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ABSTRACT 
 

Gold nanoparticles have received much attention due to their potential diagnostic and therapeutic applications. Gold 

nanoparticles are attractive in many biomedical applications because of their biocompatibility, easily modifiable 

surfaces for targeting, lack of heavy metal toxicity, wide range of sizes (35−100 nm), tunable plasmonic resonance 

peak, encapsulated site-specific drug delivery, and strong optical absorption in the near-infrared regime. Specifically, 

due to their strong optical absorption, gold nanoparticles have been used as a contrast agent for molecular photoacoustic 

(PA) imaging of tumor. The plasmonic resonance peak of the gold nanocages (AuNCs) was tuned to the near-infrared 

region, and the ratio of the absorption cross-section to the extinction cross-section was approximately ~70%, as 

measured by PA sensing. We used PEGylated gold nanocages (PEG-AuNCs) as a passive targeting contrast agent on 

melanomas. After 6-h intravenous injection of PEG-AuNCs, PA amplitude was increased by ~14 %. These results 

strongly suggest PA imaging paired with AuNCs is a promising diagnostic tool for early cancer detection. 
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INTRODUCTION 
 

Photoacoustic imaging is a hybrid biomedical imaging modality that can provide strong optical absorption contrasts 

with high ultrasonic spatial resolution.1,2 Since ultrasonic parameters determine the spatial resolution beyond one optical 

transport mean free path (~1mm) in PA imaging, the maximum imaging depth and resolution are scalable while 

diffusive photons are available.  

The use of near-infrared (NIR) light is highly desirable to increase the penetration depth in optical imaging 

because of the weak optical absorption of hemoglobin and scattering of tissues in this spectral region. However, it is a 

challenge to assess tumors in deep tissues using only morphological and functional PA imaging based on intrinsic 

contrasts. Therefore, molecularly specific exogenous contrast agents are desired to enhance the sensitivity and 

specificity on tumor assessment using PA imaging in deep tissues. Organic dyes such as IRDye-800 and indocyanine 

green have been used as contrast agents for PA imaging,3 but these small molecules suffer from rapid blood circulation 

time and relatively small optical absorption cross-sections. Recently, gold nanostructures4 and single-walled carbon 

nanotubes5 have been demonstrated as contrast agents for PA imaging in vivo. Practically, the toxicity of the carbon 

nanotubes is in question for in-vivo imaging. Gold nanostructures are promising candidates because of their strong light 

absorption in the NIR regime, bio-compatibility, and easy functionalization of surfaces with tumor recognition moieties. 

In this Proceeding, we demonstrate the use of PEG-AuNCs as a passive targeting contrast agent in PA imaging of B16 

melanomas in vivo.6,7  

 

Photons Plus Ultrasound: Imaging and Sensing 2010, edited by Alexander A. Oraevsky, Lihong V. Wang,
Proc. of SPIE Vol. 7564, 75641V · © 2010 SPIE · CCC code: 1605-7422/10/$18 · doi: 10.1117/12.843549

Proc. of SPIE Vol. 7564  75641V-1

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/18/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

 

A photograph of a dark-field confocal photoacoustic imaging system is shown in Figure 2. A Ti:sapphire laser (LT-

2211A, LOTIS TII) pumped by a Q-switched Nd:YAG laser (LS-2137, LOTIS) with 6-ns pulse duration and 10-Hz 

pulse repetition rate was used. Formed by a spherical conical lens and an optical condenser, the donut-shaped light 

illumination was coaxially aligned with the ultrasound focus in water. Dark-field confocal configuration provided a 

greater penetration depth and higher SNR. The light fluences on the skin were less than 6.9 mJ/cm2, within the ANSI 

limit. A 10-MHz single-element ultrasound transducer was used as a detector. The axial and transverse resolutions are 

125 μm and 140 μm, respectively. By measuring PA amplitudes according to their arrival times, one-dimensional depth-

resolved image could be acquired, referred to as an A-line. Additional raster scanning along the one transverse direction 

enables the formation of two-dimensional depth-resolved images (B-scans), and further raster scanning along another 

traverse direction provides three-dimensional images of optical absorption heterogeneities in biological tissues. The 

acquired three-dimensional raw data can be processed in two forms: a maximum amplitude projection (MAP), a 

projection of the maximum PA amplitude along each A-line onto the corresponding plane, and a true three-dimensional 

image using Volview software (Kitware). 

 

 
 

Figure 1: Photograph of volumetric photoacoustic imaging system. Ti:Sa laser; Ti:Sapphire laser, AMP; amplifier, AD; analog digital 

converter, PD; photodiode, WT; water tank, SH; sample holder.  

 

Nude mice weighing about 30 g were used for the in-vivo experiments. All in vivo animal experiments were carried out 

in compliance with the Washington University Institutional Animal Care and Use Committee. The mice were initially 

anesthetized with a mixture of ketamine (85 mg/kg) and xylazine (15 mg/kg). During the PA imaging experiments, 

anesthesia was maintained using vaporized isoflurane (1 L/min oxygen and 0.75% isoflurane, Euthanex Corp.), and 

vitals were monitored using a pulse oximeter (NONIN Medical INC., 8600V). The body temperatures of mice were 

maintained by a water heating pad.  

 

 

RESULTS AND DISCUSSIONS 
 

We investigated the feasibility of PA imaging of B16 melanomas in nude mice using PEG-AuNCs (Fig. 2). Prior to 

injection, a control image was acquired. Then, 100 µl of PEG-AuNCs was intravenously injected to mice via the 

METHODS AND MATERIALS 
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tailvein at concentration of 10 nM. A series of noninvasive volumetric PA images were obtained up to 6 h after 

injection in vivo. We could clearly see the enhancement of PA amplitude as time elapsed (Fig. 2).  

  

 

 
 

Figure 2: In vivo noninvasive PA MAP images of a B16 melanoma over time before and after injection of PEG-AuNCs  

 

Figure 3 shows B-scan PA images from the same position of the animal before and after injection. The location of the 

melanoma was maintained.  

 

 
 

Figure 3: B-scan PA images of melanomas before and after injection of PEG-AuNCs. 

 
Figure 4 shows plots for the enhancement of PA signals in the tumors over a period of time. The PA signals with PEG-

AuNCs show a monotonous increase untill 5 h post-injection and reached a level-off. The PA amplitude increased up to 

14% at 6 h post-injection.  
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Figure 4: Increase in PA amplitudes within melanomas after intravenous injection of PEG-AuNCs.  

 

 

CONCLUSIONS 
 

In summary, we have demonstrated that passive targeting PEG-AuNCs can be used as a PA contrast agent on B16 

melanomas in vivo. The detection sensitivity of the PA imaging system was ~ 4.5 pM. Biocompatible AuNCs can be 

used as a diagnostic contrast agent for molecular PA imaging, a photothermal agent based on strong optical absorption,  

and a drug-delivery platform based on a hollow feature. Moreover, the circulation time of PEG-AuNCs in the blood 

stream is relatively long compared to organic dyes, which is an additional benefit for in vivo imaging.12 Potentially, 

high-resolution 3D morphological and functional PA imaging, when combined with AuNCs can diagnose tumors at 

early stages, treat tumors using either the photothemal effect or drug-delivery, monitor post-treatment processes, and 

further improve post-tumor treatment plans in real clinical application. 
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