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Abstract

Hepatic steatosis is a multifactorial condition often observed in obese patients and a prelude to 

non-alcoholic fatty liver disease. Here we combine shotgun sequencing of faecal metagenomes 

with molecular phenomics (hepatic transcriptome, plasma and urine metabolomes) in two well-

characterized cohorts of morbidly obese women recruited to the FLORINASH study. We reveal 

molecular networks linking gut microbiome and host phenome to hepatic steatosis. Patients with 

steatosis have low microbial gene richness and increased genetic potential for processing of 

dietary lipids and endotoxin biosynthesis (notably from Proteobacteria), hepatic inflammation and 

dysregulation of aromatic and branched-chain amino acid (AAA and BCAA) metabolism. We 

demonstrated that faecal microbiota transplants and chronic treatment with phenylacetic acid 

(PAA), a microbial product of AAA metabolism, successfully trigger steatosis and BCAA 

metabolism. Molecular phenomic signatures were predictive (AUC = 87%) and consistent with the 

gut microbiome making an impact on the steatosis phenome (>75% shared variation) and, 

therefore, actionable via microbiome-based therapies.

Introduction

Hepatic steatosis is a multi-factorial phenotype common to several chronic conditions such 

as insulin resistance, atherosclerosis and fatty liver disease, with increasing worldwide 

prevalence related to the obesity epidemic1–5. The gut microbiota recently emerged as a 

pivotal transducer of environmental influences (i.e., dietary components, drug treatments) to 

exert protective or detrimental effects on several host tissues and systems, including 

regulation of intermediary metabolism, liver function and cardiovascular disorders, either 

directly via translocation or indirectly through microbial metabolism or function in 

metabolic disorders6–8,9–11. Rodent studies demonstrated the role of the gut microbiome in 

liver disease and to the stratification of Type 2 diabetes (T2D) and cardiovascular disorders 

(CVD). Microbiome-associated factors involve, for instance, bacterial lipopolysaccharides 

(LPS) or methylamines such as trimethylamine (TMA) and trimethylamine N-oxide 

(TMAO)12,13 playing a role in the development of insulin resistance and 

atherosclerosis6,14,15. Hepatic steatosis is a shared mechanism for the development of T2D 

and CVD in humans in both non-alcoholic and virus-associated fatty liver disease16 but the 

physiological mechanisms behind this interplay remain poorly understood17,18.
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Here, we take advantage of the advances in high-throughput sequencing and phenotyping 

technologies to characterize in humans physiological mechanisms responsible for the 

integrated interactions between signals from the gut metagenome and the host molecular 

phenome (a comprehensive set of molecular phenotypes useful to identify subgroups of 

patients17) of hepatic steatosis. We introduce a unique integrative multi-omics and precision 

medicine approach combining shotgun metagenomics, liver transcriptomics, metabolomics 

in plasma and urine and clinical phenotyping to reveal the molecular mechanisms and multi-

scalar interactions involved in the physiology of steatosis in a new cohort of non-diabetic 

obese women we recruited as part of the FLORINASH consortium.

In-depth analyses of faecal metagenomics and phenomics reveal a robust signature 

highlighting a tight crosstalk between the microbiome, host gene expression and metabolism 

in hepatic steatosis involving low microbial gene richness19 (MGR) and imbalances in 

aromatic amino acid (AAA) and branched-chain amino acid (BCAA) metabolism20,21. 

Based on the results obtained in our clinical study, we then demonstrated a causal role of the 

microbiota-produced metabolite most strongly associated with steatosis, namely 

phenylacetic acid (PAA), in the triggering of the hepatic steatosis phenome by faecal 

microbiota transplants (FMT) and by testing PAA on primary cultures of human hepatocytes 

and in mice.

Results

Cohort design and identification of clinical confounders

To characterize the hepatic steatosis phenome, we established two unique and independent 

cohorts of women – negative for viral hepatitis – from Italy and Spain who elected for 

bariatric surgery. We focused on morbid obesity in non-diabetic women to examine liver 

steatosis variability. In particular, we excluded patients with known T2D to avoid the 

confounding influence of long-term hyperglycemia22 or medications such as 

metformin23,24 on the microbiome (see Methods for full inclusion and exclusion criteria). 

The degree of hepatic fat was defined according to the joint guidelines from the European 

Associations for the study of Liver, Obesity and Diabetes (EASL, EASO, EASD, see 

Methods)25,26,27. Given the impact of the microbiome on insulin resistance6,28, we also 

performed oral glucose tolerance tests (OGTT) and euglycemic hyperinsulinemic clamps 

(EHC) (Supplementary Table 1). Clinical phenotypes were complemented by faecal 

metagenomics and molecular phenomics (plasma and urine metabolomes and liver 

transcriptomes) for association studies29,30. We then devised a data-driven hypothesis 

generation and validation strategy (Fig. 1). We first identified age, cohort and BMI as 

confounders, while all other clinical variables were mediators or had no effect on 

generalized linear models (Supplementary Fig. 1, Supplementary Table 2). These three 

confounders were taken into account in all subsequent partial Spearman’s rank-based 

correlation (pSRC) patterns across clinical variables.

Metagenomic signatures of hepatic steatosis

To obtain detailed taxonomic and functional information in hepatic steatosis for the faecal 

microbiome, we sequenced the patients’ faecal metagenome and data were processed using 
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our in-house pipeline, performing QC checks, filtering, and binning of reads into taxonomic 

kingdoms (Supplementary Table 3, Supplementary Fig. 2); metagenome assembly31, gene 

prediction and clustering32,33, functional annotation of gene clusters and comparison with 

the HMP Integrated Gene Catalog (IGC)34 were performed. A total of 19,140,155 predicted 

genes were identified, which formed 3,902,787 gene clusters. Of these genes, 2,320,286 

mapped to the IGC, while 1,582,501 were novel (90 % query length, 95 % identity; 

Supplementary Table 4). We derived gene counts, i.e., a measure of MGR, based on average 

values obtained from 30 samplings of 7 million randomly sampled reads that mapped to 

genes8, resulting in a mean of 558,246 ± 154,249 genes across the samples (Supplementary 

Table 5), which is in the same order of magnitude as previous reports19. Remarkably MGR 

was significantly anti-correlated with hepatic steatosis (Fig. 2a; liver steatosis 0 665,063 

± 126,062 vs liver steatosis 3 517,989 ± 126,062 genes, n = 10 patients both groups, P = 

0.03 Wilcoxon rank sum test) and with a number of markers of liver function, including γ-

glutamyltransferase, alanine aminotransferase and inflammation (C-reactive protein) as well 

as with echography-assessed liver steatosis (Fig. 2b). Our data demonstrate for the first time 

the association of MGR with liver steatosis in a BMI-adjusted context, reinforcing previous 

observations for body weight and liver cirrhosis19.

To determine whether specific microbes were responsible for this correlation, we assessed 

the abundance of prokaryotes within the metagenomes. Several taxa were significantly 

associated with liver steatosis and other related clinical parameters (Fig. 2c–e, 

Supplementary Fig. 3a, Supplementary Fig. 4, Supplementary Table 6): at the phylum level 

Proteobacteria, Actinobacteria and Verrucomicrobia were significantly correlated with liver 

steatosis, while Firmicutes and Euryarchaeota were significantly anti-correlated, whereas 

species diversity (calculated using the Chao1 estimator) was not correlated with liver 

steatosis (Supplementary Fig. 3b).

We next investigated associations between microbial function, by mapping our microbial 

gene catalog onto KEGG modules, and clinical phenotypes, thus revealing positive 

associations of hepatic steatosis with microbial carbohydrate, lipid and amino acid 

metabolism (Supplementary Fig. 5). These data suggest a change in microbial metabolism 

may contribute to liver health in morbidly obese women. Of particular relevance, LPS and 

peptidoglycan biosynthesis was significantly correlated with liver steatosis (Supplementary 

Fig. 5); this increase in LPS biosynthetic potential being consistent with an increased 

representation of Gram-negative Proteobacteria in steatosis, as observed in rodents35. These 

pathway-level analyses also highlight an increase in bacterial biosynthetic potential for fatty 

acids and sugars and various amino acids including BCAAs (Val, Leu and Ile) and AAAs 

(Trp, Tyr and Phe) associated with steatosis and insulin resistance; this increase in BCAA 

biosynthesis further confirming previous reports in obesity and insulin resistance 

contexts28,36.

Impact of the microbiome on the hepatic steatosis phenome

To reveal metabolic phenotypes possibly involved in steatosis related to the gut microbiome 

and liver steatosis, we performed metabolic profiling of urine and plasma by 1H-NMR 

spectroscopy. A metabolome-wide association study (MWAS)30 resulted in 124 metabolite 
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signals in urine and 80 in plasma correlated with hepatic steatosis and associated clinical 

traits (Supplementary Fig. 6, 7). Strikingly, the majority of liver steatosis-associated 

metabolites in plasma and urine were also associated with low MGR (Fig. 3a, b, 

Supplementary Fig. 8, Supplementary Table 7). Among the top liver steatosis metabolites 

(also associated with low MGR), we observed a significant correlation with BCAAs in 

plasma (leucine p-FDR = 4.69×10-5; valine p-FDR = 1.72×10-4; isoleucine p-FDR = 

9.72×10-5, Fig. 3a) and a significant increase in urine (leucine p-FDR = 6.1×10-4; valine p-

FDR = 1.73×10-3; isoleucine p-FDR = 0.024, Fig. 3b) consistent with reports in obese 

patients20,28. Plasma choline and phosphocholine were not anti-correlated with liver 

steatosis for the 56 patients (but were anti-correlated in the larger cohort, n=102, 

Supplementary Fig. 9), whereas increased choline excretion was observed in liver steatosis 

(Fig. 3b), which is consistent with previous reports regarding choline bioavailability6,37. 

Remarkably, urinary hippurate was associated with MGR, echoing similar associations 

recently observed with Shannon diversity index obtained from 16S rRNA gene sequence 

profiling38. Among the microbial–mammalian co-metabolites significantly associated with 

steatosis and low MGR, plasma PAA (p-FDR = 4.69×10-5) showed the strongest positive 

association (Fig. 3a). High MGR observed in non-steatotic patients was significantly 

correlated with a number of gut-derived microbial metabolites, such as urinary 

phenylacetylglutamine (p-FDR = 3.10×10-9), plasma acetate (p-FDR = 0.009) and TMAO 

(p-FDR = 0.006) (Supplementary Table 7), a microbial-host co-metabolite playing a role in 

insulin resistance and atherosclerosis6,14,15. We further confirmed that TMAO, but not 

TMA, was marginally anti-correlated with steatosis by UPLC-MS/MS using isotopically-

labelled standards39,40, which is consistent with recent reports on the role of TMAO in 

metabolic homeostasis15,41 (Supplementary Table 8). Altogether, these results suggest for 

the first time the existence of a metabolic phenotype associated with hepatic steatosis and 

low MGR, pinpointing elevated BCAAs, AAAs and microbial metabolites coupled to a 

potential imbalance in hepatic oxidation and conjugation of those microbial substrates.

To identify hepatic molecular mechanisms associated with the gut microbiome, we 

complemented our phenome coverage by profiling hepatic (liver biopsy) transcriptomes 

from the same set of patients. We identified 3,386 and 3,201 genes significantly positively 

and negatively correlated, respectively, with liver steatosis (pSRC p-FDR < 0.05) 

(Supplementary Table 9). Furthermore, 3,581 human genes significantly correlated (p-FDR 

< 0.05) with MGR: the pathways associated with the 1,776 genes significantly positively 

correlated with MGR largely matched those significantly anti-correlated with steatosis 

(Supplementary Fig. 10). However, the 1,805 anti-correlated with MGR matched those 

positively associated with hepatic steatosis (Supplementary Fig. 10), consistent with an anti-

correlation between liver steatosis and MGR (Supplementary Table 9, Supplementary Table 

10).

To generate molecular hypotheses that could be useful for microbiota-related next-

generation therapeutic strategies we performed a hepatic signalling pathway impact analysis 

(SPIA42, see Methods) including the 2,277 genes intersecting the liver steatosis and MGR-

associated genes. In particular hepatic genes associate with non-specific pathways involved 

in the core immune response to clearance of viral and bacterial (Proteobacteria, Gram-

negative) infections (i.e., viral carcinogenesis; pathogenic Escherichia coli infection, 
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shigellosis), alcoholism and insulin resistance (Fig. 3c). Enrichment analyses (see Methods) 

of the hepatic genes significantly associated with MGR further highlighted a significant (p-

FDR < 0.2) over-representation of KEGG pathways associated with the proteasome, 

phagosome, insulin resistance, glucagon signalling and non-specific responses to microbial 

(Gram-negative, viral) infections (Fig. 3d). Among the overlapping genes co-associated with 

hepatic steatosis and low MGR, LPL (lipoprotein lipase) was among the most correlated 

with hepatic steatosis, while ACADSB (short/branched chain acyl-CoA dehydrogenase) and 

INSR (insulin receptor) were the most anti-correlated (Fig. 3e), suggesting a molecular basis 

for the observation that individuals with low MGR have a reduced capacity to respond to 

insulin exemplified by decreased glucose disposal rate (during the EHC) and increased 

HOMA-IR (as shown in Fig. 2b and previously reported in ref 28).

We further complemented our analyses of the hepatic transcriptome by assessing the 

topology of a directional network made of 2,277 genes significantly associated with liver 

steatosis and low MGR mapped onto KEGG pathways involved in liver disease, by 

aggregating all the KEGG networks with at latest one gene in common with the genes 

included in the NAFLD pathway. To analyse the topology of this resulting network, we 

computed shortest paths between the significant genes and derived the betweenness 

centrality metric43,44, i.e., the number of shortest paths passing through a particular gene 

product, to evaluate how central these genes are in the network. Ranking of betweenness 

centrality from highest to lowest showed CREB3L4, PRKACA, CRTC2, OGT, INSR, 

NFKB1, PPP1CA, IKBKG, MAP3K7, MAPK9, ITGAV, RRAS2, RPS6KA2, PHKA1, 

PHKB, BRAF, ALDOC, PFKL, EFNA1, FGF12, ANGPT4, PDGFB, VEGFB, FGFR4, 

MAP2K2, TAPBP, ALDH3A2, ALDH7A1, GPI and GNAI3 to be the 30 genes having most 

control over the network. In particular, betweenness centrality further highlights clusters of 

central genes channelling a high proportion of the shortest paths involving cAMP-related 

genes (CREB3L4, PRKACA, CRTC2), innate immunity (Nuclear Factor Kappa B subunit 1, 

NFKB1) and INSR amongst others (Fig. 3f). Overall, hepatic gene expression is concordant 

with the metabolic signature obtained in plasma and urine showing elevated BCAAs 

concomitantly associated with low MGR, liver steatosis and insulin resistance, highlighting 

the interconnection among these three parameters. Genetic manipulation of INSR in the 

hepatocyte displayed a NAFLD phenotype45,46 and the gut microbiome has recently been 

shown in rodents to interfere with INSR activation in the liver47. These results provide in 

humans a validation of numerous rodent-based hypotheses.

Steatosis-associated microbiota and microbial metabolites modulate the steatosis 

phenome

Our results document a strong contribution of the gut microbiome to the hepatic steatosis 

phenome. The increased microbial capacity for metabolism of BCAAs and metabolism of 

AAAs such as phenylalanine, tyrosine and tryptophan in liver steatosis (Supplementary Fig. 

5) – phenylalanine metabolism resulting in PAA production – is supported by circulating 

metabolic markers (Fig. 3a-b), suggesting potentially causal mechanisms involving the 

microbiome in the steatosis phenome. In particular, our results strengthen the contribution of 

the gut microbiome to increased levels of circulating BCAAs in the host28,36 – a metabolic 

phenotype gaining a central role in metabolic disorders20. This disruption of the gut–liver 
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axis is further exemplified by the increase in inflammatory response, ER stress and 

phagosome pathways associated with a decrease in insulin signalling and small-molecule 

catabolic processes, conceivably altogether contributing to impaired BCAA and AAA 

metabolism as well as detoxification of liver steatosis-associated microbial compounds.

We then tested whether faecal microbial communities from donors with hepatic steatosis 

(steatosis grade 3) could trigger steatosis molecular mechanisms to recipient mice when 

compared with samples from donors with no hepatic steatosis (grade 0) (Fig. 4a). Donors 

with hepatic steatosis (n=3, steatosis grade 3) were randomly selected. Among subjects 

without hepatic steatosis (n=3, grade 0), we chose those that were similar in age, BMI, and 

fasting glucose to those with steatosis. For instance, fasting glucose was 87.3 ± 16.7 mg/dL 

in subjects without steatosis and 97.3 ± 6.4 mg/dL in the steatosis group (P = 0.39). After a 

short antibiotic treatment and wash-out period and four consecutive daily faecal microbiota 

transplantations (FMTs as in 48,49), the recipient mice were fed a chow diet for 2 weeks. In 

the former group, this procedure resulted in a moderate but rapid accumulation of hepatic 

triglycerides (Fig. 4b). We also observed an increased Fabp4 expression and plasma valine 

concentration compared with mice that received samples from patients without liver 

steatosis (Supplementary Fig. 11a,b), showing the general impact of the steatosis-associated 

microbiota from human donors on mouse liver lipid accumulation. By permutation testing 

seven-fold cross-validated O-PLS models using the donor human microbiome composition, 

we could successfully predict recipient mouse phenome responses, especially for steatosis, 

hepatic triglyceride content, Fabp4 and plasma valine levels (Fig. 4c and Supplementary Fig. 

11c-e, 1,000 random permutations, see Methods), highlighting the statistical robustness of 

the prediction between human donor microbiomes and recipient mouse phenome. We then 

derived significant associations between the donor microbiota composition and the mouse 

phenome, showing that the steatosis-associated microbiota influences multiple patterns of 

association with hepatic triglycerides, circulating BCAAs and TMAO (Fig. 4d). Similar, yet 

weaker associations were also observed between the mouse phenome and recipient mouse 

microbiota evaluated by faecal 16S rRNA gene amplicon analysis (Supplementary Fig. 12). 

The rapid hepatic lipid accumulation suggested a causal role of the human faecal microbiota 

in the triggering of hepatic steatosis which over a long-term period could lead to a highly 

significant liver lipid depot further contributing to hepatic insulin resistance.

To highlight the potential of novel microbial compounds to directly affect the hepatic 

steatosis phenome, we selected PAA due to the convergence of metagenomic and 

metabolomic observations: i) there is increased abundance of microbial gene pathways 

associated with its production in metagenomic sequences (Supplementary Fig. 5), and ii) it 

is the strongest microbial metabolite associated with steatosis in our MWAS models (Fig. 

3a). We compared its effects with the effects of palmitic acid, a free fatty acid known to 

trigger hepatic steatosis in human primary hepatocytes50, using a full factorial design. We 

assessed lipid accumulation, expression of genes involved in steatosis as well as BCAA 

metabolism and consumption. PAA initiates molecular mechanisms leading to triglyceride 

accumulation in human primary hepatocytes in synergy with palmitic acid (Fig. 5a-b) and 

induces expression of lipid metabolism genes (LPL and FASN, Fig. 5c-d). PAA induced 

INSR expression contrary to palmitic acid and participated in the reduction of GLUT2 

expression (Fig. 5e-f). We next investigated AKT phosphorylation, which was significantly 
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lowered by PAA, suggesting PAA reduces the response to insulin (Fig. 5g). PAA increased 

ACADSB expression (Fig. 5h) and resulted in an increased utilization of BCAA from the 

cell medium (Fig. 5i-k). We then treated mice with PAA for 2 weeks and confirmed the 

increase in hepatic triglycerides and decrease in excreted isoleucine (Fig. 5l-m). These 

results suggest that PAA, as one of our top hepatic steatosis-associated microbial 

metabolites, significantly increases hepatic BCAA utilization and hepatic lipid 

accumulation.

Integrative data crosstalk and steatosis signatures

We finally quantified the crosstalk among gut microbiome, clinical phenotypes, liver 

transcriptome, urine and plasma metabolomes by estimating the proportion of shared 

variation amongst the different tables through Rv coefficients (Fig. 6, see Methods). A high 

proportion of information (79–97%) was shared between matching datasets (Fig. 6a, 

Supplementary Table 11), suggesting a strong similarity between metagenomic and 

phenomic data; the weakest (79.44%) being between urinary metabolome and clinical 

parameters. The metagenomic data shared 92–93% similarity with clinical parameters, liver 

transcriptome and plasma metabolome, while they only shared 74.68% with the urinary 

metabolome. This statistical crosstalk analysis suggests that, although metagenomic and 

phenomic data have strong similarity, there is still information attached to each original 

dataset which, if pooled together, could result in a robust signature.

We then built a multivariate model integrating metagenomic, transcriptomic and 

metabolomic information by fitting an orthogonal partial least squares discriminant analysis 

(O-PLS-DA) and tested its ability to correctly predict new samples during a seven-fold 

cross-validation through random permutation testing (Fig. 6b, 10,000 random permutations, 

P = 0.0029). We derived a bootstrapped Receiver-Operator Characteristic (ROC) curve for 

the cross-validated models illustrating the ability of the model to correctly predict new 

samples (AUC=87%, Fig. 6c, Supplementary Table 12) of the binary prediction of steatosis 

(i.e., steatosis vs. no steatosis) using cross-validated scores derived from seven-fold cross-

validation of the O-PLS-DA model (see Methods), thereby confirming the joint predictive 

power of molecular phenomics and metagenomics. The predictive power of the phenome 

model is driven by the hepatic transcriptome (AUC 85%) that directly relates to the affected 

organ, but the excreted phenome and plasma metabolome both reach 73% and 79%, 

respectively. This AUC is particularly relevant as the non-invasive basal clinical data yielded 

58%, which only increases through addition of more invasive metabolic challenges (OGTT 

and EHC, AUC 69%). Altogether, these predictive models based on molecular phenomics 

and metagenomics further support the idea that these molecular signatures used to generate 

hypotheses are robust and ultimately suggesting that the link tethering the microbiome to 

hepatic steatosis is robust too.

Discussion

In this study, we performed an in-depth clinical characterization of well-phenotyped non-

diabetic obese women from Spain and Italy. We then reveal molecular networks between the 

gut microbiome and the hepatic steatosis phenome in this population of morbidly obese 
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women, through computational integration of individual metagenomes, metabolomes and 

hepatic transcriptomes with histological steatosis scores. The robustness of our phenome 

signatures and the experimental follow-ups show that hepatic steatosis is negatively 

associated with MGR and the microbiome contributes to the steatosis phenome. The striking 

association between low MGR and hepatic steatosis is consistent with clinical and 

preclinical results confirming the role of the microbiome in rodent models7 of non-alcoholic 

fatty liver disease and the role of MGR in metabolic disease19,51.

We then functionally characterized an increased gut microbial amino-acid metabolism in 

steatotic subjects that has a profound impact on their liver transcriptome, biofluid 

metabolomes and liver fat accumulation, leading eventually to fatty liver. We found an anti-

correlation pattern between steatosis and MGR was valid for the most significant steatosis-

associated genes and metabolites, thereby suggesting that the reduction in MGR is a key 

factor that imbalances microbiome metabolic pathways leading to a steatosis-associated 

phenome, as observed for obesity19,51. From this tight crosstalk, we further depict a 

coordinated disruption of the gut–liver axis in hepatic steatosis that manifests itself across 

the faecal metagenome, hepatic transcriptome and biofluid metabolome. For instance, the 

increased Proteobacteria frequency in hepatic steatosis is mirrored by an increase in 

microbial-associated functional pathways related to endotoxin production and immune 

response in steatotic patients – both at the hepatic and circulating levels. Our study further 

confirms the impact of LPS and putatively other microbial products on liver lipid 

accumulation in humans52, as previously proposed in rodent models35.

By integrating numerous biological measurements, our data analysis strategy implemented a 

detailed functional analysis of the patient faecal metagenomes and molecular phenomes, 

offering novel insights for the integrative physiology of hepatic steatosis. For instance, the 

increased microbial potential for BCAA production, a phenomenon already reported for 

insulin resistance and obesity28,36, is mirrored by an increase in the BCAA pool in 

biofluids. Also, our bioinformatic analysis of metagenomic sequences combined with 

metabolomic data suggested a direct role for microbial degradation of AAAs into PAA in 

patients with steatosis. Our preclinical studies in rodents and primary culture of human 

hepatocytes corroborated the role of this metabolite, amongst others, as an example of a 

microbially-related metabolite involved in hepatic steatosis. By subsequently focussing on a 

unique microbiome-associated feature such as PAA, which was selected through converging 

patterns observed in microbial gene functions and biofluid metabolomes, we identified a 

novel mechanism by which the microbiome facilitates steatosis, via increased BCAA 

utilisation and AAA metabolism. Whilst acknowledging the complexity of the microbiome–

host interplay, it should be noted that although PAA is an exemplar metabolite highlighted in 

our human dataset, its effects are here limited to triggering steatosis-associated molecular 

mechanisms and it is unlikely to be the sole player in steatosis. The PAA effects are most 

likely part of a much broader, multifactorial process orchestrated by the microbiome and 

involving many factors that warrant further studies.

The demonstration that the faecal microbiota obtained from patients with steatosis (grade 3, 

>66%) initiated hepatic lipid accumulation and affected the phenome of recipient mice 

through FMTs reinforces the causal role of the microbiota in steatosis. Not only did the 

Hoyles et al. Page 9

Nat Med. Author manuscript; available in PMC 2018 December 25.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



human donor microbiota from patients with steatosis trigger hepatic triglyceride 

accumulation in recipient mice, but it also affected their circulating metabolome and hepatic 

transcriptome, through an increase in circulating valine levels and an increased expression of 

genes involved in lipid metabolism. Moreover, the characteristics of the donor microbiota 

predicts the extent of the phenomic response in the donor mice, which echoes recent reports 

on the prodromal role of the microbiota for metabolic response to diet in animal 

models15,53 and humans54. The successful replication of the steatotic phenotype using 

human donor material for FMT in mice represents a key translational link between 

metagenomic studies in patients with NAFLD, hepatic fibrosis or cirrhosis8,55,56 and 

previous FMT studies that had only been established for NAFLD with mouse donors7.

Altogether, we propose a model in which the microbiome orchestrates three possibly 

complementary contributions to hepatic steatosis in obesity: i) reduced MGR – indicative of 

deleterious changes in microbiome functions – can trigger steatosis and increase the BCAA 

pool; ii) microbially-produced PAA and possibly other related metabolites facilitate hepatic 

lipid accumulation via a synergetic increase in BCAA utilization in the TCA cycle; and iii) 

microbially-associated factors such as LPS induce inflammation in hepatocytes.

Similar to Qin et al. (2014) who studied the faecal metagenome of liver cirrhosis patients8, 

our data indicate a slight shift of the faecal microbiome in patients with steatosis to one 

more similar to that found in the human small intestine and oral cavity. For example, patients 

with steatosis had fewer Lachnospiraceae and Ruminococcaceae responsible for butyrate 

production and were enriched in Acidaminococcus and Escherichia spp. Bacteroides spp. 

were associated with insulin resistance, concordant with observations from Pedersen et al.

28, who showed Bacteroides vulgatus was one of the main species contributing to insulin 

resistance, and circulating levels of BCAAs in humans28.

In conclusion, this work offers a unique clinical resource and integrated analysis of 

metagenomics with molecular phenomics of hepatic steatosis in non-diabetic obese women 

coupled with experimental validations in cellular and animal models. Not only does our 

work further validate previous studies in humans55, but it also confirms hypotheses 

formulated in rodent models, such as the role of LPS, in which the gut microbiome was 

shown to influence gene pathways involved in the immune system and metabolic disorders 

(i.e., inflammation impacting host metabolism7,35,57). Ultimately, this integrated database 

and modelling approach also suggests new potentially causal mechanisms in hepatic 

steatosis involving BCAA- and AAA-derived metabolites. Our investigations further support 

the view that the molecular crosstalk between the microbiome and its human host is of 

utmost importance for patient health and highlights the need for integrative analyses of 

metagenomes and broad-sense phenomes58,59. Our study establishes a comprehensive 

understanding of the microbial factors affecting human metabolic disease states for precision 

medicine, thereby laying the groundwork for targeted FMT therapies and pharmacotherapies 

to promote hepatic metabolic homeostasis.
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Online Content

Methods, along with any additional Extended Data display items and Source Data, are 

available in the online version of the paper; references unique to these sections appear only 

in the online paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Flowchart showing approach used for the integration of clinical, molecular phenomics 
and metagenomic information and biological validations.
a, Confounder and modifier analysis performed using linear models on the FLORINASH 

clinical markers identified three confounders: age, BMI and country (n = 105). Subsequent 

analyses were performed using partial Spearman’s rank-based correlation (pSRC) 

coefficients adjusted for age, BMI and country and corrected for multiple testing using the 

Benjamini and Hochberg criterion (p-FDR). b, Metagenome-wide and phenome-wide 

association of taxonomic abundance data with clinical markers (n = 56 patients, pSRC, p-

FDR < 0.05). c, Network analysis of hepatic transcriptome (n = 56 patients, pSRC, p-FDR < 

0.05). d, Metabolome-Wide Association Study based on plasma (n = 56) and urine (n = 102, 

pSRC, p-FDR < 0.05) 1H-NMR spectra. e, In vitro and in vivo pre-clinical validation 

protocols. f, Integrative comparison analysis using Rv coefficients (n = 56). g, Predictive 

performance of an O-PLS-DA model integrating all metagenomic and phenomic modalities 
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for prediction of non-alcoholic fatty liver (no hepatic steatosis, score = 0, n = 10 vs. 

steatosis, score > 0, n = 46) in ROC curves. All tests are two-sided.
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Figure 2. Association between liver steatosis, microbial gene richness (MGR) and metagenomic 
data in obese women.
a, Boxplots showing that MGR was significantly anti-correlated with liver steatosis using 

Spearman’s rank-based correlation, adjusted for age, BMI and sex (pSRC, two-sided, n = 

56). b, Heatmap showing the significant correlation of MGR with clinical data (n = 56, 

pSRC, two-sided, p-FDR < 0.05 values shown). c, Heatmap showing the association of 

genus-level abundance data with clinical data. (n = 56, pSRC, two-sided, + p-FDR < 0.05). 

(d-e) Boxplots showing prokaryotic taxa significantly associated with hepatic steatosis. d, 

Prokaryotic taxa significantly anti-correlated with liver steatosis at the phylum and genus 

levels (n = 56, pSRC, two-sided, p-FDR < 0.05, see Supplementary Table S6 for exact and 

BH-adjusted p-values). e, Prokaryotic taxa significantly correlated with liver steatosis at the 

phylum and genus levels (n = 56, pSRC, two-sided, p-FDR < 0.05 see Supplementary Table 

S6 for exact and BH-adjusted p-values). For all panels, n = 56, groups as no liver steatosis = 

10; liver steatosis 1 = 22; liver steatosis 2 = 14; liver steatosis 3 = 10. All boxplots are 

median + interquartile range, error bars are 1.5 times interquartile range.
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Figure 3. Association of metabolomic and transcriptomic data with liver steatosis and microbial 
gene richness (MGR).
(a-b) Metabolome-wide association with steatosis (n = 56, pSRC, two-sided, p-FDR < 0.05, 

See Supplementary Table 7 for exact and BH-adjusted p-values). Boxplots showing plasma 

(a) and urinary (b) metabolites most significantly partially correlated with liver steatosis. (c-

f) Transcriptome-wide association with steatosis and MGR (n=56, pSRC, two-sided, p-FDR 

< 0.05, see Supplementary Table 9-10 for exact and BH-adjusted p-values) c, SPIA evidence 

plot for the 2,277 genes significantly associated with liver steatosis and MGR. The pathways 

above the oblique lines are significant (< 0.2) after Bonferroni correction of the global P 

values (pG, obtained by combining the pPERT and pNDE using the normal inversion 

method, in red) and after a FDR correction of the global P values, pG (in blue). The yellow 

node represents the KEGG pathway ‘Non-alcoholic fatty liver disease (NAFLD) – Homo 

sapiens (human)’; 05222, Small cell lung cancer; 4914, Progesterone-mediated oocyte 
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maturation. d, Enrichr (KEGG pathway) analysis of the hepatic genes significantly 

correlated and anti-correlated with MGR. e, Boxplots showing the ten hepatic genes most 

significantly correlated and anti-correlated with liver steatosis. f, Topological analysis of the 

KEGG networks resulting from hepatic steatosis – MGR intersecting genes showing the 

genes with the highest betweenness centrality43,44 (blue, anti-correlated with steatosis, red 

correlated with steasosis). For all panels, groups are: no liver steatosis = 10; liver steatosis 1 

= 22; liver steatosis 2 = 14; liver steatosis 3 = 10 for all panels. Boxplots are median, with 

interquartile range and 1.5 times interquartile range.
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Figure 4. Transfer of steatotic and metabolic phenotypes to mice through FMT of material from 
patients with liver steatosis grade 3.
a, FMT protocol. b, Hepatic triglycerides in recipient mice (control microbiome, n = 21 and 

steatosis microbiome, n = 23, t test, 2-sided). c, Permutation tests for goodness of fit (R2) 

and prediction (Q2) parameters obtained from a seven-fold cross-validated O-PLS regression 

model quantitatively predicting recipient mouse hepatic lipid accumulation from human 

donor microbiome composition (n = 44). d, Heatmap showing the association between 

human donor microbiota and recipient mouse phenome (n = 44). Predictivity of O-PLS 

models is validated through 10,000 random permutations of the class membership variable 

and assessing the significance of the goodness-of-fit (R2, explained variance) and goodness-

of-prediction (Q2, predicted variance) parameters. The horizontal axis corresponds to the 

correlation between the original class membership (on the right) and the permuted class 

membership (10,000 permutations on the left of the plot). The vertical axis corresponds to 

the R2 (green dots) and Q2 (blue dots) coefficients. Data obtained from FMT protocols 

performed independently with faecal material from three patients with liver steatosis (grade 

3, >66% steatosis) and three control patients (grade 0, <5% steatosis), Data are mean ± 

s.e.m., * p < 0.05.

Hoyles et al. Page 20

Nat Med. Author manuscript; available in PMC 2018 December 25.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Figure 5. Microbial PAA induces liver steatosis and BCAA use in primary human hepatocytes 
and mice.
a, Micrographs of primary human hepatocytes stained with oil Red-O (representative images 

from n = 5 independent batches). b, Quantification of lipid accumulation (n = 5 independent 

batches, two-sided t test). c, LPL expression in hepatocytes. d, FASN expression in 

hepatocytes. e, INSR expression in hepatocytes. f, GLUT2 expression in hepatocytes. g, 

AKT phosphorylation in hepatocytes. h, ACADSB expression in hepatocytes. i, Valine in 

hepatocyte cell medium. j, Leucine in hepatocyte cell medium. k, Isoleucine in hepatocyte 

cell medium (c-k) n = 8 independent batches, two-sided t test. l, Hepatic triglycerides in 

PAA-treated mice (control, n = 10, PAA, n = 7, Mann-Whitney test, one-sided). m, 

Isoleucine in urine from PAA-treated mice (control, n = 10, PAA, n = 7, Mann-Whitney test, 

one-sided). Data are mean ± s.e.m., * p < 0.05, ** p < 0.01, *** p < 0.001. Abbreviations: 

CTRL, control group; PAA, phenylacetic acid treatment group; PA, palmitic acid treatment 

group; PA+PAA, palmitic acid and phenylacetic acid treatment group.
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Figure 6. Phenome-wide crosstalk and predictive modelling.
a, Metagenome–phenome matrix correlation network computed for the patients with 

matching metagenomic and phenomic profiles (n = 56) using the modified Rv correlation 

matrix coefficient. Each phenomic table corresponds to a node and edges represent the 

relationships between tables, i.e., the per cent of shared information, derived from the Rv2 

matrix correlation coefficient corresponding to the proportion of variance shared by the two 

tables – which like a squared Pearson’s correlation coefficient (r2) – corresponds to the 

proportion of explained variance between two variables. b, Discriminative power of a 

supervised multivariate model (OPLS-DA) fitted with patients with matching metagenomic 

and phenomic profiles (n = 56) to predict new samples, using random permutation testing 

(10,000 iterations). (c-d), Performance of classification of liver steatosis status (n = 10, vs. 

others, n = 46) based on clinical data (c) or matching molecular phenomic and gut 

metagenomic profiles (d). ROC curves (mean + 95% confidence interval) were obtained for 
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the cross-validated model predictions derived from the O-PLS-DA model, reaching an AUC 

of 87.07%, corresponding to the successful prediction rate. Groups for all panels are: no 

steatosis (grade 0), n = 10; steatosis (grades 1-3), n = 46. Data are mean ± pointwise 

confidence bounds.
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