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Abstract

Background: Over the last ten years we have seen great efforts focused on revising amphibian systematics.

Phylogenetic reconstructions derived from DNA sequence data have played a central role in these revisionary

studies but have typically under-sampled the diverse frog family Microhylidae. Here, we present a detailed

phylogenetic study focused on expanding previous hypotheses of relationships within this cosmopolitan family.

Specifically, we placed an emphasis on assessing relationships among New World genera and those taxa with

uncertain phylogenetic affinities (i.e., incertae sedis).

Results: One mitochondrial and three nuclear genes (about 2.8 kb) were sequenced to assess phylogenetic

relationships. We utilized an unprecedented sampling of 200 microhylid taxa representing 91% of currently

recognized subfamilies and 95% of New World genera. Our analyses do not fully resolve relationships among

subfamilies supporting previous studies that have suggested a rapid early diversification of this clade. We observed

a close relationship between Synapturanus and Otophryne of the subfamily Otophryninae. Within the subfamily

Gastrophryninae relationships between genera were well resolved.

Conclusion: Otophryninae is distantly related to all other New World microhylids that were recovered as a

monophyletic group, Gastrophryninae. Within Gastrophryninae, five genera were recovered as non-monophyletic;

we propose taxonomic re-arrangements to render all genera monophyletic. This hypothesis of relationships and

updated classification for New World microhylids may serve as a guide to better understand the evolutionary

history of this group that is apparently subject to convergent morphological evolution and chromosome reduction.

Based on a divergence analysis calibrated with hypotheses from previous studies and fossil data, it appears that

microhylid genera inhabiting the New World originated during a period of gradual cooling from the late Oligocene

to mid Miocene.
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Background
The family Microhylidae is the fourth largest anuran

family (after Hylidae, Strabomantidae, and Bufonidae),

consisting of 487 currently recognized species represen-

ting 8.2% of extant anuran diversity. A monographic revi-

sion of the family Microhylidae was done over 75 years

ago [1]. Parker defined the family Microhylidae on the

basis of 12 non-synapomorphic morphological characters

and grouped the 191 species known at the time into 43

genera and 7 subfamilies: Asterophryinae, Brevicipitinae,

Cophylinae, Dyscophinae, Melanobatrachinae, Microhyli-

nae, and Sphenophryninae. Three additional subfamilies

were recognized in later publications: Phrynomerinae [2],

Scaphiophryninae [3], and Otophryninae [4]. A morpho-

logical review of the family analyzed 188 characters in 56

genera and 105 species [5]. All available studies show that

microhylids display extensive variation in adult external

morphology, osteology, and musculature at inter- and

intraspecific levels. Because of this variation, phylogenetic
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interpretations that use morphological features have been

hindered by extensive homoplasy (see review of morpho-

logical variation [6]). In many cases, the morphological

convergence in microhylids is likely due to specializations

associated with a burrowing lifestyle [7]. However, the

monophyly of the family is supported by 20 synapo-

morphies derived from larval anatomy [8]. The first

broad-scale attempt to examine phylogenetic relationships

of the Amphibia using DNA sequence and morphology

[9] used a parsimony criterion to provide support for

many higher-level taxonomic rearrangements that better

reflect the phylogenetic history of living amphibians and

also stimulated much discussion [10]. A more recent ana-

lysis [11] expanded the sampling, both in the number of

taxa and molecular markers, and using model-based ana-

lyses recovered phylogenetic relationships that were

largely congruent with the earlier study [9]. Pyron and

Wiens recognized 11 nominal microhylid subfamilies and

several unassigned genera as incertae sedis within Micro-

hylidae (mostly New World genera).

Additionally, the following subfamilies are currently

recognized [12]: Hoplophryninae and Phrynomerinae

(based on [13]), Kalophryninae [14], and Otophryninae

[4]. Thus, as it is currently recognized, Microhylidae is

globally distributed (Figure 1) with two subfamilies

occurring in the New World (Gastrophryninae and

Otophryninae) and nine subfamilies occurring in the

Old World (Asterophryinae, Cophylinae, Dyscophinae,

Hoplophryninae, Kalophryninae, Melanobatrachinae,

Microhylinae, Phrynomerinae, and Scaphiophryninae).

The highest levels of diversity occur in tropical regions

and three of the Old World subfamilies are endemic to

Madagascar (Cophylinae, Dyscophinae, and Scaphio-

phryninae). Furthermore, two subfamilies possess low

levels of species diversity and highly restricted geo-

graphic distributions: Hoplophryninae (two species, en-

demic to Eastern Arc mountains of Tanzania, Africa)

and Melanobatrachinae (one species, Western Ghats of

Kerala and Tamil Nadu in India).

New World microhylids (NWM) were initially included

in the subfamily Microhylinae but this was demonstrated

to represent a paraphyletic assemblage of both New and

Old World taxa. Consequently, the subfamily Gastrophry-

ninae was resurrected for a monophyletic clade consisting

of all New World genera except Synapturanus [9]. Subse-

quent molecular analyses supported a monophyletic

Gastrophryninae, though excluding Synapturanus and

Otophryne [15,16]. More recently, Synapturanus was

placed in the Otophryninae [11]. Currently, there are two

subfamilies, 20 genera (nine monotypic), and 72 species of

NWM [12]. To summarize, the subfamily Otophryninae

includes two genera (Otophryne and Synapturanus) and

five species and Gastrophryninae currently consists of 9

genera and 53 species. The two NWM genera occurring

Figure 1 Maximum likelihood phylogram generated from concatenated nuclear and mitochondrial DNA sequences examined for this

study (top) and approximate global distribution of microhylid subfamilies (bottom) based on spatial data from IUCN et al. (2006). See

Van Bocxlaer et al. (2006) and Trueb et al. (2011) for hypotheses related to the placement of the monotypic Melanobatrachinae (not sampled in

this study).
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in North America were recently reviewed with examina-

tions of phylogeographic variation: Hypopachus [17] and

Gastrophryne [18]. The currently recognized species in

each genus of NWM, are (with number of species in

parentheses): Adelastes (1 sp.), Altigius (1sp.), Arcovomer

(1 sp.), Hyophryne (1 sp.), Melanophryne (2 spp.), Myer-

siella (1 sp.), Relictivomer (1 sp.), Stereocyclops (2 spp.),

Synapturanus (3 spp.), Syncope (3 spp.), Otophryne

(2 spp.) and those genera in the subfamily Gastrophryninae

are: Ctenophryne (2 spp.), Dasypops (1 sp.), Dermatonotus

(1 sp.), Elachistocleis (13 spp.), Gastrophryne (4 spp.),

Hamptophryne (1 spp.), Hypopachus (4 spp.), Nelsono-

phryne (2 spp.), and Chiasmocleis (25 spp.).

While previous phylogenetic analyses [9,11,15,16] have

offered much insight regarding microhylid evolution,

these studies have included a low number of genera rela-

tive to the described levels of diversity (particularly

within the NWM). In this paper we present a phylo-

genetic analysis of microhylid relationships featuring an

unprecedented taxonomic sampling with emphasis on

NWM diversity and relationships. In addition, we inves-

tigated the putative timing of lineage divergence in two

ancient microhylid radiations, Gastrophryninae and

Otophryninae.

Methods
Taxonomic sampling

We used the frequently cited amphibian systematics re-

source, Amphibian Species of the World [12] as a taxo-

nomic reference for the allocation of genera to

subfamilies and to identify those taxa with an incertae

sedis status within Microhylidae. Focusing on NWM,

our sampling within Microhylidae included representa-

tives from 10 of the 11 recognized subfamilies (we did

not include the monotypic subfamily Melanobatrachinae;

see below for explanation). Microhylid genera included

in the analyses were (in parenthesis is the percentage of

currently recognized genera that we sampled from each

subfamily): Oreophryne, Austrochaperina, Aphanto-

phryne, Callulops, Choerophryne, Copiula, Cophixalus,

Genyophryne, Hylophorbus, Liophryne, Metamagnusia,

Sphenophryne, and Xenorhina, (59 % of Asterophryinae);

Anodontohyla, Platypelis, Plethodontohyla, Rhombo-

phryne, and Stumpfia, (71 % of Cophylinae); Dyscophus

(100% of Dyscophinae); Chiasmocleis, Ctenophryne,

Dasypops, Dermatonotus, Elachistocleis, Gastrophryne,

Hamptophryne, Hypopachus, and Nelsonophryne (100%

of Gastrophryninae); Hoplophryne (50% of Hoplophryni-

nae); Kalophrynus (100% of Kalophryninae); Calluella,

Chaperina, Glyphoglossus, Kaloula, Metaphrynella,

Microhyla, Micryletta, Ramanella, and Uperodon (100%

of Microhylinae); Otophryne (100% of Otophryninae);

Phrynomantis (100% of Phrynomerinae); and Scaphio-

phryne (50% of Scaphiophryninae). The following genera

currently considered incertae sedis within Microhylidae

[12] were also sampled Altigius, Arcovomer, Gastrophry-

noides, Hyophryne, Melanophryne, Myersiella, Relictivo-

mer, Stereocyclops, Synapturanus, and Syncope; Phrynella

sequences from Genbank were included in the analyses.

In total, our sampling of New World microhylids (i.e.,

combined Gastrophryninae, Otophryninae, and incertae

sedis genera), corresponds to 95% of currently recog-

nized genera, missing only Adelastes.

We also included 25 other ranoid frogs from families

closely related to Microhylidae in our analysis as out-

groups. These outgroup taxa were sampled from 8 fa-

milies and included frogs in the following genera:

Breviceps, Callulina, Probreviceps, and Spelaeophryne

(Family Breviciptidae), Hemisus (Family Hemisotidae),

Afrixalus, Hyperolius, and Kassina (Family Hyperolii-

dae), Arthroleptis and Leptopelis (Family Arthroleptidae),

Gephyromantis (Family Mantellidae), Ptychadena (Fam-

ily Ptychadenidae), Hylarana and Lithobates (Family

Ranidae), Polypedates (Family Rhacophoridae), Strongy-

lopus and Tomopterna (Family Pyxicephalidae). We used

three distantly related outgroups to root our phyloge-

nies: Xenopus laevis (Family Pipidae), Alytes obstetricians

(Family Discoglossidae), and Scaphiopus holbrooki (Fam-

ily Scaphiopodidae). Our global sampling included a

combination of our own data (159 taxa; 70%) and DNA

sequences downloaded from GenBank (68 taxa; 30%).

Genbank accession numbers and voucher information

for taxa used in our phylogenetic analyses can be found

in Additional file 1; sequences from Genbank are listed

in Additional file 2.

Molecular methodology

Total DNA was isolated from liver or muscle tissue

using the Qiagen DNeasy kit (Valencia, California,

USA). We used one mitochondrial (16S) and three nu-

clear (BDNF, tyrosinase, and 28S rRNA) genes. Gene

fragments were amplified using previously published

primer sets (Table 1). PCRs were conducted using

Green or Red Taq polymerase (Promega) and a combin-

ation of previously described standard and touchdown

thermal cycling profiles that are used to amplify nuclear

and mitochondrial DNA from frogs [19,20]. PCR pro-

ducts were cleaned using Ampure magnetic beads

(AgencourtW Bioscience, Beverly, Massachusetts, USA)

or USB ExoSap-IT (US78201, Ambersham Biosciences,

Piscataway, New Jersey, USA) and sequenced (in both

primer directions) by SeqWright Corp. (Houston, Texas,

USA; www.seqwright.com). Resulting chromatograms

were visualized and cleaned using the programs

Sequencher 5.0 (Gene Codes Corp., Ann Arbor, Michigan,

USA). DNA sequences generated for this study were

submitted to GenBank; accession numbers are given in

Additional file 1.
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Phylogenetic analyses

Sequence alignments for each locus were initially pro-

duced in Sequencher 5.0 or SATé-II [24] using MAFFT

aligner and OPAL merger and further modified by eye.

For ribosomal subunit genes (28S and 16S) we excluded

regions that likely correspond to hyper variable loop

regions that were ambiguously aligned (i.e., we removed

any regions possessing multiple gapped sites that did not

contain readily identifiable sequence motifs). We used

the program MacClade 4.08 [25] to infer reading frames

for protein coding regions (BDNF, Tyr) and to concate-

nate the four loci. Our concatenated alignment was

deposited in TreeBase (www.treebase.org; Study ID:

13478). We only included individuals in our analyses

that possessed two or more of the four loci. This

criterion excluded the taxon Melanobatrachus indicus

(Melanobatrachinae) since at present there is only a

single locus available that overlaps with our genetic

sampling (16S).

Given the size of our dataset, we used the CIPRES

gateway server [26] to run parallel versions of several

programs including GARLI 1.0[27], PAUPRat [28],

BEAST 1.7.2 [29] and MrBayes 3.1.2 [30]. All of these

programs were run using machines on the XSEDE ser-

ver. We also conducted several analyses locally using the

program MEGA 5.05 [31]. Collectively our analyses span

three widely used phylogenetic criteria for tree searching

(Probabilistic: GARLI 1.0, BEAST 1.7.2, and MrBayes

3.1.2; Parsimony: PAUPRat; and Distance: MEGA 3.1.2).

For probabilistic analyses, we employed the GTR+I+G

model of nucleotide evolution for all genes and parti-

tions since all other substitution models are incorpo-

rated within the GTR model [11,32]. Maximum

likelihood (ML) analyses were conducted in GARLI 1.0

using default settings and 1000 bootstrap pseudorepli-

cates (in the form of 20 runs of 50 pseudoreplicates on

the XSEDE server). Each GARLI 1.0 analysis invoked a

single GTR+I+G model with four gamma categories ap-

plied across the entire concatenated dataset. We con-

ducted additional probabilistic analyses by running

Bayesian Markov Chain Monte Carlo (BAYES MCMC)

simulations in the program MrBayes 3.1.2. These parallel

Bayesian analyses were partitioned into eight segments

by gene (28S, 16S) and codon position (BDNF and Tyr)

using all GTR+I+G models and run for ten million gen-

erations with sampling occurring every 1000 generations.

We confirmed that each of our MCMC runs had con-

verged by examining the standard deviation of split fre-

quencies and by checking for topological convergence

with the online program AWTY [33]. To employ a

maximum parsimony (MP) criterion, we conducted 10

searches of 200 iterations each using PAUPRat. Finally,

we performed minimum evolution (ME) analyses using

1000 bootstrap pseudorelicates in MEGA 5.05. When

necessary, resulting trees from our searches were sum-

marized using TreeAnnotator 1.7.2 and TreeStat 1.7.2

(as implemented in the BEAST software package) and

visualized in FigTree 1.3.1 [34].

Divergence date estimation

To leverage our extensive sampling of NWM (Gastro-

phryninae + Otophryninae) and to provide a relative

temporal framework for patterns recovered during our

analyses, we generated a time tree in BEAST 1.7.2. Prior

to generating divergence estimates, we pruned the

family-scale dataset so that each NWM genus was repre-

sented by no more than five nominal member species.

Our time tree was calibrated by using three nodal con-

straints that correspond to: (1—2) the respective origins

proposed for Otophryninae and Gastrophryninae [15]

and (3) fossil records for Gastrophryne from North

America [35]. A previous study [15] used two different

relaxed clock methods to estimate dates [36,37]; in their

study their estimates (across both methodologies) ranged

from 51.7 to 69.1 mya for the origin of Otophryninae

and 66.8 to 91.4 mya for the origin of Gastrophryninae.

To use these hypotheses of divergence, we took the

mean of each estimate (60.4 mya, Otophryninae; 79.1

mya, Gastrophryninae) and by using a normal distribu-

tion with 5 standard deviations constrained these nodes

to the approximate ranges reported before [15]. A simi-

lar strategy was employed to incorporate the ca. 1.7 my

Table 1 Primer sets used for the amplification and sequencing of nuclear (nDNA) and mitochondrial (mtDNA) DNA

Locus (Primer) Type Direction Sequence (5’ to 3’) Reference

16S (16SAR) mtDNA F CGCCTGTTTATCAAAAAC AT [21]

16S (16SBR) mtDNA R CCGGTCTGAACTCAGATCACGT [21]

28S (28SV) nDNA F AAGGTAGCCAAATGCCTC ATC [22]

28S (28SJJ) nDNA R AGTAGGGTAAAACTAACC T [22]

BDNF (BDNF.Amp.F1) nDNA F ACCATCCTTTTCCTTACTATG G [16]

BDNF (BDNF.Amp.R1) nDNA R CTATCTTCCCCTTTTAATGGTC [16]

Tyrosinase (TyrC) nDNA F GGCAGAGGAWCRTGCCAAGATGT [23]

Tyrosinase (TyrG) nDNA R TGCTGGCRTCTCTCCARTCCC A [23]
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old series of Gastrophryne fossils [35,38] by using a nor-

mal distribution with 0.5 standard deviations to con-

strain the node leading to G. carolinensis, G. olivacea,

and G. mazatlanensis as having occurred between 0.72

and 2.68 mya. This calibration point was used because

several G. carolinensis, G. olivacea, and G. mazatlanensis

fossils have been reported from Pleistocene deposits

ranging in age from 0.24 to 1.8 mya [38]. We employed a

lognormal relaxed clock and a Yule speciation prior [39]

to estimate trees and divergence dates in a Bayesian

MCMC run featuring a chain length of ten millions with

sampling occurring every 1000 generations. We parti-

tioned our dataset by gene and applied unlinked GTR+I

+G models with 4 gamma rate categories to each of the 4

partitions. We used Tracer 1.5 [40] to view the BEAST

1.7.2 output and identify that all parameters were ad-

equately sampled (i.e., ESS > 200). A burn-in of 1000 was

used prior to summarizing time trees.

Results and discussion
Molecular analysis

Our family level data matrix consisted of 225 taxa, and

2673 base pairs (BDNF [711 bp], Tyr [551 bp], 28S

[738 bp], and 16S [673 bp]). This concatenated dataset

contained 938 parsimony informative characters, 239

uninformative variable characters, and 1496 constant

(invariant) characters. The amount of phylogenetic in-

formation was variable across loci (number of parsi-

mony informative sites/total sites): Tyr (313/551, 60%),

BDNF (221/711, 31%), 28S (49/738, 6.6%), and 16S

(355/673, 52%). The results of our phylogenetic analyses

were largely consistent with previous studies. This is

particularly encouraging given that our study included

fewer nucleotide characters than either of those studies

[15,40]. Our ML data matrix consisted of 361,442

unique patterns and resulted in a topology with a log

likelihood score of −46681.5016. We recovered almost

identical topologies from the ML and Bayesian MCMC

searches with most variation confined to the internal

composition of tip groups. The examination of topo-

logical convergence (AWTY analysis) between our par-

allel Bayesian searches revealed that while the analyses

did not converge, at around five million generations

they stabilized at approximately 2 symmetric differences

from one another. Subsequent examination of consen-

sus trees from each run revealed few differences, so we

derived posterior probabilities from these 10,000 tree

sets using a burn-in of 5000 samples. Our tree searches

that employed a parsimony ratcheting approach reco-

vered largely concordant patterns with Bayesian and

likelihood analyses. We were required to remove 15 taxa

from our alignment in order to conduct the distance-

based (ME) analyses because pair-wise estimates could

not be generated due to missing data. While the

resulting ME searches featured topologies with broadly

consistent patterns relative to the parsimony and pro-

babilistic analyses, we recovered weak nodal support for

most groupings beyond shallow phylogenetic depths

and several alternative arrangements of taxa relative to

the MP, ML, and BAYES MCMC analyses. We do not,

however, interpret these inconsistencies as meaningful

given the known effects of missing character informa-

tion on distance-based criteria and the variable genetic

sampling strategy we employed [41,42]. The placement

of samples obtained from GenBank, e.g., Copiula sp.

[GB] and Cophixalus sp. [GB] suggests that these taxa

may have been misidentified in previous studies.

Below, we summarize our phylogenetic results based

on the ML tree (Figures 2, 3, 4) in relation to (1)

incertae sedis genera and (2) microhylid subfamilies.

Bootstrap support values of 70% or higher were consi-

dered to be relatively strong nodal support [43]; clades

that were topologically supported in the parsimony ana-

lysis are indicated in Figures 2, 3, 4 with a “P”.

Genera currently placed as incertae sedis

With the single exception of Adelastes hylonomos our

analyses included all incertae sedis genera currently

placed in Microhylidae [12]. Regarding incertae sedis

taxa originating from the Old World, we recovered

Gastrophrynoides as a basal member of the Asterophryi-

nae and Phrynella nested within Metaphrynella in the

subfamily Microhylinae (Figures 2, 3). These findings are

in overall agreement with a recent study, except that

Phrynella was previously found as the sister taxon to

Metaphrynella [44]. Consequently, herein we place

Gastrophrynoides in the Asterophryinae and Phrynella

in the Microhylinae.

All of the incertae sedis genera we sampled from the

New World were placed within the Gastrophryninae by

our analyses, except Synapturanus that was recovered

as the sister taxon to Otophryne (Figure 4). The high-

altitude Melanophryne was consistently placed in a

clade with Nelsonophryne and Ctenophryne, although

the relationships among these genera varied. The clade

containing these three genera is the sister group to all

other gastrophrynines. The genus Chiasmocleis as

currently recognized is polyphyletic consisting of three

distinct groups 1) Chiasmocleis panamensis (which

is more closely related to Elachistocleis than other

Chiasmocleis species), 2) a clade consisting of three spe-

cies of Chiasmocleis nested in Syncope, and 3) all other

species of Chiasmocleis. Relictivomer is nested within

Elachistocleis; Dasypops is the sister taxon to Myersiella

and these two genera share a sister relationship with

Stereocyclops; Hyophryne is nested within Stereocyclops;

and Arcovomer is sister to a clade containing Altigius

and Hamptophryne.
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Figure 2 (See legend on next page.)
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Relationships among Microhylid subfamilies

The monophyly of Microhylidae is strongly supported

on the basis of morphology [8,45] and molecules [9,11,

this study). Additionally, the existence and content of 11

major microhylid evolutionary lineages (i.e., subfamilies)

is nearing a consensus [9,11,15,16, this study]. The rela-

tionship of these subfamilies to one another, however,

remains enigmatic with each available dataset recovering

a slightly different phylogenetic arrangement at this deep

evolutionary tier. The poor resolution of inter familial-

relationships is likely to be related to the short amount

of evolutionary time that separated the origin of each

major group during the late Cretaceous [15]. While our

analysis did not recover branch support for inter-familial

relationships, below we discuss the similarities and

differences between our results and those of the four

previous studies that sampled microhylids at this phylo-

genetic depth [9,11,15,16].

Our analyses produced strong support for the recipro-

cal monophyly of eight of the ten subfamilies we

(See figure on previous page.)

Figure 2 Maximum likelihood phylogram depicting relationships between microhylid taxa sampled for this study. Nodal support values

above nodes correspond to ML bootstrapping, BAYES MCMC posterior probabilities, and ME bootstrapping respectively. * = value of 100,

P = clade also recovered by MP PAUPRat analysis, GB = DNA sequences from GenBank (Additional file 2); see also Figures 3 and 4.

Figure 3 Maximum likelihood phylogram depicting relationships between microhylid taxa sampled for this study. Nodal support values

above nodes correspond to ML bootstrapping, BAYES MCMC posterior probabilities, and ME bootstrapping respectively. * = value of 100,

P = clade also recovered by MP PAUPRat analysis, GB = DNA sequences from GenBank (Additional file 2); see also Figures 2 and 4.
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Figure 4 (See legend on next page.)
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sampled. Although Microhylinae and Gastrophryninae

did not receive nodal support in our bootstrapping ana-

lyses, these two subfamilies were monophyletic in the

ML tree and received strong support from the Bayesian

analyses (see Figures 2, 3, 4). Hoplophryninae and Sca-

phiophryninae were recovered as the earliest branches on

the microhylid tree, followed by two major clades consist-

ing of the remaining subfamilies [branching order in

brackets]: (1) Gastrophryninae, Asterophryinae, Cophyli-

nae, Phrynomerinae, Otophryninae, and Kalophryninae

{Gastrophryninae [Asterophryinae (Cophylinae (Phryno-

merinae (Otophryninae-Kalophryninae)))]} and (2) Micro-

hylinae and Dyscophinae (Figures 1, 2, 3, 4).

In contrast to our analyses, other studies recovered

the most basal lineages as: Phrynomerinae [11,15,44],

Phrynomerinae-Gastrophryninae [16], or [Kalophrynus

(Synapturanus (Phrynomantis-Micryletta))] [9]. The

somewhat basal position of Scaphiophryninae in our

analyses has not been suggested previously; this taxon

was found either closely related to Microhylinae [9] or

Cophylinae [16]. The close relationship between Dysco-

phinae and Microhylinae has been suggested before,

but with alternative sister relationships to either Aste-

rophryinae [15,16,44] or to (Kalophryninae-(Melanoba-

trachinae-Asterophryinae)) [11]. An arrangement in

which Microhylinae is closely related to Scaphiophryni-

nae and Dyscophinae to Asterophryinae has also been

suggested [9].

The second, and largest, clade recovered consists of the

remaining subfamilies: 1) a basal Gastrophryninae, 2)

Asterophryinae basal to the remaining subfamilies, and 3)

Cophylinae basal to a clade consisting of [Phrynomerinae

(Otophryninae-Kalophryninae)]. Previous analyses recov-

ered a Phrynomerinae basal to all microhylids [11,15,16];

Phrynomantis was considered incertae sedis [9]. Kalophry-

ninae or Otophryninae were not sampled [16,44] and

Kalophryninae was recovered in a clade with Cophylinae

and Melanobatrachinae [15] or in a clade with Melanoba-

trachinae and Asterophryinae [11].

Gastrophryninae has been reported to have a variety

of phylogenetic affinities including: 1) a sister relation-

ship with Cophylinae [9,44], 2) basal to all microhylids

excluding Synapturanus, Scaphiophryne, Hoplophryne,

and Phrynomantis [15], 3) a sister relationships with

Phrynomerinae [16], and 4) within a monophyletic clade

containing Hoplophryninae and Cophylinae that is basal

to all other subfamilies excluding Phrynomerinae and

Otophryninae [11].

Given the amount of instability regarding these sub-

familial relationships across different studies, we feel that

any tenable phylogenetic hypothesis of their relatedness

will await additional genetic sampling. However, it is

interesting to note that using an almost independent

data set we recovered patterns indicative of rapid and

early diversification in microhylids that are consistent

with previous studies [15].

Relationships within Old world subfamilies

The content and phylogenetic arrangement of taxa

within Hoplophryninae, Scaphiophryninae, Dyscophinae,

Phrynomerinae, and Kalophryninae was consistent with

previous analyses. Within Microhylinae we recovered

three major clades consisting of: 1) the widespread

Micryletta inornata complex, 2) Ramanella, Uperodon,

Kaloula, Phrynella, and Metaphrynella, and 3) Chaper-

ina, Microhyla, Calluella, and Glyphoglossus. The con-

tent of these clades is broadly consistent with previous

molecular studies [46]. Within our sampling of this sub-

family four genera appear to be paraphyletic: Kaloula,

Microhyla, Calluella, and Ramanella. Previous research

suggests that levels of diversity within the subfamily

Asterophryninae are staggering [47]. We employed a

sampling strategy to maximize our taxonomic coverage

(i.e., we selected evolutionarily distinct lineages based on

previous mtDNA studies). Given the phylogenetic depth

and diversity within this group, our strategy resulted in

many long branches and weakly supported nodes. While

our commentary on relationships within this subfamily

is limited, as previously reported [47] it seems likely

that the genera Copiula, Callulops, Cophixalus, and

Liophryne are paraphyletic taxa. Our analyses were con-

sistent with previous studies in the clustering of some

Liophryne species and Sphenophryne, a monophyletic

Oreophryne, and a monophyletic Xenorhina. As was

observed in the original description [48], our trees

placed Metamagnusia as a close relative of Xenorhina.

Within the Cophylinae the relationships that we recov-

ered are very similar to those reported in a previous

molecular study [49].

Relationships among New world Genera and taxonomic

implications

We recovered a close relationship between Otophryne

and Synapturanus and therefore we agree with the re-

cent placement of Synapturanus in this subfamily [11].

In light of all available studies that included Otophryne

(See figure on previous page.)

Figure 4 Maximum likelihood phylogram depicting relationships within the subfamily Gastrophryninae. Nodal support values above

nodes correspond to ML bootstrapping, BAYES MCMC posterior probabilities, and ME bootstrapping respectively. * = value of 100, P = clade also

recovered by MP PAUPRat analysis, GB = DNA sequences from GenBank (Additional file 2); see also Figures 2 and 3.
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and/or Synapturanus and our analyses that included all

other New World genera (except Adelastes), it is likely

that Otophryninae is more closely related to other micro-

hylid subfamilies than it is to the sympatric subfamily

Gastrophryninae. The distinctiveness of Otophryne from

all other NWM was noted earlier based on the following

unique combination of morphological characters: omos-

ternum present, clavicles straight, and a well-developed

tympanum [50]. Furthermore, this author indicated that

elsewhere in the Microhylidae this combination is only

found in the genus Kalophrynus (member of the Asian

subfamily Kalophryninae). A similar relationship bet-

ween Kalophrynus and Otophryninae was observed in a

family-level morphological analysis [5]. Interestingly,

our family-level analysis also recovered Kalophryninae

and Otophryninae as sister taxa, although with weak

nodal support (Figure 2).

Because NWM are not a monophyletic assemblage,

previous morphological studies that assessed relation-

ships among NWM and included Otophryne and/or

Synapturanus along with Gastrophryninae genera need

to be reassessed since morphological and karyological

similarities between Otophryninae and Gastrophryninae

are either primitive characters present in both lineages

or homoplasies resulting from parallel or convergent

evolution. Below, we suggest several taxonomic changes

within the Gastrophryninae to better reflect the evolu-

tionary history of this subfamily (Figure 4).

Ctenophryne, Melanophryne, and Nelsonophryne

The most recently described genus of NWM, Melano-

phryne Lehr and Trueb, 2007, forms a monophyletic

group with Nelsonophryne Frost, 1987 and Ctenophryne

Mocquard, 1904. Our phylogenetic analyses recovered

variable patterns of relatedness among these genera (see

support values in Figure 4). Our ME analysis recovered

a monophyletic Ctenophryne and Melanophryne nested

within Nelsonophryne. In the ML analysis, Melano-

phryne is basal to the entire Ctenophryne-Nelsono-

phryne clade, whereas in the Parsimony and Bayesian

MCMC topologies N. aterrima has a basal position and

Melanophryne is closer to a clade consisting of Cteno-

phryne-N. aequatorialis. The presence of a maxilla-

quadratojugal articulation in Ctenophryne and N.

aequatorialis and its absence in N. aterrima was re-

cently reported [6]. Potential morphological differences

between Nelsonophryne and Ctenophryne are: Nelsono-

phryne has neopalatines whereas Ctenophryne lacks

them [51,52] and distal carpals 3—5 fuse in Ctenophryne

whereas only 4—5 fused in Nelsonophryne [6]. Un-

doubtedly, this clade needs further study and we suspect

that additional species will be discovered and relation-

ships will need further assessment. However, given the

shallow phylogenetic depth of the Ctenophryne

+Melanophryne+Nelsonophryne clade and to tentatively

resolve the paraphyly of Nelsonophryne, we place Nelso-

nophryne Frost, 1987 and Melanophryne Lehr and

Trueb, 2007 in the synonymy of Ctenophryne Moc-

quard, 1904, which produces the new taxonomic combi-

nations Ctenophryne aequatorialis (Peracca, 1904),

Ctenophryne aterrima (Günther, 1901), Ctenophryne

barbatula (Lehr and Trueb, 2002), and Ctenophryne

carpish (Lehr, Rodríguez, and Córdova, 2007).

Described larvae for this clade are: Ctenophryne

aterrima [53], C. aequatorialis, C. carpish [54], and C.

gaeyi [55].

Chiasmocleis and Syncope

The genus Syncope Walker, 1973 was recovered in a

clade with Chiasmocleis bassleri, C. hudsoni, and C.

magnova, rendering Chiasmocleis Mehely, 1904 para-

phyletic. There are two alternative solutions to resolve

this paraphyly: 1) synonymize Syncope with Chiasmocleis

or 2) recognize Syncope as a separate evolutionary

lineage and transfer some currently recognized species

of Chiasmocleis to Syncope. We opted for the second al-

ternative to recognize the separate evolutionary trajec-

tory of this lineage based on shared morphological and

life history traits. Zweifel [56:21] suggested the possibil-

ity of a close relationship between Syncope and some

Chiasmocleis species based on digital reduction. Syncope

currently consists of three species and, in terms of over-

all body size, it contains the smallest species of gastro-

phrynine microhylids. Furthermore, Syncope species

have lost two vertebrae and have reduced and/or lost

fingers I and IV. A similar pattern of small adult body

size and digit reduction is present in the species of

Chiasmocleis that we found to share phylogenetic affi-

nities with Syncope: Chiasmocleis bassleri, C. hudsoni,

and C. magnova. Other Chiasmocleis (apart from C. jimi

and C. supercilialbus [57,58]) do not show reduction in

adult body size and/or the number of digits. A life his-

tory trait that may further unite Syncope with the small

Chiasmocleis species is their reproductive mode. Syncope

antenori was thought to have direct-development based

on large eggs and small clutch sizes [59,60]. However,

this taxon was later shown to have free-swimming,

endotrophic larvae that develop in water-filled brome-

liads [60]. The original description of C. magnova also

suggested that the species might be a direct developer

[58], based mainly on the presence of large eggs in the

oviducts of the holotype. Thus, based on egg size, S.

antenori and C. magnova may have similar reproductive

modes. Herein, we place the following species of

Chiasmocleis in the genus Syncope which produces the

new taxonomic combinations S. bassleri (Dunn 1949), S.

hudsoni (Parker, 1940) and S. magnova (Moravec and

Köhler, 2007) (based on our phylogeny) and S. jimi and
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S. supercilialbus based on the morphological description

of the species (‘. . .first toe reduced,’ [57:2]) and

(‘. . .fingers I and IV reduced. . .’ [58:60]). This new taxo-

nomic re-arrangement renders Chiasmocleis Mehely,

1904 monophyletic (with exception to C. panamensis;

see below) and expands the content of Syncope Walker,

1973. Furthermore, this taxonomic arrangement recog-

nizes the unique morphological patterns (i.e., a trend to-

ward smaller adult body size and reduction and loss of

vertebrae and/or digits in the forelimbs)and specialized

life history traits in Syncope. It is also consistent with

morphological variation in the pectoral girdle where

there has been a complete loss of the connection

between coracoids and epicoracoid in S. antenori and

S. magnova (and a reduced connection in S. jimi and

S. hudsoni) whereas the connection is present in

Chiasmocleis [61].

Free-swimming larvae have been reported for Chiasmo-

cleis alagoanus [62], C. albopunctata [63], C. anatipes [64],

C. carvalhoi [65], C. leucosticta [66], C. mantiqueira [67],

C. shudikarensis [68], and C. ventrimaculata [55,69].

Description of Syncope larvae is limited to S. antenori [60]

and S. hudsoni [69].

Another problematic species is Chiasmocleis panamen-

sis that was not recovered within Chiasmocleis or Syncope,

but rather as the sister taxon of the genus Elachistocleis; a

relationship recovered with robust support in all our

analyses. Therefore, we place C. panamensis in the genus

Elachistocleis that produces the new taxonomic combi-

nation Elachistocleis panamensis (Dunn et al., 1948). The

phylogenetic placement E. panamensis is not surprising

given that 1) the original description of species includes

the following statement: “. . . Dunn was quite dubious as

to their identity but thought they might be Elachistocleis,

at that time the only microhylid recorded from Panama”

[70:1] and 2) a previous morphological analysis placed this

taxon outside of Chiasmocleis, although not closely related

to Elachistocleis [61].

Stereocyclops and Hyophryne

The Bahia yellow frog, Hyophryne histrio Carvalho,

1954, was consistently recovered as nested within Stereo-

cyclops (Figure 4). Consequently, we place the mono-

typic Hyophryne in the synonymy of Stereocyclops Cope

1870. This arrangement produces the new taxonomic

combination: Stereocyclops histrio (Carvalho, 1954).

Hyophryne was considered morphologically related to

Stereocyclops and the two genera were separated based

on characteristics of the pectoral girdle, particularly a

long clavicle and a reduced procoracoid in Stereocyclops

and short clavicle and long procoracoid in Hyophryne

[51]. However, a recent study showed the procoracoid to

be highly variable in Hyoprhyne [71]. Hyophryne has

been included only in two other studies [53,56]. One

study [56] found no diagnostic characters to separate

Hyophryne from Stereocyclops and the author indicated

that “. . .nonmorphological data on Hyophryne (it is

known only from the holotype) should help define its

position.” A study that assessed the relationships of Alti-

gius to putative relatives recovered Hyophryne closely

related to Hamptophryne [72]. Most recently, a study

provided a detailed analysis of Hyophryne that signifi-

cantly increased our understanding of the morphology

and biology of this poorly known genus [71]; the author

concluded that Hyophryne was the sister taxon of

Stereocyclops.

The larva of S. histrio is unknown whereas descriptions

are available for S. incrassatus [73,74] and S. parkeri [74].

Arcovomer, Altigius, and Hamptophryne

In our consensus topology, Arcovomer passarellii

Carvalho, 1954 is most closely related to Altigius alios

Wild, 1995 and Hamptophryne boliviana (Parker, 1927).

Currently, all three of these genera are monotypic. How-

ever, two new species of Arcovomer from Brazil, one

from central-north São Paulo and the other one from

Espírito Santo, are being described by one of us (CFBH).

Given the close phylogenetic relationship between

Altigius and Hamptophryne, we place the genus Altigius

in the synonymy of Hamptophryne Carvalho, 1954

which produces the new taxonomic combination Hamp-

tophryne alios (Wild, 1995). A close affinity between

Arcovomer and Hamptophryne was previously suggested

[51] based on both genera lacking neopalatines and

having divided prevomers. The condition of the poster-

ior vomers has been reported to vary in this clade with

H. boliviana possessing posterior vomers reduced to

small plates and Arcovomer possessing these elements

as a fused single element found anterior to the para-

sphenoid. Osteological information for H. alios is very

limited and incomplete but the original description

indicates “. . .posterior vomer and neopalatines not

distinguishable” [72].

Descriptions of larvae within this clade are available

for H. alios [72] and H. boliviana [64]. The larva of

Arcovomer has not been described.

Dasypops and Myersiella

We recovered strong support for a sister relationship

between the genera Myersiella Carvalho, 1954, and

Dasypops Miranda-Ribeiro, 1924 (Figure 4). While both

of these genera are currently monophyletic, at least one

new species of Myersiella from Minas Gerais, Brazil, is

being described by one of us (CFBH). These genera are

similar in having small heads relative to total body size;

in Dasypops the snout is broad and truncated whereas it

is narrow and pointed in Myersiella [56]. These genera

can be differentiated by 1) the fingers and toes which are

de Sá et al. BMC Evolutionary Biology 2012, 12:241 Page 11 of 21

http://www.biomedcentral.com/1471-2148/12/241



swollen in Dasypops and slender in Myersiella [75] and

2) presence of clavicle and procoracoid in Dasypops but

absent in Myersiella [51]. Herein, we note some add-

itional differences between those two genera: 1) the con-

dition of finger IV which is comprised of two phalanges

in Dasypops and three in Myersiella, 2) a broad para-

sphenoid that extends beyond the choanae in Dasypops

and a slender and not reaching the choanae in Myersiella,

3) the advertisement call which is trilled in Dasypops and

consists of simple whistles [76] in Myersiella [77], and 4)

aquatic and free-swimming larvae in Dasypops [77] and

direct-development in Myersiella [78]. The phylogenetic

placement of Myersiella deep within the Gastrophryni-

nae may represent a notable instance of convergence

given the morphological [56], behavioral, and repro-

ductive [79] characteristics it shares with the otophry-

nine Synapturanus.

Dermatonotus, Elachistocleis, Relictivomer, Gastrophryne,

and Hypopachus

The monotypic Dermatonotus Mehely, 1904 is sister to a

clade that includes Elachistocleis, Gastrophryne Fitzinger,

1843 and Hypopachus Keferstein, 1867. Dermatonotus

was proposed to be ‘allied’ with Hypopachus and Gastro-

phryne [51]; furthermore Carvalho suggested that the

genus might be “. . ..close to the ancestral stock that gave

rise to Nelsonophryne (= Glossostoma; sensu Günter,

1901), Hypopachus, Gastrophryne, Relictivomer, Elachis-

tocleis, Dasypops, Myersiella, and Synapturanus.” Also, a

close association among Nelsonophryne [Glossostoma],

Hypopachus, Gastrophryne, and Elachistocleis was sug-

gested previously [76,80]. Our results agree with the pre-

vious suggestion that Dermatonotus is basal to several

genera: Hypopachus, Gastrophryne, Elachistocleis, and

Relictivomer. However, Dasypops, Myersiella, and Cteno-

phryne (including ‘Glossostoma’) appear to have resulted

from earlier branching events in the Gastrophryninae

tree than Dermatonotus. The phylogenetic patterns that

we recovered for Dermatonotus, Elachistocleis, Gastro-

phryne, and Hypopachus are generally congruent with

previous molecular studies [11,16,17], although Derma-

tonotus was not included in the latter study. While

Dermatonotus is presently considered to be monotypic it

is likely to represent a complex of species distributed from

the Chaco of Argentina to Bolivia, Paraguay and reaching

northeastern Brazil (Maranhão State). Furthermore, a sec-

ond species is being described from Northeastern Brazil

by one of us (CFBH).

Our analyses recovered the monotypic genus Relicti-

vomer nested within a well-supported clade of Elachisto-

cleis samples (Figure 4). A close relationship between

these genera was previously suspected on the basis of

morphology [61]. Relictivomer was differentiated from

Elachistocleis [51] based on the presence of reduced

posterior vomers in the former and their absence in the

latter genus. Based on our phylogeny, we return

R. pearsei (Ruthven, 1914) to the genus Elachistocleis

Parker, 1927 resurrecting the taxonomic combination

Elachistocleis pearsei. Adult Elachistocleis, including

E. pearsei, have the following combination of characters:

clavicle short and curved, distal end of the clavicle

curved not touching the coracoid, procoracoid divided,

and the last three vertebrae longer than wide. The

condition of the last three vertebrae is a putative syn-

apomorphy for Elachistocleis. While this state in adult

E. panamensis awaits confirmation, a juvenile specimen

exhibited wider than long vertebrae; the juvenile condi-

tion could imply the retention of the ancestral state in

this early branching lineage of Elachistocleis or that the

last three vertebrae grow postmetamorphically beco-

ming longer than wider in adults.

Our analyses also support the recent placement of

Gastrophryne usta and G. pictiventris in Hypopachus

[18]. However, we recovered a different phylogenetic

arrangement among members of the genus Gastro-

phryne. Previous authors hypothesized that G. elegans

and G. olivacea are sister taxa, our analyses exclusively

grouped G. carolinensis and G. olivacea (as previously

suggested [80]). However, our analyses recovered a para-

phyletic G. carolinensis with respect to G. olivacea and

G. mazatlanensis. Though it warrants further explo-

ration, this enigmatic result may be related to the regular

hybridization that occurs between G. carolinensis and

G. olivacea [18] and our molecular sampling strategy

that was biased towards nuclear DNA.

Free swimming larvae for this clade have been

described for: Dermatonotus [81-83], Elachistocleis bi-

color [73], E. ovalis [84], E. panamensis [85], E. pearsi

[86], E. surinamensis [87], Gastrophryne carolinensis

[88,89], G. elegans [90], G. olivacea [89], Hypopachus

barberi [91,92], H. pictiventris [53], H. ustum [90], and

H. variolosus [89,93].

A summary of proposed taxonomic changes is pro-

vided in Table 2.

Divergence dating implications

After reducing our taxonomic sampling for the diver-

gence analysis, the multilocus alignment contained 37

taxa and 2683 bp. This dataset produced the time tree

depicted in Figure 5. For descriptive purposes we defined

several Gastrophryninae subclades (see Table 3): (1)

Chiasmocleis + Syncope + Dasypops + Myersiella +

Stereocylops + Arcovomer + Hamptophryne + Dermato-

notus + Elachistocleis + Gastrophryne + Hypopachus, (2)

Dasypops + Myersiella + Stereocylops + Arcovomer +

Hamptophryne + Dermatonotus + Elachistocleis +

Gastrophryne + Hypopachus, and (3) Dermatonotus +

Elachistocleis + Gastrophryne + Hypopachus. The
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Table 2 Redefined content of the subfamily Gastrophryninae with proposed taxonomic modifications (bold text),

original subfamily designations, and larval description citations by taxon

Old taxonomy New taxonomy Original placement Larval description

Ctenophryne geayi Ctenophryne geayi Gastrophryninae [56]

Ctenophryne minor Ctenophryne minor Gastrophryninae None

Nelsonophryne aequatorialis Ctenophryne aequatorialis Gastrophryninae [54]

Nelsonophryne aterrima Ctenophryne aterrima Gastrophryninae [53]

Melanophryne barbatula Ctenoprhyne barbatula incertae sedis None

Melanophryne carpish Ctenophryne carpish incertae sedis [54]

Syncope antenori Syncope antenori incertae sedis [68]

Syncope carvalhoi Syncope carvalhoi incertae sedis None

Syncope tridactyla Syncope tridactyla incertae sedis None

Chiasmocleis bassleri Syncope bassleri Gastrophryninae None

Chiasmocleis hudsoni Syncope hudsoni Gastrophryninae None

Chiasmocleis jimi Syncope jimi Gastrophryninae None

Chiasmocleis magnova Syncope magnova Gastrophryninae None

Chiasmocleis supercilialbus Syncope supercilialbus Gastrophryninae None

Chiasmocleis alagoanus Chiasmocleis alagoanus Gastrophryninae [62]

Chaismocleis albopunctata Chaismocleis albopunctata Gastrophryninae [71]

Chasimocleis anatipes Chasimocleis anatipes Gastrophryninae [47]

Chiasmocleis atlantica Chiasmocleis atlantica Gastrophryninae None

Chiasmocleis avilapiresae Chiasmocleis avilapiresae Gastrophryninae None

Chiasmocleis capixaba Chiasmocleis capixaba Gastrophryninae None

Chiasmocleis carvalhoi Chiasmocleis carvalhoi Gastrophryninae [72]

Chiasmocleis centralis Chiasmocleis centralis Gastrophryninae None

Chiasmocleis cordeiroi Chiasmocleis cordeiroi Gastrophryninae None

Chiasmocleis crucis Chiasmocleis crucis Gastrophryninae None

Chiasmocleis devriesi Chiasmocleis devriesi Gastrophryninae None

Chiasmocleis gnoma Chiasmocleis gnoma Gastrophryninae None

Chiasmocleis hudsoni Chiasmocleis hudsoni Gastrophryninae [73]

Chiasmocleis leucosticta Chiasmocleis leucosticta Gastrophryninae [74]

Chiasmocleis mantiqueira Chiasmocleis mantiqueira Gastrophryninae [75]

Chiasmocleis mehelyi Chiasmocleis mehelyi Gastrophryninae None

Chiasmocleis sapiranga Chiasmocleis sapiranga Gastrophryninae None

Chiasmocleis schubarti Chiasmocleis schubarti Gastrophryninae None

Chiasmocleis shudikarensis Chiasmocleis shudikarensis Gastrophryninae [76]

Chiasmocleis ventrimaculata Chiasmocleis ventrimaculata Gastrophryninae [56,76]

Hyophryne histrio Stereocyclops histrio incertae sedis None

Stereocyclops incrassatus Stereocyclops incrassatus incertae sedis [49,50]

Stereocyclops parkeri Stereocyclops parkeri incertae sedis [50]

Arcovomer passarellii Arcovomer passarellii incertae sedis None

Altigius alios Hamptophryne alios incertae sedis [46]

Hamptophryne boliviana Hamptophryne boliviana Gastrophryninae [47]

Dasypops schirchi Dasypops schirchi Gastrophryninae [59]

Myersiella microps Myersiella microps incertae sedis [60]

Dermatonotus muelleri Dermatonotus muelleri Gastrophryninae [76,80,81]
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distribution and diversification of the Microhylidae has

been associated to the breakup and subsequent drifting

of Gondwanaland continents [94]. However, a recent

work suggested that the diversification of the microhylid

clade occurred during the late Cretaceous [15], after the

breakup of Gondwanaland. Consequently, these authors

suggest the possibility of land bridge connections among

the drifting continents that would have allowed for the

dispersal of early microhylid lineages. This biogeographic

scenario is supported by: 1) an Otophryninae clade that

is more closely related to geographically distant micro-

hylids lineages (e.g., Kalophryninae) than to other NWM

[this study] and 2) the correlation between patterns of

diversification in Late Cretaceous microhylid lineages

and other co-distributed anuran lineages [15].

Our divergence estimates resulted in a tree possessing

a mean root height of 82.17 mya (Figure 5). A summary

of major node ages (and their respective 95% highest

posterior densities [error margins]) is provided in

Table 3. Based on the hypothesis that Otophryninae and

Gastrophryninae both originated in association with a

South American-Antarctica vicariance event in the late

Cretaceous [15] and that several Gastrophryne species

appeared in North America sometime in the Plio-

Pleistocene [35], we find that most diversification among

gastrophrynine genera occurred during a 30 my period

starting in the Eocene and extending into the late to

middle Miocene. Interestingly, under the relaxed-clock

model, Otophryne and Synapturanus species appear to

have diversified in parallel suggesting that a shared

biogeographic event may be responsible for their con-

temporary diversification during the Oligocene. Our esti-

mates for the origin of Gastrophryne and Hypopachus at

about 21 mya (13.1—31.5 HPD) overlap with previous

estimates that estimated the divergence of Hypopachus

and Gastrophryne to be about 17 mya [16].

The inclusion of Chiasmocleis panamensis and Relicti-

vomer pearsei in Elachistocleis restricts the range of

Chiasmocleis to South America and the northern range

of Elachistocleis is represented by three species in

Panama (Elachistocleis sp., E. panamensis, and E.

pearsi). Since the monotypic Adelastes, the only NWM

genus not sampled in our analyses, is unlikely to be

related to Dermatonotus, Elachistocleis, Gastrophryne,

or Hypopachus, it seems plausible that the North

American microhylid radiation is derived from the

expansion of a Dermatonotus/Elachistocleis ancestor.

According to our divergence estimates, the node uniting

Table 2 Redefined content of the subfamily Gastrophryninae with proposed taxonomic modifications (bold text),

original subfamily designations, and larval description citations by taxon (Continued)

Chiasmocleis panamensis Elachistocleis panamensis Gastrophryninae None

Relictivomer pearsei Elachistocleis pearsei Gastrophryninae [64]

Elachistocleis bicolor Elachistocleis bicolor Gastrophryninae [49]

Elachistocleis bumbameuboi Elachistocleis bumbameuboi Gastrophryninae None

Elachistocleis carvalhoi Elachistocleis carvalhoi Gastrophryninae None

Elachistocleis cesarii Elachistocleis cesarii Gastrophryninae None

Elachistocleis erythrogaster Elachistocleis erythrogaster Gastrophryninae None

Elachistocleis helianneae Elachistocleis helianneae Gastrophryninae None

Elachistocleis magnus Elachistocleis magnus Gastrophryninae None

Elachistocleis matogrosso Elachistocleis matogrosso Gastrophryninae None

Elachistocleis ovalis Elachistocleis ovalis Gastrophryninae [62]

Elachistocleis skotogastor Elachistocleis skotogastor Gastrophryninae None

Elachistocleis surinamensis Elachistocleis surinamensis Gastrophryninae [65]

Elachistocleis surumu Elachistocleis surumu Gastrophryninae None

Gastrophryne carolinensis Gastrophryne carolinensis Gastrophryninae [82,83]

Gastrophryne elegans Gastrophryne elegans Gastrophryninae [84]

Gastrophryne olivacea Gastrophryne olivacea Gastrophryninae [83]

Gastorphryne mazatlanensis Gastorphryne mazatlanensis Gastrophryninae None

Hypopachus barberi Hypopachus barberi Gastrophryninae [85,86]

Hypopachus pictiventris Hypopachus pictiventris Gastrophryninae [53]

Hypopachus ustum Hypopachus ustum Gastrophryninae [84]

Hypopachus variolosus Hypopachus variolosus Gastrophryninae [83,87]

Proposed taxonomic modifications are indicated by bold text.
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Figure 5 Bayesian time tree generated from partitioned mitochondrial and nuclear dataset. Nodes indicated by solid circles correspond to

dates listed in Table 3. Calibration points (C1—C3; see text for more details) are indicated as solid squares.
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all extant Central and North American microhylids

(Elachistocleis + Gastrophryne + Hypopachus) origi-

nated in the early Oligocene at about 35 mya. This

ancestor could have dispersed from Northern South

America during the late Oligocene facilitated by a

Central American archipelago connecting these land-

masses. A similar pattern of dispersal from the South

American Choco region to Central America has been

proposed for some dendrobatid lineages during the late

Miocene [95]. The presence of a Central American

archipelago in the late Miocene [96,97] could explain a

much earlier faunal exchange than would be allowed by

Plio-Pleistocene land bridges [95].

Although our divergence estimates are broadly consist-

ent with previous hypotheses [44,98], the confidence inter-

vals associated with most estimates are wide (Table 3) and

not always consistent with other studies [e.g., 16]. Add-

itionally, given our calibration scheme (two deep second-

ary, one shallow fossil) and mixed mitochondrial and

nuclear sampling it is possible that our divergence esti-

mates may be over [99] or underestimated [100]. As such,

we propose this preliminary framework as a hypothesis for

gastrophrynine diversification that future investigators will

test with a more robust taxonomic and genomic sampling

as well as alternative calibration schemes.

Morphological diversity: Gastrophrynines as a study

system for developmental plasticity

Using our revised understanding of phylogenetic relation-

ships and divergence estimates within the Gastrophryninae,

we see several striking examples of how morphologically

variable certain characters have remained over the last ca.

40 my. In particular, two anterior ventral investment bones

(i.e., vomers and neopalatines) are recognized as some of

the most variable osteological elements in anuran lineages,

e. g., either present or absent [1,6,101]. However, except in

microhylids, these two elements are not intraspecifically

variable in Anura. Gastrophrynine frogs exhibit unusual

intraspecific variation in these two elements, e.g., present,

absent, reduced, fused, independent. This morphological

variation could arise from retained ancestral developmental

plasticity in given traits, i.e., plasticity of developmental

pathways, to accommodate morphological and ecological

constraints of the adult integrated phenotype [102,103].

Environmentally induced variation in development (onto-

genetic plasticity) is known to occur in anurans [104-107].

Plasticity in developmental pathways could arise from

existing relaxed genetic constraints or ancestral allelic vari-

ation in the population [106,108].

Based on recent studies [6,9,11] this study, intraspeci-

fic plasticity could have historically misled the diagnoses

Table 3 Divergence time estimates in millions of years ago (with 95% highest posterior density [HPD] range) for major

nodes (Figure 5) associated with the Gastrophyninae and Otophryninae taxa sampled for this study

Node (Figure 5) Age in mya (95% HPD)

1. Origin of Synapturanus 28.80 (10.36—51.08)

2. Origin of Otophryne 28.78 (13.48—47.97)

3. Origin of Melanophryne + Ctenophryne + Nelsonophryne clade 21.85 (11.00—37.36)

4. Origin of Chiasmocleis 22.80 (10.42—38.42)

5. Origin of Chiasmocleis + Syncope clade 37.26 (21.23—54.69)

6. Origin of Syncope 13.98 (5.59—25.18)

7. Origin of Gastrophryninae subclade I 64.88 (48.18—78.21)

8. Origin of Dasypops + Myersiella 22.27 (8.04—37.75)

9. Origin of Dasypops + Stereocyclops + Myersiella 37.83 (23.36—55.53)

10.Origin of Stereocyclops 13.94 (5.09—25.92)

11. Origin of Gastrophryninae subclade II* 49.43 (34.29—64.67)

12. Origin of Arcovomer + Hamptophryne clade 34.50 (21.26—48.89)

13. Origin of Hamptophryne 20.86 (8.69-34.99)

14. Origin of Gastrophryninae subclade III* 41.30 (27.91—59.65)

15. Origin of Elachistocleis 23.24 (13.30—33.79)

16. Origin of Elachistocleis + Dermatonotus + Hypopachus + Gastrophryne clade 33.51 (22.52—46.23)

17. Origin of Elachistocleis + Hypopachus + Gastrophryne clade 30.30 (19.51—41.58)

18. Origin of Hypopachus 17.40 (9.94—26.86)

19. Origin of Hypopachus + Gastrophryne 20.97 (13.09—31.50)

20. Origin of Gastrophryne 8.09 (3.49—15.19)

*subclade designations can be found in text.
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of anuran systematists who normally treat osteological ele-

ments as separate character states when inferring species

level relationships when it may be the result of intraspeci-

fic plasticity of a given trait. One notable case of this is

the Hamptophryne-Arcovomer clade where these bones

have been reported as: 1) neopalatines: absent in both

genera [51,56], reduced in Hamptophryne [109], present

in Hamptophryne [56], polymorphic (present/absent)

in Hamptophryne [61], present as independent elements

in both genera [6] and 2) posterior vomers: reduced in

Hamptophryne and fused in Arcovomer [6,51], reduced

in Hamptophryne [109], and present in Arcovomer and

polymorphic (present/absent) in Hamptophryne [56,61].

Similar instances of overlapping morphological varia-

tion have been reported between Gastrophryne and

Hypopachus see review in [18]. Given this putative plas-

ticity, it seems likely that similar (e.g., level of reduction

of a given bony element) or identical character states

(e.g. independent loss of a bone or parts of it) in adult

morphology have often been interpreted as synapo-

morphies or autapomorphies when they are actually

homoplasies. Thus, future microhylid phylogenetic ana-

lyses that aim to incorporate adult morphology should

explore and understand the ontogenies of those charac-

ters prior to conducting interspecific comparisons and

phylogenetic analyses. Understanding the variability of

these characters requires detailed developmental studies

for which at present there are only three available for

Gastrophryninae [6,109,110].

In contrast to the apparent levels of homoplasy in adult

morphology, a recent study [111] concluded that Micro-

hyloidea had noticeably lower levels of larval homoplasy

than the other major lineages of Neobatrachia. Thus, gas-

trophrynines may be unique in having low levels of larval

homoplasy yet high levels of adult homoplasy. There have

been few studies [112] that focus on understanding how

the interaction between larval ontogenies and the

anuran Bauplan relate to the ecological requirements of

the adult.

The striking similarity of putative autapomorphic or

synapomorphic skeletal traits in phylogenetically diver-

gent lineages within the Gastrophyninae (particularly in

the 22 chromosome clade) suggests that these characters

may be more appropriately interpreted as homoplastic.

While the recurrent nature of this homoplasy could be

misdiagnosed or exaggerated by non-standardized docu-

mentation, it could also be explained by underlying evolu-

tionary processes like ancestral developmental plasticity.

We suspect the latter to be the case given that 1) morpho-

logical homoplasy related to ecological specialization has

been documented in anurans [7], and references therein,

and [2]) characters treated as independent in microhylid

systematics studies are often grouped within functional

complexes (e.g., cranium, pectoral girdle, pelvic girdle,

etc.) that evolve in concert [113,114] and are also likely to

be developmentally correlated ([115]; see review of pheno-

typic integration [103]).

Developmental plasticity is thought to underlie pheno-

typic plasticity and a populations’ ability to adapt to un-

stable or changing environments [104-106]. Developmental

plasticity of morphological traits, in conjunction with envir-

onmental selection, can result in the evolution of new traits

[107,108] that trigger speciation or rapid adaptive radia-

tions [116] under variable environmental conditions

[107,108,117-120]. A systematist would consider these new

traits as potential autapomorphies or synapomorphies to

diagnose species and/or to recognize above-species taxo-

nomic categories. In relation to these concepts, the putative

instances of morphological homoplasy in closely related

gastrophrynines are of particular note, since many lineages

have likely diversified not in changing environments but

within stable fossorial environments [121]. This scenario

has implications for how developmental and phenotypic

plasticity of a lineage interact in the absence of ecological

variability; an underlined prerequisite to studies of pheno-

typic plasticity [122,123]. In particular, the patterns of diver-

sification we observe in functional complexes, e.g., the

anuran palate, may be related to an ancestral developmental

Figure 6 Chromosome reduction in New World microhylids of

the subfamily Gastrophryninae. Mapping karyotypes on a

consensus molecular phylogeny (Figures 2, 3, 4) reveals at least two

fusion events may have occurred during the evolution of these

frogs. A question mark indicated those genera for which karyotypes

are currently unavailable.
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plasticity that accommodates the interaction between his-

torical constraints [124] and functional adaptation as

lineages diversify within relative stable environmental con-

ditions, e.g. fossoriality. Under the latter scenario, we

would expect that lineage diversification would result in

evolutionarily independent instances of specialization that

produce similar morphological traits, i.e. homoplastic in-

stead of apomorphic traits. Furthermore, this system is of

interest since, relative to other vertebrates, anurans have a

highly conserved body plan [124], a characteristic that

may facilitate a more reliable identification of morpho-

logical traits subject to convergence, independent parallel-

ism, or ancestral developmental plasticity. By discussing

the interaction between underlying processes and resulting

patterns in groups like microhylids, that evolutionary mor-

phologists can make relevant contributions to a research

discipline (evo-devo) dominated by studies of develop-

mental and population genetics [102,125].

Genomic variation in the Gastrophryninae

Genome structure in microhylids seems to have arisen

from a diploid ancestor with 26 chromosomes. This is

presumed because the 2N=26 state is present in all of the

microhylid subfamilies that have been examined

karyologically (Dyscophinae and Cophylinae [126], Otop-

hryninae [127], Gastrophryninae [128], Asterophryinae

[129]). There are, however, known deviations from this

karyological formula with several subfamilies ranging in

chromosome number from 28–22 [128]. One of these

instances occurs in the Gastrophryninae where chromo-

some number ranges from 26–22. By mapping known kar-

yotypes on our Gastrophryninae molecular phylogeny

(Figures 2, 3, 4), a putative pattern of chromosome reduc-

tion emerges (Figure 6). The earliest detectable branching

event in the Gastrophryninae leads to Ctenophryne which

contains members (C. aequatorialis and C. aterrima) pos-

sessing a 2N=26 karyotype [127]. The next major branch-

ing event leads to Syncope and Chiasmocleis which

contains members (C. albopunctata and C. schubarti) pos-

sessing a 2N=24 karyotype. One instance of tetraploidy has

been reported for Chiasmocleis (C. leucosticta), but the 48

chromosomes identified in this species suggest a 24

chromosome ancestral template [130]. The most derived

major clade of Gastrophryninae appears to have developed

a reduced 22 chromosomes karyotype early in its evolution

since Arcovomer, Elachistocleis, Gastrophryne, Hypopachus,

Hamptophryne, Stereocyclops, and Dermatonotus all pos-

sess this condition. The reduction of chromosome number

as it relates to morphological character reduction/loss

should be explored further.

Conclusions
Accumulated evidence supports the monophyly of Micro-

hylidae and its major evolutionary lineages. However,

relationships among these subfamily lineages remain un-

certain. New World microhylids consist of two separate

evolutionary lineages, Otophryninae and Gastrophryninae.

Otophryninae (2 genera, 5 species) is probably more

closely related to old world subfamilies than to Gastro-

phryninae. Gastrophryninae consists of 12 genera and 66

species (summary in Table 2). Given the levels of phylo-

genetic diversity observed in our study, it is likely that

additional species will be described in the genera Chias-

mocleis, Ctenophryne, Dermatonotus, Elachistocleis, and

Syncope. We transfer some species of Chiasmocleis to the

genera Syncope and Elachistocleis to render Chiasmocleis

monophyletic. To better reflect shared evolutionary histor-

ies at generic levels, we synonymize Altigius with Hampto-

phryne, Hyophryne with Stereocyclops, and Nelsonophryne

and Melanophryne with Ctenophryne. Resolved branches

in the Gastrophryninae part of our phylogeny suggest the

reduction and loss of morphological and karyological

traits. Morphological shifts are mostly related to the re-

duction or loss of individual elements in functional com-

plexes of the skeleton that may be related to the repeated

evolution of a fossorial ecology. Gastrophryninae exhibits

a karyological trend towards reduced diploid numbers in

the more derived lineages. While most genera have

aquatic larvae, there are several reproductive modes that

occur in Gastrophryninae including terrestrial deve-

lopment (Myersiella) and non-feeding aquatic larvae

(Syncope). One of the few temperate microhylid radiations

(the North American genera Gastrophryne and Hypopa-

chus) appears to be derived from ancestral stock shared

with the South American genus Elachistocleis. Our diver-

gence estimates indicate that if Otophryninae and Gastro-

phryninae originated in the Late Cretaceous, most genus-

level diversification occurred during a period spanning the

late Oligocene to the Miocene.
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