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Abstract Phenotyping of 1,200 ‘healthy’ adults from the

UK has been performed through the investigation of

diverse classes of hydrophilic and lipophilic metabolites

present in serum by applying a series of chromatography–

mass spectrometry platforms. These data were made robust

to instrumental drift by numerical correction; this was

prerequisite to allow detection of subtle metabolic differ-

ences. The variation in observed metabolite relative

concentrations between the 1,200 subjects ranged from less

than 5 % to more than 200 %. Variations in metabolites

could be related to differences in gender, age, BMI, blood

pressure, and smoking. Investigations suggest that a sample

size of 600 subjects is both necessary and sufficient for

robust analysis of these data. Overall, this is a large scale

and non-targeted chromatographic MS-based metabolo-

mics study, using samples from over 1,000 individuals, to

provide a comprehensive measurement of their serum

metabolomes. This work provides an important baseline or

reference dataset for understanding the ‘normal’ relative

concentrations and variation in the human serum metabo-

lome. These may be related to our increasing knowledge of
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the human metabolic network map. Information on the

Husermet study is available at http://www.husermet.org/.

Importantly, all of the data are made freely available at

MetaboLights (http://www.ebi.ac.uk/metabolights/).

Keywords Human serum � Metabolic phenotyping � UK

population � Mass spectrometry � Clinical biochemistry

1 Introduction

The biochemical composition of human cells, tissues and

biofluids is highly complex, and their integrative and

dynamic interactions (termed the interactome) defines

function and phenotype (Vidal et al. 2011). Of these bio-

chemicals, small molecule metabolites are involved in

many important processes, from acting as the building

blocks for larger biochemicals and structures, in regulation

of biochemical processes, and within metabolism to gen-

erate essential cellular components (Dunn et al. 2011). The

quantitative collection of metabolites in a biological system

is defined as the metabolome (Oliver et al. 1998), with

sample-specific metabolomes differing in composition both

qualitatively and quantitatively. For fundamental reasons,

the metabolome is expected [e.g. Kell (2004, 2006a, b),

Kell and Westerhoff (1986)] and is indeed found (Ra-

amsdonk et al. 2001), to amplify changes observed in the

transcriptome and proteome. The holistic study of the

quantitative complement of metabolites in humans pro-

vides a sensitive and dynamic snapshot of the human

metabolic phenotype (Dunn et al. 2011) [also referred to as

the metabotype (Gavaghan et al. 2000)]. Knowledge of

variations in metabotype may be applied in disease risk

prediction and diagnosis, in understanding molecular

pathophysiology, in interpreting the influence of our

environment and lifestyle and in the development and

assessment of drug efficacy, toxicity and adverse drug

reactions. Metabolomics thus has an important role to play

in personalized and stratified medicine (Nicholson et al.

2012; van der Greef et al. 2006).

Both genetics and the environment contribute signifi-

cantly to human function and phenotype. Recent studies

have sought to relate the influence of the genetic fingerprint

on metabolism, including through the application of gen-

ome-wide association (GWAS)-metabolomics studies

(Suhre and Gieger 2012; Suhre et al. 2011). These and

other studies have shown the importance of applying

metabolomics, alone or as part of integrated multi-omic

studies to investigate human phenotypes. The use of 1H

NMR spectroscopy to analyse urine samples, collected in

large scale epidemiological studies, has revealed interest-

ing trends between populations and provided new bio-

markers, related for example to blood pressure differences

between individuals and populations (Holmes et al. 2008;

Yap et al. 2010). However, whilst robust and precise, 1H

NMR spectroscopy does not access the whole metabolome

and the use of other metabolite profiling technologies such

as gas chromatography–mass spectrometry (GC–MS) and

ultra performance liquid chromatography–mass spectrom-

etry (UPLC–MS) offer excellent opportunities for

expanding metabolome coverage due to the prior chro-

matographic separation of the many thousands of small

molecules estimated via analysis of the human metabolic

network (Kell and Goodacre 2014; Thiele et al. 2013) to be
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in the human metabolome, followed by sensitive MS-based

detection. A small scale study to characterize the human

serum metabolome has been performed in\150 subjects

(including quantification of a subset of metabolites). This

study, which employed multiple analytical platforms

highlighted the importance of this strategy to broaden the

coverage of the metabolome and provided the first exper-

imentally-derived serum metabolome database (Psychogios

et al. 2011). However, it is only recently that technological

and methodological advances that compensate for

unavoidable instrumental drift (Begley et al. 2009; Dunn

et al. 2011; Zelena et al. 2009) and provide high quality

data have allowed us to study the large populations and

numbers of metabolites needed (Broadhurst and Kell 2006)

in epidemiological studies with these non-targeted MS-

based techniques. Studies applying targeted assays to study

low hundreds of metabolites have also been reported

(Cheng et al. 2012; Yu et al. 2012).

Here we present data from The Husermet project (http://

www.husermet.org/) which has applied non-targeted

chromatography-mass spectrometry platforms to study the

hydrophilic and lipophilic metabolic complement of serum

samples obtained in a large (n = 1,200) investigation of

the phenotype of a ‘healthy’ UK adult population. This

required the development of substantive methods able to

deal with long-term drift observed in such instrumentation.

Serum samples were collected from normal healthy adults

(that is to say, with no known disease at the time of sam-

pling) of between 19 and 81 years of age over a 4-year

period. We describe the variations and the influence of age,

gender, BMI, blood pressure and smoking on the human

serum metabolome, and the correlation of clinical chem-

istry measures with hydrophilic and lipophilic metabolites.

2 Results and discussion

2.1 Metabolic phenotyping of 1,200 subjects

from a UK population

More than 3,000 serum samples were collected at three

separate UK locations across a 4-year period, applying the

same standard operating procedure (SOP) at all sites. 1,200

serum samples were selected for a first-pass of data

acquisition. GC–MS and UPLC–MS in positive (UPLC–

MS(?)) and negative ion (UPLC–MS(-)) ion modes were

applied as complementary analytical platforms to profile a

diverse range of hydrophilic and lipophilic metabolites

present in the serum of 1,200 adult subjects from the UK in

the age range of 19–81 years; at the time of sampling all

subjects were defined as ‘healthy’, with no diagnosis of any

disease. Data were acquired across 11 months in 10 dif-

ferent analytical experimental batches; each batch was

composed of a single serum sample from 120 subjects and

analysed across a five-day period. Each batch included the

periodic analysis of a pooled quality control (QC) sample)

to allow analytical variation to be measured quantitatively

within and between these analytical experiments (Dunn

et al. 2012). The same pooled QC sample was applied for

all analytical experimental runs.

Following data pre-processing to construct a robust

dataset, 126, 2178 and 2280 metabolite features were

detected by GC–MS, UPLC–MS(?) and UPLC–MS(-),

respectively; due to multiple adducts/fragments etc. during

electrospray ionisation (Brown et al. 2009) more than

1,500 metabolites are estimated as being detected. All of

these metabolites were detected reproducibly across all

analytical experimental batches in a periodically analysed

(every 5th injection) single pooled QC sample; this quan-

tifies the variation introduced by sample preparation, data

acquisition and data pre-processing. The criterion applied

to define reproducible detection was relative standard

deviation (RSD) less than 20 % for UPLC–MS and RSD

less than 30 % for GC–MS, calculated after signal cor-

rection [see Dunn et al. (2011)]. Classes of metabolites

detected included amino acids (GC–MS), organic acids

(GC–MS), carbohydrates (GC–MS), fatty acids (GC–MS

and UPLC–MS), peptides (UPLC–MS), acyl glycerides

(UPLC–MS), sphingolipids (UPLC–MS), steroids includ-

ing vitamin D metabolites (UPLC–MS) and glycerophos-

pholipids (UPLC–MS), representing a diverse set of

metabolic pathways and regulatory processes. This allowed

many different areas of metabolism and biological function

to be investigated simultaneously, so as to identify their

importance with regard to the human ‘healthy’ population

phenotype. This approach is in contrast to targeted studies

that focus on small segments of metabolism or just a few

metabolite classes. Additionally, a variety of exogenous

metabolites were also detected including drugs and their

metabolic products (e.g. paracetamol, (acetaminophen)).

By applying linear discriminant analysis, we concluded

that no metabolic differences were observed that could be

related to time differences in acquiring the analytical data

(see Supplementary Fig. 1), showing for the first time that

a metabolome-wide study of large sample sets derived

from the human population could be profiled reproducibly

via chromatography-mass spectrometry platforms over a

period of 11 months. A range of standard clinical chem-

istry measurements was also performed for all 1,200 sub-

jects (23 assays in total including lipids (LDLC, CHOL,

HDLC, TRIG), enzyme concentrations (PLT, ALK, AST,

ALT, GGT, ALP, LDH), metabolites (glucose, creatinine,

urea), ions (Ca, K, Na, phosphate), blood components

(WBC, RBC, HAEM, TBIL) and total protein and albu-

min) and provided the ability to relate changes in these

assays applied in routine clinical use to metabolic pathways
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and associated mechanisms. All metabolite data and asso-

ciated demographic/clinical metadata are available at the

publically available metabolomics data repository Metab-

oLights (http://www.ebi.ac.uk/metabolights/; study identi-

fier MTBLS97). The clinical characteristics of the cohort

discussed here are provided in Table 1.

2.2 Variability in relative metabolite concentrations

The relative concentrations of metabolites were investi-

gated to derive the cumulative variation associated with

background/baseline genetic and environmental influences.

The distribution of variation associated with inter-subject

variability [as calculated as the relative standard deviation

(RSD)] for all 1,200 subjects following signal correction) is

shown in Fig. 1. The distribution is skewed to lower RSD

values; one interpretation of this is that the serum metab-

olome is comparatively tightly regulated in ‘‘healthy’’

populations (i.e., subjects with no diagnosed disease at the

time of sampling). This could reasonably be expected, with

a greater variation observed in the human urine metabo-

lome (Bouatra et al. 2013), a biofluid composed of

metabolites that are being excreted from the body. Of

course, if the inter-subject variability is equivalent to the

technical variability measured by replicate analysis of the

same quality control (QC) sample then the metabolite

feature contains no biological information. For GC–MS,

UPLC–MS(?) and UPLC–MS(-), respectively, 7 of 126,

71 of 2,181 and 42 of 2,283 metabolic features were

observed to have an inter-subject RSD/QC RSD\1.5; thus

the overwhelming majority of metabolite features reported

contain biological information and those metabolite fea-

tures with a value less than 1.5 were removed from further

analyses.

In this distribution (see Fig. 1), those metabolites

showing a high variability between subjects describe inter-

subject variability which is likely to be caused by envi-

ronmental and genetic variation. Caffeine showed an RSD

greater than 200 % and salicylic acid, probably derived as

a result of aspirin use but possibly also via tobacco, had an

RSD[800 %, whilst N-methylpyrrolidinine (used in the

formulation of drug vehicles) had an RSD of 550 %; such

analytes thus show variation related to consumption of

pharmaceutical drugs and/or specific food components.

Trehalose varied by greater than 200 %, suggesting sig-

nificant variation in glucose usage and storage properties,

albeit trehalose is also used as a food additive. Tetra-

decanoic, hexadecenoic and eicosanoic acids all had vari-

ances greater than 100 %. Oxidised longer chain fatty acids

and acyl carnitines also showed higher variations—poten-

tially a sign of oxidative stress or changes in energy pro-

duction in the body. Glycerophosphoethanolamines and a

small peptide (c-glutamyl-L-isoleucine or c-glutamyl-L-

leucine) also show high variation. By contrast, the aromatic

amino acids (tryptophan, phenylalanine and tyrosine) all

showed a low degree of inter-subject variability.

2.3 Metabolite-metabolite correlations

Metabolites do not operate in isolation but through a

complex network of interactions, with metabolism being

one network, though other networks are observed in bio-

logical systems (Camacho et al. 2005), especially through

correlation of non-neighbour metabolites indicating their

involvement in regulatory pathways [see e.g. Kotze et al.

(2013)]. We note also that as reported in Camacho et al.

(2005) without clear metabolite linkage, correlations

should be treated with caution as correlation does not

necessarily equate to causation. To highlight these complex

networks we illustrate the 20 metabolites for GC–MS that

show the highest pairwise Pearson’s correlations. Where a

metabolite was detected as more than one ‘metabolic fea-

ture’, only one ‘feature’ has been included in Fig. 2, the

feature with the higher correlation coefficient. The data

show the expected correlations between leucine and valine

(both involved in branched chain amino acid metabolism)

and between different fatty acids and glycerol (related to

glycerolipid and glycerophospholipid metabolism). How-

ever, and unexpectedly, proline was also correlated with

leucine and valine, and phosphate with fatty acids.

Table 1 Clinical characteristics of the cohort studied defining med-

ian and inter-quartile range

Characteristic

Gender (male:female) 701:490a

Age (median, IQR) 48.0 (40.0,60.0)b

BMI (median, IQR) 25.63 (23.20,28.71)b

Smokers (non:ex:current) 502:163:176c

SBP (median, IQR), mmHg 125 (115,137)d

DBP (median, IQR), mmHg 76 (70,83)d

GLUC (median, IQR), mmol L-1 4.71 (4.20,5.30)e

CHOL (median, IQR), mmol L-1 5.10 (4.30,5.80)f

TRIG (median, IQR), mmol L-1 1.18 (0.80,1.80)g

HDLC (median, IQR), mmol L-1 1.26 (1.00,1.50)h

LDLC (median, IQR), mmol L-1 3.2 (2.54,3.77)i

a Data not available for 8 subjects
b Data not available for 4 subjects
c Data not available for 355 subjects
d Data not available for 179 subjects
e Data not available for 175 subjects
f Data not available for 262 subjects
g Data not available for 326 subjects
h Data not available for 347 subjects
i Data not available for 360 subjects
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Assessing the UPLC–MS data (Supplementary Fig. 2) we

detected expected correlations between fatty acids and

oxidized fatty acids, between different sphingolipids,

between fatty acids and sphingolipids, between different

lyso-glycerophospholipids, between different diacylglyce-

rides and between diacylglycerides and sphingolipids.

2.4 The effect of sample size

It is becoming increasingly evident that many biological

studies are underpowered with regard to their ability to

come to a robust and statistically significant and justifiable

biological conclusion (Broadhurst and Kell 2006; Button

et al. 2013; Dunn et al. 2011; Dunn et al. 2012; Ioannidis

2005; Ioannidis and Panagiotou 2011). It is obvious that

sample size in metabolomic studies is an important aspect

of experimental design, especially in terms of applying

metabolites as predictive biomarkers. Although these

issues have been addressed in theory [see Xia et al. (2013)

for a detailed discussion], to our knowledge, no previous

large-scale studies have assessed the influence of sample

size. Thus, we studied the effect of sample size in terms of

the prediction power of classification and the consistency

of feature selection. The experimental design was to divide

the whole sample population into several subsets for clas-

sification and feature selection. The results of these subsets

Fig. 1 The distribution of relative standard deviations defining the

inter-subject variability in metabolite relative concentrations for each

analytical platform applied, following signal correction. The data are

shown as distribution plots. Top plot GC–MS, middle plot UPLC–

MS(-), bottom plot UPLC–MS(?)

Molecular phenotyping of a UK population 13
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are used to select the smallest subset which has an

acceptable performance, comparing this with the whole

sample population in both classification and feature selec-

tion. Three groups, viz. age, gender and BMI for the three

analytical platforms, have been used to evaluate the effects

of sample size. Sample size is defined as the sum of sam-

ples in both classes in a binary classification and in this

study the number of samples in each class was not equiv-

alent (see Supplementary Table 1). In an ideal study the

number of samples in each class would be balanced. Fig-

ure 3 shows the prediction accuracy using Random Forests

(RF) with a 95 % confidence interval in the three groups

(age, gender and BMI) for UPLC–MS positive ion mode.

At low sample sizes the prediction accuracy was variable,

but as the sample size was increased the median accuracy

also increased with concomitant decrease in variation.

These data showed that a sample size of 600 was appro-

priate to achieve similar results to those of the whole

sample population with the current dataset where we are

looking for general (i.e. not disease-specific) changes and

where the variation is expected to be lower than that for the

comparison of two populations such as ones that are

‘healthy’ and ‘diseased’. A previous study based on NMR

data has shown that sample sizes of low thousands of

subjects offer sufficient statistical precision to detect bio-

markers quantifying predisposition to disease, a different

assessment to the one we have performed above (Nicholson

et al. 2011). We emphasise that this highlights the

requirement to include hundreds of samples in these types

of studies but does not suggest that a sample size of 600 is

appropriate for all studies [for detailed discussions on this

subject see Xia et al. (2013)]. However, the trends observed

for all analytical platforms suggested a higher sample size

would still slightly increase the prediction accuracy. The

same trends were also seen with UPLC–MS(-) as well as

for GC–MS. Classification results with RF and Support

Vector Machine (SVM) classifiers for all three platforms

and the effects of sample size on feature selection are

shown in Supplementary Figs. 3 and 4.

2.5 Metabolic characteristics of this UK population

Metabolic characteristics of this subset of the UK popula-

tion are discussed below. Results of data analysis per-

formed applying consensus feature selection as described

in the methods section and associated with the discussions

Fig. 2 Heatmap with

dendrogram of correlation

network for metabolites

detected by GC–MS. The

twenty unique metabolites with

one or more of the highest

correlations are depicted. The

lower bar represents the colour

code of coefficients from

pairwise Pearson’s correlations

(Color figure online)
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related to gender, age, BMI, blood pressure and smoking

are available. The results of two-way analysis of variance

(ANOVA) and their post hoc analysis by Tukey’s HSD

(‘‘honestly significant difference’’) test are available and

are summarized, where appropriate, below. All data ana-

lysis results are available in supplementary material files

2–4. Where no results for two-way ANOVA are included,

metabolites have been defined as biologically important by

applying consensus feature selection protocol, but two-way

ANOVA has shown no statistical significance with a

‘critical’ p\ 0.05 [cf. Broadhurst and Kell (2006)]. Simi-

larly interactions between main effects are only discussed

if significant.

2.6 Gender

Two-way ANOVA was performed using Gender (male,

female) and Age (four grouped categories: \40, 40–49,

50–64 and[64 years) as the main effects. Many differences

in the serum metabolome were observed when comparing

the metabolic profiles of males and females. A number of

these had been observed previously highlighting the

robustness of our study; these included 4-hydroxyphenyl-

lactic acid [F(1,1123) = 245.1, p = 3.9 9 10-50], creati-

nine, citrate, urate [F(1,1092) = 512.3, p = 2.6 9 10-93],

glycerol [F(1,1081) = 93.7, p = 2.6 9 10-21], hexadece-

noic acid [F(1,1097) = 62.8, p = 5.5 9 10-15] and

tyrosine (Kochhar et al. 2006; Lawton et al. 2008; Slupsky

et al. 2007). For glycerol, there was also a significant dif-

ference between age categories [F(3,1081) = 3.1, p =

1.1 9 10-12]. Tukey post hoc test showed that, independent

of gender, comparisons of age categories\40 vs. 40–49

(p = 0.0005),\40 vs. 50–64 (p = 9.1 9 10-12),\40 vs.

65–81 (p = 1.8 9 10-8), 40–49 vs. 50–64 (p = 0.004) and

40–49 vs. 65–81 (p = 0.03) were significant using a critical

p value of 0.05. There was also a significant interaction

between gender and age categories for urate [F(3,1092) =

4.8, p = 0.002], glycerol [F(3,1081) = 2.8, p = 0.039] and

hexadecenoic acid [F(3,1097) = 4.7, p = 0.003]. In our

study, 4-hydroxyphenyllactic acid was found to be higher

and tyrosine lower in males. Both of these metabolites are

structurally related and these differences may reflect differ-

ences in gut microfloral co-metabolism, or the effects of

alcohol consumption (Liebich and Pickert 1985). However,

we observed a multitude of other robust changes related to

gender also. Eight diacylglycerides were observed to be

higher in relative concentration in the serum of women

compared to men including DG(44:6) [F(1,808) = 276.5,

p = 1.3 9 10-53] and DG(46:2) [F(1,848) = 206.1,

p = 5.3 9 10-42]). For DG(46:2) there was also a signifi-

cant difference between age categories [F(3,848) = 5.8,

p = 0.0006] and a significant interaction between gender

and age categories [F(3,848) = 7.5, p = 6.0 9 10-5]. Tu-

key post hoc test showed that, independent of gender, com-

parisons of age categories\40 vs. 65–81 (p = 0.002) and

50–64 vs. 65–81 (p = 0.0009) were significant using a

critical p-value of 0.05. Four fatty acids (for example,

hexadecenoic acid as shown above) and thirteen glycero-

phospholipids (for example, PC(36:2) [F(1,1103) = 224.8,

p = 2.2 9 10-46]) showed the same trend as diacylglyce-

rides. PC(36:2) also showed a significant difference between

age categories [F(3,1103) = 3.4, p = 0.02] and a signifi-

cant interaction between gender and age categories

[F(3,1103) = 4.5, p = 0.004]. Tukey post hoc test showed

that, independent of gender, comparisons of age categories

\40 vs. 40–49 (p = 0.02) was significant using a critical

p-value of 0.05. Serum creatinine relative concentrations

were observed to be higher in females than males and, when

integrated with higher phosphate levels, might suggest

greater breakdown of creatine phosphate in muscles in

females. Caffeine relative concentrations were higher in

women [F(1,847) = 38.3, p = 9.6 9 10-10] perhaps

reflecting coffee/tea/chocolate consumption, as was 2-ami-

nomalonic acid [F(1,1048) =

87.6, p = 4.8 9 10-20] which has been associated with

atherosclerotic plaques (Rupérez et al. 2012) and renal fail-

ure (Mao et al. 2008). For caffeine [F(3,847) = 9.3,

p = 5.0 9 10-6] and 2-aminomalonic acid [F(3,1048) =

3.6, p = 0.01] there was also a significant difference

between age categories and a significant interaction between

Fig. 3 Classification analysis to assess sample size effects. The

accuracy rate of discrimination with 95 % confidence intervals for

data acquired applying UPLC–MS(?) for the three parameters of age

(age\50 vs. age[65), BMI (BMI\25 vs. BMI[30) and gender

(male vs. female). A Random Forest (RF) classifier was employed and

100 bootstrap sample sets were used for the assessment of classifi-

cation accuracy
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gender and age categories for caffeine [F(3,847) = 6.3,

p = 0.0003] and 2-aminomalonic acid [F(3,1048) = 24.3,

p = 3.5 9 10-15]. Tukey post hoc test for caffeine showed

that, independent of gender, comparisons of age categories

\40 vs. 40–49 (p = 8.2 9 10-5), \40 vs. 50–64

(p = 0.0002) and\40 vs. 65–81 (p = 1.4 9 10-5) were

significant using a critical p-value of 0.05. Tukey post hoc

test for 2-aminomalonic acid showed that, independent of

gender, comparisons of age categories \40 vs. 50–64

(p = 0.03) and 40–49 vs. 50–64 (p = 0.03) were significant

using a critical p-value of 0.05. Three glycerol-like metab-

olites (glyceric acid [F(1,1107) = 9.1, p = 0.003], glycerol

[F(1,1081) = 93.7, p = 2.6 9 10-21] and glycerol-3-

phosphate [F(1,1127) = 11.8, p = 0.0006]) were present in

greater amounts in the serum of women compared to men,

suggesting differences in glycerol metabolism and poten-

tially related to differences in the rate of glycerolipid and

glycerophospholipid synthesis. For glycerol [F(3,1081) =

20.1, p = 1.1 9 10-12] and glyceric acid [F(3,1107) = 6.8,

p = 0.0001] there was also a significant difference between

age categories. There was also a significant interaction

between gender and age categories for glycerol

[F(3,1081) = 2.8, p = 0.04] and glycerol-3-phosphate

[F(3,1127) = 8.7, p = 1.1 9 10-5]. Tukey post hoc tests

showed that, independent of gender, comparisons of age

categories for glycerol [\40 vs. 40–49 (p = 0.0005),\40 vs.

50–64 (p = 9.1 9 10-12), \40 vs. 65–81 (p = 1.8 9

10-8), 40–49 vs. 50–64 (p = 0.004) and 40–49 vs. 65–81

(p = 0.03)], glycerol-3-phosphate [\40 vs. 50–64

(p = 0.04)] and glyceric acid [\40 vs. 40–49 (p = 0.006),

\40 vs. 50–64 (p = 0.0002),\40 vs. 65–81 (p = 0.005)]

were significant using a critical p-value of 0.05. Methionine

sulfoxide, also present in greater amounts in the serum of

women [F(1,901) = 20.3, p = 7.7 9 10-6], is an oxidation

product of methionine and is considered to be a marker of

oxidative stress (Bachi et al. 2013) (Fig. 4). Other gender-

specific changes in themetabolome as a function of age, BMI

and BP were also observed and are discussed below.

2.7 Age

We assessed age-related changes through the comparison

of all subjects below the age of 50 years with all subjects

older than 64 years. Two-way ANOVA was performed

using Gender and Age (two categories: \50 years, and

[64 years) as the main effects. Different classes of

metabolites showed changes related to age, with some

changes not being gender-related and others being specific

to one gender. For example, citric acid showed a general

increase with age for both males and females

[F(1,779) = 79.8, p = 3.1 9 10-18] and therefore is

probably not thus a biomarker for pancreatic cancer (Bathe

et al. 2011); visually the rate of increase was greater in

females than in males (Fig. 5). Citrate has previously been

shown to be related to age, along with other metabolites

also observed in our study. These include serine

[F(1,755) = 6.5, p = 0.011], phosphate, aspartate, eryth-

ritol/threitol [F(1,743) = 171.0, p = 2.6 9 10-35], caf-

feine [F(1,565) = 8.8, p = 0.0032], hexadecenoic acid,

glycerol-3-phosphate, histidine, tryptophan [F(1,778) =

39.1, p = 0.0007], tyrosine [F(1,788) = 39.1, p = 6.8 9

10-10] and threonine [F(1,778) = 3.9, p = 0.05] (Lawton

et al. 2008; Menni et al. 2013). There was a significant

difference between gender categories for serine

[F(1,755) = 7.4, p = 0.007], erythritol/threitol [F(1,743) =

10.5, p = 0.001], caffeine [F(1,565) = 24.3, p = 1.1 9

10-6] and tryptophan [F(1,778) = 55.4, p = 2.6 9 10-13].

There was also a significant interaction between gender

and age categories for caffeine [F(1,565) = 17.6, p =

3.2 9 10-5].

Age-related changes in amino acids were also observed.

These changes included tryptophan [F(1,778) = 11.7,

p = 0.0007]; also showed a significant difference between

gender categories [F(1,778) = 55.4, p = 2.6 9 10-13]

which decreases with age and tyrosine [F(1,788) = 39.1,

p = 6.8 9 10-10] which increases with age (as shown in

Fig. 6), threonine and serine which both decreased with

age and methionine and cysteine [F(1,785) = 16.0,

Fig. 4 A boxplot showing the distribution of methionine sulfoxide

for males and females across different age categories. For each box,

the central line is the median, the edges of the box are the upper and

lower quartiles, the whiskers extend the box by a further

±1.5 9 interquartile range (IQR), and outliers ([1.5 9 IQR) are

plotted as individual points. Data were analysed using 2-way ANOVA

showing a significant difference between males and females,

[F(1,901) = 20.3, p = 7.7 9 10-6]. There was no significant differ-

ence between age categories and no significant interaction between

gender and age categories
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p = 7.1 9 10-5] which also both decreased with age.

Cysteine also showed a significant difference between

gender categories [F(1,785) = 12.9, p = 0.0003] and

showed a significant interaction between gender and age

categories [F(1,785) = 4.8, p = 0.03]. Vitamin D metab-

olites also show decreases with age in both males and

females, and have been related to the onset of the metabolic

syndrome [e.g. Lee et al. (2009), Lu et al. (2009)] and this

observation might argue for the benefits of vitamin sup-

plementation in older people. For example, 24-Hydrox-

ygeminivitamin D3 showed a difference between age

categories [F(1,703) = 52.2, p = 1.3 9 10-12], gender

categories [F(1,703) = 36.8, p = 2.2 9 10-9] and a sig-

nificant interaction between age and gender categories

[F(1,703) = 5.7, p = 0.02]. Different fatty acids showed

either increases or decreases with age (e.g. octadecadienoic

acid increased with age [F(1,763) = 8.6, p = 0.003]), but

no correlation between age and carbon number, nor degree

of saturation, was observed for fatty acids. Erythritol and/

or threitol showed an increase (as shown above) with age

as did inositol [F(1,779) = 151.8, p = 5.5 9 10-32],

which also showed a significant interaction between age

and gender categories [F(1,779) = 11.3, p = 0.0008].

These two changes are consistent with the age-dependent

increases in classes of carbohydrates that underpin diabetic

complications (Brownlee 2001).

2.8 BMI

While gender and age are independent variables, the body

mass index (BMI) is not (although is taken as such for the

purposes of this study where one class is BMI\25 and the

other class is BMI [30). Nonetheless, with obesity

becoming a growing problem in developed and developing

countries, even in children (Friend et al. 2013), the mea-

surement of BMI and its relationship to the serum metab-

olome has become of increasing importance. As is well

known, increased BMI is correlated to increases in body

fat, greater risk of insulin resistance and metabolic disor-

ders including diabetes and cardiovascular diseases [e.g.

Pradhan (2007)]. It should be remembered that BMI is

linked to excess weight and the associated risk of insulin

resistance and metabolic disorders. BMI is not directly

correlated to adiposity as a higher BMI can be related to

excess bone, muscle or fat and does not take into account

the distribution of the latter and its influence on metabolic

diseases. However, BMI provides a readily available sur-

rogate measure of overall body fatness in large-scale

studies and was therefore chosen as an appropriate surro-

gate marker in this study. Two-way ANOVA was per-

formed using BMI (\25 vs.[30) and gender as the main

effects.

In this study a range of amino acids showed either an

increase (cysteine [F(1,690) = 18.8, p = 1.6 9 10-5],

cystine [F(1,686) = 16.9, p = 4.4 9 10-5], glutamine,

tyrosine [F(1,695) = 62.6, p = 9.9 9 10-15], phenylala-

nine [F(1,687) = 28.4, p = 1.4 9 10-7] and valine

[F(1,685) = 32.0, p = 2.2 9 10-8]) or decrease (aspara-

gine [F(1,687) = 12.8, p = 0.0004], histidine, serine

[F(1,670) = 4.1, p = 0.04] and phosphoserine

[F(1,498) = 29.6, p = 8.3 9 10-8]) in relative amounts as

BMI increased in one or both genders. Cysteine

[F(1,690) = 11.6, p = 0.0007], valine [F(1,685) = 53.9,

p = 6.0 9 10-13], serine [F(1,670) = 6.9, p = 0.009] and

phosphoserine [F(1,498) = 6.1, p = 0.01] also showed a

significant difference between gender categories and there

was a significant interaction between gender and BMI

categories for tyrosine [F(1,695) = 4.3, p = 0.04] and

phosphoserine [F(1,498) = 5.7, p = 0.02]. Valine, tyro-

sine and phenylalanine have been strongly linked as early

makers of insulin resistance and markers of risk for the

development of diabetes (Newgard et al. 2009; Wang et al.

2011). Phosphoserine can be associated with cysteine

production, serine metabolism or as a byproduct of protein

degradation. Short-chain organic acids (including acetate

[F(1,645) = 38.4, p = 1.1 9 10-9], 2-aminobutanoic acid

Fig. 5 A boxplot showing the distribution of citric acid for males and

females across different age categories. For each box, the central line

is the median, the edges of the box are the upper and lower quartiles,

the whiskers extend the box by a further ±1.5 9 interquartile range

(IQR), and outliers are plotted as individual points ([1.5 9 IQR).

Data were analysed using 2-way ANOVA. There was a significant

difference between males and females (F(1,779) = 79.8,

p = 3.1 9 10-18). There was no significant difference between age

categories and no significant interaction between gender and age

categories
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[F(1,637) = 8.9, p = 0.003] and 2-aminomalonic acid

[F(1,642) = 57.2, p = 1.4 9 10-13]) showed a decrease in

relative concentration with increasing BMI. 2-Aminoma-

lonic acid also showed a significant difference between

gender categories [F(1,642) = 34.3, p = 7.4 9 10-9].

Four diacylglycerides show a decrease as BMI increased,

for example, DG(44:6) showed a statistically significant

difference applying 2-way ANOVA [F(1,489) = 57.0,

p = 2.1 9 10-13] and also showed a significant difference

between gender categories [F(1,489) = 143.5, p = 3.6 9

10-29]. Five sphingolipids show a decrease as BMI

increased, for example, SM(d18:1/24:1) showed a statisti-

cally significant difference applying 2-way ANOVA

[F(1,518) = 36.0, p = 3.8 9 10-9] and also showed a

significant difference between gender categories

[F(1,518) = 88.5, p = 1.6 9 10-19]. Four lyso-glycer-

ophospholipids show a decrease as BMI increased, for

example, lysoPC(18:2) showed a statistically significant

difference applying 2-way ANOVA [F(1,693) = 88.4,

p = 7.6 9 10-20] and also showed a significant difference

between gender categories [F(1,693) = 27.1, p = 2.6 9

10-7]. Three fatty acids show a decrease as BMI increased,

for example, dodecanoic acid showed a statistically sig-

nificant difference applying 2-way ANOVA [F(1,658) =

20.4, p = 7.4 9 10-6] and also showed a significant dif-

ference between gender categories [F(1,658) = 34.9,

p = 5.7 9 10-9]. Citrate and fructoselysine-3-phosphate

showed female-specific decreases as a function of BMI.

The latter is observed in increased concentrations in tissue

and biofluids of diabetic subjects as an Advanced-Glyca-

tion Endproduct (AGE) (Delpierre and Van Schaftingen

2003). Glycerol [F(1,655) = 43.9, p = 7.1 9 10-11] and

glycerol-3-phosphate showed male-specific increases in

amounts (2-way ANOVA results for comparison of gender

for glycerol was F(1,655) = 91.2, p = 2.6 9 10-20).

Glutamine and glutamate showed an increase and a

decrease respectively and threonine showed a decrease as

BMI increased. Correlation analysis showed that diglyce-

rides, glycerophosphocholines, sphingomylenins, tyrosine,

tyrosyl-arginine and urate also correlated with BMI (Sup-

plementary Fig. 5).

2.9 Blood pressure

Elevated blood pressure (BP) is associated with an

increased risk of cardiovascular diseases [e.g. He and

Whelton (1999)]. In the UK, up to 38 % of the population

is considered hypertensive at one stage or another of their

lives, with a greater prevalence of high blood pressure in

men. Here we found that a range of metabolic classes

in serum were altered in relation to increasing blood

pressure when comparing normal blood pressure (sys-

tolic = 90–120 mmHg) versus hypertension (systolic

[140 mmHg). Two-way ANOVA was performed using

Fig. 6 A boxplot showing the

distribution of tyrosine and

tryptophan for males and

females across different age

categories. For each box, the

central line is the median, the

edges of the box are the upper

and lower quartiles, the

whiskers extend the box by a

further ±1.5 9 interquartile

range (IQR), and outliers are

plotted as individual points

([1.5 9 IQR). Data were

analysed using 2-way ANOVA.

There was a significant

difference across age categories

(\50 years vs.[64 years) for

tryptophan [F(1,778) = 11.7,

p = 0.0007] and tyrosine

[F(1,788) = 39.1,

p = 6.8 9 10-10]. There was a

significant difference across

gender categories for tryptophan

[F(1,788) = 55.4,

p = 2.6 9 10-13]. There was

no significant interaction

between gender and age

categories for tryptophan or

tyrosine
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Blood Pressure (Normal; Hypertension) and Gender as the

main effects.

Methionine sulfoxide was negatively correlated with

BP, in both males and females, and methionine showed an

increase in relative concentration with blood pressure. One

interpretation is that reactive oxygen species that do not

oxidize methionine may damage other tissues, leading to a

range of disorders (Kell 2009).

Multiple amino acids showed changes including a decrease

in cysteine [F(1,589) = 11.5, p = 0.0007] and lysine in both

males and females whilst other changes were gender specific

(e.g., decreased alanine [F(1,567) = 13.3, p = 0.0003] and

increased tryptophan in males only and increased histidine

and decreased threonine in females only). Cysteine also

showed a significant difference between gender categories

[F(1,589) = 10.2, p = 0.001] and there was a significant

interaction between gender and BP categories for cysteine

[F(1,589) = 8.6, p = 0.003]. Lactate relative concentrations

were increased in both genders [F(1,587) = 9.3, p = 0.002]

whilst acetate [F(1,543) = 10.1, p = 0.002] decreased in

females only. Citrulline increased (F(1,592) = 5.7, p = 0.02)

and showed a significant difference between gender catego-

ries [F(1,592) = 3.9, p = 0.05] across both sexes as BP

increased, while erythritol/threitol [F(1,554) = 10.1, p =

0.002] showed a interaction between gender and BP

which was statistically significant [F(1,554) = 5.8, p =

0.02], and erythronic acid/threonic acid decreased in both

genders. Glyceric acid and glycerol-3-phosphate both

increased and sucrose decreased in both males and females.

Other changes included decreases in indole-acetate

[F(1,561) = 9.7, p = 0.002] in males only. Correlation ana-

lysis showed links to elevated BP to urate, triacylglycerides,

dipeptides, glycerophosphocholines and 4-hydroxyphenyl-

lactic acid (Supplementary Fig. 5).

2.10 Smoking

Smoking is an important risk factor in cancer and cardio-

vascular diseases; the metabolic disturbances associated

with smoking can have important roles in the onset and

progression of these diseases. Two-way ANOVA was per-

formed using smoking (non-smoker, ex-smoker, smoker)

and gender as the main effects. Correlation analysis showed

links between smoking status and salicylic acid, assumedly

derived from aspirin and the lifestyle influences on the

metabolic phenotype. Smoking was also correlated with the

two aromatic amino acids tyrosine ([F(2,796) = 3.7,

p = 0.02], Tukey post hoc tests showed that, independent of

gender, comparisons of smoking categorieswere statistically

significant for smokers vs. non-smokers (p = 0.02)) and

tryptophan (elevated in smokers). Tryptophan has been

associated with smoking initiation and nicotine dependence

previously (Wang and Li 2010) and our data show decreases

in the metabolically related indole-acetate and indole-pro-

pionate ([F(2,757) = 1.4, p = 1.3 9 10-5]; indole propio-

nate also showed a significant difference between gender

categories [F(1,757) = 4.7, p = 0.03] and there was a sig-

nificant interaction between gender and BP categories for

indole-propionate [F(2,757) = 6.2, p = 0.002]; Tukey post

hoc tests showed that, independent of gender, comparisons of

smoking categories were statistically significant for smokers

vs. non-smokers (p = 7.7 9 10-6) and smokers vs ex-

smokers (p = 0.04)). Statistical analysis also showed

decreases in other amino acids including aspartate, histidine

and lysine in smokers. Glycerol ([F(2,759) = 3.3,

p = 0.04]; glycerol also showed a significant difference

between gender categories [F(1,759) = 40.8, p = 2.9 9

10-10]; Tukey post hoc tests showed that, independent of

gender, comparisons of smoking categorieswere statistically

significant for smokers vs. non-smokers (p = 0.03)) and

glycerol-3-phosphate were decreased in smokers as were a

number of fatty acids (for example, octadecenoic acid

[F(2,759) = 3.3, p = 0.04]; Tukey post hoc tests showed

that, independent of gender, comparisons of smoking cate-

gories were statistically significant for non-smokers vs. ex-

smokers (p = 0.02)). Lactate [F(2,778) = 3.5, p = 0.03;

Tukey post hoc tests showed that, independent of gender,

comparisons of smoking categories were statistically sig-

nificant for non-smokers vs. smokers (p = 0.03)] and citrate

[F(2,800) = 3.9, p = 0.02; Tukey post hoc tests showed

that, independent of gender, comparisons of smoking cate-

gories were statistically significant for non-smokers vs.

smokers (p = 0.01)] are also decreased in smokers as is

inositol [F(2,784) = 15.7, p = 2.0 9 10-7; Tukey post hoc

tests showed that, independent of gender, comparisons of

smoking categories were statistically significant for non-

smokers vs. smokers (p = 9.2 9 10-8) and for ex-smokers

vs. smokers (p = 0.0006)]. Biotin was decreased in smokers

[F(2,814) = 20.0, p = 3.2 9 10-9; Tukey post hoc tests

showed that, independent of gender, comparisons of smok-

ing categories were statistically significant for non-smokers

vs. smokers (p = 1.3 9 10-9) and for ex-smokers vs.

smokers (p = 0.001)] and this has been shown previously in

women (Sealey et al. 2004). Finally caffeine is present at

lower relative concentrations in smokers [F(2,655) = 8.1,

p = 0.0003; also showed a significant difference between

gender categories [F(1,655) = 32.5, p = 1.8 9 10-8]; Tu-

key post hoc tests showed that, independent of gender,

comparisons of smoking categories were statistically sig-

nificant for smokers vs. non-smokers (p = 0.001) and

smokers vs. ex-smokers (p = 0.0006)] which is unexpected

as there is a logical lifestyle link between coffee drinkers and

smokers; however this may show a change in rates of caf-

feine metabolism in smokers.
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2.11 Correlations between clinical chemistry

and metabolic profiling data

In addition to metabolite profiling, each sample was also

subjected to a panel of conventional clinical chemistry

assays. This was to enable positive and negative correla-

tions (if any) to these standard clinical diagnostics and the

broader metabolic phenotypes to be determined. This

ability to anchor newer methods of volunteer/patient phe-

notyping, in this case metabotyping, with currently used

‘‘best practice’’ represents an important step towards

obtaining wider acceptance of the utility of the metabolite

profiling approach. The results of this for the correlation of

clinical chemistry with GC–MS analysis is illustrated in

Fig. 7 (UPLC–MS correlation in Supplementary Fig. 5).

An obvious area where such correlations would be

expected is across lipid (and particularly cholesterol)

metabolism. As might be expected correlations emerged

from the metabotypes determined here between total cho-

lesterol concentrations in serum and the amounts of

monoglycerides and diglycerides present. There were also

positive correlations between circulating high density

lipoprotein cholesterol (HDLC) and relative concentrations

of fatty acids, diglycerides, phosphotidylcholines, sphin-

gomylenins and triglycerides, although we were unable to

find any correlations for the low density lipoprotein

(LDLC). Triglycerides as determined by standard clinical

chemistry assays were associated with raised di- and

monoglycerides, phosphatidylcholines, sphingomylenins

and urate. As discussed above, there was also a correlation

of diastolic blood pressure with urate, triglycerides and

phosphatidylcholines.

Another set of interesting correlations relating to organ

function was seen when some of the clinical markers for

liver function were examined. For example, amongst a

range of other correlations, both AST and ALT were

associated with relative concentrations of urate and 4-hy-

droxyphenyllactic acid. ALT, in addition, also covaried

with acylglycerides and the PC/PE ratio. As observed

above, systolic blood pressure (SBP) was also associated

with 4-hydroxyphenyllactic acid. Another liver enzyme,

GGT varied with diglycerides, glycerophosphocholines,

Fig. 7 Heatmap with dendrogram of Pearson’s correlation analysis

between metabolites detected by GC–MS and clinical chemistry data.

The arrangement of the clusters are produced by hierarchical clustering

on bothmetabolites and clinical chemistry data. The lower bar represents

the colour code of coefficients from pairwise Pearson’s correlations

between GC–MS data and the clinical chemistry data (Color figure

online)
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urate, tyrosyl-arginine, aspartate and glutamate whilst no

correlations were seen for LDH. In the case of renal

function creatinine and urea concentrations were both

associated with circulating dipeptides and hexanoylglycine,

with creatinine also covarying with phosphatidylcholines,

sphingomylenins, urate, erythritol/threitol and triglycer-

ides. Correlations for many other clinical chemistry

markers, for e.g., serum glucose, with circulating metabo-

lites were also found.

2.12 Concluding statement and future roles for The

Husermet Project

The importance of the Husermet project is that it has

developed the tools and resources to collect and provide

metabolic profiles based on chromatography-mass spec-

trometry for a large human population (Dunn et al. 2011).

This is a vital prerequisite to well-powered studies that can

complement the large-scale but necessarily qualitative

studies of genome sequence variation now appearing. Here

we describe how these have been applied to profile a

sample of the ‘normal’ UK population and for these 1,200

healthy individuals define biologically important metabolic

changes associated with age and gender as well to link

metabolic changes with disease risk factors including BMI,

blood pressure and smoking. It was noteworthy that a

significant number of metabolites known to be associated

with insulin resistance and the metabolic syndrome did

indeed increase with age, indicating the great dangers of a

diabesity epidemic in the UK. Additionally, we have cor-

related metabolic variations with clinical chemistry mea-

surements to indicate metabolic disturbances associated

with differences in these variables. ‘Omics’ measurements

are normally hypothesis-generating rather than hypothesis

testing (Kell and Oliver 2004), although it is always grat-

ifying to be able to reproduce known and published data, as

many examples illustrated above have done.

Most importantly, the Husermet protocol has developed

a dataset made publicly available through MetaboLights

(Haug et al. 2013) so this large resource can be applied

as required by the scientific community. An obvious next

step is the integration of our data with those for the

recently published human metabolic network reconstruc-

tion (Swainston et al. 2013) and the other small molecules

with which it interacts (Kell 2013; Kell et al. 2013).

3 Materials and methods

3.1 Ethics statement

Written informed consent was obtained from each study

participant and the study conformed to the principles set

out in the WMA Declaration of Helsinki and the NIH

Belmont report. The study was approved by the Stockport

Local Research Ethics Committee.

3.2 Sample collection

Following assessment of suitable plasticwares such that

any plasticizers, phthalates etc. were minimal or absent,

serum was collected from 1,200 subjects following

appropriate ethical approval of the study; informed consent

was acquired from all subjects. A range of clinical

parameters were acquired (including age, gender, BMI and

smoking status). No data related to medication or food

intake were collected. Approximately 10 mL of blood was

drawn into serum collection tubes (Greiner, Stonehouse,

UK) and was allowed to clot on ice at 4 �C for a minimum

of 1 h. The serum fraction was separated by centrifugation

(2,5009g, 4 �C, 15 min) and 500 lL volumes were ali-

quoted into separate cryovials (Greiner, Stonehouse, UK).

Serum was processed and frozen at -80 �C within 6 h of

blood collection. All samples were transported to The

University of Manchester on dry ice and stored at -80 �C.

Samples were analysed within 2 years of sample

collection.

3.3 Sample preparation

All samples were prepared according to a SOP as described

previously (Dunn et al. 2011) and will not be described in

detail here. In summary, serum was allowed to thaw on ice

followed by addition of 1,200 lL of methanol and 200 lL

of internal standard solution (0.167 mg mL-1 malonic acid

d2, succinic acid d4, glycine d5, citric acid d4, D-fructose
13C6, L-tryptophan d5, L-lysine d4, L-alanine d7, stearic acid

d35, benzoic acid d5 and octanoic acid d15) to 400 lL of

serum. The sample was vortex mixed and following cen-

trifugation, four 370 lL aliquots were transferred to sepa-

rate tubes and dried in a centrifugal vacuum evaporator for

18 h. Quality control (QC) samples were prepared applying

a pooled serum sample (Sigma-Aldrich; S7023) as descri-

bed above.

3.4 Data acquisition

Data were acquired on three analytical platforms (UPLC–

MS positive and negative ion modes and GC–MS)

according to a SOP as described previously (Dunn et al.

2011) and will not be described in detail here. Samples for

UPLC–MS analysis were reconstituted in 100 or 200 lL of

water for negative and positive ion modes, respectively and

analysed applying reversed-phase UPLC–MS (Waters

Acquity UPLC coupled to a Waters LCT mass spectrom-

eter) with a 22 (positive ion mode) or 24 (negative ion
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mode) minute analysis time. 10 QC samples were analysed

at the start of each analytical batch to condition the ana-

lytical system and a QC sample was analysed every 5th

injection. Samples for GC–MS analysis were prepared

applying a two-stage chemical derivatisation procedure

(oximation followed by trimethylsilylation) and followed

by analysis applying an electron ionisation GC-ToF–MS

system (Agilent 6890 N GC coupled to a LECO Pegasus

III mass spectrometer). For GC-ToF–MS, 5 QC samples

were analysed at the start of each analytical batch to con-

dition the analytical system and a QC sample was analysed

every 5th injection. Samples from 1,200 subjects were

analysed in 10 different analytical experimental batches,

with 120 subject samples analysed in each batch and each

batch consisting of analysis across a five day period. Two

experimental runs consisting of 60 subjects in each run was

operated for UPLC–MS and four experimental runs con-

sisting of 30 subjects in each run was operated for GC–MS.

Each batch of 120 subjects was prepared such that it con-

tained a near-random selection of subjects according to the

traits in which we are interested (viz. age, gender, BMI,

blood pressure, smoking); this was to ensure that any failed

batch would not compromise the overall study.

3.5 Data pre-processing

Data were pre-processed and integrated according to a SOP

as described previously (Dunn et al. 2011). UPLC–MS data

were converted from the raw instrument datafile to Net-

CDF files and subsequently XCMS was applied for peak

deconvolution and alignment separately for each analytical

batch. Due to the untargeted nature of the UPLC–MS

analysis, the number and identity of common peaks

detected in each batch differed considerably. Thus, each of

the 20 batched XCMS chromatographic peak-area data

matrices consisted of Nb metabolite features (where

b = 1…20; with Nb associated m/z and retention

times) 9 85 samples (60 subjects plus 25 integrated QC

samples). GC–MS data were deconvolved and matched to a

reference database of 259 metabolites applying ChromaTof

(Leco) separately for each analytical batch. This produced

20 chromatographic peak-area data matrices of 259

metabolite features (with associated EI-MS spectrum and

retention index) 9 80 samples (60 subjects plus 20 inte-

grated QC samples). If a given metabolite was not detected

in a given batch then the associated matrix element was

replaced with a missing value (NaN; not-a-number).

3.6 Quality assurance, signal correction, batch

integration and metabolite identification

For both the GC-Tof–MS and UPLC–MS instrumentation,

analytical reproducibility had to be assessed robustly to

ensure that data were of comparable high quality within

and between analytical batches. The use of periodic ana-

lysis of a standard, biologically identical, QC sample

within and across all batches, and subsequent statistical

assessment of individual peak area variation within and

between batches is now highly recommended as a standard

quality assurance strategy in metabolite profiling (Dunn

et al. 2012). Following preliminary studies (for example,

Begley et al. 2009) it has been determined that a tolerance

of 20 % RSD for UPLC–MS and 30 % RSD for GC-Tof–

MS are acceptable guidelines. Peaks that did not meet

acceptable quality thresholds were removed prior to further

data analysis. For this study each of the 20 batches was

assessed individually, and then data for peaks of high

quality were matched across batches. Additionally, it has

been shown that for both GC-Tof–MS and UPLC–MS

instrumentation there is time dependent non-linear peak

area attenuation for many detected metabolite features

within a given batch (Begley et al. 2009; Zelena et al.

2009). This problem is compounded with the use of mul-

tiple batches, where step changes in instrument sensitivity

may be expected. As a pre-processing countermeasure

against these phenomena each metabolite feature of a given

experimental batch, after XCMS deconvolution, was nor-

malised to the QC sample using robust Locally Weighted

Scatterplot Smoothing (LOESS) signal correction (QC-

RLSC). Here LOESS was performed on the QC data with

respect to the order of injection. A cubic spline correction

curve for the whole analytical run was then interpolated, to

which the total data set for that peak was normalized.

Using this procedure any attenuation of peak response over

an analytical run (i.e. confounding factor due to injection

order) was minimized, whilst robustly avoiding fitting the

correction curve to random measurement error. Normaliz-

ing to the QC correction curve also allowed simple data

concatenation of high-quality metabolite features across

multiple batches. Once combined into a single multi-batch

data matrix, each metabolite feature was un-normalized

using the overall estimation of expected QC peak area (in

this case the median peak area across all batches). Com-

prehensive details of the quality assurance, signal correc-

tion, and batch integration have been described previously

(Dunn et al. 2011). For this study a total of 259, 7813 and

7914 unique metabolic features were present in the raw

data for GC–MS, UPLC–MS? and UPLC–MS- respec-

tively. After signal correction, quality assurance, and batch

integration there were 126, 2181 and 2283 metabolite

features available for further statistical analysis. Each of

these features was present in a minimum of 80 % of the

samples analyzed. Identification and annotation of metab-

olites was performed as described previously (Dunn et al.

2011). For UPLC–MS data, the accurate measurement of

m/z followed by grouping of different metabolite features
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based on retention time similarity, response correlation and

expected m/z differences and the matching of the defined

molecular formula for each group of features to those

present in a revised MMD database was performed (Brown

et al. 2011). For UPLC–MS all metabolite identifications

are reported as level 2 (metabolite reported) or level 4 (no

metabolite reported) according to the recommendations of

the Chemical Analysis Group of the Metabolomics Stan-

dards Initiative (MSI) (Sumner et al. 2007). For GC–MS,

the electron impact (EI) mass spectrum and retention index

were compared to either an in-house EI mass spectral

library constructed with authentic chemical standards or

other available EI mass spectral libraries (NIST05, Golm

Metabolome Database (Kopka et al. 2005)). For GC–MS

all metabolites are either identified (MSI level 1; if mat-

ched to a metabolite in the in-house library which was

constructed applying the same analytical conditions),

annotated (MSI level 2; mass spectrum matched to NIST05

or Golm Metabolome Database) or unidentified (MSI level

4).

3.7 Data availability

All metabolite data and associated demographic/clinical

metadata are available at the publically available meta-

bolomics data repository MetaboLights (http://www.ebi.ac.

uk/metabolights/; study identifier MTBLS97).

3.8 Data analysis

All data analysis follows MSI reporting guidelines

(Goodacre et al. 2007). The data from each platform was

integrated into single data matrix of 1,187 subjects by

4,261 metabolite features. There were a maximum of 20 %

missing values for each metabolite feature and missing

values were imputed using the mean value for a given

metabolite feature for all subjects. Before statistical ana-

lysis each metabolite feature was autoscaled (normalized to

unit variance). Initially, for each metabolite feature in turn,

the distributions of the classification groups in a given

clinical hypothesis (Age; Gender; BMI; Blood Pressure;

Smoking) were compared using either the non-parametric

Mann–Whitney U test, or Kruskal–Wallis test, depending

on the number of groups in the comparison. Additionally,

2-way ANOVA was performed to investigate interactions

between clinical variables with respect to metabolite rela-

tive concentrations. For all reported 2-way ANOVA results

data normality (approximate) was checked, and assured,

using Q–Q plots (data not shown).

In order to reduce the high dimensional data set down to

a manageable, size a consensus feature selection protocol

was implemented for each clinical hypothesis. In this

protocol three modeling techniques were utilized: (1) Non-

parametric univariate hypothesis testing (as described

above), (2) Random Forests (RF) (Breiman 2001) and (3)

Partial Least Squares Discriminant Analysis (PLS-DA)

(Wold et al. 2001). For a given classification problem, and

associated data set, each of these modeling techniques

provided a ranked list of metabolite features in order of

importance. In order to avoid model over-fitting, and pos-

sible false discovery, bootstrap resampling was performed

for each modeling technique (Efron and Tibshirani 1993).

For both classification and feature selection, 100 bootstrap

resamplings (with replacement) were made. The resulting

ranked lists of features were averaged using the Borda

count consensus voting system (Dwork 2001), resulting in

a single aggregated ranked list of metabolite importance.

The optimal subset of metabolites for each clinical

hypothesis was then found from this rank list using forward

selection remodeling. Starting with the most important

feature, and adding the next important feature one at a

time, a series of classification models were built and

associated classification accuracy tested (Cho et al. 2004).

The optimal number of metabolite features was at the

inflection point in the curve of classification accuracy

versus the number of features. On average, across all the

clinical hypotheses tested, the inflection point was found at

30 metabolite features with accuracy slightly above 75 %,

shown in Supplementary Fig. 6. Therefore we used 30

metabolite features found in GC–MS, positive UPLC–MS

and negative UPLC–MS for further annotation analysis in

this study. To assess the effectiveness of the feature

selection, we applied two classifiers, Random Forest (RF)

and Support Vector Machines (SVM) (Cristianini and

Shawe-Taylor 2000) to discriminate the categorical groups:

age (age\50 and age[65), BMI (BMI\25 and BMI[30)

and gender (male and female). A bootstrap re-sampling

method was employed to evaluate the performances of the

two classifiers. The results shown in Supplementary Fig. 7

reveal that the discrimination with feature selection is

much better than those without feature selection, especially

for both positive and negative LC-MS data sets.

All annotated metabolites were analysed further by

Pearson correlation analysis. We applied two correlation

analyses, one between identified metabolite pairs and

another between identified metabolites and clinical chem-

istry data. To visualise the correlation results, we used a

heatmap of correlation coefficients. We also applied a

hierarchical clustering technique to re-order the correlation

coefficients in the heatmap, to highlight the relationship

between the variables used.

For large-scale studies of the human population sample

size is very important and we therefore studied sample size

effects in both classification and feature selection. Select-

ing sample size ranges varying from 50 to 650 (in steps of

50), we again classified three groups on the basis of age,
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BMI and gender for three analytical platforms by two

classifiers, viz. RF and SVM with 100 bootstrap sample

sets. Using the same sample size ranges as for classifica-

tion, the feature selections were performed using three

methods: Wilcoxon test, RF and PLS, combined with a

bootstrap re-sampling technique. To examine sample size

effects for feature selection, we used correlation analysis to

validate the consistency of feature selection on the sample

subsets with sample size changing from 50 to 650. The

correlation analysis was performed on the aggregated full

ranking lists obtained from the three feature selections.
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