]  out to the exterior of the cell where it 
creates the autocrine and paracrine effects. Also, an iso-
mer of secretory PLA 2  (sPLA 2- X) secreted into the juxta-
cellular microenvironment may liberate free arachidonic 
acid from the outer part of the cell membrane  [79] . Hence, 
the COX-2 expression in tumor stroma  [80]  may produce 
prostaglandins (including PGE 2 ) and increase the micro-
environmental PGE 2  amount. The PGE 2  exerts its effect 

through four different 7-transmembrane G-coupled re-
ceptors (EP 1 –EP 4 ) that activate important downstream 
second messenger systems  [81] . The effect of the PGE 2  on 
the colon epithelial cells will depend on the relative dis-
tribution and grade of expression of these receptors. Due 
to cross-talk between pathways the transcription of the 
 COX-2  gene is further increased, and a positive augmen-
tation loop is established ( fig. 4 ). This is in line with in-
creasing  COX-2  expression in the adenoma-to-carcino-
ma sequence  [72] , and suggests an important window for 
chemoprevention in preneoplasia. It is important to dis-
tinguish the effects of PGE 2  downstream signal pathways 
and the effect of non-steroidal anti-inflammatory drugs 
(NSAIDs) and selective COX-2 inhibitors (coxibs), since 
they inhibit a broader spectrum of prostaglandins. More-
over, their novel collateral effects in cancer prevention are 
also known to be substantial  [82] .

  Pooled analyses of data have indicated that regular use 
of both non-selective NSAIDs and selective coxibs is as-
sociated with a decreased incidence of adenomas and re-
duced mortality rate of CRC  [83–89] .

  COX-2 is responsible for a substantial part of the pros-
taglandin production in inflammation – a key factor in 
colon carcinogenesis. It is widely accepted that COX-2 

  Fig. 3.  Downstream mutations in the EGFR 
pathway. Some mutations in the  KRAS  
gene observed in many CRC cases, and to 
a certain extent also  BRAF  mutations, are 
correlated with a lack of response to anti-
EGFR therapy. The signaling cascades will 
still be active albeit the autophosphoryla-
tion of the receptor tyrosine residues are 
blocked.     
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and prostaglandins, especially prostaglandin E 2  (PGE 2 ), 
are directly related to the development and progress of 
CRC as well as cancers in other tissues  [90] . Because 
COX-2 activity can be rate-limiting in prostaglandin for-
mation, COX-2 expression must be regulated tightly. Nu-
merous factors including mitogens, tumor promoters 
and cytokines have been found to stimulate the transcrip-
tion of COX-2  [91] .

  Selective coxibs such as celecoxib were developed to 
avoid side effects from non-specific NSAIDs, such as as-
pirin, that were believed to be mainly caused by inhibi-
tion of COX-1. The usage of NSAIDs in prevention and 
treatment of CRC is still under discussion, because of 
potentially unacceptable cardiovascular side effects  [92, 
93] .

  Cancer Metabolism 

 As stated in the introduction, the high prevalence of 
CRCs in developed countries as opposed to developing 
countries  [94]  suggests that this type of cancer is lifestyle-
related. The connection between metabolic stress and cell 
signaling has been an area of increased research. Cancer 
metabolism has long been equated with aerobic glycoly-
sis, seen by early biochemists as primitive and inefficient. 
Despite these early beliefs, the metabolic signatures of 
cancer cells are not passive responses to damaged mito-
chondria, but result from oncogene-directed metabolic 
reprogramming required to support anabolic growth 
 [95] . Recent evidence suggests that metabolites them-
selves can be oncogenic by altering cell signaling and 

  Fig. 4.  Schematic overview of the COX pathway and its influence on cancerogenesis.         
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blocking cellular differentiation  [95] . In that respect, it is 
argued that a first step in tumorigenesis is the mutation 
of an important oncogene, such as a downstream effector 
of a receptor tyrosine kinase (RTK), or the RTK itself, 
which is subsequently followed by metabolic reprogram-
ming of the cell to support the change in intracellular sig-
nal ( fig. 5 ). Moreover, this change in metabolism leads to 
an increase in certain metabolites which have shown to 
increase expression of RTKs on the cell surface  [96] , fur-
ther supporting the growth of the cancerous cell.

  In the last decade the emerging field of metabolic re-
programming in cancer has revealed new target strategies 

based on cancer cell growth properties. The epigenetic 
changes seen in tumors are heavily affected by this meta-
bolic reprogramming [for a comprehensive review, see 
 97 ]. An increase in glucose uptake, seen in most cancer 
cells and also exploited in prognostic positron emission 
tomography scanning, together with changes in metabo-
lism yields high amounts of ATP and acetyl-CoA both of 
which can affect gene transcription through phosphory-
lation or acetylation, respectively  [95, 98] .

  Furthermore, one-carbon metabolism is an increas-
ingly investigated network of metabolic pathways, dis-
ruption of which has been associated with cancer and oth-
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  Fig. 5.  Schematic presentation of altered cancer metabolism. Life-
style-related factors such as nutrients and environmental agents 
affect intracellular signaling. Mutations in important oncogenes 
alter the cell metabolism to further support the growth and sur-
vival of the cell. In cancer this is exemplified with a higher glucose 

flux through glycolysis, more substrates for the one-carbon me-
tabolism, and higher acetyl-CoA transport out of the mitochondria 
in the form of citrate. This metabolic reprogramming allows for 
aberrant epigenetic changes on chromatin as well as DNA directly, 
which may further support the growth of the cancerous cell.         
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er pathological conditions. Biomarkers of these pathways 
include homocysteine, S-adenosylmethionine (SAM), 
and S-adenosylhomocysteine. A better understanding of 
the relationships between these biomarkers is needed for 
their utilization in research, as they appear to be indepen-
dent markers and represent different pathways  [99] . The 
one-carbon metabolism involving SAM ( fig.  5 ) can in-
crease macromolecular interactions through increased 
molecular forces (van der Waals forces), which is a more 
versatile chromatin regulation than acetylation and phos-
phorylation  [97] . SAM is produced in the cytosol by the 
reaction of  L -methionine and ATP, and links energy pro-
duction to the methylation of proteins and DNA changes 
 [97] .

  Of notice, a systematic review of proteomic studies dif-
ferentiating between CRC and normal colon tissue found 
proteins located in mitochondria (in about 20%) and pro-
teins associated with metabolism among those most fre-
quently upregulated or differentially expressed in cancer 
cases  [100] . The increasing understanding of this meta-
bolic reprogramming in cancer has led to new target 
strategies based on cancer cell growth properties  [101] , 
which seem promising since epigenetic changes are by 
large reversible and heavily influenced by the metabo-
lome. However, finding the exact ways to target these fac-
tors may prove difficult, but knowledge is increasing in 
relation to how nutrients and diet may influence one-car-
bon metabolism and thus the interplay between genes 
and cellular regulation processes  [99, 102–105] .

  Conclusive Remarks and the Way Forward 

 Even if CRC is one of the cancer types that is studied 
the most on the molecular level during the last 30 years, 
the tumor staging system is still the main predictor of sur-
vival and the guide for therapy. Biomarkers with diagnos-
tic, predictive, or prognostic information, aiding the deci-
sion of presence of disease, guiding the choice of treat-
ment, and predicting disease progression, are of great 
interest and under extensive investigation in CRC. Cur-
rently, very few biomarkers have been established as clin-
ically useful for CRC. Of consideration is the notion that, 
of the several thousand markers explored in cancer re-
search over the past decades, less than 1% of have made 
the way into commercially available and clinically useful 
markers  [106] . Cancer biomarkers currently under devel-
opment are likely to have already encountered one or 
more of fatal features encountered in prior marker re-
search  [106] . These include, but may not be restricted to: 

lack of clinical significance, hidden structure in the source 
data, a technically inadequate assay, inappropriate statis-
tical methods, unmanageable domination of the data by 
normal variation, implausibility, deficiencies in the stud-
ied population or in the investigator system, and its dis-
proof or abandonment for cause by others  [106] .

  Carcinoembyonic antigen and  KRAS  mutation status 
are to date the only biomarkers in routine clinical use. 
However, carcinoembyonic antigen has suboptimal sen-
sitivity and specificity as demonstrated in past studies 
 [107, 108] . The utility of this biomarker clearly depends 
on disease stage as well as the underlying molecular het-
erogeneity  [109, 110] . Mutations in the  KRAS  gene are 
predictive for a lack of response when using treatment 
targeting the EGFR receptor in patients having metastat-
ic disease. However, as wild-type  KRAS  does not predict 
a positive response to treatment, mutations in  BRAF  and 
other targets downstream of the EGFR receptor have 
been found to contribute to the absence of treatment re-
sponse  [68, 111, 112] . Panels of biomarkers, based on 
mRNA expression signatures and methylation patterns, 
have been published as useful for early diagnosis and 
prognosis  [113, 114] , but none have reached clinical util-
ity yet. Better and more powerful techniques in molecular 
biology and gene expression profiling will be available in 
the near future, and a number of prognostic gene classi-
fiers have been proposed by a number of research groups 
 [115–122] , of which some may be demonstrated to have 
clinical validity across patient groups and demonstrate 
robustness according to clinical outcome in future 
 research. Also, the genome-wide association studies 
(GWAS) to assess susceptibility genes and disease modi-
fiers may give new answers into the complexity of CRC 
risk, development and potential prevention  [17, 123–
125] .

  In the day-to-day work with patients, surgeons will 
have to rely on black-and-white answers for decision-
making, although it should be recognized that many areas 
contain several shades of grey, which complicates and in-
cludes uncertainty in the decision process  [125] . Thus, 
including appropriate methodology in biomarker re-
search will be of essence  [36] . Indeed, as stated by Kern 
 [106] , it may be that the process and intellectual back-
ground for initiating, conducting and validating bio-
marker research in cancer has to be redesigned to arrive 
at valid and clinical useful tools for the future. As such, 
this exemplifies the need for better stratification of pa-
tients when exploring the use of biomarkers for predic-
tion and prognosis, and enlightens the urge for better 
methods to detect and validate biomarkers. Nonetheless, 
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non-invasive biomarkers for diagnosis or markers of pre-
dictive and prognostic value may develop through the 
further understanding of the molecular background of 
colorectal carcinogenesis. Indeed, molecular markers are 
likely to be included in the near-future revisions of cur-
rently used staging systems. Among those with greatest 
potential for clinical implications include the use of MSI, 
 KRAS ,  BRAF  and  PIK3CA  and potentially the COX path-
ways.
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